
Grammar files, PRED values, clause types,
illocutionary force

Ling 567
February 9, 2016

Overview

• tdl details:

• Grammar files, instances v. types

• PRED values

• Tdl style

• Illocutionary force

• Embedded clauses

• Non-verbal predicates

• Lab 6 overview

• Trigger rules

Grammar files

• matrix.tdl, head-types.tdl: Type files (core grammar)

• my_language.tdl: Type file (language specific)

• rules.tdl: Instance file for phrase structure rules

• irules.tdl: Instance file for spelling changing lexical rules

• lrules.tdl: Instance file for non-spelling changing lexical rules

• lexicon.tdl: Instance file for lexical entries

• roots.tdl: Instance file for root condition(s)

• labels.tdl: Instance file for node labels

• trigger.mtr: Instance file for trigger rules for generation

• my_langauge-pet.tdl: Grammar spec file for compilation with ‘flop’

• lkb/, ace/, pet/: Directories of files for lkb/ace/pet interaction

Roots, Labels

• Why do we sometimes see ADJ or CP as the label on the root node?

Roots, Labels

• Why do we sometimes see ADJ or CP as the label on the root node?

adj-label := label &
	 [SYNSEM.LOCAL[CAT.HEAD adj,
 COORD-STRAT ""],
	 LABEL-NAME "ADJ"].

cp-label := label &
	 [SYNSEM.LOCAL.CAT [HEAD comp,
	 	 	 	 VAL.COMPS < >],
	 LABEL-NAME "CP"].

Types v. instances

• Types define the feature geometry, possibilities for unification, and constraints
inherited by instances.

• Instances are what the LKB actually uses to parse and generate.

• Types can have multiple supertypes.

• Instances can only inherit from one type.

• Types and instances exist in separate name spaces.

Features and types

• Features can only be “declared” for one type. Any type mentioning that
feature must inherit from the declaring supertype.

• Features can only be “declared” at the outermost level.

• Good:

• Bad:

type1 := supertype &
[FEATURE BOOL].

type2 := type1 &
[FEATURE +].

type2 := supertype &
[FEATURE +].

type3 := type1 &
[PATH.NEW-FEAT +].

PRED values

• For the MT exercise, we need to coordinate on pred values.

• Convention is _English+lemma_pos_rel, where pos is drawn from {n, v, q, a,
p}

• Grammar types don’t have leading underscore: exist_q_rel

• Featural information isn’t replicated in PRED values: *_went_v_rel, *_the_q_rel

demonstrative-determiner-lex := determiner-lex-supertype &
[SYNSEM.LOCAL.CONT.RELS

<!
[PRED "exist_q_rel"],
#altkeyrel & arg1-ev-relation &

[LBL #lbl,
ARG1 #index]

!>,
SYNSEM.LKEYS.ALTKEYREL #altkeyrel,
SYNSEM.LOCAL.CAT.VAL.SPEC.FIRST.LOCAL.CONT.HOOK[INDEX #index &

[COG-ST acti+fam],
LTOP #lbl]].

Tdl style: Bad

demonstrative-determiner-lex := determiner-lex-supertype &
[SYNSEM [LOCAL [CONT.RELS <! [PRED "exist_q_rel"],

#altkeyrel & arg1-ev-relation &
[LBL #lbl,
ARG1 #index] !>,

CAT.VAL.SPEC.FIRST.LOCAL.CONT.HOOK [INDEX #index &
[COG-ST activ+fam],
LTOP #lbl]],

LKEYS.ALTKEYREL #altkeyrel]].

Tdl style: Good

Overview

• tdl details:

• Grammar files, instances v. types

• PRED values

• Tdl style

• Illocutionary force

• Embedded clauses

• Non-verbal predicates

• Lab 6 overview

• Trigger rules

Illocutionary force: Why clausal semantics?

• Illocutionary force correlates with syntactic form.

• MRS representations should include all semantic information that is
syntactically marked.

Aside: Perlocutionary, Locutionary, Illocutionary

• Locutionary act: The act of saying something

• Illocutionary act: The act of asking, asserting, commanding, etc. by saying
something

• Perlocutionary act: The act of getting someone to do or believe something by
asking, asserting, etc. something.

