Grammar Matrix (incl morphotactics)
AGGREGATION
est suites

Ling 567
Jan 11, 2022

Overview

- Grammar Matrix customization system

* Questions from Lab 1

- AGGREGATION

« Testsuites & [incr tsdb()]

- Morphotactics in the Grammar Matrix

Elicitation of typological

information
Questionnaire . .
Do Questionnaire
definition
(accepts user

input)

HTML
generation

Choices file

Validation

Grammar

creation
< T <
Core Stored
grammar analyses

Customization

Customized
grammar

(Bender et al 2010)

Creating a library for the customization system

- Choose phenomenon * Develop HPSG analyses for

| | each variant
* Review typological on

phenomenon * Implement analyses in tdl
 Refine definition of phenomenon » Develop questionnaire
« Conceptualize range of variation * Run regression tests

within phenomenon _
- Test with pseudo-languages

« Review HPSG (& broader
syntactic) literature on
phenomenon

» Test with illustrative languages
- Test with held-out languages
* Pin down target MRSs - Add tests to regression tests

» Add to MatrixDoc pages

Overview

- Grammar Matrix customization system

* Questions from Lab 1

- AGGREGATION

« Testsuites & [incr tsdb()]

- Morphotactics in the Grammar Matrix

Lab 1 questions

- What is the difference between the leaf node and the lexical entry of a word?

- Are rules and phrases types?

 I'm not sure where if at all there are distinctions between lexical rules and
lexical types especially in how they're written or represented in the grammar
(td1?) files.

« | am curious how the tdl files are all linked.

| wonder why would there are separate matrix and _grammar tdl files? How
are they different?

567 _english.tdl
head-types.tdl
irules.tdl
labels. tdl
lexicon.tdl
lrules.tdl
matrix.tdl
mtr.tdl
pet.tdl
roots.tdl
rules. tdl

LICENSE

METADATA

README

Version. Lsp
567_english—pet.tdl
ace/

choices

irregs.tab
Lkb/

pet/

repp/

semil.vpm
test_sentences

trigger.mtr
tsdb/

Lab 1 questions

- How do the constructions/notation/format of the lexical rules in LKB
correspond to our conceptions of INPUT and OUTPUT in Il-rules (since we
only see a single feature structure in the visualizations)?

Lab 1 questions

« Why are there only four grammar rules available when we look at unification
errors?

[t was mentioned that the SUBJ-HEAD Rule is used for sentences, but when
do we use BARE-NP?

- | am curious how things like the valence principle or GAP principle is
implemented in this LKB formalism.

Lab 1 questions

- Why do all the features have such short names? | feel that longer names
could contribute to readability.

* There are so many features!! Is every single feature useful in that it connects
to another by an identity or inherited constraint, or are some of them more
placeholder-y for potential future expansions of identities and associations?

- Why are there so many more features than were studied in LING 5667 (What
purpose does LKEYS serve?)

Lab 1 questions

- What are ARGS and C-COUNT, why would they only appear in hon-lexeme
type strucuture?

« What are olist and alist? What is the difference between these two?

- Why would we need SUBJ and SPEC in our VAL when we already have SPR
and COMPS?

- What exactly makes the SUBJ-HEAD and HEAD-SPEC rules need to be
different grammar rules (vs. a single broader Head-Specifier Rule for both
constructions, for example)?

Lab 1 questions

- How do you insure that you are dragging the failed parsed string on to the
right part of the AVM to get a unification failure that is the result of a missing
rule and not just wrong usage of the grammar?

- Can one mechanically use LKB without knowing much about 566 and HPSG?
Just from a tool usage perspective.

- When dragging the arguments for interactive unification, | wasn't sure which
level of the phrase to drag (for example, if there are several NPs on top of
each other). | see when hovering over them that they're associated with
different lexical rules, but I'm still not clear on this. Should we always drag the
topmost one (that is, just under where a larger phrase has failed to form?)

