The LOGON MT infrastructure

Ling 567
May 16, 2017

Overview

- MRS and MT: Some history
- The Grammar Matrix and massively multilingual MT
- The LOGON architecture
- Processing steps
- Transfer rules
- VPM
- Lab 8 practicalities
- Next week: Transfer rules

MRS and MT: Some history

- Copestake et al 1995: Original motivation for MRS included MT applications
- Resolving scope ambiguities is hard, and usually not necessary
- Logical form equivalence is undecidable even in FOPL (Shieber 1993)
- Mimicking syntactic structure in semantics makes transfer harder
- fierce black cat <> gato negro y feroz (Spanish)
- young black bull <> novillo negro
- MRS gives logical forms with less syntactic complexity and underspecification wherever possible.

MRS and MT: Some history

- MRS originally developed in the context of VerbMobil but not fully deployed for transfer-based MT in that project.
- In 2003, LOGON (Oepen et al 2004, 2007) up the thread and builds the first MRS-based MT system. (Norwegian -> English; tourism brochures)
- Input is LFG, with MRSs projected from f-structure.
- Output is generated by the English Resource Grammar (HPSG; Flickinger 2000)

Vauquois Pyramid (ObMT Triangle)

Is MRS an interlingua?

- Could MRS be used to encode an interlingua?
- Could our grammar produce such an MRS-encoded interlingua?

Copestake Volcano

Massively Multilingual MT

- Problem of combinatory explosion ($n \times n$):
- 2 languages: 2 sets of transfer rules
- 4 languages: 9 sets of transfer rules
- 24 languages: 552 sets of transfer rules
- 6000 languages: 35,994,000 sets of transfer rules

What are the alternatives?

- Design an interlingua (or select a pivot language), and create two grammars for each language
- strings <> ordinary MRS
- ordinary MRS <> interlingua (transfer grammar)
- Hybrid interlingual/transfer-based model
- partial lexical interlingua or PanDictionary-derived rules
- TL-side "accommodation" transfer grammars: O(n)
- transfer matrix to capture generalizations
- How far will approach 2 scale?
- How much mismatch is there?

Mismatch: Translation divergences (Dorr 1994)

- Categorial divergence: Translation of words in one language into words that have a different part of speech in another language.
- Conflational divergence: The translation of two or more words in one language into one word in another language
- Structural divergence: The realization of verb arguments in different syntactic configurations in different languages.
- Head swapping divergence: The inversion of the structural dominance relation between two semantically equivalent words when translating from one language to another.
- Thematic divergence: The realization of verb arguments in different configurations that reflect different thematic to syntactic mapping orders.

MRS ‘harmonization’ helps

- Just because it's not an interlingua doesn't mean the grammars can't be brought closer together.
- Example 1: Demonstratives (adjectives v. determiners)
- Example 2: COG-ST et al, reduction in quantifier-rel inventory
- Further potential for harmonization: pronouns v. pro-drop (but cf. information structure marking on overt pronouns)
- Other examples?

LOGON processing steps

- Parse in source language
- visualization tools for parses and MRSs
- Apply source language's transfer grammar to produce new MRS
- visualization tools for transfer outputs
- Generate in target language from new MRSs
- visualization tools for input MRSs
- compare to MRS produced by parsing expected output
- generator chart

Anatomy of a transfer rule

- Quadruple: [CONTEXT:] INPUT [!FILTER] -> OUTPUT
- Each item above is a (partial) MRS
- Rules apply to complete MRSs to produce partially rewritten MRSs.
- Resource sensitive: INPUT is consumed in producing OUTPUT.
- CONTEXT: Additional properties beyond the INPUT that must be satisfied. (Not consumed.)
- FILTER: Negative constraints; contexts in which the rule should not apply.

Anatomy of a transfer rule

- Rules can be obligatory or optional.
- Optional rules produce non-determinism in the transfer process.
- Pairing each optional rule with one obligatory rule cuts down the transfer search space.
- Rules can also be grouped into sets for 'extrinsic' ordering (which we probably won't need).
- Handled with chart-based processing.

