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Supplier selection is an important strategic supply chain design decision. Incorporating uncertainty of

demand and supplier capacity into the optimization model results in a robust selection of suppliers.

A two-stage stochastic programming (SP) model and a chance-constrained programming (CCP) model

are developed to determine a minimal set of suppliers and optimal order quantities with consideration

of business volume discounts. Both models include several objectives and strive to balance a small

number of suppliers with the risk of not being able to meet demand. The SP model is scenario-based

and uses penalty coefficients whereas the CCP model assumes a probability distribution and constrains

the probability of not meeting demand. Both formulations improve on a deterministic mixed integer

linear program and give the decision maker a more complete picture of tradeoffs between cost, system

reliability and other factors. We present Pareto-optimal solutions for a sample problem to demonstrate

the benefits of the SP and CCP models. In order to describe the tradeoffs between costs and risks in an

analytical form, we use multi-parametric programming techniques to more completely analyze the

alternative Pareto-optimal supplier selection solutions in the CCP model. This analysis gives insights

into the robustness of the solutions with respect to number of suppliers, costs and probability of not

meeting demand.

Published by Elsevier B.V.
1. Introduction

Under the pressure of global competition, companies strive to
achieve excellence in delivering high quality and low cost
products to their customers on time and rely on the efficiency
of their supply chain to gain competitive advantage. At the
frontier of a supply chain, suppliers act as a key component for
success because the right choice of suppliers reduces costs,
increases profit margins, improves component quality and
ensures timely delivery. Current supplier management trends
show increasing interests in global sourcing, reducing the supplier
base and establishing long-term relationships with the suppliers
(Minner, 2003). Selecting suppliers is no longer an operational
function but becomes a strategic level decision (Crama et al.,
2004).

When consolidating and reducing the number of suppliers,
companies run the risk of not having sufficient raw materials to
meet their fluctuating demand. These risks may be caused by
natural disasters or man-made actions. A recent example is the
fire that happened at one of Phillips’ microchip plants in 2000.
Phillips lost about $40 million in sales. As a major customer of the
chip plant, cell phone manufacturer Ericsson lost $2.34 billion in
its mobile phone division (Bartholomew, 2006). The risks are
further amplified by the current focus on supply chain efficiency
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and lean practices. A small disruption may ripple along the whole
supply chain and cause significant business losses. As a result,
there is a need to be able to evaluate the tradeoffs between the
benefits of managing a few selected suppliers and the risks of not
being able to meet the required demand. There can be substantial
benefits if the companies plan flexibility into their supply chain to
handle risks proactively.

Another source of risk is associated with global sourcing. With
long lead times and transportation routes, the expanded supply
chain is vulnerable to disruptions along the routes. Even though
overseas suppliers offer competitive price schedules, they also
increase the risk of late delivery of sufficient quantity. Instead of
increasing inventory levels to ensure a sufficient supply of raw
materials, another option is to strategically determine the number
and location of suppliers. By establishing relationships with
carefully selected local and overseas suppliers, companies can
add flexibility to their supply chain and reduce the risks of
disruption without stockpiling.

We develop stochastic mathematical programming models to
capture the risk associated with uncertain customer demand and
supplier capacity and to create a strategic purchasing plan.
Moreover, we use multi-parametric programming techniques to
analyze tradeoffs and determine a robust set of suppliers with
balanced costs and risks.

Recognizing the importance of the supplier selection decision,
an extensive literature exists to address this kind of decision.
These existing decision making models are essentially trying to
answer the following basic questions: how many suppliers are
ainty into a supplier selection problem. International Journal of
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appropriate, which suppliers to choose, and what is the optimal
ordering/replenishing policy. Many deterministic models have
been developed to answer these questions with varying con-
siderations of quantity discount, lot size, or inventory manage-
ment decisions (e.g., Dahel, 2003; Dai and Qi, 2007; Ghodsypour
and O’Brien, 2001; Narsimhan et al., 2006). The main disadvan-
tage of deterministic models is their incapability of handling
randomness embedded in the real system. Other researchers have
been working on various probabilistic models and demonstrate
the importance of incorporating randomness in the supplier
selection problem. Typically they study the effect of random
customer demand but do not incorporate uncertainty in the
supply and the impact of potential disruption (Gutiérrez and
Kouvelis, 1995; Kasilingam and Lee, 1996; Velarde and Laguna,
2004). Two studies make an all-or-none assumption for supplier
availability (Berger and Zeng, 2006; Ruiz-Torres and Mahnoodi,
2007).

Another complication to the supplier selection decision is the
multi-criteria aspect. However, most of the literature that
addresses uncertainties focuses on a single objective (e.g., Basnet
and Leung, 2005; Bollapragada et al., 2004; Dada et al., 2007;
Yang et al., 2007). Dickson (1966) listed 23 selection criteria;
however, quality, delivery and price have been identified as
the prime criteria when purchasing industrial raw materials
(Akarte et al., 2001; Cameron and Shipley, 1985). Price mentioned
here has a broader meaning nowadays; it includes the costs
associated with the whole purchasing process and over the
purchased item’s entire life in addition to the purchasing
price. Among these costs, transportation and inventory costs
constitute a significant bulk. Therefore, our models consider
quality, delivery, and cost (including the transportation and
inventory costs) as selection goals in addition to a probabilistic
measure of risk.

We develop two optimization models to find a minimal set
of suppliers to achieve quality and delivery goals while minimiz-
ing cost and the risk of having insufficient supply to meet
demand. We incorporate uncertainties that may originate at the
suppliers, or may be due to uncertain demand in our models.
We also include business volume discounts to represent
financial advantages in consolidating the supplier base. Globaliza-
tion in the supplier base is reflected implicitly by the supplier
capacity, the quoted price, the transportation cost, and the
pipeline inventory cost in this study. Our models provide a
means to explore the balance between the risk of not meeting
the demand, the benefits of reduced number of suppliers, and the
cost. The uncertainties in demand and supplier capacity are
captured either by scenarios or with a probability distribution in
the models. Not only the optimal supplier set but also ordering
quantities are determined by the models. A multi-parametric
analysis provides a means to explore tradeoffs between cost, risk,
and number of suppliers in a closed form. A sample problem
demonstrates the possibility to guard against supplier disruption
by carefully weighing costs and risks in selecting a robust set
of suppliers.

This paper is organized as follows: Section 2 gives the problem
formulations of a stochastic programming model and a chance-
constrained programming model. Section 3 presents numerical
results obtained from a sample problem and provides some
guidelines for the sourcing decision. Section 4 discusses the multi-
parametric programming approach to analyze the robustness of
solutions and illustrates it on the sample problem. Section 5
summarizes this paper, points out the importance of inclusion of
uncertainties into modeling, and the advantages of using a
chance-constrained programming model with multi-parametric
analysis to determine the robustness of the supplier selection
decisions.
Please cite this article as: Li, L., Zabinsky, Z.B., Incorporating uncert
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2. Mathematical models

We formulate a stochastic programming (SP) model, and a
chance-constrained programming (CCP) model for a multi-criteria
supplier selection problem. We incorporate the uncertainty of
demand and supplier capacity with either probabilistic scenarios
or a closed-form probability distribution. Our SP model is
scenario-based and includes a second-stage recourse problem for
the order quantities. Our CCP model uses probability distributions
for demand and supplier capacity, and assumes independence. Our
models also include business volume discounts, transportation
costs, as well as costs associated with pipeline inventory. Lead
time differences among suppliers are captured in the transporta-
tion and inventory costs. Since our models involve high level
decisions, the problem has no time dimension. Both models obtain
a minimal set of suppliers that balance risks and costs.

