

Dialog Management

Ling575
Spoken Dialog Systems

April 19, 2017

Roadmap
�  Dialog Management

�  Basic:
�  Finite State Models

�  Frame-based Models

�  Advanced:
�  Information State Models

�  Statistical Dialog Models

Dialogue Manager
�  Holds system together: Governs interaction style

Dialogue Manager
�  Holds system together: Governs interaction style

�  Takes input from ASR/NLU

Dialogue Manager
�  Holds system together: Governs interaction style

�  Takes input from ASR/NLU

�  Maintains dialog state, history
�  Incremental frame construction

�  Reference, ellipsis resolution

�  Determines what system does next

Dialogue Manager
�  Holds system together: Governs interaction style

�  Takes input from ASR/NLU

�  Maintains dialog state, history
�  Incremental frame construction

�  Reference, ellipsis resolution

�  Determines what system does next

�  Interfaces with task manager/backend app

Dialogue Manager
�  Holds system together: Governs interaction style

�  Takes input from ASR/NLU

�  Maintains dialog state, history
�  Incremental frame construction
�  Reference, ellipsis resolution
�  Determines what system does next

�  Interfaces with task manager/backend app

�  Formulates basic response, passes to NLG,TTS

Finite-State Management

Finite-State Dialogue
Management

�  Simplest type of dialogue management
�  States:

�  Questions system asks user

�  Arcs:
�  User responses

Finite-State Dialogue
Management

�  Simplest type of dialogue management
�  States:

�  Questions system asks user

�  Arcs:
�  User responses

�  System controls interactions:
�  Interprets all input based on current state
�  Assumes any user input is response to last question

Finite-State Dialogue
Management

�  Initiative:
�  Control of the interaction

�  Who’s in control here?

Finite-State Dialogue
Management

�  Initiative:
�  Control of the interaction

�  Who’s in control here?
�  System!

�  “system initiative”/”single initiative”

�  Natural?

Finite-State Dialogue
Management

�  Initiative:
�  Control of the interaction

�  Who’s in control here?
�  System!

�  “system initiative”/”single initiative”
�  Natural? No!

�  Human conversation goes back and forth

�  Deploy targeted vocabulary / grammar for state
�  Add ‘universals’ – accessible anywhere in dialog

�  ‘Help’, ‘Start over’

Pros and Cons
�  Advantages

Pros and Cons
�  Advantages

�  Straightforward to encode
�  Clear mapping of interaction to model
�  Well-suited to simple information access
�  System initiative

�  Disadvantages

Pros and Cons
�  Advantages

�  Straightforward to encode
�  Clear mapping of interaction to model
�  Well-suited to simple information access
�  System initiative

�  Disadvantages
�  Limited flexibility of interaction

�  Constrained input – single item
�  Fully system controlled
�  Restrictive dialogue structure, order

�  Ill-suited to complex problem-solving

Frame-based Dialogue
Management

�  Essentially form-filling
�  User can include any/all of the pieces of form

�  System must determine which entered, remain

�  Rules determine next action, question,
information presentation

Frame-based Dialogue
Management

�  Essentially form-filling
�  User can include any/all of the pieces of form

�  System must determine which entered, remain

�  Rules determine next action, question,
information presentation

Frames and Initiative
�  Mixed initiative systems:

�  A) User/System can shift control arbitrarily, any time
�  Difficult to achieve

�  B) Mix of control based on prompt type

Frames and Initiative
�  Mixed initiative systems:

�  A) User/System can shift control arbitrarily, any time
�  Difficult to achieve

�  B) Mix of control based on prompt type

�  Prompts:
�  Open prompt: ‘How may I help you?’

Frames and Initiative
�  Mixed initiative systems:

�  A) User/System can shift control arbitrarily, any time
�  Difficult to achieve

�  B) Mix of control based on prompt type

�  Prompts:
�  Open prompt: ‘How may I help you?’

�  Open-ended, user can respond in any way

�  Directive prompt: ‘Say yes to accept call, or no o.w.’

Frames and Initiative
�  Mixed initiative systems:

�  A) User/System can shift control arbitrarily, any time
�  Difficult to achieve

�  B) Mix of control based on prompt type

�  Prompts:
�  Open prompt: ‘How may I help you?’

