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We consider several distinct approaches for controlling the mean of a multivariate normal process
including two new and distinct multivariate CUSUM charts, several multiple univariate CUSUM charts,
and a Shewhart X2 control chart. The performances of these charts are compared by estimating the
average run lengths. A Markov chain is used to evaluate the average run length performance of one
of the charts while Monte Carlo simulation is used to evaluate the other multivariate schemes. The ARL
performance of the multiple univariate scheme is shown to be dependent upon the manner in which
the procass mean shifts whereas one of the multivariate CUSUM charts provides stable ARL performance
over a diverse set of off-target conditions. The average run length data are presented.

Introduction

UMULATIVE sum (CUSUM) charts are often used in-
stead of standard Shewhart charts when detection
of small changes in a process parameter is important.
For comparable average run lengths (4RLs) when the

process is on-target, CUSUM charts can be designed to

give shorter ARLs than Shewhart charts for detecting
certain small changes in process parameters. As dem-
onstrated by Champ and Woodall (1987), the supe-
riority of the CUSUM chart over the Shewhart chart -
also holds when the Shewhart chart is augmented with
runs rules. Thus, it is only natural to investigate.‘
whether the shorter ARL’s for the univariate case can
be extended to the multivariate case.

We note that our concern in this paper is with mon-
itoring the mean of a multivariate normal process. We
use the term “on-target” to indicate that the process
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is in-control with respect to its mean. Likewise, we
use the term “off-target” to indicate that the mean of
the multivariate normal process has shifted. We will
assume that the process dispersion is stable and is not
prone to changes. Since the phrase “out of control”
can include more than a shift in the mean, we prefer
the “off-target” term. for our purposes.

[« In this study we use the Markov chain approach
| described in Brook and Evans (1972) and a Monte
| (Carlo simulation to compare the performance of sev-
| leral schemes for monitoring a multivariate normal
' 'process. Two multivariate cumulative sum schemes

are introduced. We refer to these multivariate CUSUM
charts as multivariate CUSUM #1 (MC1) and multivar-
iate CUSUM #2 (MC2). Their average run lengths will
be compared to the average run lengths of multiple
univariate CUSUM charts as developed by Woodall and
Ncube (1985) and multivariate Shewhart x? charts.

Naturally, multivariate processes and procedures
are more complicated than univariate ones. Due to
the vector and matrix algebra that is inevitably re-
quired, computerized implementations of the multi-
variate procedures are almost always needed. Al-
though we will compare the ARL performances of sev-
eral multivariate procedures here, we leave it for the
reader to assess the potential trade-offs between the
increase in mathematics and computer savvy that is
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inevitably required and the ARL improvements that
can result with the multivariate procedures.

The multivariate CUSUM chart proposed by Crosier
(1988) is similar to our MC1 chart, yet distinctly dif-
ferent. Crosier’s multivariate CUSUM chart is somewhat
more complicated than our MC1 chart, but it does have
a similar ARL performance. Crosier also presents re-
sults on another chart that is almost equivalent to
MC2 and finds (as we do) that its ARL performance is
poor. A multivariate CUSUM approach discussed by Al-
wan (1986) has similarities to the familiar univariate
CUSUM V -mask procedure. We shall not discuss these
procedures further here, however.

The following sections contain a review of some
control chart procedures for monitoring a multivariate
normal process. This is followed by a discussion of
“directional invariance,” the generation and inter-
pretation of signals from a control scheme and the
development of the two multivariate CUSUM control
chart schemes. In a subsequent section, we discuss
the calibration of the various schemes so that a fair
ARL comparison can be made. We then present the
simulation results and consider a modified multiple
univariate CUSUM scheme.

NN

Standard Control Chart Methods for
Multivariate Normal Processes ./

In this section we briefly review the control chart
procedures that were investigated and our modeling
assumptions. We also describe the development of two
proposed multivariate CUSUM charts.

For successive samples, multivariate control chart
techniques used for controlling the mean of a multi-
variate normal process can be interpreted as repeaied
tests of significance of the form

H He = po
H: n#*po

where u represents a multivariate normal process
mean whose true value is unknown and u, is the target
value for the parameter. For simplicity, we will as-
sume that gy = 0, although the more general case can
be handled easily by translation.

)

We let X, = (a1, 24, * * * , Zp,) denote the p X 1

|| vector of quality characteristic measurements made
on a part from a multivariate normal process where

z;, is the observation on variate j at time {. We assume
that the successive X, are independent and identically

| distributed multivariate normal random vectors with
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let X, denote the (sample) mean vector at time ¢ and
we will let = denote its covariance matrix.