We consider a set of plants which demand different sets of
components. Coordination between plants is allowed to enable
plants to use the business volume discounts offered by suppliers.
However, there are certain costs associated with the coordination
between plants. The initial set of potential suppliers includes their
individual capacities, quality, and delivery performances. Each
supplier offers its own business volume discount schedule on the
total dollar amount of sales awarded with applicable discount
rates. Since not only domestic suppliers but also overseas suppliers
are considered in this problem, there are different transportation
and pipeline inventory costs associated with the suppliers.

The multiple objectives include: (1) minimizing the total
purchasing and shipping costs; (2) maximizing the probability of
satisfying demand and staying within supplier capacity; (3)
minimizing the total number of chosen suppliers; (4) maximizing
the quality of received components; and (5) minimizing the late
deliveries. Other models (e.g., Basnet and Leung, 2005; Narsimhan
et al., 2006; Velarde and Laguna, 2004) assign a fixed cost per
supplier to capture the effects of reducing the number of
suppliers. However, we avoid the use of a fixed cost in this paper,
because this fixed cost is very difficult to quantify and interpret in
practice. Instead we present the Pareto-optimal solutions so that
the decision maker can evaluate the tradeoffs and sensitivity
associated with changing the number of suppliers. Since quality
and on-time delivery are crucial factors when making the supplier
selection decision, companies generally will not consider any
supplier which may have a problem with quality and delivery.
Therefore, we include (4) and (5) as hard constraints in the
following two models. However, the right-hand-sides of the
quality and delivery constraints can be modified to explore
alternative solutions. In this case, it is equivalent to treating them
as multiple objectives.

We use our optimization models to create a set of efficient
solutions (also known as Pareto-optimal solutions) which
achieve an optimum in one objective with compromises in
other objectives. We apply the e�constraint method (Deb, 2001)
to approach this multi-objective problem because it is suitable
for mixed integer programs, whereas manipulating a weighted
objective function does not guarantee an efficient frontier in
the presence of non-convexity (introduced by the binary
variables). The e�constraint method keeps one of the multiple
objectives as a single objective in the model (cost in our models),
and restricts the rest of the objectives in the constraints
(e.g., number of suppliers and risk). A set of Pareto-optimal
solutions can be found by changing the specified right-hand-sides
(e) for the objectives included in the constraints. In this paper,
we apply the e�constraint method to find the Pareto-optimal
solutions and conduct a sensitivity analysis on the e values
to provide insights into this multi-objective supplier selection
problem.
ainty into a supplier selection problem. International Journal of
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Table 2
Decision variables in the SP model.

Decision
variables

Description

yi Binary variable, has value of 1 if supplier i is chosen, 0

otherwise, iA I

Y Vector of yi ’s

vimðxÞ Binary variable, has value of 1 if the volume of business

awarded to supplier i falls in the m-th interval given scenario

x, 0 otherwise, iA I;mAM and xAX
xijkðxÞ Amount of item k purchased from supplier i at plant j given

scenario x, iA I,jA J, kAK and xAX
zjj0kðxÞ Amount of item k ordered from plant j for plant j0 given

scenario x, j; j0A J; j0a j, kAK and xAX
ocapiðxÞ Amount of exceeded capacity of supplier i given scenario x,

iA I and xAX
bimðxÞ Amount of business volume awarded to supplier i falling in

the m-th discount interval given scenario x, iA I;mAM and

xAX
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2.1. Stochastic programming model

We first present our stochastic programming model for the
supplier selection problem. The SP model incorporates uncertain-
ties by the inclusion of the recourse problem, and probabilistic
scenarios for demand and supplier capacity. The SP model is
suitable when the decision maker does not have a clear definition
about the distributions of the random variables but he/she may
have some historical data to define scenarios or want to explore
possible future scenarios. Scenarios may represent dependencies
between demand and supplier capacity, which could be caused
by global recession, political events, effects due to geographical
location, etc.

Since it is not always possible to find a feasible solution
under all scenarios for demand and supplier capacity, when
supplier capacity is exceeded a penalty cost is incurred. An
interpretation is that when a supplier’s capacity is insufficient to
meet demand, the supplier may take other measures, such as
outsourcing, to provide the necessary components. The penalty
cost may reflect a potential loss in quality, possible delayed
deliveries, lost sales as in the Phillips–Ericsson example, and
hence a loss in customer relations for unsatisfied demand. The
parameters and decision variables used in the SP model are
defined in Tables 1 and 2.

A multi-objective two-stage stochastic programming model
with recourse follows:

Min fv ¼
X
iA I

yi ð1Þ
Table 1
Problem sets and parameters in the SP model.

Sets Description

I Set of suppliers

J Set of plants

K Set of items

M Set of volume discount intervals

X Set of scenarios

Parameters Description

djkðxÞ Demand (in units) for item k at plant j given scenario x, jA J, kAK

and xAX
capiðxÞ Aggregate capacity limit (in facility hours) of supplier i given

scenario x, iA I and xAX
ucapik Unit capacity (in facility hours) used by item k for supplier i, iA I

and kAK

pijk Unit price (in $/unit) of item k quoted by supplier i to plant j, iA I,

jA J and kAK

invijk Unit pipeline inventory cost (in $/unit) of item k shipped by

supplier i to plant j, iA I, jA J and kAK

shipijk Unit transportation cost (in $/unit) of item k shipped by supplier

i to plant j, iA I, jA J and kAK

cjj0k Unit shipping cost (in $/unit) of item k from plant j to plant j0,

j; j0A J; j0a j and kAK

qik Fraction of poor quality items of type k from supplier i, iA I and

kAK

tik Fraction of late items of type k from supplier i, iA I and kAK

uim Upper cutoff point (in $) of discount interval m from supplier i,

iA I and mAM

rim Discount rate (fraction) associated with discount interval m

offered by supplier i, iA I and mAM

ei Unit penalty cost (in $/facility hour) of exceeding capacity of

supplier i, iA I

tqðxÞ Pre-set quality tolerance (in units) given scenario x, equal to

0:05
P
j;k

djkðxÞ

tdðxÞ Pre-set delivery tolerance (in units) given scenario x, equal to

0:05
P
j;k

djkðxÞ

Please cite this article as: Li, L., Zabinsky, Z.B., Incorporating uncert
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Min fc ¼ Ex½Cf ðY ;xÞ� ð2Þ

s:t: yiAf0;1g 8iA I ð3Þ

where for Y supplier selection values and any scenario xAX, we
solve the following second-stage problem with decision variables
xijkðxÞ, zjj0kðxÞ, bimðxÞ, vimðxÞ and ocapiðxÞ,