�  Open-ended, user can respond in any way

�  Directive prompt: ‘Say yes to accept call, or no o.w.’
�  Stipulates user response type, form

Dialogue Management:
Confirmation

�  Miscommunication common in SDS
�  “Error spirals” of sequential errors

�  Highly problematic

�  Recognition, recovery crucial

�  Confirmation strategies can detect, mitigate
�  Explicit confirmation:

Dialog Example

Travel Planning

Dialogue Management:
Confirmation

�  Miscommunication common in SDS
�  “Error spirals” of sequential errors

�  Highly problematic

�  Recognition, recovery crucial

�  Confirmation strategies can detect, mitigate
�  Explicit confirmation:

�  Ask for verification of each input

�  Implicit confirmation:

Dialogue Management:
Confirmation

�  Miscommunication common in SDS
�  “Error spirals” of sequential errors

�  Highly problematic

�  Recognition, recovery crucial

�  Confirmation strategies can detect, mitigate
�  Explicit confirmation:

�  Ask for verification of each input

�  Implicit confirmation:
�  Include input information in subsequent prompt

Confirmation Strategies
�  Explicit:

Confirmation Strategy
�  Implicit:

Pros and Cons
�  Grounding of user input

�  Weakest grounding
�  I.e. continued att’n, next relevant contibution

Pros and Cons
�  Grounding of user input

�  Weakest grounding insufficient
�  I.e. continued att’n, next relevant contibution

�  Explicit:

Pros and Cons
�  Grounding of user input

�  Weakest grounding insufficient
�  I.e. continued att’n, next relevant contibution

�  Explicit: highest: repetition
�  Implicit:

Pros and Cons
�  Grounding of user input

�  Weakest grounding insufficient
�  I.e. continued att’n, next relevant contibution

�  Explicit: highest: repetition
�  Implicit: demonstration, display

�  Explicit:

Pros and Cons
�  Grounding of user input

�  Weakest grounding insufficient
�  I.e. continued att’n, next relevant contibution

�  Explicit: highest: repetition
�  Implicit: demonstration, display

�  Explicit:
�  Pro: easier to correct; Con: verbose, awkward, non-human

�  Implicit:

Pros and Cons
�  Grounding of user input

�  Weakest grounding insufficient
�  I.e. continued att’n, next relevant contibution

�  Explicit: highest: repetition
�  Implicit: demonstration, display

�  Explicit:
�  Pro: easier to correct; Con: verbose, awkward, non-human

�  Implicit:
�  Pro: more natural, efficient; Con: less easy to correct

Frame-based Systems:
Pros and Cons

�  Advantages
�  Relatively flexible input – multiple inputs, orders

�  Well-suited to complex information access (air)
�  Supports different types of initiative

�  Disadvantages
�  Ill-suited to more complex problem-solving

�  Form-filling applications

Richer Dialog Management
�  Alternative Dialog Management approaches

�  More flexible interaction, motivated by human-human

Richer Dialog Management
�  Alternative Dialog Management approaches

�  More flexible interaction, motivated by human-human

�  Information State
�  General interpretation of speech in terms of dialog acts

�  Similar to “speech acts”, e.g. statement, wh-q, yn-q, check,..

�  Model of knowledge, belief state of current dialog

Richer Dialog Management
�  Alternative Dialog Management approaches

�  More flexible interaction, motivated by human-human

�  Information State
�  General interpretation of speech in terms of dialog acts

�  Similar to “speech acts”, e.g. statement, wh-q, yn-q, check,..

�  Model of knowledge, belief state of current dialog

�  Statistical dialog management
�  Builds on reinforcement learning approaches (planning)
�  Aims to automatically learns best sequence of actions
�  Models uncertainty in system understanding of user

Designing Dialog
�  Apply user-centered design

Designing Dialog
�  Apply user-centered design

�  Study user and task: How?

Designing Dialog
�  Apply user-centered design

�  Study user and task: How?
�  Interview potential users, record human-human tasks

�  Study how the user interacts with the system

Designing Dialog
�  Apply user-centered design

�  Study user and task: How?
�  Interview potential users, record human-human tasks

�  Study how the user interacts with the system
�  But it’s not built yet….