Types and translation

- Many transfer rules share most of their properties, differing only in lexical predicates/other small details.
- Define types of transfer rules, with particular instances, analogous to lexical types and lexical entries.
- Types mentioned in transfer rules will unify with compatible types in actual MRS.
- In addition, the generator will allow some unification of different (but compatible) types for feature values.

Example type

monotonic_mtr := mrs_transfer_rule \&
[CONTEXT.HOOK.LTOP \#h, INPUT. HOOK.LTOP \#h, OUTPUT.HOOK.LTOP \#h].

Example rule instance

```
pro-insert-arg1-mtr := monotonic_mtr &
[ INPUT.RELS <! !>,
    CONTEXT.RELS <! [ ARGO.SF prop-or-ques,
                                    ARG1 #x & x ] !>,
    FILTER.RELS <! [ ARGO #x ] !>,
    OUTPUT [ RELS <! [ PRED "_pronoun_n_rel",
                ARGO #x,
                LBL #larg ],
                [ PRED "exist_q_rel",
                ARGO #x,
                RSTR #harg ] !>,
    HCONS <! qeq &
    [ HARG #harg,
        LARG #larg ] !> ],
```

 FLAGS.EQUAL < \#x >].

What about features of indices?

- Can't change value from input to output while maintaining identity of index with other positions.
- Person and number can be harmonized (in principle at least) by extending hierarchies on both sides, but we can't harmonize between PERNUM and separate PER and NUM features.
- Tense and aspect (and others) can likewise be harmonized at least somewhat, but inventories vary greatly.
- Variable property mapping allows grammar-internal variable properties to differ from grammar-external universe.
- We'll use this for harmonization (e.g., of PERNUM) and setting of defaults.

A side note on gender

- Represented in MRS because of its role in reference resolution.
- Pretty language specific.
- You might think you want to keep it on pronouns and discard it on nouns, but even that only works for closely related languages.
- Long term solution: Anaphora resolution on the SL language side and assignment of gender properties to pronouns based on projections of this information.
- For now: drop gender through vpm.
; ; ; -*- Mode: TDL; Coding: utf-8 -*_
; A basic VPM for Matrix grammars.


```
SF : SF
    prop <> prop
    ques <> ques
    prop-or-ques >> prop-or-ques
    prop << prop-or-ques
    comm <> comm
```

```
COG-ST : COG-ST
    type-id <> type-id
    uniq-id <> uniq-id
    familiar <> familiar
    activated <> activated
    in-foc <> in-foc
    activ+fam <> activ+fam
    uniq+fam <> uniq+fam
    activ-or-more <> activ-or-more
    uniq-or-less <> uniq-or-less
    uniq+fam+act <> uniq+fam+act
    fam-or-more <> fam-or-more
    fam-or-less <> fam-or-less
    activ-or-less <> activ-or-less
```

PNG.PER : PER
1st $<>1$ 1st
2nd $<>$ 2nd
3rd <> 3rd
* <> !

```
PNG.NUM : NUM
    sg <> sg
    pl <> pl
    du <> du
    dist <> dist
    coll <> coll
    * <> !
```

PNG.GEND : GEND
animate $<>$ animate
inanimate <> inanimate human $<>$ human nonhuman $<>$ nonhuman * <> !
E.MOOD : MOOD
irrealis <> irrealis
resemblative <> resemblative quotative <> quotative
apparitional <> apparitional iterative <> iterative potential <> potential * <> !
E.ASPECT : ASPECT
continuative <> continuative * <> !

```
PNG.PERNUM : PER NUM
    1singular <> 1st singular
    2singular <> 2nd singular
    3singular <> 3rd singular
    1plural <> 1st plural
```


Practicalities

- Get one more test corpus example working
- Grammar clean-up
- Reduce number of strings generated per input to (ideally) those that are motivated.
- Harmonize MRSs
- Use VPM to set defaults for e.g., ASPECT

$$
\begin{aligned}
& * \gg \text { no-aspect } \\
& \text { no-aspect } \ll[e]
\end{aligned}
$$

- Attempt translation
- Work on VPM

Overview

- MRS and MT: Some history
- The Grammar Matrix and massively multilingual MT
- The LOGON architecture
- Processing steps
- Transfer rules
- VPM
- Lab 8 practicalities
- Next week: Transfer rules