Cf ðY ;xÞ ¼Min
X
iA I

X
mAM

ð1�rimÞ � bimðxÞþ
X
iA I

X
jA J

X
kAK

ðshipijkþ invijkÞ � xijkðxÞ

þ
X
jA J

X
j0 A J
j0 a j

X
kAK

cjj0k � zjj0kðxÞþ
X
iA I

ei � ocapiðxÞ ð4Þ

s.t.
X
iA I

X
kAK

qik �
X
jA J

xijkðxÞrtqðxÞ ð5Þ

X
iA I

X
kAK

tik �
X
jA J

xijkðxÞrtdðxÞ ð6Þ

X
iA I

xijkðxÞþ
X

j0A J\j

zj0 jkðxÞ�
X

j0A J\j

zjj0kðxÞZdjkðxÞ 8jA J; kAK ð7Þ

X
kAK

ucapik �
X
jA J

xijkðxÞ�ocapiðxÞrcapiðxÞ 8iA I ð8Þ

X
jA J

X
kAK

pijk � xijkðxÞ ¼
X

mAM

bimðxÞ 8iA I ð9Þ

bimðxÞruim � vimðxÞ 8iA I; mAM ð10Þ

bi;mþ1ðxÞZuim � vi;mþ1ðxÞ 8iA I; mAf1;2; . . . ; jMj�1g ð11Þ

X
mAM

vimðxÞ ¼ 1 � yi 8iA I ð12Þ

vimðxÞAf0;1g 8iA I; mAM ð13Þ

xijkðxÞ; zjj0kðxÞ; bimðxÞ; ocapiðxÞZ0 8iA I; jA J; j0A J; kAK; mAM

ð14Þ

Our stochastic programming model is a two-stage model with
recourse. The first stage has two objectives: (1) to minimize the
number of suppliers selected

P
iA I

yi and (2) to minimize the expected

total costs Ex½Cf ðY ; xÞ�. The cost function Cf ðY ; xÞ is optimized

at the second stage given the selected supplier set Y and the

realized scenario x of the random demand and supplier capacity.
It includes purchasing costs with business volume discounts
ainty into a supplier selection problem. International Journal of
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Table 3
Additional parameters in the CCP model.

Parameters Description

Djk Demand (in units) for item k at plant j, jA J and kAK , random

variable with mean mDjk
, standard deviation sDjk

, and cumulative

probability distribution function FDjk

CAPi Aggregate capacity limit (in facility hours) of supplier i, iA I,

random variable with mean mCAPi
, standard deviation sCAPi

, and

cumulative probability distribution function FCAPi

ed Pre-determined satisfaction level of probabilistic demand

constraint

ec Pre-determined satisfaction level of probabilistic capacity

constraint

tq Pre-set quality tolerance (in units), equal to 0:05
P

j;k mDjk

td Pre-set delivery tolerance (in units), equal to 0:05
P

j;k mDjk
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P
iA I;mAMð1�rimÞ � bimðxÞ, pipeline inventory costs and transportation

costs
P

iA I;jA J;kAK ðinvijkþshipijkÞ � xijkðxÞ, coordination costsP
jA J;j0A J;j0a j;kAK cjj0k � zjj0kðxÞ, and penalty costs for exceeding suppli-

er’s capacity
P

iA Iei � ocapiðxÞ. The first stage decision is which

suppliers to select yi. The second stage decisions are how much to
purchase from selected suppliers xijk, how to coordinate between

plants zjj0k, the volume awarded to selected suppliers in business

discount bim, and the amount of capacity exceeded ocapi, given the

selection decision yi and the realized scenario x. The optimal value

Cf ðY ;xÞ of the second stage problem (4)–(14) is a function of the first

stage decision variables yi and the realized scenario x. An
interpretation of the two-stage SP with recourse is that while the
suppliers are selected in the first stage (e.g., annually), the amount to
order and shipment plan is decided in the second stage (e.g., weekly)
when the random variables are realized through different scenarios.

The constraint sets (5) and (6) specify the requirements for
high quality and on-time delivery of the received items. Since
the requirements for high quality and on-time delivery of the
received items are generally expressed as a percentage of the
demand in practice and the demand varies at every scenario,
hence different tqðxÞ and tdðxÞ are set under different scenarios. In
our sample problem, we set tqðxÞ and tdðxÞ equal to 0:05

P
j;kdjkðxÞ.

The value of 0.05 can be modified to explore the impact of
different quality and/or delivery requirements.

The constraint sets (7) and (8) model uncertainty of demand,
djkðxÞ, and supplier capacity, capiðxÞ. Our model ensures that
demand is met for each scenario x by allowing suppliers to exceed
capacity, ocapiðxÞ, and assuming that there are some measures to
accommodate variable demand, such as outsourcing. There is a
penalty cost, ei, associated with this. The constraint set (7)
describes the flow conservation at each plant and ensures demand
at each plant is satisfied. This constraint set allows coordination
between plants, zjj0kðxÞ, with a coordination cost, cjj0k. The
constraint set (8) measures the amount that the total number of
items purchased from a supplier is over the capacity limit of that
supplier. This constraint accounts for a reduction in capacity due
to a low probability event (such as fire or flood).

The constraint sets (9)–(12) link the total business volume
with its corresponding discount rate. They also enforce a logic
relationship: items can be purchased from selected suppliers only.
The constraint sets (13) and (14) specify the binary and non-
negative properties of the decision variables.

As mentioned before, we use the e�constraint method to solve
this multi-objective problem. The e�constraint method is chosen
because it is not difficult to implement and non-convexity of the
mixed integer program does not present any problem in finding
the Pareto-optimal solution set. When the e�constraint method is
implemented, objective function (1) is moved to be a constraint:
X
iA I

yires ð15Þ

where es represents the limit on number of suppliers and is varied
in the solution process. The reason we chose to move the
objective function (1) instead of the objective function (2) to the
constraint is that the right-hand-side es for number of suppliers
has naturally discrete values and bounds to explore the Pareto-
optimal solutions.

2.2. Chance-constrained programming model

In addition to the two-stage stochastic programming model with
recourse, we develop a chance-constrained programming model as
an alternative way to incorporate the uncertainties. Unlike the
stochastic programming model, which penalizes the average
amount an obtained solution violates the capacity constraints over
Please cite this article as: Li, L., Zabinsky, Z.B., Incorporating uncert
Production Economics (2009), doi:10.1016/j.ijpe.2009.11.007
all scenarios, the chance-constrained programming model requires
the demand and capacity constraints to be satisfied with some
predetermined probability. In this model, it is assumed that random
variables for demand and supplier capacity can be represented by
closed-form probability distributions and are independent, whereas
in the SP model, the probabilities for demand and supplier capacity
may be dependent and are captured in the scenarios.

The parameters and decision variables used in the chance-
constrained programming model are mostly the same as those
used in the SP model, except the scenario notation is dropped. In
addition, the CCP model uses the mean and standard deviation for
demand and supplier capacity as well as two threshold levels,
which are defined in Table 3.