Designing Dialog
�  Apply user-centered design

�  Study user and task: How?
�  Interview potential users, record human-human tasks

�  Study how the user interacts with the system
�  But it’s not built yet….

�  Wizard-of-Oz systems: Simulations

�  User thinks they’re interacting with a system, but it’s
driven by a human

�  Prototypes

Designing Dialog
�  Apply user-centered design

�  Study user and task: How?
�  Interview potential users, record human-human tasks

�  Study how the user interacts with the system
�  But it’s not built yet….

�  Wizard-of-Oz systems: Simulations
�  User thinks they’re interacting with a system, but it’s

driven by a human
�  Prototypes

�  Iterative redesign:
�  Test system: see how users really react, what problems

occur, correct, repeat

SDS Evaluation
�  Goal: Determine overall user satisfaction

�  Highlight systems problems; help tune

SDS Evaluation
�  Goal: Determine overall user satisfaction

�  Highlight systems problems; help tune

�  Classically: Conduct user surveys

SDS Evaluation
�  Goal: Determine overall user satisfaction

�  Highlight systems problems; help tune

�  Classically: Conduct user surveys

SDS Evaluation
�  User evaluation issues:

SDS Evaluation
�  User evaluation issues:

�  Expensive; often unrealistic; hard to get real user to do

�  Create model correlated with human satisfaction

�  Criteria:

SDS Evaluation
�  User evaluation issues:

�  Expensive; often unrealistic; hard to get real user to do

�  Create model correlated with human satisfaction

�  Criteria:
�  Maximize task success

�  Measure task completion: % subgoals; Kappa of frame values

�  Minimize task costs
�  Efficiency costs: time elapsed; # turns; # error correction turns

�  Quality costs: # rejections; # barge-in; concept error rate

PARADISE Model

PARADISE Model
�  Compute user satisfaction with questionnaires

�  Extract task success and costs measures from
corresponding dialogs
�  Automatically or manually

�  Perform multiple regression:
�  Assign weights to all factors of contribution to Usat
�  Task success, Concept accuracy key

�  Allows prediction of accuracy on new dialog

Information State Models
�  Challenges in dialog management

�  Difficult to evaluate
�  Hard to isolate from implementations

�  Integration inhibits portability

�  Wide gap between theoretical and practical models
�  Theoretical: logic-based, BDI, plan-based, attention/

intention

�  Practical: mostly finite-state or frame-based

�  Even if theory-consistent, many possible implementations

�  Implementation dominates

Why the Gap?
�  Theories hard to implement

�  Underspecified

�  Overly complex, intractable

�  e.g. inferring all user
intents

�  Theories hard to compare
�  Employ diff’t basic units

�  Disagree on basic structure

�  Implementation is hard
�  Driven by technical

limitations, optimizations

�  Driven by specific tasks

�  Most approaches simplistic
�  Not focused on model

details

Information State Approach
�  Approach to formalizing dialog theories

�  Toolkit to support implementation (Trindikit)
�  Designed to abstract out dialog theory components

�  Example systems & related tools

Information State
Architecture

�  Simple ideas, complex execution

Information State Theory of
Dialog

�  Components:
�  Informational components:

�  Common context and internal models (belief, goals, etc)
�  Formal representations:

�  Dialog moves: recognition and generation
�  Trigger state updates

�  Update rules:
�  Describe update given current state, moves, etc

�  Update strategy:
�  Method for selecting rules if more than one applies

�  Simple or complex

Example Dialog
�  S: Welcome to the travel agency!
�  U: flights to paris
�  S: Okay, you want to know about price. A flight. To

Paris. Let’s see. What city do you want to go from?

