
Knowledge Engineering for NLP

March 27, 2006

Introduction, overview

LKB Formalism



Overview

• The BIG Picture

• The LinGO Grammar Matrix

• Other approaches

• Goals (of grammar engineering, this course)

• Course requirements/workflow

• Pick a language, any language

• Components

• LKB demo (if time)



Course URL

http://courses.washington.edu/ling567



The BIG Picture: Precision Grammars

• relate surface strings to semantic representations

• distinguish grammatical from ungrammatical sentences

• knowledge engineering approach to parsing

• can be used for both parsing and generation



The BIG Picture: Applications

• language documentation/linguistic hypothesis testing

• MT

• automated email response

• augmentative and assistive communication

• computer assisted language learning

• human-machine collaboration

• IR

• . . .



The BIG Picture: Challenges

• efficient processing (Oepen et al 2002)

• ambiguity resolution

• domain portability

• lexical acquisition

• extragrammatical/ungrammatical input

• scaling to many languages



The BIG Picture: Hybrid approaches (1/2)

• Naturally occurring language is noisy

• Typos

• “mark-up”

• Addresses & other non-linguistic strings

• False starts

• Hesitations

• . . .

• Allowing for the noise within the grammar would reduce

its precision

• And then there’s ambiguity, unknown words, ...



The BIG Picture: Hybrid approaches (2/2)

• Combine knowledge engineering and machine learning
approaches:

• Statistical parse selection

• (Statistical) named entity recognition and POS
tagging in a preprocessing step (for unknown word
handling)

• Tiered systems with a shallow parser as a fall back
for the precision parser

• Coming the other direction, deep grammars can provide
richer linguistic resources for training statistical systems
(e.g., MT systems).



The LinGO Grammar Matrix (1/3)

• One of the primary impediments to deploying precision

grammars is that they are expensive to build.

• The Grammar Matrix aims to address this by providing a

starter-kit which allows for quick initial development

while supporting long-term expansion.

• The Grammar Matrix also represents a set of hypotheses

about cross-linguistic universals.



The LinGO Grammar Matrix (2/3)

• A sampling of hypotheses:

• Words and phrases combine to make larger phrases.

• The semantics of a phrase is determined by the words

in the phrase and how they are put together.

• Some rules for phrases add semantics, and some

don’t.

• Most phrases have an identifiable head daughter.



The LinGO Grammar Matrix (3/3)

• More hypotheses:

• Heads determine which types of arguments they

require, and how they combine semantically with

those arguments.

• Modifiers determine which kinds of heads they

modify, and how they combine semantically with

those heads.

• No lexical or syntactic rule can remove semantic

information.



Other approaches

• The DELPH-IN consortium specializes in large HPSG

grammars.

• Other broad-coverage precision grammars have been

built in/by/with:

• LFG (ParGram: Butt et al 1999)

• F/XTAG (Doran et al 1994)

• ALE/Controll (Götz & Meurers 1997)

• Proprietary formalisms at Microsoft and Boeing.



Goals: of Grammar Engineering

• Build useful, usable resources

• Test linguistic hypotheses

• Represent grammaticality/minimize ambiguity

• Build modular systems: maintenance, reuse



Goals: of this course

• Mastery of tfs formalism

• Hands-on experience with grammar engineering

• A different perspective on natural language syntax

• Practice building (and debugging!) extensible system

• Contribute to on-going research on multilingual

grammar engineering



Course requirements/workflow (1/2)

• Mondays lecture, Wednesdays discussion

• Lab hours (Parrington?)

• Weekly lab assignments, posted Monday evenings,
notionally due Fridays (via E-Submit)

• Be sure to start the lab before class on Wednesday, so
you can bring useful questions.

• At least half of each lab grade will be on the
documentation.

• No exams.

• “Uncheatable”



Course requirements/workflow (2/2)

• Week 1: Getting to know the LKB (English exercise);

pick your language

• Week 2: Constructing your test suite (→ ODIN, Modules

testsuite)

• Week 3: Configure a grammar start from the Matrix

• Weeks 4-9: Build out your grammar

• Week 10: MT extravaganza



Surviving this course

• Communication is key: Please ask questions!

• Use EPost (link on course page)

• Read (and contribute to!) FAQs, glossary (→ demo)

• EB’s lab hours

• The 10 minute rule



Pick a language, any language

• Each student must pick a different language.

• Previous languages on the wiki, under LanguagesList.

• No English; non-Indo European preferred.

• Consider using an ascii transliteration

• Languages with complex morphophonology might
require some fudging (sorry)

• Pick a language with a good descriptive or teaching
grammar available.

• Info available later this week on what you’ll need to be
able to find out about the language.



Components

• HPSG: theoretical foundations

• LKB

• Grammar

• Emacs: editor, interaction with LKB

• [incr tsdb()]



Components: LKB

• tdl reader

• parser

• generator

• interactive unification

• grammar exploration tools



Components: Grammar

• A set of tdl files:

• Grammar Matrix core

• Additions from modules configuration

• Your additions

• Actually separated into:

• type defintions

• instances of grammar rules & lexical rules; lexicon

• root symbols; abbreviations

• Lisp code for LKB interaction



Components: [incr tsdb()]

• Pronounced “tee ess dee bee plus plus” (or “the fine

system”)

• Loading in test suites

• Running test suites

• Comparing competence over time



Overview

• The BIG Picture

• The LinGO Grammar Matrix

• Other approaches

• Goals (of grammar engineering, this course)

• Course requirements/workflow

• Pick a language, any language

• Components

• LKB demo

• Next time: LKB Formalism