A multi-objective chance-constrained programming model is
formulated as follows:

Min
X
iA I

yi ð16Þ

Min
X
iA I

X
mAM

ð1�rimÞ � bimþ
X
iA I

X
jA J

X
kAK

ðshipijkþ invijkÞ � xijkþ
X
jA J

X
j0 A J
;0 a j

X
kAK

cjj0k � zjj0k

ð17Þ

s.t.
X
iA I

X
kAK

qik �
X
jA J

xijkrtq ð18Þ

X
iA I

X
kAK

tik �
X
jA J

xijkrtd ð19Þ

Pr
X
iA I

xijkþ
X

j0A J\j

zj0 jk�
X

j0A J\j

zjj0kZDjkÞZed 8jA J; kAK

0
@ ð20Þ

Pr
X
kAK

ucapik �
X
jA J

xijkrCAPiÞZec 8iA I

0
@ ð21Þ

X
jA J

X
kAK

pijk � xijk ¼
X

mAM

bim 8iA I ð22Þ

bimruim � vim 8iA I; mAM ð23Þ

bi;mþ1Zuim � vi;mþ1 8iA I; mAf1;2; . . . ; jMj�1g ð24Þ

X
mAM

vim ¼ 1 � yi 8iA I ð25Þ

yiAf0;1g; vimAf0;1g 8iA I; mAM ð26Þ

xijk; zjj0k; bimZ0 8iA I; jA J; j0A J; kAK; mAM ð27Þ
ainty into a supplier selection problem. International Journal of
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The objective of this model is to minimize the number of
suppliers selected and the costs of purchasing, pipeline inventory,
transportation and coordination. To find the Pareto-optimal solu-
tions, the e�constraint method will be applied to objective function
(16), and is treated as a constraint, see (15). The constraint sets (18)
and (19) are analogous to (5) and (6) for high quality and on-time
delivery of items. The constraint sets (20) and (21) provide a lower
limit on the probability that demand is met and are analogous to (7)
and (8) in the SP model. There are two sources of uncertainty; either
the demand could be more than what was expected and then the
order is insufficient to meet demand, or the supplier’s capacity is
reduced by an unforeseen event and the order cannot be filled. Both
random events result in demand not being met. We treat the two
sources of uncertainty separately, where the constraint set (20)
ensures that demand at each plant be satisfied with a probability of
at least ed. The constraint set (21) requires that the probability that a
supplier’s capacity exceeds the total amount purchased is at least ec.
Simply put, we use these two constraints to ensure a certain level of
the system reliability.

For ease of computation, constraint sets (20) and (21), which
include the probabilistic statements, can be replaced by the
following linear functions, since the terms inside the probabilistic
statements are linear, regardless of the underlying cumu-
lative distribution of random demand and supplier capacity
(Prékopa, 1995)
X
iA I

xijkþ
X

j0A J\j

zj0jk�
X

j0A J\j

zjj0kZF�1
Djk
ðedÞ 8jA J; kAK ð28Þ

X
kAK

ucapik �
X
jA J

xijkrF�1
CAPi
ð1�ecÞ 8iA I ð29Þ

where F�1
Djk

and F�1
CAPi

are the inverse cumulative probability
distribution functions for random demand and random supplier
capacity.
3. Experimental results

The value of including uncertainties in the models is demon-
strated by a sample problem. There are 10 potential suppliers to
choose from and four plants with demand for 50 types of
components. Suppliers provide three discount rates which vary
from 2% to 6% with the monetary business volume awarded to
them. The big suppliers with high capacity levels expect to be
awarded with large sales, and therefore, they offer higher
discount rates to large sales. The big suppliers with high capacity
levels generally offer 4–12% lower prices than the mid and small
sized suppliers. However, the big suppliers are possibly overseas,
and their transportation costs and pipeline inventory costs are
50–70% higher than the mid and small sized suppliers. The
transportation costs and pipeline inventory costs account for
approximately 10% of the purchase price. The big suppliers also
tend to have 40–70% higher poor-quality rate and late-delivery
rate. The poor-quality rate and the late-delivery rate are about 2%
and 4%, respectively, of the total shipment. Even though the big
suppliers offer competitive prices on most of the components,
every supplier gives the cheapest price on a certain component. In
this study, suppliers 1, 2 and 3 are the biggest ones, suppliers 4, 5,
6, and 7 are mid sized having about half capacity of the big ones,
and suppliers 8, 9 and 10 are the smallest ones having about half
capacity of the mid-sized ones. The detailed data sets are available
upon request in electronic format.

For computational purposes, we use either normal distribu-
tions or triangular distributions to represent demand and supplier
capacity for both SP and CCP models. The reason to choose these
two distributions in this experiment is because they are easy to
Please cite this article as: Li, L., Zabinsky, Z.B., Incorporating uncert
Production Economics (2009), doi:10.1016/j.ijpe.2009.11.007
understand and it is intuitive for practitioners to describe the
uncertain demand and supplier capacity in these forms. The
normal distribution is a common assumption and is easily
described by two parameters, the mean and the variance. Like
the well-known beta distribution used in PERT/CPM, the trian-
gular distribution allows practitioners to describe the random
demand and random supplier capacity in a limited region with
three parameters; the minimum value, the most likely value, and
the maximum value. Whereas the normal distribution is sym-
metric, the triangular distribution can be skewed. When trian-
gular distributions are used, customer demands are negatively
skewed and supplier capacities are positively skewed. Our study
analyzes the effects of the probability distribution shape
(symmetric versus skewed) on the supplier selection decision.

Although the scenarios for the SP model can be quite
complicated with interdependencies, for comparison purposes,
we construct 10 scenarios for the SP model by taking sample data
of demand and supplier capacity from the same independent
normal and triangular distributions as used in the CCP model. A
scenario consists of one sample data drawn independently from
each demand and supplier distribution. The SP model is
transformed into its deterministic equivalent form in order to
solve it (Birge and Louveaux, 1997). For a larger problem, new SP
algorithms developed for solving mixed integer problems may be
more efficient computationally (Sherali and Fraticelli, 2002; Sen
and Higle, 2005; Sen and Sherali, 2006).

For the CCP model, we assume that random demands and
random supplier capacities follow either normal or triangular
distributions. The mean and standard deviation for Djk and CAPi

are given by mDjk
;sDjk

, mCAPi
, and sCAPi

. We can replace the
probability constraint sets (20) and (21) with (28) and (29)
and explicit right-hand-sides for both normal and triangular
distributions.

With the normal distribution assumption, an explicit form of
the inverse cumulative probability distribution function is used,
and (28) and (29) become
X
iA I

xijkþ
X

j0A J\j

zj0 jk�
X

j0A J\j

zjj0kZmDjk
þsDjk

� Zed
8jA J; kAK ð30Þ

X
kAK

ucapik �
X
jA J

xijkrmCAPi
þsCAPi

� Z1�ec
8iA I ð31Þ

where Ze is a standard normal random variate with cumulative
probability of e and can be obtained from the standard normal
table when the e levels are set.

We can similarly provide an explicit form of the inverse
cumulative probability distribution functions in (28) and (29)
when Djk and CAPi follow triangular distributions. Let a, b, and c be
the three parameters of the distribution: the lower limit a, the
mode b, and the upper limit c. We subscript parameters a, b, and c

with the random variables Djk and CAPi. The probability constraint
(28) for a triangular distribution can be derived as

X
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for all jA J and kAK . Similarly, the probability constraint (29) for a
triangular distribution can be derived as

X
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for all iA I.
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For the sample problem, we choose values for a, b, and c to
keep the mean and standard deviation the same as for the normal
distributions. Our triangular distributions are skewed; to the right
for demand to capture unanticipated high demand, and to the left
for supplier capacity to represent sudden reduction in capacity.
This provides a contrast to the symmetric normal distribution.

The constraints for the chance-constrained programming
model are given in (18)–(27) where (20) is replaced by (30) for
the normal distribution and (32) for the triangular distribution,
and (21) is replaced by (31) for the normal distribution and (33)
for the triangular distribution, depending on the parameter values
of ed and ec.