Lab 2 questions

* “In order to encourage people to get started early, this assignment requires
that you post a question to the discussion on the course Canvas by Tuesday
night. Examples: A question about something in these instructions that's
unclear, a question about something in your grammar resources that's
unclear, or a question about something in the customization system that's
unclear. Or all of the above! Ask away :)”

http://canvas.uw.edu/

Overview

- Grammar Matrix customization system

* Questions from Lab 1

- AGGREGATION

« Testsuites & [incr tsdb()]

- Morphotactics in the Grammar Matrix

AGGREGATION: Research goals

 Precision implemented grammars are a kind of structured annotation over
linguistic data (cf. Good 2004, Bender et al 2012).

» They map surface strings to semantic representations and vice-versa.

* They can be used in the development of grammar checkers and treebanks,
making them useful for language documentation and revitalization (Bender
et al 2012)

- But they are expensive to build.

- The AGGREGATION project asks whether existing products of
documentary linguistic research (IGT collections) can be used to boot-
strap the development of precision implemented grammars.

AGGR

—GATION:

« See LIFT 2019 slides

Recent developments

Overview

- Grammar Matrix customization system

* Questions from Lab 1

- AGGREGATION

« Testsuites & [incr tsdb()]

- Morphotactics in the Grammar Matrix

—valuation and Computational Linguistics

- Why is evaluation so prominent in computational linguistics?
- Why is it not so prominent in other subfields of linguistics?

« What about CS?

INntrinsic v. extrinsic evaluation

Intrinsic: How well does this system perform its own task, including
generalizing to new data?

Extrinsic: To what extent does this system contribute to the solution of
some problem?

- Examples of intrinsic and extrinsic evaluation of parsers?

Test data

« Test suites

- Hand constructed examples

Positive and negative examples

« Controlled vocabulary

- Controlled ambiguity

- Careful grammatical coverage

Test data

« Test corpora

- Naturally occurring

More open vocabulary

Haphazard ungrammatical examples

- Application-focused

Uses of test data

How far do | have left to go?

* |nternal metric

- Objective comparison of different systems

« Where have | been?

* Regression testing

Documentation

Grammar engineering workflow

Develop
initial test
suite
/—\ Develop
(.) analysis
|dentify
phenomena — ’ . .
to analyze Extend test suite
. with examples
documenting
analysis
Treebank T

Implement
analysis

Parse full
test suite

Debug
implementation

arse sample
sentences

Compile
grammar

—valuating precision grammars

- Coverage over some corpus
- Which corpus?
- Challenges of lexical acquisition
- Coverage of phenomena
How does one choose phenomena?

« Comparison across languages

Levels of adequacy

« grammaticality

* “right” structure

« “right” dependencies

* “right” full semantics

« only legit parses (how can you tell?)

« some set of parses including the preferred one

 preferred parse only/within first N

Typical 567 test suites

- Map out territory we hope to cover

 Include both positive and negative examples

« Serve as an exercise in understanding the description of the language
IGT format

- Creating examples where necessary

On the iImportance of simple examples
- Why keep examples simple?
« How simple is too simple?

- What kinds of things make an example not simple enough?

On the importance of simple examples

- Awtuw [awt] (Feldman 1986:67)

(70) Yowmen Yawur du-k-puy-ey
Yomen Yawur DUR-IMPF-hit-IMPF

“Yowmen and Yawur are hitting (someone).” [awt]

- Basque [eus] (adapted from Joppen and Wunderlich 1995:129)

(112) Zuek lagun-ei opari polit-ak ema-ten dizkiezue.
you.PL.ERG friend-PL.DAT present nice-PL.ABs give-IMPF 3A.have.PLA.3PLD.2PLE

“You(pl) always give nice presents to your friends.’ [eus]

On the importance of simple examples

 Russian [rus] (Bender 2013:92)

a. Yemnosex YKYCHI cobaxy.
Chelovek ukusi-1 sobak-u.

man.NOM.SG.M bite-PAST.PFV.5G.M dog-ACC.SG.F

“The man bit the dog.’ [rus]

Sut this year we have test corporal

- Might include both elicited and naturally occurring examples
 Lots more data to play with (yay!)

