
© 2003 CSLI Publications

Ling 566
Oct 24, 2019

Lexical Types

© 2003 CSLI Publications

Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions

© 2003 CSLI Publications

• We've streamlined our grammar rules...
• ...by stating some constraints as general principles

• ...and locating lots of information in the lexicon.

• Our lexical entries currently stipulate a lot of
information that is common across many entries and
should be stated only once.

• Examples?

• Ideally, particular lexical entries need only
give phonological form, the semantic
contribution, and any constraints truly
idiosyncratic to the lexical entry.

Motivation

© 2003 CSLI Publications

• Lexeme: An abstract proto-word which gives
rise to genuine words. We refer to lexemes by
their ‘dictionary form’, e.g. ‘the lexeme run’ or
‘the lexeme dog’.

• Word: A particular pairing of form and
meaning. Running and ran are different words

Lexemes and Words

Q: Is lexeme the same as lemma?

© 2003 CSLI Publications

• Lexemes capture the similarities among run, runs,
running, and run.

• The lexical type hierarchy captures the similarities among
run, sleep, and laugh, among those and other verbs like
devour and hand, and among those and other words like
book.
Q: What do devour and book have in common?
A: The SHAC

• Lexical rules capture the similarities among runs, sleeps,
devours, hands,...

Lexical Types & Lexical Rules

© 2003 CSLI Publications

Q: Why do we have default inheritance?

A: Generalizations with exceptions are common:
• Most nouns in English aren't marked for CASE, but

pronouns are.
• Most verbs in English only distinguish two agreement

categories (3sing and non-3sing), but be distinguishes
more.

• Most prepositions in English are transitive, but here and
there are intransitive.

• Most nominal words in English are 3rd person, but some
(all of them pronouns) are 1st or 2nd person.

• Most proper nouns in English are singular, but some
(mountain range names, sports team names) are plural.

Default Inheritance

© 2003 CSLI Publications

Default Inheritance, Technicalities

If a type says
ARG-ST / < NP >,

and one of its
subtypes says
ARG-ST < >,

then the ARG-ST
value of instances of
the subtype is < >.

If a type says
ARG-ST < NP >,

and one of its
subtypes says
ARG-ST < >,

then this subtype can
have no instances,
since they would
have to satisfy
contradictory
constraints.

© 2003 CSLI Publications

• If a type says MOD / < S >, and one of its subtypes says
MOD <[SPR < NP>] >, then the MOD value of
instances of the subtype is what?

Default Inheritance, More Technicalities











MOD

〈









HEAD / verb

SPR
〈

NP
〉

COMPS / 〈 〉









〉











• That is, default constraints are ‘pushed down’

© 2003 CSLI Publications

Q: Can a grammar rule override a default
constraint on a word?

A: No. Defaults are all ‘cached out’ in the
lexicon.

• Words as used to build sentences have only
inviolable constraints.

Question on Default Inheritance

© 2003 CSLI Publications

Our Lexeme Hierarchy
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Functions of Types

• Stating what features are appropriate for
what categories

• Stating generalizations

• Constraints that apply to (almost) all
instances

• Generalizations about selection -- where
instances of that type can appear

 11

© 2003 CSLI Publications

Every synsem has the features SYN and SEM
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

No ARG-ST on phrase
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

A Constraint on infl-lxm: the SHAC
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

A Constraint on infl-lxm: the SHAC

infl-lxm :







SYN







VAL

[

SPR
〈

[AGR 1]
〉

]

HEAD [AGR 1]













© 2003 CSLI Publications

Constraints on cn-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Constraints on cn-lxm

cn-lxm :

































SYN

















HEAD

[

noun

AGR [PER 3rd]

]

VAL



SPR 〈

[

HEAD det

INDEX i

]

〉





















SEM

[

MODE / ref

INDEX i

]

ARG-ST 〈X〉 ⊕ /〈 〉

































© 2003 CSLI Publications

Formally Distinguishing Count vs. Mass Nouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Formally Distinguishing Count vs. Mass Nouns

cntn-lxm :

[

SYN

[

VAL
[

SPR 〈 [COUNT +] 〉
]

]

]

massn-lxm :

[

SYN

[

VAL
[

SPR 〈 [COUNT −] 〉
]

]

]

© 2003 CSLI Publications

Constraints on verb-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Constraints on verb-lxm

verb-lxm:











SYN
[

HEAD verb

]

SEM
[

MODE prop
]

ARG-ST / 〈 NP, ... 〉











© 2003 CSLI Publications

Subtypes of verb-lxm
verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

• verb-lxm: [ARG-ST < NP, ... >]
• siv-lxm: [ARG-ST < NP >]
• piv-lxm: [ARG-ST < NP, PP >]
• tv-lxm: [ARG-ST < NP, NP, ... >]

• stv-lxm: [ARG-ST < NP, NP >]
• dtv-lxm: [ARG-ST < NP, NP, NP >]
• ptv-lxm: [ARG-ST < NP, NP, PP >]

© 2003 CSLI Publications

Proper Nouns and Pronouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Proper Nouns and Pronouns

pn-lxm:























SYN









HEAD









noun

AGR

[

PER 3rd

NUM / sg

]

















SEM
[

MODE ref
]

ARG-ST / 〈 〉























pron-lxm:











SYN
[

HEAD noun
]

SEM
[

MODE / ref
]

ARG-ST 〈 〉











© 2003 CSLI Publications

The Case Constraint

An outranked NP is [CASE acc].

• object of verb ✓

• second object of verb ✓

• object of argument-marking preposition ✓

• object of predicational preposition (✓)

© 2003 CSLI Publications

The Case Constraint, continued
An outranked NP is [CASE acc].

