
Overview

• Finishing up from Wednesday:

– Haplodiploids!
– Expected homozygosity as a function of Ne
– Practice problem: Florida mice

• Variation in population size:

– Cycling populations
– Exponential growth or shrinkage
– Bottlenecks



From the one-minute responses

• Practical examples and practice problems are good

• What are the parameters in PopG?

• Is there an equivalent coalescent simulator to play with?

– I haven’t used them, but check out the two programs at
www.coalescent.dk, especially the ”Hudson Animator”



Ne of a haplodiploid

• Cannot assume that half the genes came from male parents and half
from females, because male haplodiploids have no male parents

• My reasoning:

– Total gene copies are Nm + 2Nf
– Chance a gene came from a male parent is

Nf
Nm+2Nf

– Chance a gene came from a female parent is
Nm+Nf
Nm+2Nf

– Square these to get the chance that two random genes came from a
male, or a female

– Given they came from a male, coalescence chance is 1
Nm

– Given they came from a female, coalescence chance is 1
2Nf

– So!
1

2Ne
= (

Nf
Nm+2Nf )2 × 1

Nm
+ (

Nm+Nf
Nm+2Nf

)2 × 1
2Nf



Haploidiploid disclaimer

• Sewall Wright also tackled this problem (for the mammalian X
chromosome)

• His solution was:

Ne =
9NfNm

2Nf+4Nm

• This gets the same answer when Nm = Nf but not otherwise

• I don’t know which is correct

• Possibly both are correct for different definitions of Ne

• (I got Joe Felsenstein to try this for an hour or so, without a numerical
result....)



Ne of a haplodiploid

• 1
2Ne

= (
Nf

Nm+2Nf )2 × 1
Nm

+ (
Nm+Nf
Nm+2Nf

)2 × 1
2Nf

• I can’t reduce this, but here are some results:
Males Females Ne
199 1 1.01
150 50 75.00
100 100 150.00
50 150 105.00
1 199 2.00

• The equal-sexes answer is just what we would have predicted naively;
there are 3/4 as many gene copies, so Ne is 3/4 what it would be in a
diploid

• A shortage of females reduces Ne more than a shortage of males



Fraction of homozygotes

• Counting alleles is not a good way to quantify variation

– Too sensitive to very rare alleles

• Measure variation as proportion of homozygotes–the fewer
homozygotes, the more variation

– Call the proportion of homozygotes F
– With two equally frequent alleles, F = 0.5



Fraction of homozygotes

• In cases with mutation and drift, an approximate formula is:
F ≈ 1

1+4Neµ

• This approximation assumes that every mutation is to a new allele. It is
quite accurate in practice even when that’s not true, as long as there
are a decent number of different alleles possible.



Fraction of homozygotes

F ≈ 1
1+4Neµ

Intuitive results of this equation:

• If the population is large, there will be fewer homozygotes (more
diversity)

• If the mutation rate is large, there will be fewer homozygotes (more
diversity)

(Always ask yourself–does this equation predict results that are in the right
general direction?)



Fraction of homozygotes–Practice problem

(Fictional problem inspired by real data of Potts et al.)

F ≈ 1
1+4Neµ

• We measure heterozygosity at one gene in the mouse MHC as 92%

• (Population: restaurant mice in Miami)

• Mutation rate (based on rat/mouse comparison) is around average for
rodents: 10−6 per gene per generation

• How many mice does this imply, if the MHC were neutral?

• (You’ll actually calculate Ne–that’s okay)



Fraction of homozygotes–Practice problem

(Fictional problem inspired by real data of Potts et al.)

• F ≈ 1
1+4Nµ

• 0.08 ≈ 1
1+4Nx10−6

• N = 2, 875, 000 mice

• That’s probably too many mice. What might explain this?



Summary

• Wright-Fisher model gives simple predictions for many aspects of the
drift process:

– Chance for a mutation to fix
– Time it takes to fix
– Diversity within a population
– Divergence between populations

• These can often be adapted to a non-Wright-Fisher situation via the
effective population size Ne



Cycling populations



Ne in a cycling population

• Two generations:
1

2Ne
=

1
2Nt1

+ 1
2Nt2

2

• g generations:
1

2Ne
=

∑g
t=1

1
2Nt

g

• Expressed in terms of Ne, this is a harmonic mean

• It is strongly influenced by the lowest values: a cycling population has
drift rates close to its minimum size

• Variability is lost when the organism is rare and not quickly regained
when it is common



Exponential growth and shrinkage



Exponential growth and shrinkage

• No general formula for Ne is possible as the drift rate keeps changing

• Over a fixed time period, can use the same logic as the cycling
population

• However, shape of the coalescent is unlike that for any constant size



Estimating growth/shrinkage

• The difference in tree shape can be exploited to infer growth/shrinkage

• Weak with one locus



Water frog data: easier to estimate Θ than g
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Data from a single locus were used to infer Θ and the exponential growth
rate g based on the coalescent. Colors indicate 70%, 90%, 95% confidence
intervals; dot is the maximum likelihood estimate. Note that the
confidence interval for g includes both positive and negative g, and that it
should continue well off the graph to the right.



Bottlenecks

Generations at Approx
N=10 N=1000 Ne

1 99 503
5 95 168

10 90 92
25 75 39
50 50 20
75 25 13
90 10 11
99 1 10

Redrawn from Felsenstein textbook p. 260



Bottlenecks

• The same harmonic mean approximation from cycling populations works
here

• Counter-intuitive conclusions:

– Duration of the bottleneck makes a HUGE difference
– Timing of the bottleneck, within the interval we’re considering, does

not matter



Discussion

A wild population has just crashed to a low size. What does this math
imply about recovery efforts?

• “The damage is done. Let’s focus on making sure it doesn’t get
smaller.”

• “We have to get the numbers back up, and the sooner the better–this is
an emergency.”



Inference through a bottleneck

• Bottlenecks produce a burst of coalescence in a short time

• Hard to tell this from exponential growth

• Seldom possible to look back past most recent bottleneck:

– Many or most lineages coalesce
– Not many lineages dating from prior to bottleneck == little

information
– Ancient DNA helps a LOT here



Beringian steppe bison

Population size of steppe bison inferred from fossil DNA. Note that time
increases to the left. Shapiro et al. (2004) Science 306, p. 1561-1565



Summary

• Population diversity is measured as proportion of homozygotes (more
homozygotes == less diversity)

• This depends on θ = 4Neµ

• With population growth/shrinkage:

– Ne is harmonic mean of the different sizes
– This is closer to the minimum size
– Shape of the coalescent tree is distorted; coalescences pile up during

periods when the population was small
– The length of a bottleneck is very important as diversity continues to

decline



Next Monday

• Models of mutation

• Mutation versus drift

– The equilibrium state
– Why this equilibrium is fake

• Estimation of mutation rate

• Mutation patterns as windows into mechanism



One-minute responses

• Please:

– Tear off a slip of paper
– Give me one comment or question on something that worked, didn’t

work, needs elaboration, etc.


