
© 2003 CSLI Publications

Ling 566
Nov 20, 2012

Auxiliaries cont: NICE

© 2003 CSLI Publications

Overview

• Brief review of our analysis so far

• NICE properties of auxiliaries

• The auxiliary do

• NICE properties (lexical rules)

• Reading questions

© 2003 CSLI Publications

Descriptive Summary of the NICE Properties

Negation

Sentences are negated by putting not
after the first auxiliary verb; they can
be reaffirmed by putting too or so in
the same position

Inversion
Questions are formed by putting an
auxiliary verb before the subject NP

Contraction
Auxiliary verbs take negated forms,
with n’t affixed

Ellipsis
Verb phrases immediately following
an auxiliary verb can be omitted

© 2003 CSLI Publications

Negation (and Reaffirmation)

• Polar adverbs (sentential not, so, and too) appear
immediately following an auxiliary
Pat will not leave
Pat will SO leave
Pat will TOO leave

• What about examples like Not many people left?

• What happens when you want to deny or reaffirm a
sentence with no auxiliary?
Pat left
Pat did not leave
Pat did TOO leave

© 2003 CSLI Publications

• Like modals, auxiliary do only occurs in finite contexts:
*Pat continued to do not leave

• Unlike modals, do cannot be followed by other auxiliaries:
*Pat did not have left

The Auxiliary do

〈

do ,

auxv-lxm

SYN

[

HEAD
[

FORM fin
]

]

ARG-ST

〈

X ,

SYN

HEAD

verb

FORM base

AUX −

SEM
[

INDEX s

]

〉

SEM

[

INDEX s

RESTR 〈 〉

]

〉

© 2003 CSLI Publications

The ADVpol-Addition Lexical Rule

pi-rule

INPUT

〈

X ,

SYN

HEAD

verb

FORM fin

POL −

AUX +

ARG-ST 〈 1 〉 ⊕ A

SEM
[

INDEX s1

]

〉

OUTPUT

〈

Y ,

SYN

HEAD
[

POL +
]

VAL
[

SPR 〈 Z 〉
]

ARG-ST 〈 1 〉 ⊕

〈

ADVpol

INDEX s2

RESTR

〈

[

ARG s1

]

〉

〉

⊕ A

SEM
[

INDEX s2

]

〉

© 2003 CSLI Publications

What does the type pi-rule mean?
• It maps words to words (hence, “post-inflectional”)

• It preserves MOD values, HEAD values as a default, and
(like other lexical rule types) SEM values as a default

INPUT

〈

/ 0 ,

word

SYN

HEAD / 1

VAL
[

MOD A

]

SEM / 2

〉

OUTPUT

〈

/ 0 ,

word

SYN

HEAD / 1

VAL
[

MOD A

]

SEM / 2

〉

© 2003 CSLI Publications

Why doesn’t ADVpol-Addition LR mention VAL?

pi-rule

INPUT

〈

X ,

SYN

HEAD

verb

FORM fin

POL −

AUX +

ARG-ST 〈 1 〉 ⊕ A

SEM
[

INDEX s1

]

〉

OUTPUT

〈

Y ,

SYN

HEAD
[

POL +
]

VAL
[

SPR 〈 Z 〉
]

ARG-ST 〈 1 〉 ⊕

〈

ADVpol

INDEX s2

RESTR

〈

[

ARG s1

]

〉

〉

⊕ A

SEM
[

INDEX s2

]

〉

© 2003 CSLI Publications

What is the role of these indices?

pi-rule

INPUT

〈

X ,

SYN

HEAD

verb

FORM fin

POL −

AUX +

ARG-ST 〈 1 〉 ⊕ A

SEM
[

INDEX s1

]

〉

OUTPUT

〈

Y ,

SYN

HEAD
[

POL +
]

VAL
[

SPR 〈 Z 〉
]

ARG-ST 〈 1 〉 ⊕

〈

ADVpol

INDEX s2

RESTR

〈

[

ARG s1

]

〉

〉

⊕ A

SEM
[

INDEX s2

]

〉

© 2003 CSLI Publications

Which nots does the rule license?

pi-rule

INPUT

〈

X ,

SYN

HEAD

verb

FORM fin

POL −

AUX +

ARG-ST 〈 1 〉 ⊕ A

SEM
[

INDEX s1

]