The Shewhart X2 Chart
To test the hypothesis in (1), it is well known that

‘the null hypothesis should be rejected at time ¢ if x?

> X2, where
X% = (X, — 1o) 27 (X, = mo) (2)

and X2, is the upper 100« percentage point of the x?
distribution with p degrees of freedom. The noncen-
trality parameter associated with x2 is

M) = (1 = 1) Z7 (1 = mo). (3

We note that A the sqt ncentrali
parameter, is often used to represent a measure of the
s from po. 1his measure of distance is also
Zalled the "Mahalanobis distance” by Morrison ( 1976,
page 237) and the “statistical distance” by Johnson
and Wichern (1988). We note that the “straight line”
or “Euclidean’ distance assumes an identity covari-
ance matrix instead. We will henceforth use the word

~ “distance” to mean the square root of the noncen-

trality parameter in (3).

A X2 control chart operates by plotting x2onac
with an a i CL. If e

upper control limij

0 assignable causes of the vari-
ation are so The average run length (ARL) of this
control scheme can be calculated as 1 /P where P de-

"notes the probability that x 2 exceeds the UCL. The on-

target value of P is determined from the probability
that x? exceeds the UCL under the (central) x} dis-
tribution while the off-target value of P is the proba-
bility that X* exceeds the UCL under iiie noncentrai
X} distribution. These ARL results are provided in Tabl
1 for selected values of A(p).

The Multiple Univariate CUSUM Scheme

Woodall and Ncube (1985) describe how a p-di-
mensional multivariate normal process can be mon-
itored by using p two-sided univariate CUSUM charts.
The j* two-sided univariate CUSUM is operated by
forming the cumulative sums

S = max(0, Sy + 2 — k)
T,0 = min(0, Tyoy + 3 + k)

where S;p = 0, Tjo < 0, k; > 0, and 2; is the sample
mean at time ¢ for variate j.

The j*" two-sided chart signals that the correspond-

(| known and constant covariance matrix Z. That is, the

_ _ ing process mean has shifted when either §;; > h; or
o X, are ¢id N,(p, Z). Without loss of generality, we will

Tj» < —h; for some CUSUM control chart parameters k;
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‘and 4. The multiple univariate CUSUM scheme signals
an off-target condition when any of the p two-sided
schemes produces an off-target signal. Therefore, the
on-target average run length of the multiple univariate-
T n
schreme is less than the average run length of any one

of-theurnivariate CUSUM charts.

C -

" Directional Invariance

It is well known that the X2 chart (as well as the
Hotelling 72 chart discussed in Kramer and Jensen
[1969a, 1969b] and Jackson [1959, 1981]) is directionall
nmvariant. T@E, the ARL performance of the x®chart
is determined solely by the distance of the off-target
mean fr -target mean and not by the partic-
ular direction (or, location) of that mean [where “dis-
tance” is defined as the square root of the noncen-
trality parameter in (3)].

For example, suppose that there are p = 2 dimen-
sions, the target mean is (0, 0)" and the covariance
matrix is the 2 by 2 identity matrix. Then, because of
directional invariance, the X2 chart has the property
that the ARL is the same for any vector that is the
same distance from the target. Thus, for example,
shifts from the target value for the mean to (1, 0)’,
(0, -1, (0.5V2, 0.5Y2Y, and (—0.5V2, —0.5V2)' all
have the same ARL. Now, if the covariance matrix is

>, 1]

‘then the ARL is the same at all means g for which
A2() = (= #a)Z 7 (i~ o)

are equidistant from u, for some fixed value of A2(g).
Thus, for gy = 0 and p = 0.5, the means (1.0, 0.0)',
(V25,V25Y,(~1.0,0.0Y, (0.0, 1.0, (0.0, —1.0)", and
(~V2.5, —V2.5)" are all equidistant from go = 0 in the
sense of (3). We also note that, for p = 0.5, the means
(1.0, 1.0)" and (—1.0, 1.0)" are located at distances of
1.3333 and 4.0000, respectively, from py, = 0 even
though they are the same Euclidean distance from g,
=0.

Other charts also have this same directional in-
variance property. In the univariate case, a two-sided
control chart is directionally invariant if a simulta-
neous change of signs of all the data provides the same
decision. (This is also true for non-zero target means,
except that instead of a change in the signs of the
data, the change would be a reflection of all the data
about this target.) This is true of symmetric two-sided
Shewhart X charts 'and symmetric two-sided CUSUM
charts. With these charts, increases and decreases of
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~ the same magnitude in the process mean are detected

equally well in the sense that they have the same ARL.

