Convolution kernels for natural language
(Collins and Duffy, 2001)

LING 572
Fei Xia
Highlights

• Introduce a tree kernel

• Show how it is used for reranking
Reranking
Reranking

- Training data:
 \[\{(x_i, y_i)\} \] and for each \(x_i \), a set of candidates \(\{y_{ij}\} \).

 and one of \(y_{ij} \) is the same as \(y_i \).

- Goal: create a module that reranks candidates

- The reranker is used as a post-processor.

- In this paper, build a reranker for parsing

 \(x_i \) is a sentence, \(y_{ij} \) is a parse tree.

 Notation: \(\{(s_i, t_i)\} \), \(C(s_i) = \{x_{ij}\} \)
Formulating the problem

\{(s_i, t_i)\}, \ C(s_i) = \{x_{ij}\}

\(h(x_{ij})\) is the feature vector of candidate \(x_{ij}\).

Let \(x_{i1}\) be the correct parse for \(s_i\).

Training: calculate \(\vec{w}\)

Decoding: \(x^* = \arg\max_{x \in C(s)} \vec{w} \cdot h(x)\)
Reranking: Training

Minimize $||w||^2$ subject to the constraints

$$\vec{w} \cdot h(x_{i1}) \geq \vec{w} \cdot h(x_{ij}), \forall i, \forall j \geq 2$$

$$\vec{w} \cdot (h(x_{i1}) - h(x_{ij})) \geq 1, \forall i, \forall j \geq 2$$

Recall that in SVM $\vec{w} = \sum_i \alpha_i y_i x_i$

$$\vec{w} = \sum_{(i,j)} \alpha_{ij} (h(x_{i1}) - h(x_{ij}))$$

$$f(x) = \vec{w} \cdot x = \sum_{ij} \alpha_{ij} (h(x_{i1}) \cdot h(x) - h(x_{ij}) \cdot h(x))$$

With the kernel trick

$$f(x) = \sum_{ij} \alpha_{ij} (K(x_{i1}, x) - K(x_{ij}, x))$$
Perceptron training

\[f(x) = \vec{w} \cdot x = \sum_{ij} \alpha_{ij} (h(x_{i1}) \cdot h(x) - h(x_{ij}) \cdot h(x)) \]

\[\alpha_{i,j} = 0; \]

for each sentence \(i \)

for each \(j > 1 \)

if \(f(x_{i1}) < f(x_{ij}) \) then \(\alpha_{ij}++; \)
Tree kernel

\[f(x) = \sum_{i,j} \alpha_{ij} (K(x_{i1}, x) - K(x_{ij}, x)) \]

K: \(X \times X \rightarrow R \)

Each member of \(X \) is a parse tree.

What is a good tree kernel?
A tree kernel
Intuition

• Given two trees T1 and T2, the more subtrees T1 and T2 share, the more similar they are.

• Method:
 – For each tree, enumerate all the subtrees
 – Count how many are in common

• Do it in an efficient way
Definition of subtree

• A subtree is a subgraph which has more than one node, with the restriction that entire (not partial) rule productions must be included.

• “A subtree rooted at node n” means “a subtree whose root is n”.

An example
C(n₁, n₂) counts the number of common subtrees rooted at n₁ and n₂.

C(n₁, n₂) = ??
Calculating $C(n_1, n_2)$

If the productions at n_1 and n_2 are different then $C(n_1, n_2) = 0$

else if n_1 and n_2 are pre-terminals then $C(n_1, n_2) = 1$

else $C(n_1, n_2) = \prod_{j=1}^{nc(n_1)} (1 + C(ch(n_1, j), ch(n_2, j)))$
Representing a tree as a feature vector

Let ST be the set of sub-trees in any tree

$$ST = \{ s_1, s_2, \ldots, s_n, \ldots \}$$

Let $$h_i(T)$$ be the num of occurrences of $$s_i$$ in T

$$h(T) = (h_1(T), h_2(T), \ldots, h_n(T), \ldots)$$

$$I_i(n) = 1 \quad \text{if } s_i \text{ is a subtree rooted at } n.$$
$$= 0 \quad \text{otherwise}$$

$$h_i(T_1) = \sum_{n_1 \in N1} I_i(n_1), \quad \text{N1 is the set of nodes in tree T1}$$

$$h_i(T_2) = \sum_{n_2 \in N2} I_i(n_2)$$
A tree kernel

\[h(T_1) \cdot h(T_2) = \sum_i h_i(T_1) h_i(T_2) \]

\[= \sum_i \left(\sum_{n_1 \in N_1} I_i(n_1) \right) \ast \left(\sum_{n_2 \in N_2} I_i(n_2) \right) \]

\[= \sum_i \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} I_i(n_1) I_i(n_2) \]

\[= \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \sum_i I_i(n_1) I_i(n_2) \]

\[= \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} C(n_1, n_2) \]

\[K(T_1, T_2) = h(T_1) \cdot h(T_2) \text{ can be calculated in } O(|N_1||N_2|) \]
Properties of this kernel

• The value of $K(T_1, T_2)$ depends greatly on the size of the trees T_1 and T_2.

\[
K'(T_1, T_2) = \frac{K(T_1, T_2)}{\sqrt{K(T_1, T_1)K(T_2, T_2)}}
\]

• $K(T, T)$ would be huge. The output would be dominated by the most similar tree.

=> The model would behave like a nearest neighbor rule
Downweighting the contribution of large subtrees when calculating $C(n_1, n_2)$

If the productions at n_1 and n_2 are different then $C(n_1, n_2) = 0$

else if n_1 and n_2 are pre-terminals then

$$C(n_1, n_2) = \lambda$$

else

$$C(n_1, n_2) = \lambda \prod_{j=1}^{nc(n_1)} (1 + C(ch(n_1, j), ch(n_2, j)))$$
Experimental results
Experiment setting

• Data:
 – Training data: 800 sentences,
 – Dev set: 200 sentences
 – Test set: 336 sentences
 – For each sentence, 100 candidate parse trees

• Learner: voted perceptron

• Evaluation measure: 10 runs and report the average parse score

• Baseline (with PCFG): 74% (labeled f-score)
Results

With different max subtree size

<table>
<thead>
<tr>
<th>Depth</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>73 ± 1</td>
<td>79 ± 1</td>
<td>80 ± 1</td>
<td>79 ± 1</td>
<td>79 ± 1</td>
<td>78 ± 0.01</td>
</tr>
<tr>
<td>Improv</td>
<td>-1 ± 4</td>
<td>20 ± 6</td>
<td>23 ± 3</td>
<td>21 ± 4</td>
<td>19 ± 4</td>
<td>18 ± 3</td>
</tr>
</tbody>
</table>
Summary

• Show how to use a SVM or a perceptron learner for the reranking task.

• Define a tree kernel that can be calculated in polynomial time.
 – Note: the number of features is infinite.

• The reranker improves parse score from 74% to 80%.