〉

OUTPUT

〈

Y ,

SYN

HEAD
[

POL +
]

VAL
[

SPR 〈 Z 〉
]

ARG-ST 〈 1 〉 ⊕

〈

ADVpol

INDEX s2

RESTR

〈

[

ARG s1

]

〉

〉

⊕ A

SEM
[

INDEX s2

]

〉

Andy must not have been sleeping? ✓
Andy must have not been sleeping? ✗

Andy must have been not sleeping? ✗

Kleptomaniacs cannot not steal. ✓
Kleptomaniacs cannot not steal. ✗

© 2003 CSLI Publications

Negation and Reaffirmation: A Sample Tree

S

NP

Leslie

VP

V

did

ADVpol

so

VP

eat the whole pizza

© 2003 CSLI Publications

Inversion

• Yes-no questions begin with an auxiliary:
Will Robin win?

• The NP after the auxiliary has all the properties of a
subject
• Agreement: Have they left? vs. *Has they left?
• Case: *Have them left?
• Raising: Will there continue to be food at the meetings?

• What happens if you make a question out of a
sentence without an auxiliary?
Robin won
Did Robin win?

© 2003 CSLI Publications

The Inversion Lexical Rule

pi-rule

INPUT

〈

W ,

SYN

HEAD

verb

FORM fin

AUX +

VAL
[

SPR 〈 X 〉
]

ARG-ST A

SEM
[

MODE prop
]

〉

OUTPUT

〈

Z ,

SYN

HEAD
[

INV +
]

VAL
[

SPR 〈 〉
]

ARG-ST A

SEM
[

MODE ques
]

〉

© 2003 CSLI Publications

How the Rule Yields Inverted Order

pi-rule

INPUT

〈

W ,

SYN

HEAD

verb

FORM fin

AUX +

VAL
[

SPR 〈 X 〉
]

ARG-ST A

SEM
[

MODE prop
]

〉

OUTPUT

〈

Z ,

SYN

HEAD
[

INV +
]

VAL
[

SPR 〈 〉
]

ARG-ST A

SEM
[

MODE ques
]

〉

...plus the ARP

© 2003 CSLI Publications

The Feature INV

• What is the INV value of inputs to the Inversion LR?

• Perhaps surprisingly, the input is [INV +]

• Word-to-word rules (pi-rules) have default identity of
HEAD features, and no INV value is given on the input

• Then what work is the feature doing?

• It’s used to mark auxiliaries that can’t or must be inverted
You better watch out vs. *Better you watch out
I shall go (shall ~ ‘will’) vs. Shall I go? (shall ~ ‘should’)

© 2003 CSLI Publications

• Inversion is not limited to questions
• Preposed negatives: Never have I been so upset!
• Conditionals: Had we known, we would have left.
• Exclamations: May your teeth fall out!

• Does our rule account for these?
• No. Our rule’s output says [MODE ques]. And each

construction has slightly different idiosyncrasies.

• How might we extend our analysis to cover them?
• Define a type of inversion lexical rules, sharing certain

properties, but with some differences.

Other Cases of Inversion

© 2003 CSLI Publications

Inversion: A Sample Tree

S

V

Did

NP

Leslie

VP

eat the entire pizza?

© 2003 CSLI Publications

Contraction

• There are several types of contraction in English, but
we’re only talking about words ending in n’t

• It may seem like just not said fast, but there’s more
to it
• Only finite verbs can take n’t:

*Terry must haven’t seen us

• There are morphological irregularities:
won’t, not *willn’t %shan’t, not *shalln’t
mustn’t pronounced mussn’t
don’t pronounced doen’t, not dewn’t
*amn’t

© 2003 CSLI Publications

The Contraction Lexical Rule

pi-rule

INPUT

〈

2 ,

SYN

HEAD

verb

FORM fin

AUX +

POL −

ARG-ST B

SEM

[

INDEX s1

RESTR A

]

〉

OUTPUT

〈

FNEG(2) ,

SYN

HEAD
[

POL +
]

VAL
[

SPR 〈 X 〉
]

ARG-ST B

SEM

INDEX s2

RESTR

〈

RELN not

SIT s2

ARG s1

〉

⊕ A

〉

© 2003 CSLI Publications

Most of the work is in the semantics

pi-rule

INPUT

〈

2 ,

SYN

HEAD

verb

FORM fin

AUX +

POL −

ARG-ST B

SEM

[

INDEX s1

RESTR A

]

〉

OUTPUT

〈

FNEG(2) ,

SYN

HEAD
[

POL +
]

VAL
[

SPR 〈 X 〉
]

ARG-ST B

SEM

INDEX s2

RESTR

〈

RELN not

SIT s2

ARG s1

〉

⊕ A

〉

Why?