For a multivariate process, however, a multiple
univariate scheme is not directionally invariant. Uni-
variate charts are specifically designed for the purpose
of detecting shifts in the process parameters along
their respective axes. Using the example above with
the identity covariance matrix and applying it to a
multiple univariate scheme, the ARLs for the multiple
univariate scheme will be different for shifts in the
mean from (0, 0)’ to means along the axes, such as
shifts to (1, 0)' and (0, 1), than for off-target means
that are 45 degrees from an axis, that is, means that
are of the form (+0.5Y2, +0.5V2), even though those
off-target means are the same distance from the target.

ultiple univariate charts can be used to monitor
raultivariate processes, of course, but such schemes
must be “aimed” in some particular direction, such
2s along the axes of the'quality characteristics them-
selves or aimed in the direction of the principal com-
_ponents. If a set of univariate charts are aimed along
the 'axes of the individual quality characteristics,
multiple univariate charts will generally do a good
job of detecting shifts along these axes. In fact, Healy
(1987) has suggested that to detect a shift in one par-
ticular direction, a univariate CUSUM chart aimed in
that one direction will give the best ARL performance.
However, if the process mean should shift in a differ-
ent or unanticipated direction, such as in a direction
along a principal component axis, then multiple uni-
variate charts aimed along the axes of the original
quality characteristics will not be as effective in de-
tecting that shift. Woodall and Ncube (1985) recom-
mend using univariate charts on principal components
depending on the type of shift in the mean vector that
is considered to be important to detect. However, such
charts would then be less effective in detecting shifts
along the axes of the original quality characteristics.

If both the individual quality characteristics and
the principal components are important to monitor,
then twice as many two-sided univariate CUSUM charts
would be required. The problem with having many
univariate CUSUM charts is that to control the false
alarm rate (that is, the on-target ARL), control limits
(or, decision intervals £) must be widened further.
Thus, when there is a genuine shift in a process pa-
rameter, it is much more difficult for the univariate
chart aimed in that direction to detect it. This aspect
of the scheme’s performance will be investigated be-
low. We will also look at the ARL performance of the
multiple univariate scheme when the original vari-
ables are correlated. '
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Unlike non-directionally-invariant ch irec-
tionally-invariant chart does not lose sensitivity in
detecting shilts in the process parameter when mul-

tiple directio itude in the
parameter are important, It will be seen later that
‘when many directions of off-target shifts are impor-
tant, the directionally-invariant chart can be more
sensitive than a multiple univariate scheme in de-
tecting shifts in the process parameter since the mul-
tiple univariate scheme is sensitive to both the mag-
nitude and the direction of the shift. The directional
sensitivity of the multiple univariate scheme will be
shown to be even more pronounced when the original
variables are correlated.

One possible disadvantage to using a multivariate,
directionally-invariant chart is that it may not always
‘ne clear as to what caused the chart to signal an off-

arget condition. However, as in the case of using x?2
charts, looking at individual measurements along with
the principal components can provide an insight. We
discuss this issue further in the next section.

‘Generation and Interpretation of Signals
From a Control Scheme

When comparing multivariate _control schemes,

there are two performa -
. One performance aspect concerns the question

of how quickly the scheme generates a signal when
an actual change in the process has occurred. Clearly,
the quicker a scheme responds to a real change in a
process parameter, the better. A control scheme that
can quickly detect real process changes while not
being overly sensitive to “false alarms” is desired.

Below, we compare several different multivariate
process control schemes that have the same robustness
to false alarms. This is accomplished by selecting con-
trol chart parameters such that the on-target ARL is
the same for each scheme. Thus, the relative perfor-
mance of various schemes can easily be compared by
the various off-target ARL performances.

The second important performance aspect that
arises when comparing multivariate control schemes

concerns the interpretation of the signal from
multivari . Once such a signal is

generated, the question that arises is “why?” In prac-
tice, a process control engineer would want to find an
assignable cause for the signal and to adjust the pro-
cess control variables that will bring the process back
on target. Although it can be argued that signals from
a multivariate control scheme may not be trivial to
interpret, a similar case could also be argued for in-
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terpreting signals from a multiple univariate scheme.
Also, it may not be possible to provide corrective ac-
tion on a single variable without affecting one or more
of the other variables.

Since the ability to partition or isolate problems and
to target specific solutions may be limited, one should
use all of the available information to evaluate the
process and identify appropriate corrective actions.
Such information would include the relationships
(correlations) between the variables. The model of a
single variable being monitored and corrected (or,
adjusted) in isolation is not always adequate.

