
© 2003 CSLI Publications

Ling 566�
Oct 26, 2023

Lexical Types

© 2003 CSLI Publications

Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions

© 2003 CSLI Publications

• We've streamlined our grammar rules...
• ...by stating some constraints as general principles

• ...and locating lots of information in the lexicon.

• Our lexical entries currently stipulate a lot of
information that is common across many entries and
should be stated only once.

• Examples?

• Ideally, particular lexical entries need only
give phonological form, the semantic
contribution, and any constraints truly
idiosyncratic to the lexical entry.�

Motivation

© 2003 CSLI Publications

• Lexeme: An abstract proto-word which gives
rise to genuine words. We refer to lexemes by
their ‘dictionary form’, e.g. ‘the lexeme run’ or
‘the lexeme dog’.

• Word: A particular pairing of form and
meaning. Running and ran are different words�

Lexemes and Words

Q: Is lexeme the same as lemma?

© 2003 CSLI Publications

• Lexemes capture the similarities among run, runs,
running, and run.

• The lexical type hierarchy captures the similarities among
run, sleep, and laugh, among those and other verbs like
devour and hand, and among those and other words like
book.
Q: What do devour and book have in common?
A: The SHAC

• Lexical rules capture the similarities among runs, sleeps,
devours, hands,...

Lexical Types & Lexical Rules

© 2003 CSLI Publications

© 2003 CSLI Publications

Q: Why do we have default inheritance?

A: Generalizations with exceptions are common:
• Most nouns in English aren't marked for CASE, but

pronouns are.
• Most verbs in English only distinguish two agreement

categories (3sing and non-3sing), but be distinguishes
more.

• Most prepositions in English are transitive, but here and
there are intransitive.

• Most nominal words in English are 3rd person, but some
(all of them pronouns) are 1st or 2nd person.

• Most proper nouns in English are singular, but some
(mountain range names, sports team names) are plural.

Default Inheritance

© 2003 CSLI Publications

Default Inheritance, Technicalities

If a type says
ARG-ST / < NP >,

and one of its
subtypes says
ARG-ST < >,

then the ARG-ST
value of instances of
the subtype is < >.

If a type says
ARG-ST < NP >,

and one of its
subtypes says
ARG-ST < >,

then this subtype can
have no instances,
since they would
have to satisfy
contradictory
constraints.

© 2003 CSLI Publications

• If a type says MOD / < S >, and one of its subtypes says
MOD <[SPR < NP>] >, then the MOD value of
instances of the subtype is what? �

Default Inheritance, More Technicalities











MOD

〈









HEAD / verb

SPR
〈

NP
〉

COMPS / 〈 〉









〉











• That is, default constraints are ‘pushed down’

© 2003 CSLI Publications

Q: Can a grammar rule override a default
constraint on a word?

A: No. Defaults are all ‘cached out’ in the
lexicon.

• Words as used to build sentences have only
inviolable constraints.

Question on Default Inheritance

© 2003 CSLI Publications

Our Lexeme Hierarchy
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Functions of Types

• Stating what features are appropriate for
what categories

• Stating generalizations

• Constraints that apply to (almost) all
instances

• Generalizations about selection -- where
instances of that type can appear

12

© 2003 CSLI Publications

Every synsem has the features SYN and SEM
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

No ARG-ST on phrase
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

A Constraint on infl-lxm: the SHAC
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

A Constraint on infl-lxm: the SHAC

infl-lxm :







SYN







VAL

[

SPR
〈

[AGR 1]
〉

]

HEAD [AGR 1]













© 2003 CSLI Publications

Constraints on cn-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Constraints on cn-lxm

cn-lxm :

































SYN

















HEAD

[

noun

AGR [PER 3rd]

]

VAL



SPR 〈

[

HEAD det

INDEX i

]

〉





















SEM

[

MODE / ref

INDEX i

]

ARG-ST 〈X〉 ⊕ /〈 〉

































© 2003 CSLI Publications

Formally Distinguishing Count vs. Mass Nouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Formally Distinguishing Count vs. Mass Nouns

cntn-lxm :

[

SYN

[

VAL
[

SPR 〈 [COUNT +] 〉
]

]

]

massn-lxm :

[

SYN

[

VAL
[

SPR 〈 [COUNT −] 〉
]

]

]

© 2003 CSLI Publications

Constraints on verb-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Constraints on verb-lxm

verb-lxm:











SYN
[

HEAD verb

]

SEM
[

MODE prop
]

ARG-ST / 〈 NP, ... 〉











© 2003 CSLI Publications

Subtypes of verb-lxm
verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

• verb-lxm: [ARG-ST < NP, ... >]
• siv-lxm: [ARG-ST < NP >]
• piv-lxm: [ARG-ST < NP, PP >]
• tv-lxm: [ARG-ST < NP, NP, ... >]

• stv-lxm: [ARG-ST < NP, NP >]
• dtv-lxm: [ARG-ST < NP, NP, NP >]
• ptv-lxm: [ARG-ST < NP, NP, PP >]

© 2003 CSLI Publications

Proper Nouns and Pronouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Proper Nouns and Pronouns

pn-lxm:























SYN









HEAD









noun

AGR

[

PER 3rd

NUM / sg

]

















SEM
[

MODE ref
]

ARG-ST / 〈 〉























pron-lxm:











SYN
[

HEAD noun
]

SEM
[

MODE / ref
]

ARG-ST 〈 〉











© 2003 CSLI Publications

The Case Constraint

An outranked NP is [CASE acc].