Example Update Rule

Implementation
�  Dialog Move Engine (DME)

�  Implements an information state dialog model
�  Observes/interprets moves
�  Updates information state based on moves
�  Generates new moves consistent with state

�  Full system requires: DME+
�  Input/output components
�  Interpretation: determine what move made
�  Generation: produce output for ‘next move’
�  Control system to manage components

Trindikit Architecture

Multi-level Architecture
�  Separates types of design expertise, knowledge

�  Domain & language resources à Domain system

�  Dialog theory à Abstract DME
�  IS, update rules, etc

�  Software Engineering à Trindikit
�  basic types, control

OpenDial
�  Modern Java-based implementation

�  Significantly influenced by information structure
model

�  Modeling uses declarative XML framework

�  Supports probabilistic models based on Bayes Nets

�  Hooks to Nuance ASR

�  http://www.opendial-toolkit.net

Dialogue Acts
�  Extension of speech acts

�  Adds structure related to conversational phenomena
�  Grounding, adjacency pairs, etc

�  Many proposed tagsets
�  We’ll see taxonomies soon

Dialogue Act Interpretation
�  Automatically tag utterances in dialogue

�  Some simple cases:
�  YES-NO-Q: Will breakfast be served on USAir 1557?

�  I don’t care about lunch.
�  Show me flights from L.A. to Orlando

Dialogue Act Interpretation
�  Automatically tag utterances in dialogue

�  Some simple cases:
�  YES-NO-Q: Will breakfast be served on USAir 1557?

�  Statement: I don’t care about lunch.
�  Show me flights from L.A. to Orlando

Dialogue Act Interpretation
�  Automatically tag utterances in dialogue

�  Some simple cases:
�  YES-NO-Q: Will breakfast be served on USAir 1557?

�  Statement: I don’t care about lunch.
�  Command: Show me flights from L.A. to Orlando

�  Is it always that easy?
�  Can you give me the flights from Atlanta to Boston?

�  Yeah.

Dialogue Act Interpretation
�  Automatically tag utterances in dialogue

�  Some simple cases:
�  YES-NO-Q: Will breakfast be served on USAir 1557?

�  Statement: I don’t care about lunch.
�  Command: Show me flights from L.A. to Orlando

�  Is it always that easy?
�  Can you give me the flights from Atlanta to Boston?

�  Yeah.
�  Depends on context: Y/N answer; agreement; back-channel

Dialogue Act Recognition
�  How can we classify dialogue acts?

�  Sources of information:

Dialogue Act Recognition
�  How can we classify dialogue acts?

�  Sources of information:
�  Word information:

�  Please, would you: request; are you: yes-no question

Dialogue Act Recognition
�  How can we classify dialogue acts?

�  Sources of information:
�  Word information:

�  Please, would you: request; are you: yes-no question

�  N-gram grammars

�  Prosody:

Dialogue Act Recognition
�  How can we classify dialogue acts?

�  Sources of information:
�  Word information:

�  Please, would you: request; are you: yes-no question

�  N-gram grammars

�  Prosody:
�  Final rising pitch: question; final lowering: statement

�  Reduced intensity: Yeah: agreement vs backchannel

Dialogue Act Recognition
�  How can we classify dialogue acts?

�  Sources of information:
�  Word information:

�  Please, would you: request; are you: yes-no question

�  N-gram grammars

�  Prosody:
�  Final rising pitch: question; final lowering: statement

�  Reduced intensity: Yeah: agreement vs backchannel

�  Adjacency pairs:

Dialogue Act Recognition
�  How can we classify dialogue acts?

�  Sources of information:
�  Word information:

�  Please, would you: request; are you: yes-no question
�  N-gram grammars

�  Prosody:
�  Final rising pitch: question; final lowering: statement
�  Reduced intensity: Yeah: agreement vs backchannel

�  Adjacency pairs:
�  Y/N question, agreement vs Y/N question, backchannel
�  DA bi-grams

HW #2
�  Build a basic dialog system

�  Using a standard framework
�  Probably VoiceXML

�  Work through system tutorial/”Hello world” example

�  Implement System-initiative weather interface

�  Implement revised Mixed-initiative system

VoiceXML

VoiceXML
�  W3C standard for voice interfaces

�  XML-based ‘programming’ framework for speech systems
�  Provides recognition of:

�  Speech, DTMF (touch tone codes)

VoiceXML
�  W3C standard for voice interfaces

�  XML-based ‘programming’ framework for speech systems
�  Provides recognition of:

�  Speech, DTMF (touch tone codes)

�  Provides output of synthesized speech, recorded audio

VoiceXML
�  W3C standard for voice interfaces

�  XML-based ‘programming’ framework for speech systems
�  Provides recognition of:

�  Speech, DTMF (touch tone codes)

�  Provides output of synthesized speech, recorded audio

�  Supports recording of user input

VoiceXML
�  W3C standard for voice interfaces

�  XML-based ‘programming’ framework for speech systems
�  Provides recognition of:

�  Speech, DTMF (touch tone codes)

�  Provides output of synthesized speech, recorded audio

�  Supports recording of user input

�  Enables interchange between voice interface, web-based apps

VoiceXML
�  W3C standard for voice interfaces

�  XML-based ‘programming’ framework for speech systems
�  Provides recognition of:

�  Speech, DTMF (touch tone codes)

�  Provides output of synthesized speech, recorded audio

�  Supports recording of user input

�  Enables interchange between voice interface, web-based apps

�  Structures voice interaction

VoiceXML
�  W3C standard for voice interfaces

�  XML-based ‘programming’ framework for speech systems
�  Provides recognition of:

�  Speech, DTMF (touch tone codes)

�  Provides output of synthesized speech, recorded audio

�  Supports recording of user input

�  Enables interchange between voice interface, web-based apps

�  Structures voice interaction

�  Can incorporate Javascript/PHP/etc for functionality

Capabilities
�  Interactions:

�  Default behavior is FST-style, system initiative

Capabilities
�  Interactions:

�  Default behavior is FST-style, system initiative

�  Can implement frame-based mixed initiative

Capabilities
�  Interactions:

�  Default behavior is FST-style, system initiative

�  Can implement frame-based mixed initiative

�  Support for sub-dialog call-outs

Speech I/O
�  ASR:

�  Supports speech recognition defined by
�  Grammars

�  Trigrams

�  Domain managers: credit card nos etc

Speech I/O
�  ASR:

�  Supports speech recognition defined by
�  Grammars

�  Trigrams

�  Domain managers: credit card nos etc

�  TTS:
�  <ssml> markup language
�  Allows choice of: language, voice, pronunciation
�  Allows tuning of: timing, breaks

Simple VoiceXML Example
�  Minimal form:

Basic VXML Document
�  Main body: <form></form>

�  Sequence of fields: <field></field>

Basic VXML Document
�  Main body: <form></form>

�  Sequence of fields: <field></field>
�  Correspond to variable storing user input

�  <field name=“transporttype”>

Basic VXML Document
�  Main body: <form></form>

�  Sequence of fields: <field></field>
�  Correspond to variable storing user input

�  <field name=“transporttype”>

�  Prompt for user input
�  <prompt> Please choose airline, hotel, or rental car.</prompt>

�  Can include URL for recorded prompt, backs off

Basic VXML Document
�  Main body: <form></form>

�  Sequence of fields: <field></field>
�  Correspond to variable storing user input

�  <field name=“transporttype”>

�  Prompt for user input
�  <prompt> Please choose airline, hotel, or rental car.</prompt>

�  Can include URL for recorded prompt, backs off

�  Specify grammar to recognize/interpret user input
�  <grammar>[airline hotel “rental car”]</grammar>

Other Field Elements
�  Context-dependent help:

�  <help>Please select activity.</help>

Other Field Elements
�  Context-dependent help:

�  <help>Please select activity.</help>

�  Action to be performed on input:
�  <filled>

�  <prompt>You have chosen <value exp=“transporttype”>.

�  </prompt></filled>

Control Flow
�  Default behavior:

�  Step through elements of form in document order

Control Flow
�  Default behavior:

�  Step through elements of form in document order

�  Goto allows jump to:
�  Other form: <goto next=“weather.xml”>
�  Other position in form: <goto next=“#departdate”>

� 

Control Flow
�  Default behavior:

�  Step through elements of form in document order

�  Goto allows jump to:
�  Other form: <goto next=“weather.xml”>
�  Other position in form: <goto next=“#departdate”>

�  Conditionals:
�  <if cond=“varname==‘air’”>….</if>

Control Flow
�  Default behavior:

�  Step through elements of form in document order

�  Goto allows jump to:
�  Other form: <goto next=“weather.xml”>
�  Other position in form: <goto next=“#departdate”>