Solutions of the deterministic mixed integer programming
(MIP) model are obtained for comparison purposes, using the
expected values of the random demand and random supplier
capacities. The MIP model is based on the CCP model rather than
the SP model and is formulated as follows:

Min ð17Þ

s:t: ð15Þ; ð18Þ; ð19Þ; ð22Þ2ð27ÞX
iA I

xijkþ
X

j0A J\j

zj0 jk�
X

j0A J\j

zjj0kZmDjk
8jA J; kAK

X
kAK

ucapik �
X
jA J

xijkrmCAPi
8iA I

where mDjk
is the expected demand for item k at plant j and mCAPi

is
the expected capacity limit of supplier i.

By varying the number of suppliers es from 1 to 10 in
constraint (15) with the objective to minimize the total costs
(17), a set of Pareto-optimal solutions is found by using the MIP
model. For the SP model, we vary the number of suppliers es from
1 to 10 in constraint (15) and vary the penalty cost ei in the
objective function (4) from 20 to 100 with an increment of 10
assuming equal penalty cost ei applies to each supplier to obtain
the Pareto-optimal solutions. The reason we start with 20 on the
penalty cost is because we treat a unit of capacity as worth at least
10 monetary units for each supplier, and when suppliers overflow
their capacity, we set the penalty cost to be at least twice the
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value of their capacity, i.e., 20. For the CCP model, we change
the number of suppliers es from 1 to 10 in constraint (15) and the
satisfaction level of the probabilistic demand ed (20) and capacity
ec (21) from 0.1 to 0.9 with an increment of 0.1 to find a set
of Pareto-optimal solutions. We let ed ¼ ec during the solution
process. It is possible to explore the solutions with different ed and
ec values. However, the system reliability level described by
different ed and ec levels are less meaningful for practitioners to
interpret. It is more convenient for practitioners to achieve the
same satisfaction levels for meeting probabilistic demands and
respecting probabilistic supplier capacities.

The Pareto-optimal solutions obtained by these three models
(SP, CCP and MIP) are illustrated in Figs. 1 and 2, for normal and
triangular distributions, respectively. The detailed solutions are
presented in Table 4 in the appendix. For Pareto-optimality, four
performance measurements are considered: the number of
suppliers, the system reliability level (ed ¼ ec), the total costs as
evaluated by the CCP model, and the expected total costs as
evaluated by the SP model.

To have an appropriate comparison between models, we
evaluate the performance measurements by taking every solution
y�i found, and evaluating it using both the CCP model and the SP
model under both normal and triangular distributions. The reason
to evaluate solutions for the probability level ed and ec using the
CCP model instead of the SP model is because the SP model cannot
capture the probability of meeting demand explicitly. This is
partly due to the limited number of scenarios considered in the SP
model. Also, the SP model ensures that demand is met while
penalizing exceeding supplier capacities under each scenario.
While the CCP model calculates the total costs based on a single
ordering plan, the SP model computes the expected total costs
where the ordering plans are based on a different set of 10
scenarios drawn from the normal and triangular distributions.
The appendix includes a detailed description of the evaluation
process.

Figs. 1 and 2 list the Pareto-optimal sets of suppliers along the
horizontal axis, summarizing the evaluation results under the
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normal and triangular distributions. The gray vertical lines and
gray numbers are used to group the solutions according to the
number of suppliers allowed. For this sample problem, seven
suppliers is the largest number of suppliers needed, so the left-
most group includes 7–10 suppliers with a single Pareto-optimal
solution. The solutions found by the MIP model are marked by
black circles. The line with squares represents the total cost
evaluated by the CCP model, the line with triangles represents the
expected total cost evaluated by the SP model and the dashed line
with diamonds represents the risk associated with NOT having
sufficient supplier capacity or meeting demand (1�ed ¼ 1�ec).
Their values can be found at the left vertical axis representing the
costs and the right vertical axis giving the probability. Since we
have extremely high expected costs for solutions with low system
reliability when evaluated under the SP model, we cut off the
scale of the left vertical axis at $500K to avoid having the high
costs mask the trends in the costs. Note that the lines connecting
the markers are used to show the trends in the data only.

As we look at the costs versus the number of suppliers, the
total costs tend to drop with fewer suppliers using the CCP model
evaluation whereas the expected costs increase when using the SP
model evaluation. This observation is anticipated because the CCP
model allows fulfilling partial demand as specified by the
probabilistic constraints and thereby the lower the system
reliability, the fewer items need be purchased from the suppliers,
which results in lower costs. The SP model requires all demands
be met by penalizing the overflowing capacities and hence having
more suppliers avoid incurring the high penalty costs. If we fix the
number of suppliers to be used, we can observe the total costs as
evaluated by the CCP model are decreasing while the risks
(1�ed ¼ 1�ec) are increasing when solutions are evaluated under
both normal and triangular distributions. This is predictable since
a solution with high total costs and high risk will be dominated by
another solution with lower costs and lower risk. In other words,
we should expect to see the total costs going down while the
risks are going up within the same number of suppliers in Figs. 1
and 2. When comparing the figures, there is no clear indication
that distribution skewness has an evident impact on the overall
trends.
Please cite this article as: Li, L., Zabinsky, Z.B., Incorporating uncert
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The expected cost as evaluated under the SP model has a
different trend from the total cost evaluated by the CCP model.
When the number of suppliers are enough to provide low risk, the
expected cost is fairly flat. This indicates that the recourse
decision can be used to modify the ordering and shipping plan
with the same set of suppliers without incurring a large penalty
cost of exceeding capacity. However, as the risk increases, the
penalty cost increases and hence the expected cost increases. As
we can observe from the figures, the penalty cost kicks in when
the risk is above 0.3 or so. Since the penalty costs are difficult to
estimate, one can generally use the CCP model to incorporate
uncertainties into the supplier selection decision. However, if one
is particularly interested in recourse decisions, then the SP model
gives more insightful information.

From Figs. 1 and 2, and Table 4 in the appendix, we observe
that single sourcing incurs high expected costs and a high risk of
not having sufficient capacities to meet demand. On the other
hand, multiple sourcing reduces the expected costs and ensures a
high system reliability. For this sample problem, choosing four
suppliers seems appropriate in terms of balancing cost, the
number of suppliers, and high system reliability. With four
suppliers, the system reliability level is at least 65% for both
distributions. If a practitioner is more concerned with high system
reliability than the total costs, then the supplier sets {4, 5, 6, 7}
and {4, 5, 7, 9} should be examined first. These are the mid-sized
and small suppliers. The supplier sets {5, 6, 8, 9} and {4, 5, 9, 10}
may be considered if the costs are more of a concern. The
marginal changes in cost can be contrasted with a marginal
change in system reliability to achieve an ultimate decision.
Taking two of these three solutions as an example, we can see that
there is a 14% decrease in the system reliability, a 0.5% decrease in
the expected costs and a 11% decrease in the total costs if we
switch from {4, 5, 6, 7} to {5, 6, 8, 9}. There is a 16% decrease in the
system reliability with an 0.2% decrease in the expected costs and
11% decrease in the total costs if we switch from {4, 5, 6, 7} to
{4, 5, 9, 10}. In this case, the decision maker may choose {4, 5, 6, 7}
as the best if he/she is more concerned with the risk since there is
no obvious benefit in the expected cost reduction with sacrifice of
the system reliability. When making the selection decisions,
ainty into a supplier selection problem. International Journal of
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Table 4
Performance of supplier selection decisions evaluated under normal (N) and triangular (T) distributions.

