Knowledge Engineering for NLP
January 22, 2007
MRS, Matrix Tour Cont

Overview

MRS: goals
MRS: representations
MRS: composition

Matrix tour continued (if interest)

Preface

e Most of today’s lecture covers stuff that is already
Implemented in the Matrix.

e The goal of this presentation is to increase your
understanding of what'’s already there, and how to have
your code interact with it.

e |In afew isolated instances, you may find a need to code
some of this.

Semantics: Overall strategy

Represent all semantic distinctions which are
syntactically (or morphologically) marked.

Underspecify semantic distinctions which don’t
correspond to differences in form.

(These can be ‘spelled out’ in post-processing.)

Abstract away from non-semantic information (case,
word order)

Aim for consistency across languages (for purposes of
downstream processing).

Allow for semantic differences between languages.

Semantics: Scope

e Quantifiers (predicate logic or natural language) take
three arguments:

e A variable to bind
e A restriction
e A body

e Every dog sleepsiz dog(x)sleep(x)

e \When one quantifier appears within the restriction or
body of another, we say the first has wider scope.

MRS: Goals

Adeguate representation of natural language semantics
Grammatical compabillity
Computaitonal tractability

Underspecifiability

Working towards MRS (1/4)

e Every big white horse sleeps.

e every (t, A(big(r), A(white(r),horsef))), sleepf))

every(x)
/\
A sleep(x)
/\
big(x) A
/\

white(x) horse(x)

Working towards MRS (2/4)

every(x)

/\
A sleep(x)

T
big(x) white(x) horse(x)

every(x)

//\
big(x),white(x),horse(x) sleep(x)

Working towards MRS (3/4)

hO:every(x)

N
hl h2

h1l:big(x), hl:white(x), hl:horse(x) h2:sleep(x)

e And finally:

hO.every(, hl, h2), h1:big(x), h1:white(z),
h1l:horsef), h2:sleepl)

Working towards MRS (4/4)

e This is a flat representation, which is a good start.

e Next we need to underspecify quantifier scope, and it's
easier to see why with multiple quantifiers.

e At the same time, we want to be able to partially specify

It, since this is required for adequate representations of
NL semantics.

Underspecified quantifier scope (1/2)

e Every dog chases some white cat.

some(y)
/\
white(y),cat(y) every(x)
/\
dog(x) chase(x,y)
every(x)
/\
dog(x) some(y)
/\

white(y),cat(y) chase(x,y)

Underspecified quantifier scope (2/2)

e hl:every(,h3,h4), h3:dog(r), h7:white(y), h7:.cat(y),
h5.somef;,h7,h1), h4.chaset,y)

e hl:every(,h3,hd), h3:dog(x), h7:white(y), h7:.cat(y),
h5.somef;,h7,h4), h4.chaset,y)

e hl:every(,h3,hA), h3:dog(), h7:white(y), h7:.cat(y),
h5.somef;,h7,hB), h4.chaset,y)

Partially constrained quantifier scope (1/5)

e For theBoDY of quantifiers, we have no particular
constraints to add.

e In turns out that th&ESTRICTIONNeeds to have
partially underconstrained scope:

e Every nephew of some famous politican runs.
e every@,somef,famous() A politican(y),
nephewg,y)) run(z))

e somef(;,famous() A politican(y), every(,
newphewg,y),run(r)))

Partially constrained quantifier scope (2/5)

e Every nephew of some famous politican runs.
e But not:
e every(,run(x),somef,famousf) A polician(y),
nephewg,y)))

e ‘Everyone who runs is a newphew of a famous
politician.

Partially constrained quantifier scope (3/5)

top
|

|
run(x)

every(x) some(y)

/\ /\
| |
nephew(x,y) famous(y),politician(y)

Partially constrained quantifier scope (4/5)

top every(x) some(y)
| N N
| | |
probably dog(x) white(y),cat(y)

chase(x,y)

Partially constrained quantifier scope (5/5)

e (h0,{h2:everyx,h3,hd),h5 : nephewz,y), h6 :
someéy, h7, h8), h9 : politician(y), h9 : famousy), h10 :
run(z)}, {hl =, h10, h7 =, h9, h3 =, h5})

e (h0,{hl1 :everyx, h2,h3),hd : dogx), h5 :
probablyh6), h7 : chaséx,y), h8 :
somé&y, h9, h10), h11 : white(y), k11 : caty)}, {h0 =,
h5, hw =, h4,h6 =, h7,h9 =, h11})

We've arrived at MRS!

e Flat structure

e Underspecification/partial specification of scope Is
possible

Linguistic questions

How do we build MRS representations compositionally?