�  Conditionals:
�  <if cond=“varname==‘air’”>….</if>

�  Guards:
�  Default: Skip field if slot value already entered

General Interaction
�  ‘Universals’:

�  Behaviors used by all apps, specify particulars

�  Pick prompts for conditions

General Interaction
�  ‘Universals’:

�  Behaviors used by all apps, specify particulars

�  Pick prompts for conditions

�  <noinput>:
�  No speech timeout

General Interaction
�  ‘Universals’:

�  Behaviors used by all apps, specify particulars

�  Pick prompts for conditions

�  <noinput>:
�  No speech timeout

�  <nomatch>:
�  Speech, but nothing valid recognized

General Interaction
�  ‘Universals’:

�  Behaviors used by all apps, specify particulars
�  Pick prompts for conditions

�  <noinput>:
�  No speech timeout

�  <nomatch>:
�  Speech, but nothing valid recognized

�  <help>:
�  General system help prompt

Complex Interaction
�  Preamble, grammar:

Mixed Initiative
�  With guard defaults

Complex Interaction
�  Preamble, external grammar:

Multi-slot Grammar
�  <?xml version= "1.0"?>

 <grammar xml:lang="en-US" root = "TOPLEVEL">
 <rule id="TOPLEVEL" scope="public">
 <item>

 <!-- FIRST NAME RETURN -- >
 <item repeat="0-1">
 <ruleref uri="#FIRSTNAME"/>
 <tag>out.firstNameSlot=rules.FIRSTNAME.firstNameSubslot;</tag>
 </item>
 <!-- MIDDLE NAME RETURN -->
 <item repeat="0-1">
 <ruleref uri="#MIDDLENAME"/>
 <tag>out.middleNameSlot=rules.MIDDLENAME.middleNameSubslot;</tag>
 </item>
 <!-- LAST NAME RETURN -- >
 <ruleref uri="#LASTNAME"/>
 <tag>out.lastNameSlot=rules.LASTNAME.lastNameSubslot;</tag>
 </item>
 <!-- TOP LEVEL RETURN-->
 <tag> out.F_1= out.firstNameSlot + out.middleNameSlot + out.lastNameSlot; </tag>
 </rule>

Multi-slot Grammar II
�  <rule id="FIRSTNAME" scope="public">

 <one-of>
 <item> matt<tag>out.firstNameSubslot="matthew";</tag></item>
 <item> dee <tag> out.firstNameSubslot="dee ";</tag></item>
 <item> jon <tag> out.firstNameSubslot="jon ";</tag></item>
 <item> george <tag>out.firstNameSubslot="george ";</tag></item>
 <item> billy <tag> out.firstNameSubslot="billy ";</tag></item>
 </one-of>
 </rule>
 <rule id="MIDDLENAME" scope="public">
 <one-of>
 <item> bon <tag>out.middleNameSubslot="bon ";</tag></item>
 <item> double ya <tag> out.middleNameSubslot="w ";</tag></item>
 <item> dee <tag> out.middleNameSubslot="dee ";</tag></item>
 </one-of>
 </rule>
 <rule id="LASTNAME" scope="public">
 <one-of>
 <item> henry <tag> out.lastNameSubslot="henry "; </tag></item>
 <item> ramone <tag> out.lastNameSubslot="dee "; </tag></item>
 <item> jovi <tag> out.lastNameSubslot="jovi "; </tag></item>
 <item> bush <tag> out.lastNameSubslot=""bush "; </tag></item>
 <item> williams <tag> out.lastNameSubslot="williams "; </tag></item>
 </one-of>
 </rule>

</grammar>

Augmenting VoiceXML
�  Don’t write XML directly

�  Use php or other system to generate VoiceXML
�  Used in ‘Let’s Go Dude’ bus info system

Augmenting VoiceXML
�  Don’t write XML directly

�  Use php or other system to generate VoiceXML
�  Used in ‘Let’s Go Dude’ bus info system

�  Pass input to other web services
�  i.e. to RESTful services

Augmenting VoiceXML
�  Don’t write XML directly

�  Use php or other system to generate VoiceXML
�  Used in ‘Let’s Go Dude’ bus info system

�  Pass input to other web services
�  i.e. to RESTful services

�  Access web-based audio for prompts