« Will be messy: Spoken language, lots of interacting phenomena, possibility of
inconsistent transcription & glossing

- But more satisfying because it’s way more authentic

+ Possibly too large: Okay to cut down or break into smaller chunks if
processing is slow

- Possibly consider using ace & art for batch processing

[incr tsdb()] basics

[incr tsdb()] stores test suite profiles as (plain text) relational databases:
Each is a directory with a fixed set of files in it.

Most files are empty.

A profile that has not been processed has only two non-empty files: item
(the items to be processed) and relations (always the same)

Once the profile has been processed, the result of the processing is stored
in some of the other files (in particular, parse and result)

[incr tsdb()] basics

A test suite skeleton consists of just the item and relations files and can be
used to create new test suite profiles

- [incr tsdb()] allows the user to compare two profiles to see how they differ

* |t can also produce graphs plotting summary data from many profiles to
visualize grammar evolution over time

« -> |f time: Demo

Overview

- Grammar Matrix customization system

* Questions from Lab 1

- AGGREGATION

« Testsuites & [incr tsdb()]

- Morphotactics in the Grammar Matrix

Morphology: Basics

- Morpheme: The smallest meaningful unit of language/smallest pairing of
“form” and “meaning”

« But:

» “form” can be lots of things, including empty but also messy changes
to word form

* “meaning” can be just syntactic features
* Morphotactics: Which morphemes can combine, in what order

« Morphophonology: Relationship between underlying word forms and
surface forms

- Morphosyntax: Relationship between morphemes and syntactic and
semantic features

2 Morphology:Introduction. i 11
#7 Morphemes are the smallest meaningful units of language, usually

consisting of a sequence of phones paired with concrete meaning. 11
#8 The phones making up a morpheme don't have to be contiguous. 11
#9 The form of a morpheme doesn’t have to consist of phones................. 13
#10 The form of a morpheme canbenull. i il 13
#11 Root morphemes convey core lexical meaning.............. 14
#12 Derivational affixes can change lexical meaning......................... 16
#13 Root+derivational affix combinations can have idiosyncratic meanings. 17
#14 Inflectional affixes add syntactically or semantically relevant features. 18
#15 Morphemes can be ambiguous and/or underspecified in their meaning. 19
#16 The notion ‘word’ can be contentious in many languages. 20

#17 Constraints on order operate differently between words than they do

between morphemes. i e 21
#18 The distinction between words and morphemes is blurred by processes of
language change. i e 22

#19 A clitic is a linguistic element which is syntactically independent but

phonologicallydependent. i 23

#20 Languages vary in how many morphemes they have per word (on average

and maximally).. e 24

#21 Languages vary in whether they are primarily prefixing or suffixing in

their morphology.ot e 25

#22 Languages vary in how easy it is to find the boundaries between

morphemes withinaword. i e 26
3 Morphophonologyot e 29

#23 The morphophonology of a language describes the way in which surface

forms are related to underlying, abstract sequences of morphemes. 29

#24 The form of a morpheme (root or affix) can be sensitive to its phonological

803 4L P 29

#25 The form of a morpheme (root or affix) can be sensitive to its

morphological context.t i e 31

#26 Suppletive forms replace a stem+affix combination with a wholly different

0 o R 32

#27 Alphabetic and syllabic writing systems tend to reflect some but not all

phonological Processes.ovuuiiiiiii i i i i i 33
4 Morphosyntaxttt e 35

#IR The marnhasvntax nf a lanonace descrihes haw the marmhemes in a ward

Morphology: Example

slolmayaye
Slol—ma—ya—yA
know-15SG.PAT-2SG.AGT-know

‘you know /knew me’ [lkt]

* Infixation, vowel harmony:. Morphophonology
 Relative order of PAT and AGT marker, optionality of same: Morphotactics

« Mapping to constraints that the patient argument be 1sg and the agent
1pl: Morphosyntax

 Actually parsing the string: priceless!

What morphophonolgy can the LKB & the

customization system handle”?

morpheme boundary

LKB | Customization System
polite concatenative ve v
morphology
zero morphemes v v
morphologically v v
conditioned allomorphy
phon. chnages at v

ablaut

infixation

vowel harmony

suppletion

Assume a morphophonological analyzet...