Is it linguistically adequate to insist that no process
suppress relations?

Under what circumstances do NLs (partially constrain
scope)?

Is it linguistically adequate to give scopal elements (esp.
guantifiers, but also scopal modifiers) center-stage?

MRS In feature structures

RELS: List (diff-list) of relations
HCONS: List (diff-list) of handle constraints

HOOK: Collection of features ‘published’ for further
compisition: INDEX, LTOP, XARG

ARGnN: Roles within relations

Summary: Anatomy of an MRS

e An MRS consists of:
e Atop handle
e A list of relations, each labeled by a handle
e A list of handle constraints

e An (underspecified) MRS is well-formed iff the

constraints can be resolved to form one or more trees
(singly-rooted, connected, directed acyclic graphs).

Anatomy of a relation (1/2)

e A relation has:
e A predicate (string or type)
e A label (handle)

e One or more arguments: ARGO-n (ARGO canonically

being the event or individual introduced by the
relation)

Anatomy of a relation (2/2)

e The value of each ARGnN is either:

e An index, canonically identified with the ARGO of
another relation

e A handle: identified with the label of another
relation, the HARG of a handle constraint, or not
identified with anything

Anatomy of a handle constraint

Current sole handle constraint typmeq
‘Equal modulo quantifiers’
Features: HARG, LARG

— Unless some quantifier scopes in between, the value
of this ARGn is the same as the label of that relation.

When the label of a relation is the value of an ARGn, this
corresponds to a branch in an MRS tree.

When the value of an ARGn is geq the label of a relation,
this corresponds to a ‘dotted’ branch — i.e., a dominance
relation.

When else are handles identified?

e Relations with the same handle value share the same
scope.

e Typically, we see this with intersective modifiers
(adverbs, adjectives, PPs) which share their handles with

their modifies.

Composition: Overview

RELS and HCONS on mother nodes
HOOK, LKEYS

ARGnN < Indices

ARGnN < handles

LBL < LBL

Building geqs

RELS and HCONS on mother nodes

The RELS and HCONS value of the mother is the
append of the values from the daughter(s) and the
C-CONT of the mother.

C-CONT is the ‘constructional content’: allows phrase
structure rules to introduce relations.

Examples?

From a semantic point of view, the C-CONT is just
another daughter.

Appending lists with unification

e A diff-list embeds an open-ended list into a container structure
providing a ‘pointer’ to the end of the ordinary list.

dlist dlist
ne-list] ne-list]
LIST FIRST iteml LIST FIRST item2
REST list REST list
LAST | |LAST _

e To append : (i) unify the front aB] (i.e. the value of its LIST
feature) into the tail of4] (its LAST value) and

e (ii) use the tail of difference lisi] as the new tail for the result
of the concatenation.

Result of appending lists

dlist]
ne-list]
FIRST iteml
LIST ne-list]
REST |FIRST item2
REST list
|LAST]

Matrix type: dl-append

e Not for direct use in the grammar: this type is just meant
as a reference.

dl - append : = avm & [APPARGL [LI ST #first,
LAST #bet ween],
APPARG2 [LI ST #bet ween,
LAST #l ast],
RESULT [LIST #first,
LAST #l ast]].

Diff-lists: practicalities

Typically errors with diff-lists involve circularity andat
direct unification failure.

If the LKB complains about circular feature structures,
check your difference lists.

Don’t try to constrain the length of a difference list.

Unifying structures which include diff lists in an append
relation can result in diff lists constrained to be empty.

Returning to our regularly scheduled
programming...

e \Why do we need diff-lists?

e Why do we need append?

Semantic compositionality in action

basi c-unary-phrase := phrase &
[SYNSEM LOCAL. CONT [RELS [LI ST #first,

LAST #l ast]],

C-CONT [RELS [LIST #md,

LAST #l ast]],
ARGS < sign & [SYNSEM LOCAL
| CONT [RELS [LIST #first,

LAST #md]]]]>].

Now what

Phrase structure rules (and lexical rules) gather up RELS
and HCONS from daughters.

Phrase structure rules also (optionally) introduce furthe
RELS and HCONS.

How do we link the ARGnN positions of the relations to
the right things?

How do we link the HARG/LARG of geqs to the right
things?

