Overview

- Tests of neutrality:
 - dN/dS example
 - HKY example
 - McDonald/Kreitman
 - Tajima's D
 - Branch-length comparison
 - Conservation
- How much of the genome is functional?

- For effective population size, how do you know whether to use the whole population or just individuals that could realistically interbreed? see upcoming section on population subdivision and gene flow!
- Reference for cichlids? Several papers by Michio Hori, but all behind firewalls as far as I can tell, alas
- Real examples of tests? *Coming up*
- Omitting derivations lets us move faster but sometimes formulae seem to come from nowhere. *It's true. I'll try to strike a balance.*

- Endo et al. 1996 analyzed 3595 "gene groups" (sets of alignable coding sequences across species) from 1990's databases
 - They added anything to a gene group that confidently aligned with it
 - They computed pairwise dN/dS within each group
 - "Positive selection" detected when more than half the pairwise comparisons had dN/dS>1
 - Only 17 gene groups showed positive selection (0.45%)
 - -9/17 were pathogen surface proteins exposed to immune system
- Issues with this approach?

Table 1 The Gene Groups on Which Positive Selection May Operate

Gene Group	Representative Species
Merozoite surface antigen (MSA2) gene	Malaria Plasmodium falciparum
Major surface protein (msp1 a) gene	Rickettsia Anaplasma marginale
Outer membrane protein (omp) gene	Chlamydia
env	Equine infectious anemia virus
Glycoprotein gH gene	Pseudorabies virus
<i>E</i> gene	Phages G4, $\phi X174$ and S13
Sigma-1 protein gene	Reovirus
Invasion plasmid antigen gene (ipaC)	Shigella
Invasion plasmid antigen gene (ipaD)	Shigella
Egg-laying hormone	Aplysia californica
Egg-laying hormone A peptide	Aplysia californica
ATP synthase F ₀ subunit (atp-2) gene	Escherichia coli
Neomycin resistance protein gene	Escherichia coli
Virulence determinant gene (yadA)	Yersinia
Prostatic steroid binding protein	Rat
Neurotoxin	Snake
CDC6	Saccharomyces cerevisiae

From Endo et al. (1996) Mol Biol Evol 13: 685-90.

A live example: HKA

- Hudson, Kreitman and Aguade 1987 (original paper for this test) Locus
 Adh 5' flanking region
 Adh locus
 Differences between species
 Differences within species
 8
- Within-species numbers come from 82 *D. melanogaster* samples
- Between-species come from one *D.* melanogaster and one *D.* sechellia
- Authors attributed this to balancing selection on the coding sequence

HKA assumptions

• HKA assumes:

- The "neutral" comparison gene is really neutral
- Mutation rate constant for each gene (doesn't need to be equal between genes)
- No large changes in population size
- Divergence time of the two loci is the same (no "ancestral polymorphism")
- Measure statistical significance with a χ^2 test

McDonald/Kreitman test

- Call within-species comparisons w and between-species b
- Under neutrality:
- $dS_b/dS_w = dN_b/dN_w$
- Deviation from this indicates some kind of selection
- Generally used as a test for adaptive evolution
- Criticized for being vulnerable to weakly deleterious mutations
 - Weakly deleterious mutations contribute to dN_w but not dN_b
 - Obscures presence of adaptive evolutuion

Tajima's D

• Two estimates of population diversity:

- Based on number of variable sites
- Based on mean pairwise differences
- Each yields an estimate of $\theta = 4N_e\mu$
- In a neutral situation these estimators should agree

Estimator based on variable sites

- Called π or Watterson's estimator
- Under a neutral infinite sites model:
 - For a number of sampled sequences k
 - And a given $\theta = 4N_e\mu$
 - Expected number of mutated sites is expected branch length of the coalescent
- Let's derive this

Estimator based on variable sites

- Length of a time interval is $2N_e/[k(k-1)/2]$
- Branch length in that interval is k times this
- Total branch length is sum over intervals
- Pull out k term: $a = \sum_{k=1}^{n-1} \frac{1}{k}$
- Expected mutations is total branch length times μ
- $S = 4N_e\mu \times a$
- $4N_e\mu = \frac{S}{a}$
- This estimator is often called $heta_S$

Estimator based on mean pairwise differences

- Define mean number of differences between pairs of sequences as π
- This is an estimate of θ (per locus!) because the expected differences between a pair are $2N \times 2\mu$
- Usually called θ_{π}

Tajima's insight

- We have two different estimators of θ
- In a pure Wright-Fisher situation they should be approximately equal
- They are differently sensitive to deviations:

- θ_S is much more impressed by rare alleles than θ_{π}

• $d = \theta_{\pi} - \theta_S$

- Test statistic "Tajima's D" = $\frac{d}{\sigma(d)}$
- $\sigma(d)$ is standard deviation of D

Behavior of Tajima's D reflects the coalescent

- Remember $d = \theta_{\pi} \theta_S$
- D = 0 interpretation?
- D < 0 interpretation?
- D > 0 interpretation?