© 2003 CSLI Publications

What does POL do?

pi-rule

INPUT

〈

2 ,

SYN

HEAD

verb

FORM fin

AUX +

POL −

ARG-ST B

SEM

[

INDEX s1

RESTR A

]

〉

OUTPUT

〈

FNEG(2) ,

SYN

HEAD
[

POL +
]

VAL
[

SPR 〈 X 〉
]

ARG-ST B

SEM

INDEX s2

RESTR

〈

RELN not

SIT s2

ARG s1

〉

⊕ A

〉

*We can’tn’t stop
*They won’t TOO mind

© 2003 CSLI Publications

Contraction: Sample Tree

S

NP

Leslie

VP

V

wouldn’t

VP

eat the entire pizza

© 2003 CSLI Publications

Ellipsis
• Ellipsis allows VPs to be omitted, so long as

 they would have been preceded by an auxiliary
Pat couldn’t have been watching us, but
Chris could have been watching us.

• Unlike the other NICE properties, this holds
 of all auxiliaries, not just finite ones.

• What is the elliptical counterpart to a sentence
 with no auxiliary?

Whenever Pat watches TV, Chris watches TV
Whenever Pat watches TV, Chris does

*

© 2003 CSLI Publications

The Ellipsis Lexical Rule

d-rule

INPUT

〈

1 ,

[

auxv-lxm

ARG-ST 〈 2 〉 ⊕ A

]〉

OUTPUT

〈

1 ,

[

dervv-lxm

ARG-ST 〈 2 〉

]〉

• Note that this is a derivational LR (d-rule) -- that is,
lexeme-to-lexeme

• This means that SYN and SEM are unchanged, by
default

© 2003 CSLI Publications

Ellipsis: A Sample Output

〈

could ,

auxv-lxm

SYN

HEAD

FORM fin

AUX +

POL −

AGR 1

VAL
[

SPR 〈 [AGR 1] 〉
]

ARG-ST 〈 NP 〉

SEM

MODE prop

INDEX s1

RESTR

〈

RELN could

SIT s1

ARG s2

〉

〉

© 2003 CSLI Publications

Ellipsis: A Sample Tree
S

NP

Kim

VP

V

could

VP

V

have

VP

V

been

VP

attending the conference

© 2003 CSLI Publications

Semantics of Ellipsis
S

NP

Kim

VP

could

What is the SEM value of the S node of this tree?

INDEX s1

MODE prop

RESTR

〈

RELN name

NAME Kim

NAMED i

,

RELN could

SIT s1

ARG s2

〉

Note: s2 has to be filled in by context.

© 2003 CSLI Publications

Infinitival to Revisited

• VP Ellipsis can occur after to:

We didn’t find the solution, but we tried to.

• This is covered by our Ellipsis LR if we
say to is [AUX +].

• Since AUX is declared on type verb, it
follows that to is a verb.

© 2003 CSLI Publications

do Revisited
• Chomsky’s old analysis: in sentences w/o auxiliaries...
• Tense can get separated from the verb in various ways
• Negation/Reaffirmation inserts something between

Tense and the following verb
• Inversion moves Tense to the left of the subject NP
• Ellipsis deletes what follows Tense
• When this happens, do is inserted to support Tense

• Our counterpart:
• NICE properties hold only of auxiliaries
• do is a semantically empty auxiliary, so negated,

reaffirmed, inverted, and elliptical sentences that are the
semantic counterparts to sentences w/o auxiliaries are
ones with do.