HOOK (1/2)

e The CONT.HOOK is the information that a given sign
exposes for further composition.

e By hypothesis, this includes only:

e INDEX (the individual or event denoted by the sign,
linked to some ARGO0)

e LBL (the local top handle of the sign)

e XARG (the external argument of the sign)

HOOK (2/2)

e The HOOK of a sign is identified its with the
C-CONT.HOOK.

e The C-CONT.HOOK in turn is identified with the
semantic head daughter, if there is one.

e Otherwise, the LBL, INDEX, and XARG inside
C-CONT.HOOK need to be constrained appropriately.

LKEYS

The feature LKEYS houses pointers to important
relations on the RELS list, most notably
LKEYS.KEYREL.

Only appropriate for lexical items.
Serves as a uniform place to state linking constraints.

Linking constraints: equality between HOOK.INDEX or
HOOK.LBL of arguments/modifiees and
LKEYS.KEYREL.ARGN.

ARGn« indices

Intransitive-lex-item:= basi c-one-arg-no-hcons &
| ARG ST < [LOCAL. CONT. HOCK. | NDEX ref-ind &
#ind | >,

SYNSEM LKEYS. KEYREL. ARGL #i nd |.

| ntersective-nod-lex := no-hcons-lex-item &
| SYNSEM [LOCAL. CAT. HEAD. MCD
<[..INDEX #ind]] >,

LKEYS. KEYREL. ARGL #ind |].

ARGnNn«+ handles (1/2)

cl ausal -second-arg-trans-lex-item .= basic-two-arg &
[ARG ST < [LOCAL. CONT. HOOK. | NDEX ref-ind & #ind |,
[LOCAL. CONT. HOOK. LTOP #l arg | >,
SYNSEM [LOCAL. CONT. HCONS <! geq &
| HARG #har g,
LARG #larg | !>,
LKEYS. KEYREL [ARGL #i nd,
ARRX2 #harg]]].

ARGnN«+ handles (2/2)

basi c-determ ner-lex := norm hook-lex-item &
[SYNSEM [LOCAL
[CAT [HEAD det,

VAL. . HOOK [| NDEX #i nd,

LTOP #l arg]],
CONT [HCONS <! geq &
[HARG #har g,
LARG #l arg] !>,
RELS <! relation !>]],
LKEYS. KEYREL quant-relation &
[ARQD #i nd,

RSTR #harg] |].

|l BL «— LBL

| sect - nod- phrase : =

nead- nod- phrase-sinple &

nead- conpositional &
HEAD- DTR. SYNSEM LOCAL. CONT. HOCK. LTOP #hand],
NON- HEAD- DTR. SYNSEM LOCAL. CONT. HOOK. LTOP #hand

e The rule for intersective modifiers identifies the LTOP of
the two daughters, and thus the LBL of the main relation
Introduced by each.

e The HOOK value of the whole thing comes from the
syntactic head, thanks to the typbead-compositional

Scopal modifiers (1/2)

scopal - nod- phrase : =
head- nod- phrase-sinple &
[NON- HEAD- DTR. SYNSEM LOCAL
| CAT. HEAD. MOD < [LOCAL scopal-nod] >,
CONT. HOOK #hook],
C-CONT [HOOK #hook,
HCONS <! 1>]].

e No identification of LTOPSs.

e Non-head (adjunct) daughter is the semantic head.

Scopal modifiers (2/2)

scopal -nod-lex = lex-item &
[SYNSEM [LOCAL |
CAT. HEAD. MOD < [LOCAL scopal -nod &
[..LTOP #larg]] >,

CONT. HCONS <! geq &

| HARG #har g,

LARG #larg | !'>],

LKEYS. KEYREL. ARGL #harg]].

e Builds geq between its ARG1 and the MOD’s LTOP

Building gegs

e Determiners
e Scopal adverbs

e Clausal complement verbs (and nouns, adjectives,
adpositions...)

Summary

e Phrase structure rules:
e ... gatherup RELS and HCONS
e ... potentially add further RELS and HCONS
e ... unify elements on valence/mod lists with signs
e ... pass up and/or modify HOOK information

e |Lexical entries:

e ... orchestrate the linking between valence/mod lists
and the ARGnN positions in the relations they
contribute

e ... expose certain information in the HOOK

Composition: Summary

RELS and HCONS on mother nodes
HOOK, LKEYS

ARGnN < Indices

ARGnN < handles

LBL < LBL

Building geqs

Overview

MRS: goals
MRS: representations
MRS: composition

Matrix tour continued (if interest)

