Overview

- Finishing up from Wednesday:
 - Haplodiploids!
 - Expected homozygosity as a function of N_{e}
 - Practice problem: Florida mice
- Variation in population size:
 - Cycling populations
 - Exponential growth or shrinkage
 - Bottlenecks

- Practical examples and practice problems are good
- What are the parameters in PopG?
- Is there an equivalent coalescent simulator to play with?
 - I haven't used them, but check out the two programs at www.coalescent.dk, especially the "Hudson Animator"

- Cannot assume that half the genes came from male parents and half from females, because male haplodiploids *have no male parents*
- My reasoning:
 - Total gene copies are $N_m + 2N_f$
 - Chance a gene came from a male parent is $\frac{N_f}{N_m+2N_f}$
 - Chance a gene came from a female parent is $\frac{N_m + N_f}{N_m + 2N_f}$
 - Square these to get the chance that two random genes came from a male, or a female
 - Given they came from a male, coalescence chance is $\frac{1}{N_m}$
 - Given they came from a female, coalescence chance is $\frac{1}{2N_f}$
 - So!

$$\frac{1}{2N_e} = \left(\frac{N_f}{N_m + 2N_f}\right)^2 \times \frac{1}{N_m} + \left(\frac{N_m + N_f}{N_m + 2N_f}\right)^2 \times \frac{1}{2N_f}$$

Haploidiploid disclaimer

- Sewall Wright also tackled this problem (for the mammalian X chromosome)
- His solution was:

$$N_e = \frac{9N_f N_m}{2N_f + 4N_m}$$

- This gets the same answer when $N_m = N_f$ but not otherwise
- I don't know which is correct
- Possibly both are correct for different definitions of N_e
- (I got Joe Felsenstein to try this for an hour or so, without a numerical result....)

N_e of a haplodiploid

•
$$\frac{1}{2N_e} = (\frac{N_f}{N_m + 2N_f})^2 \times \frac{1}{N_m} + (\frac{N_m + N_f}{N_m + 2N_f})^2 \times \frac{1}{2N_f}$$

• I can't reduce this, but here are some results:

Males	Females	N_e
199	1	1.01
150	50	75.00
100	100	150.00
50	150	105.00
1	199	2.00

- The equal-sexes answer is just what we would have predicted naively; there are 3/4 as many gene copies, so N_e is 3/4 what it would be in a diploid
- A shortage of females reduces N_e more than a shortage of males

• Counting alleles is not a good way to quantify variation

- Too sensitive to very rare alleles

- Measure variation as proportion of homozygotes—the fewer homozygotes, the more variation
 - Call the proportion of homozygotes ${\cal F}$
 - With two equally frequent alleles, F=0.5

- In cases with mutation and drift, an approximate formula is: $F\approx \frac{1}{1+4N_e\mu}$
- This approximation assumes that every mutation is to a new allele. It is quite accurate in practice even when that's not true, as long as there are a decent number of different alleles possible.

Fraction of homozygotes

$$F \approx \frac{1}{1+4N_e\mu}$$

Intuitive results of this equation:

- If the population is large, there will be fewer homozygotes (more diversity)
- If the mutation rate is large, there will be fewer homozygotes (more diversity)

(Always ask yourself-does this equation predict results that are in the right general direction?)

Fraction of homozygotes–Practice problem

(Fictional problem inspired by real data of Potts et al.)

 $F \approx \frac{1}{1+4N_e\mu}$

- We measure heterozygosity at one gene in the mouse MHC as 92%
- (Population: restaurant mice in Miami)
- Mutation rate (based on rat/mouse comparison) is around average for rodents: 10⁻⁶ per gene per generation
- How many mice does this imply, if the MHC were neutral?
- (You'll actually calculate N_e -that's okay)

Fraction of homozygotes–Practice problem

(Fictional problem inspired by real data of Potts et al.)

- $F \approx \frac{1}{1+4N\mu}$
- $0.08 \approx \frac{1}{1+4Nx10^{-6}}$
- N = 2,875,000 mice
- That's probably too many mice. What might explain this?

Summary

- Wright-Fisher model gives simple predictions for many aspects of the drift process:
 - Chance for a mutation to fix
 - Time it takes to fix
 - Diversity within a population
 - Divergence between populations
- These can often be adapted to a non-Wright-Fisher situation via the effective population size N_e

Cycling populations

N_e in a cycling population

- Two generations: $\frac{1}{2N_e} = \frac{\frac{1}{2N_{t1}} + \frac{1}{2N_{t2}}}{2}$
- g generations: $\frac{1}{2N_e} = \frac{\sum_{t=1}^{g} \frac{1}{2N_t}}{g}$
- Expressed in terms of N_e , this is a *harmonic mean*
- It is strongly influenced by the lowest values: a cycling population has drift rates close to its minimum size
- Variability is lost when the organism is rare and not quickly regained when it is common

Exponential growth and shrinkage

Exponential growth and shrinkage

- No general formula for N_e is possible as the drift rate keeps changing
- Over a fixed time period, can use the same logic as the cycling population
- However, shape of the coalescent is unlike that for any constant size

Estimating growth/shrinkage

- The difference in tree shape can be exploited to infer growth/shrinkage
- Weak with one locus

Water frog data: easier to estimate Θ than g

Data from a single locus were used to infer Θ and the exponential growth rate g based on the coalescent. Colors indicate 70%, 90%, 95% confidence intervals; dot is the maximum likelihood estimate. Note that the confidence interval for g includes both positive and negative g, and that it should continue well off the graph to the right.

Bottlenecks

Generations at		Approx
N=10	N=1000	N_e
1	99	503
5	95	168
10	90	92
25	75	39
50	50	20
75	25	13
90	10	11
99	1	10

Redrawn from Felsenstein textbook p. 260

Bottlenecks

- The same harmonic mean approximation from cycling populations works here
- Counter-intuitive conclusions:
 - Duration of the bottleneck makes a HUGE difference
 - Timing of the bottleneck, within the interval we're considering, does not matter

A wild population has just crashed to a low size. What does this math imply about recovery efforts?

- "The damage is done. Let's focus on making sure it doesn't get smaller."
- "We have to get the numbers back up, and the sooner the better-this is an emergency."

Inference through a bottleneck

- Bottlenecks produce a burst of coalescence in a short time
- Hard to tell this from exponential growth
- Seldom possible to look back past most recent bottleneck:
 - Many or most lineages coalesce
 - Not many lineages dating from prior to bottleneck == little information
 - Ancient DNA helps a LOT here

Beringian steppe bison

Population size of steppe bison inferred from fossil DNA. Note that time increases to the left. Shapiro et al. (2004) Science 306, p. 1561-1565

Summary

- Population diversity is measured as proportion of homozygotes (more homozygotes == less diversity)
- This depends on $\theta = 4N_e\mu$
- With population growth/shrinkage:
 - N_e is harmonic mean of the different sizes
 - This is closer to the minimum size
 - Shape of the coalescent tree is distorted; coalescences pile up during periods when the population was small
 - The length of a bottleneck is very important as diversity continues to decline

Next Monday

- Models of mutation
- Mutation versus drift
 - The equilibrium state
 - Why this equilibrium is fake
- Estimation of mutation rate
- Mutation patterns as windows into mechanism

One-minute responses

• Please:

- Tear off a slip of paper
- Give me one comment or question on something that worked, didn't work, needs elaboration, etc.