• Subjects of verbs

• Should we add a clause to cover nominative subjects?

• No.

We expect them to leave. (Chapter 12)

• Lexical rules for finite verbs will handle nominative subjects.

• Any other instances of case marking in English?

• Does it apply to case systems in other languages?

No: The Case Constraint is an English-specific constraint.

© 2003 CSLI Publications

Apparent redundancy

• Why do we need both the pos
subhierarchy and lexeme types?

• pos:
• Applies to words and phrases; models

relationship between then
• Constrains which features are

appropriate (no AUX on noun)
• lexeme:
• Generalizations about combinations of

constraints

© 2003 CSLI Publications

• Lexemes capture the similarities among run, runs,
running, and run.

• The lexical type hierarchy captures the similarities among
run, sleep, and laugh, among those and other verbs like
devour and hand, and among those and other words like
book.

• Lexical rules capture the similarities among runs, sleeps,
devours, hands,...

Lexical Types & Lexical Rules

© 2003 CSLI Publications

Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions

© 2003 CSLI Publications

Reading Questions

• Now that we are talking about scaling our lexicon
what do we do for words that have multiple very
different meanings. Take the word fly. Do we
have one entry that represents the verb(act of
flying like a bird), one the noun(the insect), and
one that represents the adjective(one looking fly)?

• If there is a word with two different meanings,
how would the lexeme be structured then? "His
head was hurt" vs "He was headed to the mall"
Does the lexeme take into account same word and
different meaning?

© 2003 CSLI Publications

Reading Questions

• What are some examples of lexemes that
can be modifiers? It is stated in 8.4 that
most cannot be modifiers.

© 2003 CSLI Publications

Reading Questions

• For the compound nouns listed in (10) and
(11), do they form only 1 lexical entry? If
so, would that cause problems down the
line?

© 2003 CSLI Publications

Reading Questions

• A notation question, on pages 241-242,
what do the letters such as X, Y and Z
represent? I'm lost as to why some of the
elements of the ARG-ST are these
seemingly arbitrary variables, but some
have a more familiar definition like an NP
or PP.

© 2003 CSLI Publications

Reading Questions

• Though there is an explanation in 8.4.4, I
still do not entirely understand why there
needs to be a distinction between lexemes
and part of speech. Part of speech does
govern which features are appropriate for a
particular structure, but lexemes appear to
do the same thing, albeit with certain
requirements for feature values.

© 2003 CSLI Publications

Reading Questions

• Are there ever conditions for the overridable rules
described in this chapter? For example, if you had a
variable x could you allow it to be overridden by
some other variable y, but not any other variable?

• How do we know which rules are nondefeasible
and which ones are defeasible? Is this information
provided by the lexicon? Or the rules themselves?

• Are defeasible constraints similar to specifying a
default value for objects of a given type X in OOP
which can be overridden when creating a new
object of type X?

© 2003 CSLI Publications

Reading Questions

• "Defeasible constraints [are] constraints on a
given type that hold by default, unless
contradicted by some other constraint that holds at
a more specific level". So are defeasible
constraints only at one level of the hierarchy,
whereas monotonic constraints pass down to their
subtypes? The wording of this definition is
confusing to me.

© 2003 CSLI Publications

Reading Questions

• in examples (24) on page 236, where does the /
verb come from?

• Ti does have SYN/[...], but Tj doesn't have /verb.

© 2003 CSLI Publications 38

© 2003 CSLI Publications

Reading Questions

• Footnote 7 states that "[f]inal lexical
descriptions of a lexeme or word contain no
defeasible constraints" (pg 234). Is this
because unless they are overwritten, then
we can assume that defeasible constraints
are present/hold and so it would be
redundant to include them in the final
description? Or is this getting at something
else?

© 2003 CSLI Publications

Reading Questions
• Looking at the general lexeme in (25) with a

default constraint of having no modifier, I
wonder what sorts of advantages there are to
generalizing constraints? Conversely, should
we be concerned if a defeasible constraint is
often overriden?

• How is a defeasible list, especially a
defeasible empty list, different from a list
where items are optional (denoted by
parentheses) or "choose either one" (denoted
by vertical bar)?

© 2003 CSLI Publications

Reading Questions

• How do we tell the different argument
marking Ps apart, and get the right ones in
the right place?

© 2003 CSLI Publications

Reading Questions

• We had <ate, [COMPS <(NP)>]>.

• Now that stv-lxm and siv-lxm are different
types, would we need two seperate lexical
entries for ate, one [COMPS <NP>] and one
[COMPS <>], derived from two lexemes?
As we did with Ps that can be derived from
both argmkp-lxm and predp-lxm? If so, are
we eliminating optionality in COMPS list?
Or do we have some sort of lexical rules for
such verbs later?

© 2003 CSLI Publications

Reading Questions

• Could you clarify the difference between a "lexical
sequence" and "lexical entry"? I don't understand the
distinction of lexical entries are descriptions/lexical
sequences are models. Are lexical entries as a concept a
subset of lexical sequences?

• Pg. 236: "Now that we have introduced the term 'lexical
sequence', we will reserve the term 'lexical entry' for the
pairings of form and linguistic constraints that we list in
the lexicon. Lexical entries, like other parts of the
grammar, are descriptions. Lexical sequences (both
those that satisfy lexical entries and those licensed by
lexical rules) are models."

© 2003 CSLI Publications

Reading Questions

• "... each (basic) lexical entry describes a
distinct family of lexemes, each of which is
an instance of a maximal type Tm." Is Tm
the lexeme in this hierarchy? If so, why
doesn't each lexical entry in the hierarchy
inherit from Tm , as opposed to Tm
inheriting from the lexical entries, which is
shown in structure (16) where Tm is a leaf
node?" (p.234)

