Discourse Structure for Content Selection

NLP Systems & Applications Ling 573 April 13, 2017

Text Coherence

- Cohesion repetition, etc does not imply coherence
- Coherence relations:
 - Possible meaning relations between utts in discourse
 - Examples:
 - Result: Infer state of S₀ cause state in S₁
 - The Tin Woodman was caught in the rain. His joints rusted.
 - Explanation: Infer state in S₁ causes state in S₀
 - John hid Bill's car keys. He was drunk.
 - **Elaboration**: Infer same prop. from S_0 and S_1 .
 - Dorothy was from Kansas. She lived in the great Kansas prairie.
 - Pair of locally coherent clauses: discourse segment

Rhetorical Structure Theory

- Mann & Thompson (1987)
- Goal: Identify hierarchical structure of text
 - Cover wide range of TEXT types
 - Language contrasts
 - Relational propositions (intentions)
- Derives from functional relations b/t clauses

Components of RST

- Relations:
 - Hold b/t two text spans, nucleus and satellite
 - Nucleus core element, satellite peripheral
 - Constraints on each, between
 - Units: Elementary discourse units (EDUs), e.g. clauses

RST Relations

- Evidence
 - The program really works. (N)
 - I entered all my info and it matched my results. (S)

Relation Name: Evidence

Constraints on N: R might not believe N to a degree satisfactory to W

Constraints on S: R believes S or will find it credible

Constraints on N+S: R's comprehending S increases R's belief of N

Effects: R's belief of N is increased

RST Relations

- Core of RST
 - RST analysis requires building tree of relations
 - Relations include:
 - Circumstance, Solutionhood, Elaboration. Background, Enablement, Motivation, Evidence, etc
- Captured in:
 - RST treebank: corpus of WSJ articles with analysis
 - RST parsers: Marcu, Peng and Hirst 2014

GraphBank

- Alternative discourse structure model
 - Wolf & Gibson, 2005
- Key difference:
 - Analysis of text need not be tree-structure, like RST
 - Can be arbitrary graph, allowing crossing dependency
- Similar relations among spans (clauses)
 - Slightly different inventory

Penn Discourse Treebank

- PDTB (Prasad et al, 2008)
 - "Theory-neutral" discourse model
 - No stipulation of overall structure, identifies local rels
- Two types of annotation:
 - Explicit: triggered by lexical markers ('but') b/t spans
 - Arg2: syntactically bound to discourse connective, ow Arg1
 - Implicit: Adjacent sentences assumed related
 - Arg1: first sentence in sequence
- Senses/Relations:
 - Comparison, Contingency, Expansion, Temporal
 - Broken down into finer-grained senses too

Discourse & Summarization

- Intuitively, discourse should be useful
 - Selection, ordering, realization
- Selection:
 - Sense: some relations more important
 - E.g. cause vs elaboration
 - Structure: some information more core
 - Nucleus vs satellite, promotion, centrality
- Compare these, contrast with lexical info
 - Louis et al, 2010

Framework

- Association with extractive summary sentences
 - Statistical analysis
 - Chi-squared (categorical), t-test (continuous)
- Classification:
 - Logistic regression
 - Different ensembles of features
 - Classification F-measure
 - ROUGE over summary sentences

RST Parsing

- Learn and apply classifiers for
 - Segmentation and parsing of discourse
- Assign coherence relations between spans
- Create a representation over whole text => parse
- Discourse structure
 - RST trees
 - Fine-grained, hierarchical structure
 - Clause-based units

Discourse Structure Example

• 1. [Mr. Watkins said] 2. [volume on Interprovincial's system is down about 2% since January] 3. [and is expected to fall further,] 4. [making expansion unnecessary until perhaps the mid-1990s.]

Discourse Structure Features

- Satellite penalty:
 - For each EDU: # of satellite nodes b/t it and root
 - 1 satellite in tree: (1), one step to root: penalty = 1
- Promotion set:
 - Nuclear units at some level of tree
 - At leaves, EDUs are themselves nuclear
- Depth score:
 - Distance from lowest tree level to EDU's highest rank
 - 2,3,4: score= 4; 1: score= 3
- Promotion score:
 - # of levels span is promoted:
 - 1: score = 0; 4: score = 2; 2,3: score = 3

Converting to Sentence Level

- Each feature has:
 - Raw score
 - Normalized score: Raw/sentence_length

- Sentence score for a feature:
 - Max over EDUs in sentence

"Semantic" Features

- Capture specific relations on spans
- Binary features over tuple of:
 - Implicit vs Explicit
 - Name of relation that holds
 - Top-level or second level
 - If relation is between sentences,
 - Indicate whether Arg1 or Arg2
- E.g. "contains Arg1 of Implicit Restatement relation"
- Also, # of relations, distance b/t args w/in sentence

Example I

• In addition, its machines are easier to operate, so customers require less assistance from software.

- Is there an explicit discourse marker?
 - Yes, 'so'
- Discourse relation?
 - 'Contingency'

Example II

- (1) Wednesday's dominant issue was Yasuda & Marine Insurance, which continued to surge on rumors of speculative buying. (2) It ended the day up 80 yen to 1880 yen.
- Is there a discourse marker?
 - No
- Is there a relation?
 - Implicit (by definition)
- What relation?
 - Expansion (or more specifically (level 2) restatement)
- What Args? (1) is Arg1; (2) is Arg2 (by definition)

Non-discourse Features

- Typical features:
 - Sentence length
 - Sentence position
 - Probabilities of words in sent: mean, sum, product
 - # of signature words (LLR)

Significant Features

- Associated with summary sentences
 - Structure: depth score, promotion score
 - Semantic: Arg1 of Explicit Expansion, Implicit Contingency, Implicit Expansion, distance to arg
 - Non-discourse: length, 1st in para, offset from end of para, # signature terms; mean, sum word probabilities

Significant Features

- Associated with non-summary sentences
 - Structural: satellite penalty
 - Semantic: Explicit expansion, explicit contingency, Arg2 of implicit temporal, implicit contingency,...
 - # shared relations
 - Non-discourse: offset from para, article beginning; sent. probability

Observations

- Non-discourse features good cues to summary
- Structural features match intuition

- Semantic features:
 - Relatively few useful for selecting summary sentences
 - Most associated with non-summary, but most sentences are non-summary

Evaluation

- Structural best:
 - Alone and in combination
- Best overall combine all types
 - Both F-1 and ROUGE

Features used	Acc	P	R	F
structural	78.11	63.38	22.77	33.50
semantic	75.53	44.31	5.04	9.05
non-discourse (ND)	77.25	67.48	11.02	18.95
ND + semantic	77.38	59.38	20.62	30.61
ND + structural	78.51	63.49	26.05	36.94
semantic + structural	77.94	58.39	30.47	40.04
structural + semantic + ND	78.93	61.85	34.42	44.23

Graph-Based Comparison

- Page-Rank-based centrality computed over:
 - RST link structure
 - Graphbank link structure
 - LexRank (sentence cosine similarity)
- Quite similar:
 - F1: LR > GB > RST
 - ROUGE: RST > LR > GB

Notes

- Single document, short (100 wd) summaries
 - What about multi-document? Longer?
- Structure relatively better, all contribute

- Manually labeled discourse structure, relations
 - Some automatic systems, but not perfect
 - However, better at structure than relation ID
 - Esp. implicit