© 2003 CSLI Publications

• Our analysis employs straightforward mechanisms
• Lexical entries for auxiliaries
• 3 new features (AUX, POL, INV)
• 4 lexical rules

• We handle a complex array of facts
• co-occurrence restrictions (ordering & iteration)
• the NICE properties
• auxiliary do
• combinations of NICE constructions

Summary

© 2003 CSLI Publications

Overview

• Brief review of our analysis so far

• NICE properties of auxiliaries

• The auxiliary do

• NICE properties (lexical rules)

• Reading questions

© 2003 CSLI Publications

Reading Questions

• Is the sentence Sandy so did not write that.
grammatical? Is the ADV(pol) not constituent or
sentential negation?

• I definitely use and have heard the construction
in (a) with "too," but I'm not sure about the one
in (b) with "so." Is the construction in (b)
supposed to mean the same thing as that in (a)?

(a) Pat will too leave.
(b) Pat will so leave.

© 2003 CSLI Publications

Reading Questions
• I often hear sentences with 'so not' where the

'so' seems to emphasize the 'not' aspect of the
sentence.

Kim is so not happy.
Sandy is so not mad at you.

• Are these examples of constituent negation?
Or are 'so' and 'not' both ADV_pol?

• Is the language changing with respect to "so",
and if so, can our grammar keep up?

© 2003 CSLI Publications

Reading Questions

• I can't seem to differentiate between a constituent
negation and a negation placed only in the verb.
How do you differentiate between them?

• Can a sentence like He can not smoke. be
interpreted as exhibiting either kind of negation,
with the following senses:

(i) He is able to not smoke. [constituent negation]

(ii) He is not able to smoke.	
 [sentential negation]

© 2003 CSLI Publications

Reading Questions

• How will the grammar handle cases like
He'll go downtown tomorrow? Will it be
similar to contraction?

• Wouldn't contractions like "it's" for "it is" or
"you're" for "you are" not work with our
Contraction Lexical Rule since those
contractions aren't negations?

© 2003 CSLI Publications

Reading Questions
• I feel like it would be that truer to the morphological

history of the word to have some sort of phrasal rule to
morph a phrase into a word. Wouldn’t it?

• It strikes me as a little odd to have two separate lexical
rules that add negation to auxiliary verbs - both the
ADVpol-Addition Lexical Rule and the Contraction
Lexical Rule. Intuitively, I feel like I want this to only
be a pronunciation difference, outside of the realm of
what we're tackling. Does this mean that we also want
our grammar to have rules that account for
phonological shortenings like "gimme", "wanna", and
"dunno"?

© 2003 CSLI Publications

Reading Questions

• Is "better" really an auxiliary verb? I can
see it in the sentences, but I've always
thought of it as a contraction of some sort.
Maybe of "would be better off…"?

© 2003 CSLI Publications

Reading Questions

• Why do we have SPR <Z> instead of
nothing or SPR <[1]> in the output of the
ADVpol Addition LR?

• Is it possible to have an INPUT to these
rules with 0 elements on the SPR list, and
then… uninvert them?

• Why don't we need to say SPR <X> on the
input?

© 2003 CSLI Publications

The ADVpol-Addition Lexical Rule

pi-rule

INPUT

〈

X ,

SYN

HEAD

verb

FORM fin

POL −

AUX +

ARG-ST 〈 1 〉 ⊕ A

SEM
[

INDEX s1

]

〉

OUTPUT

〈

Y ,

SYN

HEAD
[

POL +
]

VAL
[

SPR 〈 Z 〉
]

ARG-ST 〈 1 〉 ⊕

〈

ADVpol

INDEX s2

RESTR

〈

[

ARG s1

]

〉

〉

⊕ A

SEM
[

INDEX s2

]

〉

© 2003 CSLI Publications

Reading Questions

• The Ellipsis Lexical Rule and the ADVpol-
Addition Lexical Rule both involve 'factoring'
the ARG-ST. What guarantees that only the
first item on the list is taken out? Can the tag
ONLY contain one item (i.e. the specifier, or
one complement)? Is this also the reason for
the first tag being a number (because it is
inside of the a list), and the second being a
letter (which seems to be used to convey a list,
rather than an item on a list)?

© 2003 CSLI Publications

Reading Questions

• Why there is X and Y difference in the
definition of ADVPOL-Addition Lexical
Rule (51)? Aren't they supposed to be the
same? (It is same index [0] in (52).)