» Morphophonological analyzers map surface forms to underlying strings of
morphemes

- FSTs are up to the task (except for open-class reduplication)

« XFST (Beesley & Karttunen 2003) is a very linguist-friendly set up;
FOMA (Holden & Algeria 2010) is a open-source package with similar
functionality

- But you don’t need to build one for this class!

« Use the morpheme segmented line of your IGT to represent what it would
map to, and then (if you have any interesting morphophonology) have that
line be the target for your grammar.

Morphophonology/morphosyntax boundary:
Where to draw the line”?

» Underlying morphemes can be represented as a sequence of phonemes or
as symbols representing morphological features.

- A canonical XFST-derived analyzer will also include POS tags as a
morphological feature in the underlying form.

* From the point of view of the LKB:
- The POS tag adds nothing

- Spelling the morphemes as morphological features adds nothing: we
still need a lexical rule that maps those strings to constraints on avms

Morphophonology/morphosyntax boundary:
Where to draw the line”?

- On the other hand: for XFST/FOMA, the POS tags (and maybe features)
can be useful intermediate stages in processing

» The features can make it easier to create gloss lines automatically.

« On the third hand: using sequences of morphemes might make LKB input/
output comprehensible to speakers

- So what should the upper tape have?

5asiC concepts

 Position class: A supertype to lexical rules which fit in the same slot
- Lexical rule type: lex-rule and its subtypes, all have DTR feature

- Lexical rule instance: A grammar entity (manipulatable by the LKB) which
inherits from a lexical rule type and specifies a spelling change (including
no change).

* Forbids constraint: A specification in the customization system stating that
a stem lexical rule type (including a position class) cannot co-occur with
another lexical rule type, instance, pc or stem.

* Requires constraint: A specification in the customization system stating
that a stem lexical rule type (including a position class) must co-occur with
another lexical rule type, instance, pc or stem.

Position classes, iInputs and lexical rule hierarchies

Gen-Num-PC
Pre-PC fem-rule sg-rule pI-rum Post-PC

< = TN

fem-sg-rule fem-pl-rule masc-sg-rule masc-pl-rule

Figure 9: Example lexical rule type hierarchy in a position class

(Goodman 2013)

To define a position class

* Required:

« Whether or not it is obligatory

« Possible inputs and prefix/suffix

» = position in the string

« Optional:

- Requires/forbids constraints

To define a lex rule type

* Required

* Nothing (though defaults fill in)

« Optional

« Name

« Supertype (if it doesn’t inherit directly from its position class)

- Feature/value pairs (optional, but this is usually the point!)

« Requires/forbids constraints

To define a lex rule instance

* Required
* Affix v. no affix
 Spelling for affix
 Optional

* Nothing

tdl files

- matrix.tdl: Supertypes for lex-rules, which handle the copying up of
everything you’re not changing

* my_language.tdl: Position classes and lex rule types defined through the
customization system; features for inside INFLECTED

- [rules.tdl: Instances for non-spelling-changing lex rules (zero morphemes)

- irules.tdl: Instances for spelling-changing lex rules

Handling of morphotactics

 Rule order handled through super types and typing the DTR feature
* Requires/forbids through the INFLECTED feature

case-lex-rule-super := representative-rule-dtr &
add-only-no-ccont-rule &
noun-telic-rule-dtr &

[INFLECTED | CASE-FLAG +
INNER- NEGATIOI\—FLAG #inner-negation,
NUMBERED-FLAG #numbered |,

DTR case-rule-dtr &
| INFLECTED [INNER-NEGATION-FLAG
#inner-negation,
NUMBERED-FLAG #numlbered | | |.

Thursday = demo day

- Send me questions by noon on Wednesday; all should include:

* Question

« Choices file

« Data:

» Testsuite profile
- IGT that should parse if we can just fix the thing

* ... or should stop parsing, if we can just fix the thing, in the case of
ungrammatical examples