Number and set of

selected suppliers

N/T System reliability

level ed ¼ ec

Total costs CCP

evaluation

Expected costs SP

evaluation

Solution model

7-10 Suppliers N 0.96 $ 464,548 $ 297,606 MIP, SP(N), SP(T),

{4, 5, 6, 7, 8, 9, 10} T 0.99 $ 459,344 $ 302,354 CCP(N), CCP(T)

6 Suppliers N 0.95 $ 450,694 $ 297,775 MIP, SP(N), SP(T),

{4, 5, 6, 7, 8, 9} T 0.98 $ 448,770 $ 302,400 CCP(N)

6 Suppliers N 0.93 $ 438,353 $ 298,853 SP(T)

{5, 6, 7, 8, 9, 10} T 0.96 $ 442,640 $ 303,793

6 Suppliers N 0.93 $ 442,070 $ 298,091 SP(N), SP(T),

{4, 5, 6, 8, 9, 10} T 0.95 $ 429,909 $ 303,115 CCP(T)

5 Suppliers N 0.94 $ 443,256 $ 298,846 SP(N), SP(T)

{4, 5, 6, 7, 9} T 0.97 $ 442,987 $ 303,567

5 Suppliers N 0.91 $ 422,974 $ 300,211 MIP, SP(N), SP(T),

{4, 5, 6, 8, 9} T 0.93 $ 422,495 $ 303,386 CCP(N), CCP(T)

4 Suppliers N 0.92 $ 434,893 $ 301,561 CCP(N), CCP(T)

{4, 5, 6, 7} T 0.94 $ 430,189 $ 305,985

4 Suppliers N 0.89 $ 417,647 $ 301,174 SP(N)

{4, 5, 7, 9} T 0.90 $ 415,661 $ 305,071

4 Suppliers N 0.88 $ 411,163 $ 300,757 SP(N)

{5, 6, 7, 9} T 0.89 $ 412,013 $ 305,059

4 Suppliers N 0.88 $ 413,414 $ 299,914 CCP(N), CCP(T),

{4, 5, 6, 9} T 0.89 $ 416,588 $ 303,911 SP(N), SP(T)

4 Suppliers N 0.81 $ 385,091 $ 299,769 MIP, CCP(N)

{5, 6, 8, 9} T 0.79 $ 386,216 $ 304,700

4 Suppliers N 0.80 $ 383,965 $ 300,927 CCP(T)

{4, 5, 9, 10} T 0.77 $ 382,028 $ 305,413

4 Suppliers N 0.70 $ 353,609 $ 348,047 CCP(T)

{4, 8, 9, 10} T 0.65 $ 357,127 $ 307,800

3 Suppliers N 0.84 $ 398,231 $ 303,980 SP(N)

{4, 6, 7} T 0.84 $ 403,500 $ 308,723

3 Suppliers N 0.82 $ 389,616 $ 302,068 CCP(N), CCP(T),

{4, 5, 6} T 0.81 $ 396,799 $ 306,731 SP(N)

3 Suppliers N 0.78 $ 380,756 $ 306,402 CCP(T), SP(T)

{4, 7, 9} T 0.74 $ 377,932 $ 309,610

3 Suppliers N 0.76 $ 374,742 $ 304,863 SP(T)

{6, 7, 9} T 0.72 $ 376,787 $ 324,383

3 Suppliers N 0.75 $ 370,705 $ 303,681 CCP(N), CCP(T)

{4, 6, 9} T 0.70 $ 367,338 $ 306,202

3 Suppliers N 0.74 $ 365,338 $ 301,477 SP(N), SP(T),

{4, 5, 9} T 0.69 $ 364,706 $ 305,846 CCP(N)

3 Suppliers N 0.72 $ 360,073 $ 301,346 MIP, SP(T),

{5, 6, 9} T 0.67 $ 361,771 $ 305,859 CCP(N)

3 Suppliers N 0.63 $ 339,304 $ 440,909 SP(N)

{7, 8, 9} T 0.57 $ 339,302 $ 311,943

3 Suppliers N 0.61 $ 330,882 $ 484,461 CCP(T)

{4, 8, 9} T 0.55 $ 330,608 $ 349,036

3 Suppliers N 0.58 $ 325,643 $ 372,343 CCP(N)

{5, 8, 9} T 0.52 $ 324,307 $ 306,882

3 Suppliers N 0.51 $ 310,900 $ 416,154 CCP(T)

{5, 9, 10} T 0.46 $ 309,939 $ 364,711

2 Suppliers N 0.70 $ 370,430 $ 325,787 CCP(N), SP(T)

{2, 5} T 0.56 $ 371,898 $ 317,307

2 Suppliers N 0.70 $ 371,118 $ 314,119 SP(T)

{3, 5} T 0.55 $ 370,383 $ 317,357

2 Suppliers N 0.69 $ 368,402 $ 314,958 SP(N)

{2, 6} T 0.34 $ 374,768 $ 342,157

2 Suppliers N 0.67 $ 359,397 $ 316,325 SP(T)

L. Li, Z.B. Zabinsky / Int. J. Production Economics ] (]]]]) ]]]–]]]8

Please cite this article as: Li, L., Zabinsky, Z.B., Incorporating uncertainty into a supplier selection problem. International Journal of
Production Economics (2009), doi:10.1016/j.ijpe.2009.11.007

dx.doi.org/10.1016/j.ijpe.2009.11.007


ARTICLE IN PRESS

Table 4 (continued )

Number and set of

selected suppliers

N/T System reliability

level ed ¼ ec

Total costs CCP

evaluation

Expected costs SP

evaluation

Solution model

{2, 4} T 0.77 $ 399,404 $ 320,027

2 Suppliers N 0.67 $ 360,989 $ 375,304 SP(T)

{3, 4} T 0.76 $ 398,715 $ 320,376

2 Suppliers N 0.61 $ 333,959 $ 381,001 CCP(N), CCP(T)

{4, 6} T 0.55 $ 333,681 $ 334,838

2 Suppliers N 0.57 $ 325,460 $ 348,901 MIP, SP(N),

{5, 6} T 0.52 $ 328,264 $ 352,858 CCP(N), CCP(T)

2 Suppliers N 0.43 $ 288,703 $ 882,115 CCP(N)

{4, 9} T 0.40 $ 292,818 $ 629,728

2 Suppliers N 0.41 $ 281,657 $ 830,438 CCP(N), CCP(T)

{4, 8} T 0.38 $ 281,121 $ 664,540

2 Suppliers N 0.38 $ 276,017 $ 667,325 CCP(N)

{5, 9} T 0.36 $ 276,924 $ 509,151

1 Supplier N 0.34 $ 287,210 Infeasible CCP(N), CCP(T)

{2} T 0.33 $ 288,039 Infeasible

1 Supplier N 0.21 $ 233,673 $1,478,587 SP(N), SP(T)

{7} T 0.23 $ 235,122 $1,336,047

1 Supplier N 0.20 $ 226,235 $1,498,125 CCP(N), CCP(T),

{4} T 0.21 $ 222,961 $1,338,709 SP(N), SP(T)

1 Supplier N 0.15 $ 209,380 $1,265,621 CCP(N), CCP(T)

{5} T 0.17 $ 206,779 $1,141,054

Dominated values are shown in gray.

L. Li, Z.B. Zabinsky / Int. J. Production Economics ] (]]]]) ]]]–]]] 9
the practitioner needs to make a tradeoff between costs, risks,
number of suppliers and most likely use other criteria, such as his/
her previous experience with certain suppliers, the financial
stability of the suppliers, the technical support of the suppliers,
etc., to favor one supplier set against another.