© 2003 CSLI Publications

Reading Questions

• The Inversion Lexical Rule only accounts for
yes-no questions, and it seems that we wouldn't
want to get rid of the specifier for all cases of
inversion. Wouldn't we want to posit a pi-rule
that licenses the final argument of the verb, or
predp-lxm even, from the INPUT as a wh-
pronoun in the SPR position of the OUTPUT?

What are you eating?
Who will you be going to the movies with?

© 2003 CSLI Publications

Reading Questions

• Are there similarities of the Inversion Lexical
Rule to producing an active or passive sentence
from the other? Do we have something like an
"Active to Passive Lexical Rule" or vice versa?

• Why did we limit the Inversion Lexical Rule
such that a MODE ques verb can not be the
input to produce the inverted sentence with
MODE prop? i.e. "Is Kim Happy?" -> "Kim is
Happy" Which would then provide a Rule that
can be reversed on it's own.

© 2003 CSLI Publications

Reading Questions

• We need dervv-lxm because the ARG-ST
has only one element as compared to the
your-SPR-is-my-SPR in the ARG-ST for
auxv-lxm. For the Imperative Lexical Rule,
we say that there is SPR <NP[PER 2nd]>
but it is never realized. Why can't we do
that with the dervv-lxm?

• Is limiting the input the only legit way of
controlling the order of pi-rules that apply
to a word?

© 2003 CSLI Publications

Reading Questions

• I'm wondering why it is that the ADVpol-
Addition Lexical Rule is formulated as a pi-
rule instead of a d-rule (certainly not an i-
rule, since the ARG-ST list must be
changed). Is one possible reason that we
don't want outputs of the ADVpol rule to be
able to feed into certain inflectional or
derivational rules, and therefore want it to
have an output of type word?

© 2003 CSLI Publications

Reading Questions

• In footnote 18 in section 13.5.4 it is mentioned that
the absent constituent in the elliptical condition is
interpreted as a VP but in the AUX alternative what
is missing is the part of the AUX plus the following
VP. Could you explain what is happening here
further?

• This section on elliptical constructions leaves a lot
of questions unasnwered regarding the semantic
relations of elliptical constructions if theres time
could you explain a little more about how this is
handled in HPSG.

© 2003 CSLI Publications

Reading Questions

• Why is POL a feature of verb-lxm rather than
auxv-lxm? Does it ever apply to a non-
auxiliary verb?

• Where is the aux verb in:

(74)a. We asked them to open the window,
and they tried to.

• Is our process for negation compatible with
ellipsis, or is it not?

© 2003 CSLI Publications

Reading Questions
• The Inversion Lexical Rule makes me wonder about the

distinction between specifier and complement. The book
defines specifiers as 'subjects of clauses, determiners of noun
phrases, and certain other constituents that are neither heads
of the phrases they appear in nor complements to the
heads' (p. 569), and specifically states that 'subjects... are
arguments that are not complements, but specifiers' (p.
557). Cross-linguistically this seems to be how we're dealing
with them (that is, whether we call something a 'specifier' is
based on its role in the constituent rather than its location).
However, the ILR handily dumps the specifier into the
COMPS phrase in order to get the proper word order. Does
the role of this word change? If not, why not just call the
categories 'pre-head args' and 'post-head args' and not have
the distinction above at all? If so, how and why?

© 2003 CSLI Publications

Reading Questions

• Would it be possible to instead introduce a
second Head-Specifier Rule that acts on [INV
+] words or phrases? For example:

• [phrase SPR < >] -> H[INV +, SPR <[1]>] [1]

© 2003 CSLI Publications

Reading Questions

• Does the book analyze this question?

• What about ain't? Is it the output of one of
these rules?

• How do we handle:

Kleptomaniacs can not NOT steal.

© 2003 CSLI Publications

Reading Questions

• Don't we need posit "your specifier is my
first-complement"-kind of rule somewhere
in Inversion? (Or is it already taken care of
with auxv-lxm + ARP?)

• In (60) (word structure for will as output of
Inversion LR) where does [CASE nom] on
the first ARG-ST element come from?

© 2003 CSLI Publications

Reading Questions

• Lastly, can you give some comments on
implementing NICE properties in terms of
CFG in the class? It seems
like implementing NICE properties with
CFG (using AUX) will soon make us to
introduce new rules and thing get hairy
pretty quickly, I believe.

