Overview

- Models of mutation
 - 2-allele
 - K-allele
 - Infinite sites
- Equilibrium between forward and backwards mutation
 - The equilibrium equation
 - Why this equilibrium is fake
- Mutation vs. drift
- Measuring the mutation rate

From the one-minute responses

- Slow down when explaining equations!
- Define terms

Simple models of mutation

- Models with no memory:
 - 2 alleles
 - K alleles
- Models with memory:
 - Infinite sites

Watch out for "mutation rate"!

Two issues:

- 1. Mutation rate can be per locus or per base
 - Older theory tends to be per locus
 - Molecular studies tend to be per base
 - Be sure you know which units are in use
- 2. The rate at which mutations accumulate is not the rate at which they occur, because of selection
 - "Mutation rates are lower at the third position in a codon" probably the rate at which mutations actually occur is identical
 - Unfortunately "mutation rate" gets (mis)used to mean accumulation rate

Simplest model: just 2 alleles

- ullet Alleles often called A and a
- ullet Their frequencies often called p and q
- Basis of much classical popgen theory

Forward and backward mutation

- If we think of the two alleles as "works" (A) and "doesn't work" (a)
- ullet A mutates to a at rate μ
- ullet a mutates to A at rate u
- ullet μ is generally MUCH bigger than $\overline{
 u}$
- Equilibrium at $\nu/(\mu+\nu)$

Approach of allele frequency ("gene frequency" is a common but confusing name for this) to equilibrium with $\mu=10^{-7}$ and $\nu=2\times10^{-8}$, from Felsenstein text p. 139.

Deriving the equilibrium formula

- Define p as frequency of A
- Calculate one-generation change in p as function of μ and ν :
- $p' = p(1-\mu) + (1-p)\nu$
- At equilibrium, p' = p

This equilibrium isn't real

- Assumes that all a can mutate to A with rate ν
- ullet As a gene accumulates more and more damage, u would get smaller
- At the real equilibrium all sequences are equally probable, which means functional genes would be vanishingly rare
- Equation is useful for the early trajectory, e.g. when a gene has just lost its function and begins to deteriorate

Sometimes two alleles just aren't enough

Going beyond 2-allele model: two directions

K-allele model

- Allow more than one allele
- Any allele mutates to any other (often, at the same rate)
- No detectable relationship among different alleles
- (Did Burmese allele arise from Siamese allele?)

Infinite-sites model

- Imagine sequence of infinite length (and infinitesimal mutation rate)
- Every mutation is to a new allele
- Every allele carries all its ancestors' mutations
- Can see relationships among alleles

False but useful: simplified mutation models

K-allele model:

- Asserts there are only a certain number of possible alleles, and any allele can mutate to any other allele
- Allows back mutation and convergent mutation
- Model used for much of classical population genetics (often K=2)
- Useful when we mainly care about phenotypes
- A perfect match for single nucleotide data (K=4)

False but useful: simplified mutation models

- Infinite-sites model
 - Allows alleles to have history
 - No gene really has infinite sites; model denies back mutation and convergent mutation
 - Breaks down in high-mutation organisms (HIV)
 - Extremely widely used for long DNA sequences because it almost fits and is simple

An infinite-sites issue in cancer research

- If a sample is a mix of different cell lines from a tumor, can we sort them out?
- "Mutations" here are somatic (within a single patient)
- Much work on this uses infinite-sites:
 - *ONLY* descendants of the original mutant have the mutation
 - ALL descendants of the original mutant have the mutation
 - This greatly simplifies the math, but....

Read depth of whole-genome sequencing in two samples from a pre-cancer tissue. Note that the individual is female, as shown by the first sample, but the second sample has apparently lost one copy of chromosomes 18, 21, and X as well as parts of 11 and 13.

An infinite-sites issue in cancer research

- When cells lose whole chromosomes, they must lose somatic mutations too
- Some papers have tried to argue that important mutations are not lost
 - This doesn't hold up logically
- Other papers omit all regions with abnormal copy number
 - In some of our samples this omits...everything
- I am submitting an NIH grant proposal which promises to fix this

Mutation vs. drift

- With no mutation, drift eventually removes all but one allele
- With mutation, an equilibrium is possible
- General principle:
 - -4N generations back to population MRCA (in a diploid)
 - How much will another force accomplish in 4N generations?
- \bullet Variation will normally be present when $4N\mu\gg 1$

Watch out for rates!

- Was that per locus or per base pair?
- Per base pair:
 - Human $4N_e\mu$ per base pair may be around 0.0001
 - Most bases do not vary substantively in the population (are not SNPs)
- Per locus:
 - $-\mu$ per locus varies a lot
 - $4N_e\mu$ for many loci is above 1 and variability is expected

Phenotypic per-locus mutation rates

Table taken from Farnsworth 1978.

E. coli	histidine auxotrophy	$2x10^{-6}$
	streptomycin sensitivity	$1x10^{-8}$
	phage T1 resistance	$2 - 3x10^{-8}$
Drosophila males	brown eyes	$3x10^{-5}$
	eyeless	$6x10^{-5}$
	yellow body	$1.2x10^{-4}$
Corn	colorless kernel	$2x10^{-6}$
	shrunken kernel	$1.2x10^{-6}$
Human	achondroplasia	$1x10^{-5}$
	aniridia	$2.9x10^{-6}$
	retinoblastoma	$6 - 7x10^{-6}$

What are these phenotypic rates?

A composite of:

- Per-base mutation rate
- Gene size
- Proportion of mutations that change the phenotype
- Mutants that survive long enough to be counted

How to estimate mutation rate?

- Compare parents to offspring or raise cells in culture
 - Very labor-intensive if the rate is low
 - Does not eliminate natural selection completely
- Measure differences between two lineages whose TMRCA is known
 - Discussion: what are hazards of this approach?

Improving the TMRCA method

- Try to find something not under natural selection:
 - Third codon positions?
 - Introns?
 - Intergenic regions?
- Incorporate uncertainty about TMRCA
- Use more than one calibration point
 - e.g. human/chimp, ape/monkey, primate/rodent

Wednesday

- Hardy-Weinberg
- Natural selection

One-minute responses

• Please:

- Tear off a slip of paper
- Give me one comment or question on something that worked, didn't work, needs elaboration, etc.