While selection decisions are mostly determined by the
supplier limit, cost and system reliability, the amount of
components to be ordered also plays a role in determining which
suppliers to choose. Even though ordering from a supplier with
high capacity can take advantage of business volume discount, the
savings in the costs may be outweighed by their high transporta-
tion cost. In the sample problem, supplier 1 has the highest
capacities and the highest transportation costs, and this is why it
is not chosen by any of the models. This demonstrates the
capability for the models to provide tradeoffs between business
volume discounts and transportation costs, because the models
include an interaction between the supplier selection decision
and the ordering and shipping plan.

It is clear from this sample problem that the CCP and SP
models provide more information about how supplier selection
decisions are affected by the tradeoffs between different factors as
compared to the MIP model. Out of 38 Pareto-optimal solutions,
the CCP model found 26 of them, the SP model found 24 while
MIP found 6. Both the CCP model and the SP model provide a
similar number of non-dominated solutions. When the number of
suppliers is set to seven or more, the difference between the three
approaches (SP, CCP and MIP) is not evident because they all
select the same set of suppliers. However, when the number of
suppliers is set to four, for example, we can see a big difference
between the approaches. The SP model provides {4, 5, 7, 9}, {5, 6,
7, 9}, and {4, 5, 6, 9} as the alternative sets of suppliers whereas
the MIP model provides {5, 6, 8, 9} as the optimal solution and the
CCP model provides {4, 5, 6, 7}, {4, 5, 6, 9}, {5, 6, 8, 9}, {4, 5, 9, 10}
and {4, 8, 9, 10}. The SP model includes {5, 9}, a mid-sized and a
Please cite this article as: Li, L., Zabinsky, Z.B., Incorporating uncert
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small supplier in every solution whereas the CCP model uses
different combinations of {4, 5, 9} in the solutions. This gives the
decision maker a hint that these are good candidates to include in
the selection decision. From this example, we can see that the SP
and CCP models provide more robust solutions and more
information than the MIP model to allow decision makers to
quantify the tradeoffs between risks and costs.

In this sample problem, the SP model gives a similar number
of solutions as the CCP model but with considerably more
computational effort. The computational times to solve the CCP
and MIP models were not significantly different for a single run,
while the time to solve the SP model with 10 scenarios was
substantially more. The models were run using GAMS/CPLEX on a
PC Intel Pentium processor and typically took less than five
minutes for the CCP and MIP models, but took several hours
(ranging between 1 h and one day) for each SP run. Since we use
the deterministic equivalent form of the SP model to solve the
problem, the computational time comparison between MIP, CCP,
and SP models may not be fair. We expect to see a reduction in the
computing time when more efficient SP algorithms (see Sherali
and Fraticelli, 2002; Sen and Higle, 2005; Sen and Sherali, 2006)
are implemented. Nonetheless, another advantage brought by the
CCP model with the e�constraint approach is that it is clear how
to explore the Pareto-frontier using the CCP model by varying the
values of the number of suppliers es, the probability of meeting
demand ed and the probability of not exceeding supplier capacity
ec whereas for the SP model, the relationship between Pareto-
optimal solutions and the values of the number of suppliers es and
unit penalty cost of exceeding supplier capacity ei is less obvious.
Due to the computational considerations and ease of exploring
solutions, we recommend the CCP model as an excellent way to
incorporate uncertainties into the supplier selection decision.
However, if scenarios are more meaningful than an assumed
probability distribution, one may turn to the SP model in the case
ainty into a supplier selection problem. International Journal of
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of correlated uncertainties and for more accurate approximation
of the real costs.

A rough estimation of tradeoffs between costs and system
reliability can be visualized in Figs. 1 and 2. However, it would
be more informative to the decision maker if we were able to
identify the relationship between the costs and the system
reliability in a closed form and determine the valid interval
for which a selection decision remains Pareto-optimal. In this
sample problem, different efficient solutions are identified under
different combinations of cost levels, risk levels and supplier
limit levels. Instead of choosing probability levels at an increment
of 0.1 in the CCP model or weights in the SP model (ei chosen
by trial-and-error), we need a more systematic approach to
explore how the changes in the cost levels, risk levels and supplier
limit levels affect the supplier selection decision and total costs,
which leads us to the use of multi-parametric programming
techniques.
4. Multi-parametric analysis

Sensitivity analysis, postoptimality analysis, and parametric
programming have been used interchangeably in the literature to
describe the characterization of the changes of the optimal
solution and the objective function value with respect to the
changes presented in the problem parameter values. This
information is of great value in practice in several ways. First, it
helps answer what-if questions. Second, it helps identify scarce
resources and the bottlenecks of the system. Finally, it helps
determine how reliable the obtained optimal solution is (Acevedo
and Pistikopoulos, 1999; Jansen et al., 1997).

Using parametric programming approaches to analyze the
uncertainty in the problem parameters has received a lot of
attention due to the recognition of the lack of exact and reliable
data in practice. Therefore, researchers intend to find robust
solutions to the real applications from the developed models by
the use of the parametric programming techniques. However, as
declared in the stochastic and probabilistic programming litera-
ture, parametric programs do not deliver good solutions for the
case when there are uncertainties in the problem, since it only
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provides posterior analysis of the solution using a deterministic

tool (Wallace, 2000). In order to obtain a robust solution, it is
crucial to plan for uncertainty proactively beforehand, that is, to
incorporate the uncertainty into the modeling.

Under the framework of our multi-objective CCP model with
probabilistic constraints with the implementation of the
e�constraint method, we avoid the disadvantages of the sensi-
tivity analysis—posterior analysis of the solution using a
deterministic tool, by inclusion of the probabilistic constraints
to plan for uncertainty. Furthermore, we utilize the advantages of
the parametric optimization (ability to handle the multiple
objectives and characterize the effects of changing problem
parameters on the objective function value) through the use of
the e constraints on the supplier limits, the demand requirements,
and the capacity limits. Therefore, our multi-parametric program
is able to provide the decision maker with a complete map of
robust solutions. In Section 3, we used predetermined e levels on
the number of the suppliers, the probabilistic demand level, and
the probabilistic capacity level and stepped through the e levels
with an increment of 0.1 to obtain the Pareto-optimal solutions. In
the multi-parametric analysis, we have undetermined e variables
and attempt to investigate valid ranges of e on which the selection
decision remains efficient.

Dua and Pistikopoulos (2000) presented new techniques for
multi-parametric programming with binary variables. We adapt
these techniques to perform multi-parametric programming to
solve our mixed binary, multi-objective chance-constrained
programming (CCP) model. Since we are interested in getting
business insights from the parametric analysis results, we will
not discuss the implementation process of the multi-parametric
programming techniques in this paper. Interested readers
may refer to Li (2007) for a detailed discussion on how to
implement the multi-parametric techniques to our supplier
selection problem.

For demonstration purposes, we apply the multi-parametric
programming techniques to the CCP model under the normal
distribution, where the probability constraint sets (20) and (21)
are replaced by (30) and (31). Now in our parametric analysis
setting, Zed

and Z1�ec
become variables instead of parameters.

