Roadmap

- Gene trees versus species trees
 - Drosophila case study
 - Possible solutions
- Bizarre species boundaries
- Co-speciation

A case study

- Pollard et al. (2006) PLOS Genet
- Whole-genome sequencing of Drosophila species
- Previous studies gave all 3 possible trees for D. melanogaster, D. erecta, and D. yakuba
- D. ananassae is known to be an outgroup to these
- Data: 9000 genes present in all 3 species

Whole-genome support for the three trees

Discussion

- Brainstorm:
 - What causes the discordant trees?
 - What could we do about it?

Incomplete linage sorting AKA ancestral polymorphism

- Can be analyzed using the coalescent:
 - Chance higher if ancestral population is large
 - Chance higher if speciations were close together
- Often said to be a problem with young species
 - If both daughter species survive, they will be like this forever
 - Probably rarer at longer time distances due to extinction
 - May be examples in mammalian radiation

Other tested explanations

- Didn't make much difference:
 - Phylogeny method (parsimony vs. likelihood)
 - Mutational model
 - * More complex models fit the data better but generated *more* disagreement on the tree!
 - Inclusion of other species
- Limit the analysis to genes on which all models and species combos agreed on the tree:
 - Incongruity reduced but not eliminated
- Bootstrap estimates of the reliability of single-gene trees
 - Many genes that supported trees 2 and 3 did so strongly
 - Discordant trees are apparently not just noisy

Spatial structure of data supporting the different trees

- Blocks of sites that agreed on a single tree:
 - Around 8 kb for trees 1 and 2
 - Around 2 kb for tree 3
 - Similar to Drosophila LD extent of "a few kb"
- Three significantly long blocks of tree 3 support (250-700 kb)
- Weak negative correlation between block size and *D. melanogaster* recombination rate

Still more ideas?

- Long-branch attraction?
 - High-mutation regions no more discordant than low-mutation ones
 - Tree 1 is not the long-branches preference tree anyway....
- Genomic GC content?
 - D. erectus and D. yakusa have lower GC than the others
 - This would *increase* support for tree 1
- What about hybridization? Maybe 2 or 3 of these trees are really correct?

Pollard et al. recommendation

- "[M]ethods that can infer the most likely species tree using an entire genome in a single calculation, considering lineage sorting explicitly."
- StarBEAST (*BEAST) is the closest approach I am currently aware of
 - Heled and Drummond 2010, Ogilvie and Drummond 2016
 - Co-infer individual gene genealogies and species tree
 - At the edge of feasibility with modern computers
- Assumptions of StarBEAST and relatives:
 - Individual genes have trees
 - Incongruence is caused by lineage sorting, so depends on time between splits and N_{e}
 - No hybridization (species tree is a tree)

A few more comments on genealogy samplers

- Basic idea similar to Monte Carlo integration
- By making small steps, improve acceptance (at cost of perhaps missing whole regions of the distribution)
- Getting them to "mix" (search efficiently) is a black art

Illustration of MCMC method process (Lewis, 2011)

Slide and metaphor due to Paul Lewis

Various species tree issues and ideas

- No bright line between species
- REALLY no bright line between some species
- Coordinated speciation in host and parasite

Ring species

- Ensatina salamanders
- Each adjacent pair of populations in this ring can interbreed
- Populations from the far ends of the ring cannot
- Black-winged gulls have a circumpolar ring

(these species are now in genus Pelophylax)

Hybridogenic species

- An adaptation in $Pelophylax\ lessonae$ will be present in $P.\ esculenta$ but not transmitted from there
- ullet An adaptation in $P.\ esculenta$ will be inherited only by $P.\ esculenta$
- P. esculenta has distinctive morphology and behavior

A haploid mammalian half-genome

- The $P. \ ridabunda$ genome copy:
 - No longer being replenished from P. ridabunda
 - No meaningful recombination (never sees another copy)
- Can you predict the outcome of forcing two P. esculenta to reproduce?

Ambystoma platineum

- All-female species; sperm needed only to activate the egg
- Usually triploid (3N) but sometimes 4N, 5N
- In preparation for meiosis they double their chromosomes one time more than usual
- Is this self-fertilization or cloning?

Amazon salamanders

- They may carry chromosomes from the sexual species A. jeffersonianum, A. laterale, A. tigrinum or A. texanum
- Many have chromosomes from multiple sexual species
- Often the mtDNA is from a different species than the nuclear chromosomes
- Probably a few sperm sneak through to increase ploidy—they are not 100% asexual

Amazon salamanders

- ullet Genome-wide, $A.\ platineum$ animals are not particularly related to each other
- The only thing they share is (hypothetically) a group of genes which lead to the all-female phenotype
- Does the existance of *A. platineum* cast doubt on the validity of the sexual species?
- Can A. platineum itself be considered a species at all?

Cospeciation

- Host species and parasite species often speciate together
- Species trees of the two groups will look very similar
- Example: gophers and gopher lice
- Reproductive isolation of hosts may isolate parasites
- Adaptation of hosts may spur adaptation of parasites (or vice versa)

Idealized schematic

Real data

Linguistic trees?

 A relationship tree among languages might mirror relationships among populations

• Problems:

- Population "tree" not necessarily a tree
- Language "tree" not necessarily a tree either
- Establishing homology in words is difficult and subjective: may be biased by preconceptions of the tree
- Next slide from Hunley et al. 2008, "Genetic and linguistic coevolution in Northern Island Melanesia"

Blue=coastal Green=intermediate Red=inland

Wednesday

- Kin selection:
 - Relationship coefficient (reprise)
 - Altruism
- Group selection
 - "Greenbeard genes"