Behavior of Tajima's D reflects the coalescent

- D = 0 neutrality
- D < 0 population growth, directional selection
- D > 0 population shrinkage, balancing selection
- Significance value usually obtained by simulation
- A rough rule of thumb: significant if more than +2 or less than -2
- Concern: population subdivision?

Conservation as a measure of (purifying) selection

• Regions that are very similar among species might be:

- Functional and under purifying selection
- Recent copies of something functional (but might not be any longer)
- Regions that are not similar might be:
 - Not functional
 - Functional in only some species, or different functions in different species
 - Functional, but only a few sites are conserved
 - Functional, but rapidly shifting between species (reproductive proteins)
 - Functional, but undergoing concerted evolution

- Major component of egg vitelline envelope
- Must handshake with sperm lysin for fertilization
- Swanson et al. (2001) Mol Biol Evol:
 - dN/dS consistent with neutrality
 - Tajima's D not significantly different from 0 (and varied in different directions in the two species)
 - HKA not significantly different from neutrality
- Very odd for an utterly essential function!
- VERL may drift (with convergent evolution) while lysin chases it

Different branch lengths as measure of differing selection

Clark et al. (2004) Science 302: 1960-1963.

- Compared human and chimp with mouse as an outgroup
- Estimated branch lengths for many genes
- Looking for genes with longer branches in human than in chimp

- What could cause a long branch?
- If all human genes showed long branches, what could that mean?
- If only certain human genes showed long branches, what could that mean?

Accelerated evolution in the human lineage

Some ideas:

- Adaptive evolution in humans
- Deterioration in humans due to fixing bad mutations (bottlenecks?)
- Weaker selection on humans (technology?)
- Increased mutation rate in humans
- Decreased mutation rate in chimpanzees
- Shorter generation time in humans than chimpanzees

Gene categories whose evolution has accelerated in human evolution:

- Senses
- Digestion and food metabolism
- Reproduction, especially spermatogenesis
- Immune system and tumor suppression
- NOT brain function

• A single mutation could have a huge effect not seen in this test

- Coding regions only
- Some "mutations" are really polymorphisms, and their frequency depends on population size
 - Chimp long-term population size is larger than human, so this does not explain away human-specific increases
- Some false positives likely due to large number of comparisons

ENCODE controversy

- ENCODE study mapped:
 - transcription
 - transcription factor binding
 - chromatin structure
 - histone modification
- "These data enabled us to assign biochemical functions for 80% of the genome"
- (1.5% of the genome is coding sequence)
- ENCODE Project Consortium (2012) Nature 489: 57-74.

From Kellis et al. (2014) PNAS 111: 6131-6138

Could 80% of the genome be under selection?

Based on Kellis et al. (2014)

- Arguments for:
 - Pervasive evidence of biochemical activity
 - GWAS for phenotypes often lands in areas lacking known functional elements
- Arguments against:
 - Much of the genome is repeats: they may be "active" but are they meaningful?
 - Haldane argument: can a population afford selection on very many loci?
 - Lack of conservation—only 5% of genome strongly conserved in mammals
 - Low N_e of large mammals makes very weak selection ineffective

Haldane's argument: "Genetic Load"

- Haldane argued that the cost of a harmful allele to a population is nearly independent of s:
 - Every copy added by mutation must eventually be removed by selection (a "selective death")
 - Strongly harmful alleles hurt a few individuals a lot, then are gone
 - Weakly harmful alleles hurt each individual less, but hang around longer
- How many "selective deaths" can a population handle?
- Depends on reproductive excess

Weaknesses in this argument

- Hard selection:
 - Regardless of competition, unfit genotype tends to die (or fail to reproduce)
 - Too much of this threatens the population's survival
- Soft selection:
 - In the absence of competition, all genotypes are viable
 - "Unfit" genotypes have a competitive disadvantage in the presence of fitter ones
 - Does not reduce population viability
- Another issue: how do fitnesses interact at multiple loci? Can one "selective death" eliminate many harmful mutations at one swoop?

- Large "deserts" in European genome where no Neanderthal alleles found
- Two hypotheses:
 - Neanderthal alleles in these areas don't work well in a modern human context
 - Small Neanderthal populations led to bad Neanderthal alleles which were weeded out

Monday

- Selection at multiple unlinked loci
- Interactions among loci
- A first look at linkage

One-minute responses

• Please:

- Tear off a slip of paper
- Give me one comment or question on something that worked, didn't work, needs elaboration, etc.