For example, consider a process involving a-plastic
injection molding operation. Suppose that there are p
= 3 quality characteristics of interest: the length,
width, and height of a simple manufactured plastic
part. If three univariate charts are being used to mon-
itor the process, it is possible for such a scheme to
issue one, two, or three signals of an off-target process.
Whenever a control chart scheme signals an off-target
condition, the process control engineer must deter-
mine which of several different actions to take. One
possible action is to adjust the injection pressure. A
low pressure would tend to produce product dimen-
sions that were all below their target values, however,
cavity geometries and local temperature gradients
may increase the sensitivity of one dimension to this
process drift. Other factors, including temperature
changes, raw material differences, and ambient en-
vironmental conditions, all in combination with
pressure fluctuations, may change the degree of sen-
sitivity.

As an example of the interpretation complications
that can exist, suppose that only the width diincreion
has exceeded its control limits. The process control
engineer must check whether the other dimensions
are on-target or are also on the low side. The engineer
must consider the relationships between all of the
variables. Thus, looking at the univariate components
individually may not be a sufficient analysis of the
signal being generated. To properly interpret the sig-
nal from such a scheme, all of the univariate control
charts, as well as the principal components for the
process, must be considered jointly. It is only after
such an analysis is performed that the process can be
properly rectified.

The diagnosis, as well as making the adjustment, is
complicated. Increasing the pressure alone may not
be appropriate if a combination of temperature and
pressure drifts has caused the change in the process.
The original process control variables settings may
require some modifications if unforeseen variability
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has been introduced from, say, raw material changes
by a supplier or other variability not accounted for
in the original experimental designs when the process
was implemented. A correction cannot be imple-
mented without affecting all of the variables. The joint
relationship of all the variables must be considered
in order to choose the most appropriate corrective ac-
tion. :
~We propose the use of one chart, the MC1 chart (de-
scribed below), for purposes of monitoring a process.
The MC1 chart can effectively replace this battery of
control procedures to provide enhanced detection of
process shifts in both anticipated and unanticipated
directions. To assist in the interpretation of signals
from the process, the MC1 chart could also be supple-
mented with a multiple univariate control' scheme.
Alternatively,.a multiple univariate control scheme
could be supplemented with the MC1 chart. The issue
of interpretation of the signal from the chart, of
course, still remains for both multiple univariate and
multivariate charts. We will restrict our attention in
* the remainder of this discussion to the problem of

quick detection of a shift in an unknown direction in .

| the mean of a multivariate normal process.

Multivariate CUSUM Charts

In this section we introduce two multivariate CUSUM
charting procedures. These procedures make direct
use of the covariance matrix. Both of these multivar-
iate CUSUM procedures are based on quadratic forms
of the mean vector. The difference between the two
multivariate CUSUM procedures discussed here centers
on the point at which the accumulation (i.e., the sum)
is made. Multivariate CUSUM #1 accumulates the X

vecrLors be,fore producing the quadmmc forms while

———
nuan ariate CUSUM #2 calculates a quadratic form forl
each X and then accumulates those quadrauc forms,

A procedure siunilar to MC 1, described below, was first
proposed by Pignatiello and Kasunic (1984). The de-
velopment of the multivariate CUSUM charts is outlined
in the following sections.

Multivariate CUSUM #1

_To introduce the first multivariate CUSUM scheme,
we consider the multivariate sum

2 (Xi- )
.

where 1, is formally defined in (5) and can be inter-
reted as th

C=

L_,-WWL
recent renewal (i.e., zero value) of the CUSUM. Since
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i C, may be written as

S Ci= (i » x)

W jeiner1

the vector -I-C, represents the difference between the

accumulated sample average and the target value for

the mean. Consequently, at time ¢, the multivariate

processmeancanbees’timatedtobe_: C, + po. The

norm of C,

= b _lcl

is seen as a measure of the distance of our estimate
of the mean of the process from the target mean for
the process. A multivariate control chart can be con-
structed by defining MC1 as

MC1, = max {|C,| — km;, 0} C))
and
n+1 if MC1l,,>0
= [ . . (5)
1 if otherwise

where the choice of the reference value k > 0 is dis-
cussed below. The MC1 chart operates by plotting MC1,
on a control chart with an upper control limit of UCL, .
If MC1, exceeds UCL, then the process is deemed to be
off-target.

The ARL performance of the MC1 scheme cannot be
modeled as a simple stationary Markov chain as de-
scribed in Brook and Evans (1972). For this reason,
a Monte Carlo simulation was employed to evaluate
the ARL performance of this scheme.