Since the valid range for a normal distribution is (�1; þ1) which
0.7 0.8 0.9 1
ility level (εd=εc)

d system reliability under the normal distribution assumption.
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does not make sense in practice, we explore Zed
and Z1�ec

in the
range of ½�0:25;3�, which represents varying ed and ec from 40% to
99.87%. The minimum 40% system reliability is chosen since it is
unusual for the decision maker to accept less than 40% chance of
having sufficient supplier capacity to meet demand. We choose an
upper limit of 99.87% (Z value of 3) to explore the cost associated
with an extremely reliable supply chain. The probability levels ed

and ec are explicit in the constraint sets (30) and (31). However,
the combined probability of meeting demand requires both
constraints to be satisfied, that is, there is sufficient capacity for
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the amount ordered at the suppliers, and the demand can be
satisfied by the amount ordered. To have a more detailed
analysis and to provide insight into how changes in the system
reliability level affect the changes in the selection decision and the
total costs, we set ed ¼ ec ¼ e to represent the system reliability
level.

The relationship between total costs and the system reliability
level is shown in Fig. 3, where the different lines are associated
with different numbers of suppliers. The horizontal axis
represents the system reliability level e. The vertical axis
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represents the total costs evaluated under CCP with the normal
distribution. As we can see from the figure, with limited suppliers,
there are limits on the highest system reliability we can achieve.
The steep curve in this figure shows the decision maker where
the marginal change in cost is extremely high as compared to the
marginal change in the system reliability. The functions are linear
in Ze, but appear curved in Fig. 3 because the x-axis is e. With the
same system reliability level, we can reduce total costs but with a
drawback of managing more suppliers. This figure gives exact

quantitative cost reduction values associated with different
supplier limits. For example, it is more costly to go with fewer
suppliers when we want 90% system reliability than when we
want 80% system reliability. Similarly, with the same costs, the
decision maker can achieve a higher system reliability level if
he/she is willing to manage more suppliers. Following our
previous argument on this, we can see if the decision maker is
willing to spend about $375K for the total costs, with two
suppliers the system reliability level is about 70%, and with three
suppliers is about 78%, and with four or more suppliers is about
80% which provides more accurate and complete information
than we had in the previous section.

The detailed parametric solutions are shown separately in
Fig. 4. From these graphs, we can see the benefit of using
parametric analyses. It identifies new selection decisions, the
break-even probability levels between different selection
decisions, and the highest probability level where there exists
no feasible decision. Note that there are cases when the same set
of suppliers appears more than once on the same figure, which
indicates those suppliers are robust and costs can be moderated
by different ordering quantities. The dots on the lines represent
the optimal solutions found by the CCP model when we
enumerated the probability level at every 0.1 level. It is obvious
that the parametric solutions provide more information than the
solutions found earlier.

The parametric analyses also provide insight to the robustness
of a set of suppliers within an acceptable range of system
reliability. For example, comparing the supplier selection deci-
sions for two suppliers with those for four suppliers, we see that,
when there are only two suppliers, the supplier set is very
sensitive to the level of system reliability (e level). However, when
we allow the number of suppliers to be four, the SP and CCP
models in Section 3 identify six non-dominated solutions (under
the normal assumption). With the parametric analysis for
four suppliers in Fig. 4, it is clear that {4, 5, 6, 9} is very
robust in the sense that the same set of suppliers can cover a wide
range of costs and reliability by varying the ordering decisions.
For three suppliers, the decision maker can choose between {4, 6,
9} and {4, 5, 6} to achieve low costs and high system reliability
level. For five suppliers, {4, 5, 6, 8, 9} is a robust supplier set
which provides low costs and high system reliability level.
For six suppliers, {4, 5, 6, 7, 8, 9} is a robust supplier set
and {4, 5, 6, 7, 8, 9, 10} is robust for more than seven suppliers.
The tendency is that the larger the number of suppliers, the
more robust the selection decisions are. When we want to achieve
high system reliability, even with a large set of suppliers,
the selection decisions are sensitive, as in the total costs.
From those figures, we can determine whether there exists a
robust set of suppliers within an acceptable range of system
reliability.

GAMS/CPLEX is used to solve the problem and perform
sensitivity analysis on e. The computational time varies from
hours to a day. It is possible to allow ed and ec to vary
independently using the free multi-parametric Matlab toolbox
(MPT) (see Kvasnica et al., 2004; Löfberg, 2004) for small to
medium scale multi-parametric problems. However, the results
are difficult to interpret.
Please cite this article as: Li, L., Zabinsky, Z.B., Incorporating uncert
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5. Conclusion

Selecting a robust set of suppliers requires balancing cost and
risk, somewhat akin to a portfolio investment problem. A diverse
set of suppliers, with respect to large versus small, local versus far
away, high costs versus low costs, can be selected to reduce risk
while managing costs. A multi-objective stochastic supplier
selection problem with business volume discounts is studied in
this paper. The problem is formulated as a SP model and a CCP
model. Demand and supplier capacity uncertainties are consid-
ered explicitly in these models. The best set of suppliers and order
quantities are optimized in these two models. The e�constrained
method is used to generate Pareto-optimal solutions. These
Pareto-optimal solutions give decision makers a clear picture
about the tradeoffs between number of suppliers, cost, and
system reliability. Moreover, the developed models provide more
robust solutions as compared to a deterministic MIP model. If the
uncertainty is represented by scenarios, the SP model is preferable
to a deterministic MIP model. If distributions are available, the
CCP model can provide the Pareto-frontier in a straightforward
manner, and in less computational time than the SP model.
However, the relationship between the number of selected
suppliers, the risks and the total costs is discretized. With the
multi-parametric programming techniques, we are able to
describe the relationship more completely using explicit linear
functions. A benefit of the chance-constrained model becomes
manifest here: the ability of applying multi-parametric program-
ming techniques to address multi-criteria and uncertainty.

Appendix

Table 4 provides the detailed numerical results for the sample
problem as illustrated in Figs. 1 and 2. The first column provides the
list of Pareto-optimal solutions. The second column indicates the
distribution used, normal or triangular. The next three columns
provide the system reliability level as evaluated by the CCP model,
the total costs as evaluated by the CCP model, and the expected
costs as evaluated by the SP model. The last column indicates which
models detected the solution during the solution process. Since the
results for both the normal and triangular distributions are
summarized in one table, it may occur that one solution is
dominated (not Pareto-optimal) under one distribution, but is
Pareto-optimal under the other distribution. This occurred in two
cases, supplier sets {2, 6} and {3, 4}; the values for the dominated
solution are colored gray in Table 4. No feasible x values can be
found for solution {2} when evaluated under the SP model due to
the delivery constraints. Therefore, infeasible appears in that column.

To evaluate the system reliability, we execute the CCP model in
(16)–(27) with a fixed y�i and solve for the other decision variables
(xijk, zjj0k, bim and vim). When we evaluate the solutions y�i under
the normal and triangular distributions, we prioritize the
probability of meeting demand over the total costs. That is, we
repeatedly execute the CCP model with decreasing ed and ec

values (dropping from 0.99 at every 0.01 level) until the fixed y�i
yields feasible and optimal xijk, zjj0k, bim and vim. We record the
associated ed and ec values as the system reliability and the
associated total costs. We evaluate the expected costs for each
solution y�i under the SP model by solving the recourse problem
for xijkðxÞ, zjj0kðxÞ, bimðxÞ and vimðxÞ with a different set of 10
scenarios drawn from the normal and triangular distributions
than used originally. The expected cost for the SP evaluation
differs from the total costs under the CCP evaluation due to the
recourse opportunity to modify the ordering plan under each
scenario, the limited number of scenarios, and the penalty
(ei ¼ 60) for exceeding supplier capacity while ensuring that
demand is met.
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