Overview

• tdl details:

• Grammar files, instances v. types

• PRED values

• Tdl style

• Illocutionary force

• Embedded clauses

• Non-verbal predicates

• Lab 6 overview

• Trigger rules

What’s a clause?

• Syntactically complete

• Expresses some illocutionary force

• Contrasts with fragments, some of which can also carry illocutionary force

• Marking of illocutionary force is often associated with either the clause as a
whole or with its head verb

• Clauses can be matrix or embedded

• Embedded clauses can be modifiers or arguments

• Embedded clauses can carry illocutionary force, too

Our general strategy

• Represent illocutionary force with a feature of events called ‘SF’.

• Possible values of SF: comm, prop-or-ques, prop, ques

• For Matrix clauses, non-branching rules at the top of the tree set SF
depending on syntactic features.

• OR: Subject attaching rules constrain SF.

• OR: Other characteristic rules/lex items constrain SF.

• For embedded clauses, elements higher up the tree (complementizers,
selecting verbs) or unary constructions constrain SF.

Marking of embedded clauses

• Just like matrix clauses

• Special verbal inflection

• Complementizers

• Different word order

• ... others?

• The feature [MC bool] can be helpful here

Overview

• tdl details:

• Grammar files, instances v. types

• PRED values

• Tdl style

• Illocutionary force

• Embedded clauses

• Non-verbal predicates

• Lab 6 overview

• Trigger rules

Non-verbal predicates

• This section deals with sentences that have a “copula” verb in some
languages and no verb at all in others.

• APs/PPs have a semantic role available

• Required copula: Treat it as a raising verb

• No copula: Let the APs/PPs be heads in the head-subj rule

• NPs are semantically saturated

• Required copula: Different lex entry that introduces _be_v_id_rel

• No copula: Non-branching rule that introduces _be_v_id_rel and the
subject requirement

Non-verbal predicates	

• Some languages have a copula variably:

• Across all contexts

• Only with NPs, but not APs/PPs (etc)

• Only in certain tenses

• First two can be handled with just appropriate combinations of the strategies
discussed

• To get restriction to certain tenses, need to add constraints to the copula and/
or the lexical or phrase structure rules involved in licensing verbless clauses.

Non-verbal predicates

• Locative NPs

• Some languages use NPs inflected with a particular case where others use
PPs (as both modifiers and predicates)

• We’ll only worry about the predicative use (for now)

• The strategy we’ll take involves a non-headed unary rule that builds a PP
out of a [CASE loc] NP.

• Why non-headed?

• Why not do this with a lexical rule?

Overview

• tdl details:

• Grammar files, instances v. types

• PRED values

• Tdl style

• Illocutionary force

• Embedded clauses

• Non-verbal predicates

• Lab 6 overview

• Trigger rules

Lab 6

• Check that matrix polar questions are working, and debug as necessary

• Add sentential complement verbs

• Get sentences with NP, PP, and AP predicates working

• Make sure MRSs are correct, and debug as necessary

• Make sure your grammar can generate (as well as parse), and debug as
necessary

Lab 6 reminders

• Your write up should illustrate each analysis with IGT examples that parse
with the grammar you turn in.

• You should test your grammar both with individual sentences one at a time in
the LKB and with [incr tsdb()] processing of the whole test suite.

• Use [incr tsdb()] to see which examples are ambiguous according to the
grammar, and check to see if the ambiguity is justified.

• Incremental development: If you have lots of similar items to enter, get one
working first, then enter the rest.

Overview

• tdl details:

• Grammar files, instances v. types

• PRED values

• Tdl style

• Illocutionary force

• Embedded clauses

• Non-verbal predicates

• Lab 6 overview

• Trigger rules

Trigger rules

• Semantically empty lexical entries cause headaches on generation

• Let them all in as often as the parser wants them: exploded search space

• Keep them all out: somethings won’t parse

• Solution: trigger rules (trigger.mtr)

• The LKB tells you which items need trigger rules, but the suggested rules
don’t actually ever fire.

• http://moin.delph-in.net/LkbGeneration

http://moin.delph-in.net/LkbGeneration
http://moin.delph-in.net/LkbGeneration