The appendix outlines a proof showing the ARL per-
formance of the MCT chart depends only on the non-
centrality parameter. ‘

The multivariate CUSUM chart independently pro-
posed and developed by Crosier (1988) is similar to,
yet distinctively different from, our MC1 CUSUM pro-
cedure. Crosier “contracts” or “shrinks” each of his
vectors of cumulative sums toward the zero vector by
multiplying the cumulative sum by a scalar. The norm
of the contracted cumulative sum is then compared
with an upper control limit. It turns out that the ARL
performance of Crosier's multivariate cumulative sum
chart is similar to that of our MC1 chart. Further details
are given in Crosier (1988).
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‘Multivariate CUSUM Chart #2

Rather than basing a multivariate CUSUM statistic
on the square of the distance of the accumulated sam-
ple average from u,, one could consider the square of
the distance of each sample mean from p, and then
accumulate tkose squared distances. Hence, as an al-
ternative to MC1, one could consider the square of the
distance D? of the ¢* sample mean from the target
value of u, where

= 1)’ 27X, ~ po)

has a X2 distribution with p degrees of freedom when
he process is on-target and a non-central x2 distri-
ution when the process is off-target. A one-sided uni-
variate CUSUM can now be formed as

Di = (X,

MC2, = max {0, MC2,_, + D? — k}

“with MC2, = 0. The choice of the reference value £ is
discussed below. To use this multivariate CUSUM, one
would declare the process to be off-target if MC2, ex-
ceeds an upper control limit H,. (A multivariate CUSUM
chart could also be constructed in terms of D,. We
have analyzed such a chart and found the difference
in performance between these two charts to be neg-
ligible.)

"Choice of the Reference Value k

In the (upper) one-sided, univariate CUSUM proce-
dure the reference value k is often taken to be the
average of the expected values of the process mean
under Hy: p = po and Hy: p = u, where p, represents
the on-target state and u, represents a specified, un-
acceptable off-target etate. The choice of = value for
k follows from the derivation of the CUSUM from Wald's
sequential probability ratio test. Although the (non-)
central x? distribution of the observations for the (off-)
on-target state of MC2 is not symmetric, this same
approach can be used. That is, the & used in MC2 is

P+ 0.50%(uy).

‘Since the form of MC1 is different from the other
CUSUM charts, the choice of k¥ cannot be derived anal:

ogously Instead, we chose & to be half of the distance

o‘f 1, from pg(Where, again, u, is a specified off-target
state). That is, we took Note that for
both multivariate CUSUM charts, the value for k de-

pends only on the magnitude of the distance of pu,
from . It may be possible to improve the perfor-
mance of the MC1 chart at selected off-target condi-
tions with alternate choices for k.
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Calibration of the Control Charts

To compare the performance of the various control
chart schemes, several multivariate normal processes
of three different dimensions (p = 2, 3, and 10) were
considered. These multivariate normal processes were
simulated and various control schemes were applied
to these processes. The ARL performance of the various
control schemes were then compared. The perfor-
mance of the MC2 scheme, however, was determined
using the Markov chain approach of Brook and Evans
(1972) and, consequently, was not investigated by
simulation.

A p-dimensional multivariate normal process was_
simulated by generating pseudo-random variates from
a multivariate normal distribution whose mean was_
' and whose covariance matrix was a p X p identity

Mhat to monitor a linear com-
“Bination of the original variables from a multivariate
normal process, either of our directionally-invariant
multivariate control charts can be transformed into a
chart that monitors a linear combination of the prin-
cipal components of the process. Since the principal
components of the process can be scaled such that
their covariance matrix is an identity matrix, our use
of the identity covariance matrix is not a limitation.
Since the multiple univariate scheme is not direction-
ally invariant, we also consider the bivariate case for
which independence of the variables is not assumed.
It will be seen that, for equidistant off-target shifts,
the ARL performance of the multiple univariate
scheme can vary substantially. We also consider the
case of using multiple univariate charts aimed along
the principal components.

By manipulating tie vaiue of u, an on-iarget (g
= 0) or an off-target (u # 0) process can then be sim-
ulated. The only off-target conditions for the simulated
processes that were considered were off-target means
for the process. These off-target process means were
modeled as being sudden and constant shifts in the
process. That is, “'slow drifts” in the mean were not
investigated.

For a given distance A(u) of the process mean p
from the target value o, off-target means of two forms
were considered separately. Off-target means of the
form

#=(500---,0)

‘represent shifts in the process mean along one of the

axes of the original variables. Off-target means of the
form
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