Semi-supervised learning

LING 572 Fei Xia

Outline

- Overview of Semi-supervised learning (SSL)
- Self-training
- Co-training

Additional Reference

 Xiaojin Zhu (2006): Semi-supervised learning literature survey.

 Olivier Chapelle et al. (2005): Semisupervised Learning. The MIT Press.

Overview of SSL

What is SSL?

- Labeled data:
 - Ex: POS tagging: tagged sentences
 - Creating labeled data is difficult, expensive, and/or time-consuming.
- Unlabeled data:
 - Ex: POS tagging: untagged sentences.
 - Obtaining unlabeled data is easier.
- Goal: use both labeled and unlabeled data to improve the performance

Learning

- Supervised (labeled data only)
- Semi-supervised (both labeled and unlabeled data)
- Unsupervised (unlabeled data only)

Problems:

- Classification
- Regression
- Clustering
- **—** ...
- → Focus on semi-supervised classification problem

A brief history of SSL

 The idea of self-training appeared in the 1960s.

SSL took off in the 1970s.

 The interest for SSL increased in the 1990s, mostly due to applications in NLP.

Does SSL work?

- Yes, under certain conditions.
 - The problem itself: the knowledge on p(x) carry information that is useful for the inference of $p(y \mid x)$.
 - Algorithm: the modeling assumption fits well with the problem structure.
- SSL will be most useful when there are far more unlabeled data than labeled data.
- SSL could degrade the performance when mistakes reinforce themselves.

Illustration (Zhu, 2006)

Illustration (cont)

Assumptions

- Smoothness (continuity) assumption: if two points x₁ and x₂ in a high-density region are close, then so should be the corresponding outputs y₁ and y₂.
- Cluster assumption: If points are in the same cluster, they are likely to be of the same class.

Low density separation: the decision boundary should lie in a low density region.

•

SSL algorithms

- Self-training
- Co-training
- Generative models:
 - Ex: EM with generative mixture models
- Low Density Separations:
 - Ex: Transductive SVM
- Graph-based models

Which SSL method should we use?

• It depends.

 Semi-supervised methods make strong model assumptions.

 Choose the ones whose assumptions fit the problem structure.

Self-training

Basics of self-training

- Probably the earliest SSL idea.
- Also called self-teaching or bootstrapping.

- Appeared in the 1960s and 1970s.
- First well-known NLP paper: (Yarowsky, 1995)

Self-training algorithm

 Let L be the set of labeled data, U be the set of unlabeled data.

Repeat

- Train a classifier h with training data L
- Classify data in U with h
- Find a subset U' of U with the most confident scores.
- L + U' → L
- U U' → U

An example: (McClosky et al., 2006)

- Setting:
 - Training data:
 - Labeled data: WSJ
 - Unlabeled data: NANC
 - Test data: WSJ

The procedure

- Self-training procedure:
 - Train a stage-1 parser and a reranker with WSJ data
 - Parse NANC data and add the best parse to re-train stage-1 parser
- Best parses for NANC sentences come from
 - the stage-1 parser ("Parser-best")
 - the reranker ("Reranker-best")

Sentences added	Parser-best	Reranker-best
0 (baseline)		90.3
50k	90.1	90.7
250k	90.1	90.7
500k	90.0	90.9
750k	89.9	91.0
1,000k	90.0	90.8
1,500k	90.0	90.8
2,000k	_	91.0

Conclusion:

- Self-training alone does not help
- Self-training with reranking provides a modest gain

Sentences added	Parser	Reranking Parser
Baseline Brown	86.4	87.4
Baseline WSJ	83.9	85.8
wsj+50k	84.8	86.6
wsj+250k	85.7	87.2
wsj+500k	86.0	87.3
wsj+750k	86.1	87.5
wsj+1,000k	86.2	87.3
wsj+1,500k	86.2	87.6
wsj+2,000k	86.1	87.7
wsj+2,500k	86.4	87.7

Test data is from Brown

→ Adding NANC data helps: 83.9% => 86.4%

Summary of self-training

The algorithm is straightforward and intuitive.

- It could produce good results.
 - Ex: parsing, MT, NE tagging, …

 Added unlabeled data pollute the original labeled data

Papers on self-training

- Yarowsky (1995): WSD
- Riloff et al. (2003): identify subjective nouns
- Maeireizo et al. (2004): classify dialogues as "emotional" or "non-emotional".
- McClosky et al. (2006): combine self-training and reranking for parsing

Co-training

Basic ideas

- The original paper: (Blum and Mitchell, 1998)
- Two "independent" views: split the features into two sets.
 - The instance space: $X = X_1 \times X_2$
 - Each example: $x = (x_1, x_2)$
- Train a classifier on each view.
- Data classified by one classifier can be used to train the other classifier and vice versa.

An example

- Web-page classification: e.g., find homepages of faculty members.
 - Page text: words occurring on that page
 e.g., "research interest", "teaching"

- Hyperlink text: words occurring in hyperlinks that point to that page:
 - e.g., "my advisor"

Co-training algorithm

Given:

- a set L of labeled training examples
- a set U of unlabeled examples

Create a pool U' of examples by choosing u examples at random from ULoop for k iterations:

Use L to train a classifier h_1 that considers only the x_1 portion of x Use L to train a classifier h_2 that considers only the x_2 portion of x

Allow h_1 to label p positive and n negative examples from U'

Allow h_2 to label p positive and n negative examples from U'

Add these self-labeled examples to L

Randomly choose 2p + 2n examples from U to replenish U'

Semi-supervised and active learning

 They address the same issue: labeled data are hard to get.

 Semi-supervised: choose the unlabeled data to be added to the labeled data.

 Active learning: choose the unlabeled data to be annotated.

SSL and transductive learning

- Both use labeled and unlabeled data.
- Transductive learning builds a specific model for the given test data, where SSL builds a general model.
- Transductive SVM is an example of transductive learning, where the objective function is changed to include test data.
- The distinction between SSL and transducctive learning is not clear cut.

Summary

SSL uses both labeled and unlabeled data.

- There are many SSL algorithms.
- SSL algorithms can improve the performance if the data satisfies the assumption made by the algorithms.
- Examples: self-training, co-training