Overview

- Catch-up from Monday:
- The exponential approximation in more detail
 - Sample TMRCA and population TMRCA
- Genetic drift as a forward process: the random walk
- PopG simulator
- Effective population size:
 - Basic definition
 - No self-fertilization
 - Separate sexes
- Parameters of the drift process

- Define terms and label graphs
- Show how we get the exponential approximation for the coalescent
- Be more precise about the role of mutation
- More class discussion and interaction (good point!)

Working definitions

- Gene copy: one instance of a given sequence (it doesn't actually have to be a "gene"
 - Assume for the moment that if it changes several times we can always see all mutations—they don't overwrite or interfere
 - MRCA of two gene copies is most recent gene copy ancestral to both
 - We ignore recombination within gene copies for now
- Coalescence: looking back in time, the point at which two genetic lineages reach their common ancestor
- Coalescent: the expected distribution of coalescence times

Derive the exponential approximation

- In discrete time:
 - $-Prob_c(t) = (\frac{1}{2N})(1 \frac{1}{2N})^{t-1}$
- Continuous time approximation:

$$- Prob_c(t) = \frac{1}{2N}e^{-\frac{t-1}{2N}}$$

• Mean is 2N, standard deviation is 2N (big!)

- I claimed TMRCA was the same with same θ
 - NOT true in years or generations! Bigger N leads to bigger TMRCA
 - "Mutational time" (expected number of mutations) back to MRCA is the same

Goals of studying genetic drift

• Predict:

- Diversity of populations
- Rate at which species diverge due to drift
- Effect of demographics on diversity and divergence
- On the horizon: interactions between drift and natural selection

Genetic drift

PopG demo goes here

Effective population size N_e

• Informally, the size of a Wright-Fisher population with the same intensity of drift as the given population

- Can be calculated for a variety of situations:
 - Non-reproductive individuals
 - No selfing
 - Two sexes
 - Cycling population size (on Friday)
 - Overlapping generations, unequal reproductive success (difficult!)

Flavors of N_e

- Possible to define N_e as the size of a Wright-Fisher population with the same:
 - Expected proportion of homozygotes
 - Expected rate of change in allele frequencies due to drift
- We are computing the first, but they are generally equal or close

- Some hermaphrodites do not self-fertilize (especially plants)
- This means that 2 gene copies currently in the same individual did not coalesce last generation
- This increases N_e by approximately 1/2 an individual–generally trivial

Separate sexes

- $N_e \approx 4N_f N_m / (N_f + N_m)$
- If $N_f = N_m$ this is 2N
- As N_m decreases it approaches $4N_m$
- (Felsenstein book says $2N_m$ but he confirms this is wrong)
- The rare sex exerts a disproportionate influence on the population trajectory

Derivation hints

- 1/2 chance that two copies this generation were in same sex individual last generation
- Chance of coalescing in 1 generation is $1/(2N_f)$ or $1/(2N_m)$ at 1/4 each
- Overall chance therefore 1/(8Nf) + 1/(8Nm)
- Set $1/2N_e$ equal to this and solve for N_e

Haplodiploids–Practice problem

• Can we work out the same equation for haplodiploids?

- Females have 2 copies of their genome
- Males have only 1 copy which they give to all offspring
- Obviously the effective size must be lower than 2N, but how much lower?
- Try working in pairs

Non-random reproductive success

- Human females have low variance in reproductive success (Wikipedia record: 69)
- Human males have much more variance (Wikipedia record: 860)
- Genetic drift is stronger in male-only than female-only DNA
- Could explain why Y chromosome shows more population-specific traits than mtDNA
- Alternative: sex-specific migration/dispersal

Y-chromosome variation in Europe and North Africa

Why N_e matters

- Red drum are large fish of the Gulf of Mexico
- Effective size 1000 times lower than census size
- This species has the numbers of a big population but the genetic drift of a small one
- Likely explanation is very unequal reproductive success

- Red drum spawn in very specific estuary environments
- A few lucky clutches have thousands of survivors; most have none
- Allele frequencies change substantially from one generation to the next, reflecting the few lucky individuals

Who cares about N_e ?

• Conservation biologists

- How much diversity will a given population size/structure lose?
- How can we minimize losses?

• Epidemiologists

- What are a pathogen's likely resources for dealing with a new treatment?
- How can we reduce them?

Who cares about N_e ?

• Animal breeders

- How much trouble will we get in if we mainly breed from the few best males?
- Phylogeneticists
 - How does population size affect species divergence? (More on this later)

Here are several related, but distinct, questions:

- What is the probability that a specific new mutant will eventually fix?
- How many mutants fix per generation?
 - How many new mutants destined to fix arise each generation?
 - How fast do two species diverge by drift?
- How long does it take a mutant to fix on average?
- How much variation will be present in a population on average?

Taking them one at a time:

- What is the probability that a specific new mutant will eventually fix? $\frac{1}{2N_e}$
- How many mutants fix per generation? $\frac{2N_e\mu}{2N_e} = \mu$
- How long does it take a mutant to fix, on average? Approximately $4N_e$ generations
- How much variation will be present in a population on average?

• Counting alleles is not a good way to quantify variation

- Too sensitive to very rare alleles

- Measure variation as proportion of homozygotes—the fewer homozygotes, the more variation
 - Call the proportion of homozygotes ${\cal F}$
 - With two equally frequent alleles, F=0.5

- In cases with mutation and drift, an approximate formula is: $F\approx \frac{1}{1+4N_e\mu}$
- This approximation assumes that every mutation is to a new allele. It is quite accurate in practice even when that's not true, as long as there are a decent number of different alleles possible.

Fraction of homozygotes

$$F \approx \frac{1}{1+4N_e\mu}$$

Intuitive results of this equation:

- If the population is large, there will be fewer homozygotes (more diversity)
- If the mutation rate is large, there will be fewer homozygotes (more diversity)

(Always ask yourself-does this equation predict results that are in the right general direction?)

Fraction of homozygotes–Practice problem

(Fictional problem inspired by real data of Potts et al.)

 $F \approx \frac{1}{1+4N_e\mu}$

- We measure heterozygosity at one gene in the mouse MHC as 92%
- (Population: restaurant mice in Miami)
- Mutation rate (based on rat/mouse comparison) is around average for rodents: 10⁻⁶ per gene per generation
- How many mice does this imply, if the MHC were non-selected?
- (You'll actually calculate N_e -that's okay)

Fraction of homozygotes–Practice problem

(Fictional problem inspired by real data of Potts et al.)

- $F \approx \frac{1}{1+4N\mu}$
- $0.08 \approx \frac{1}{1+4Nx10^{-6}}$
- N = 2,875,000 mice
- That's probably too many mice. What might explain this?

Summary

- Wright-Fisher model gives simple predictions for many aspects of the drift process:
 - Chance for a mutation to fix
 - Time it takes to fix
 - Diversity within a population
 - Divergence between populations
- These can often be adapted to a non-Wright-Fisher situation via the effective population size N_e

Next week

- What if population size is not constant?
 - Cycling population size
 - Exponential growth or shrinkage
 - Bottlenecks

One-minute response

• Please:

- Tear off a slip of paper
- Give me one comment or question on something that worked, didn't work, needs elaboration, etc.