• object of verb ✓

• second object of verb ✓

• object of argument-marking preposition ✓

• object of predicational preposition (✓)

© 2003 CSLI Publications

The Case Constraint, continued
An outranked NP is [CASE acc].

• Subjects of verbs

• Should we add a clause to cover nominative subjects?

• No.

We expect them to leave. (Chapter 12)

• Lexical rules for finite verbs will handle nominative subjects.

• Any other instances of case marking in English?

• Does it apply to case systems in other languages?

No: The Case Constraint is an English-specific constraint.

© 2003 CSLI Publications

Apparent redundancy

• Why do we need both the pos
subhierarchy and lexeme types?

• pos:
• Applies to words and phrases; models

relationship between then
• Constrains which features are

appropriate (no AUX on noun)
• lexeme:
• Generalizations about combinations of

constraints

© 2003 CSLI Publications

• Lexemes capture the similarities among run, runs,
running, and run.

• The lexical type hierarchy captures the similarities among
run, sleep, and laugh, among those and other verbs like
devour and hand, and among those and other words like
book.

• Lexical rules capture the similarities among runs, sleeps,
devours, hands,...

Lexical Types & Lexical Rules

© 2003 CSLI Publications

© 2003 CSLI Publications

Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions

© 2003 CSLI Publications

HW4 tips

• Ch 7 Problem 1:

• Not grading you on the judgments, but on
the sentences constructed and matching
classification to the judgments

• Be sure to keep the same verb +
preposition pair

• Ch 8 grammar summary is in Ch 9

© 2003 CSLI Publications

RQs: Defeasible constraints

• Now that feature values can have "default
values" with the / notation, this means that a
missing feature in a matrix could mean any
of the following:

• It's underspecified;

• It's omitted for brevity, or

• It's falling back to the default value.

• How do we tell which is which?

© 2003 CSLI Publications

RQs: Defeasible constraints
• It seems that we only mark whether a constraint is

defeasible or not using "/". Perhaps this will be mentioned
in 8.6-8.8, but I was wondering if this rule is ever
extended to specify in specifically what cases a constraint
can be overridden?

• I'm curious about if having default constraints for a
lexical type means that we don't need to specify them in
lexical entries that are of that type. Take the default
constraints on type lexeme MOD /< >: does this mean
that any lexical entry does not have to include MOD <>
to be considered fully specified?

• In grammar design, how do we decide when to write
defeasible constraints?

© 2003 CSLI Publications

RQs: lex entries/lex sequence

• Can you explain the difference between
lexical entries and lexical sequences more?

• What is the difference between a lexical
entry and a lexical sequence? Does a family
of lexical sequences describe the different
forms of the same lexeme?

© 2003 CSLI Publications

RQs: phrase, word, lexeme

• As of this chapter, are we officially
eliminating 'phrase' and 'word' from our
trees and lexical entries and replacing them
with pn-lxm, dtv-lxm, etc? As a result, does
this mean that we do not need to rewrite the
information of a given constraint if it has
not been overruled? For example, the
constraint for pn-lxm states it is MODE ref
so we can omit MODE ref.

© 2003 CSLI Publications

RQs: phrase, word, lexeme

• Why is lexeme not of the type expression?
It feels like word should be a subtype of
lexeme but it is not organized this way.

• Would it be possible to build a "tree" for a
sentence pattern rather than a fully specified
sentence, using lexemes as the leaves?

© 2003 CSLI Publications

RQs: SPR on modifiers

• The way that predp-lxm and adj-lxm
specify both the MOD and SPR values
imply that it takes both the head-specifier
rule and the head-modifier rule to attach a
modifier to a word. Is it actually possible to
somehow apply both rules together?

© 2003 CSLI Publications

RQs: X, Y, Z

• In the following tree (and in several ARG-
ST lists), why are some elements of ARG-
ST shown as X, Y, etc? Why are we not
using NP, PP, etc. directly?

© 2003 CSLI Publications

RQs: lexical ambiguity

• Instead of having around live a double life
as a predp-lxm and argmkp-lxm, couldn't we
create a supertype of these two types for all
prepositions and just underspecify around
as belonging to neither of these two?

© 2003 CSLI Publications

RQs: ARP

• According to the Argument Realization
Principle, AGR-ST is the sum of the SPR
value and the COMPS value. So why is the
SPR value different from the first element in
AGR-ST in (32)?

© 2003 CSLI Publications42

© 2003 CSLI Publications

RQs: CASE

• As a speaker of a language with a fully
developed all-encompassing case system, I
find our grammar's insistance on case being
a feature of all nouns to be at the very least
strange.

© 2003 CSLI Publications

RQs: Implementation

• I can imagine a grammar with an untenable
amount of word classes. How many word classes
are there in a good grammar. I was surprised to
read about a class for sports teams and a class for
mountain ranges.

• What kind of variation do we see in the number of
word classes across languages?

• How are lexical entries used in practice in a
computational setting? Are lexical entries formed
ahead of time or are they usually built in context?

