1. Dowling 1.6

Failures could be due to corrosion from salt water or fatigue from cyclic loading. Redesign steps:

Select new material that is more corrosion/fatigue resistant

Perform analysis for stresses and fatigue

Make and test prototype components (reduces costs over testing full assembly) Durability testing for corrosion as well as look for stress concentrations

Incorporate safety factors and/or life factor into analysis

3.11 Cantilever beam, circular cross sec.

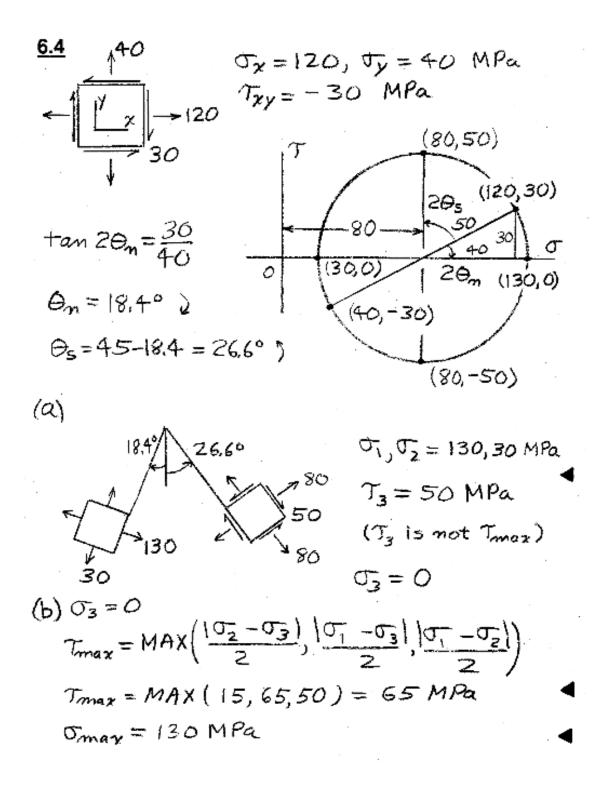
$$V_{max} = \frac{PL^{3}}{3EI}, I = \frac{\pi r^{4}}{4} \quad (Figs. A.4, A.2)$$
Requirements: L, P, V_max
Geometry: r Material: P, E
Minimize: (a) $m = \pi r^{2} L P$
(b) cost, C_m m

$$V_{max} = \frac{PL^{3}}{3E} \frac{4}{\pi r^{4}}, r^{2} = \left(\frac{4PL^{3}}{3\pi E V_{max}}\right)^{0.5}$$

$$m = \pi L P \left(\frac{4PL^{3}}{3\pi E V_{max}}\right)^{0.5} = f_{1}(Req.) f_{2}(Mat'L)$$

$$m = \left[2L^{2.5}\left(\frac{\pi P}{3V_{max}}\right)^{0.5}\right] \left[\frac{P}{\sqrt{E}}\right] = f_{1} f_{2}$$
For the Table 3./3 materials, use the

properties given to calculate: (a) $f_2 = P/VE$, (b) $f_2 = C_m P/VE$


)	Material	Modulus	Density	Mass f ₂	Mass
		E, GPa	ρ, g/c m ³	ρ/Ε ^{ο.š}	Rank
	1020 steel	203	7.9	0.554	7
	4340 steel	207	7.9	0.549	6
	7075 AI	71	2.7	0.320	3
	Ti-6-4	117	4.5	0.416	4
	PC	2.4	1.2	0.775	8
	Pine	12.3	0.51	0.145	1
	GFRP	21	2.0	0.436	5
	CFRP	76	1.6	0.184	2

(3.11, p.2) Pine has the lowest mass, and CFRP the second lowest.

(b)	Material	Rel Cost	Cost f2	Cost
		C _m	$C_m \rho / E^{0.5}$	Rank
	1020 steel	. 1	0.554	2
	4340 steel	3	1.647	3
	7075 AI	6	1.923	4
	Ti-6-4	45	18.721	7
	PC	5	3.873	5
	Pine	1.5	0.218	1
	GFRP	10	4.364	6
	CFRP	200	36.707	8

Pine also has the lowest cost, but now 1020 steel is second.

(c) If pine is suitable, it is the clear choice. If not, then 7075 Al or 4340 steel might be reasonable.

