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Chapter 1

Introduction

1.1 Study Guide

• A fluid is defined as a material that deforms continuously and permanently under the
application of a shearing stress.

• The pressure at a point in a fluid is independent of the orientation of the surface
passing through the point; the pressure is isotropic.

• The force due to a pressure p acting on one side of a small element of surface dA
defined by a unit normal vector n is given by −pndA.

• Pressure is transmitted through a fluid at the speed of sound.

• The units we use depend on whatever system we have chosen, and they include quan-
tities like feet, seconds, newtons and pascals. In contrast, a dimension is a more
abstract notion, and it is the term used to describe concepts such as mass, length and
time.

• The specific gravity (SG) of a solid or liquid is the ratio of its density to that of water
at the same temperature.

• A Newtonian fluid is one where the viscous stress is proportional to the rate of strain
(velocity gradient). The constant of proportionality is the viscosity, µ, which is a
property of the fluid, and depends on temperature.

• At the boundary between a solid and a fluid, the fluid and solid velocities are equal;
this is called the “no-slip condition.” As a consequence, for large Reynolds numbers
(>> 1), boundary layers form close to the solid boundary. In the boundary layer,
large velocity gradients are found, and so viscous effects are important.

• At the interface between two fluids, surface tension may become important. Surface
tension leads to the formation of a meniscus, drops and bubbles, and the capillary rise
observed in small tubes, because surface tension can resist pressure differences across
the interface.

1.2 Worked Examples

Example 1.1: Units, and converting between units

Consider a rectangular block with dimensions 300mm × 100mm × 25mm, of mass 10 kg,
resting on a surface (Figure 1.1). The pressure acting over the area of contact can be found

1



2 CHAPTER 1. INTRODUCTION

as follows.

Solution: Since pressure is a stress, it has dimensions of force per unit area. When in
position (a), the force exerted on the table is equal to the weight of the block (= mass ×
gravitational acceleration = 98N), and the average pressure over the surface in contact with
the table is given by

98

100× 25× 10−6
N/m2 = 39, 200Pa

In position (b), the force exerted on the table is still equal to 98N , but the average pres-
sure over the surface in contact with the table is reduced to 98

/(
300× 25× 10−6

)
N/m2,

that is, 13, 067Pa.

We can repeat this example using engineering units. Let’s take a rectangular block,
made of a different material with dimensions 12 in. × 4 in. × 1 in., of mass 20 lbm (this is
similar to the case shown in Figure 1.1). Find the pressure acting over the area in the BG
system.

Solution: The unit lbm is not part of the engineering system of units (see Table 1.1), so
we first convert it to slugs, where

mass in slugs =
mass in lbm

32.2
=

20

32.2
slug = 0.622 slug

So 20 lbm = 0.622 slug.
When in position (a), the force exerted on the table is equal to the weight of the block

(= mass × gravitational acceleration = 20 lbf ), and the average pressure over the surface
in contact with the table is 20/(4× 1) lbf/in.

2, that is, 5 psi. In position (b), the force
exerted on the table is still equal to 20 lbf , but now the average pressure over the surface
in contact with the table is 20/(12× 1) lbf/in.

2, that is, 1.67 psi.

Example 1.2: Hydraulic presses and hoists

A hydraulic press uses the transmissibility of fluid pressure to produce large forces. A
simple press consists of two connected cylinders of significantly different size, each fitted
with a piston and filled with either oil or water (see Figure 1.2). The pressures produced by
hydraulic devices are typically hundreds or thousands of psi, so that the weight of the fluid
can usually be neglected. If there is an unobstructed passage connecting the two cylinders,
then p1 ≈ p2. Since pressure = (magnitude of force)/area,

F

A
=
f

a
, so that F =

A

a
f

Figure 1.1: Pressure exerted by a weight resting on a surface. All dimensions in millimeters.



1.2. WORKED EXAMPLES 3

Figure 1.2: Hydraulic press.

Figure 1.3: Hydraulic drum brake system.

The pressure transmission amplifies the applied force; a hydraulic press is simply a hydraulic
lever.

A hydraulic hoist is basically a hydraulic press that is turned around. In a typical
garage hoist, compressed air is used (instead of an actuating piston) to force oil through the
connecting pipe into the cylinder under a large piston, which supports the car. A lock-valve
is usually placed in the connecting pipe, and when the hoist is at the right height the valve
is closed, holding the pressure under the cylinder and maintaining the hoist at a constant
height.

A similar application of the transmissibility of pressure is used in hydraulic brake systems.
Here, the force is applied by a foot pedal, increasing the pressure in a “master” cylinder,
which in turn transmits the pressure to each brake or “slave” cylinder (Figure 1.3). A brake
cylinder has two opposing pistons, so that when the pressure inside the cylinder rises the
two pistons move in opposite directions. In a drum brake system, each brake shoe is pivoted
at one end, and attached to one of the pistons of the slave cylinder at the other end. As the
piston moves out, it forces the brake shoe into contact with the brake drum. Similarly, in
a disk brake system, there are two brake pads, one on each side of the disk, and the brake
cylinder pushes the two brake pads into contact with the disk.

Example 1.3: Finding the pressure in a fluid

Consider the piston and cylinder illustrated in Figure 1.4. If the piston had a mass m = 1 kg,
and an area A = 0.01m2, what is the pressure p of the gas in the cylinder? Atmospheric
pressure pa acts on the outside of the container.
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Solution: The piston is not moving so that it is in equilibrium under the force due to its
own weight, the force due to the gas pressure inside of the piston (acting up), and the force
due to air pressure on the outside of the piston (acting down). The weight of the piston
= mg, where g is the acceleration due to gravity (9.8m/s2, or 32.1 ft/s2). The force due to
pressure = pressure × area of piston. Therefore

pA− paA = mg = 1 kg × 9.8m2/s = 9.8N

That is,

p− pa =
9.8

0.01

N

m2
= 980Pa

where Pa = pascal = N/m2.
What is this excess pressure in psi (pounds per square inch)? A standard atmosphere

has a pressure of 14.7 lbf/in.
2, or 101, 325Pa (see Table 2.1). Therefore, 980Pa is equal to

14.7× 980/101325 psi = 0.142 psi.

Example 1.4: Force due to pressure

In the center of a hurricane, the pressure can be very low. Find the force acting on the
wall of a house, measuring 10 ft by 20 ft, when the pressure inside the house is 30.0 in of
mercury, and the pressure outside is 26.3 in. of mercury. Express the answer in lbf and N .

Solution: A mercury barometer measures the local atmospheric pressure. A standard
atmosphere has a pressure of 14.7 lbf/in.

2, or 101, 325Pa or N/m2 Table 2.1). When
a mercury barometer measures a standard atmosphere, it shows a reading of 760mm or
29.92 in. To find the resultant force, we need to find the difference in pressure on the two
sides of the wall and multiply it by the area of the wall, A. That is,

Force on wall, acting out = (pinside − poutside)A

=

(
30.0− 26.3

29.92
× 14.7

)
lbf
in.2

× 10 ft× 20 ft× 12
in.

ft
× 12

in

ft

= 52, 354 lbf

= 52, 354× 4.448
N

lbf
lbf

= 232, 871 N

We see that the force acting on the wall is very large, and without adequate strengthening,
the wall can explode outward.

Example 1.5: Stresses in a pipe wall

Consider a section through a pipe of outside radius R and inside radius r, as shown in
Figure 1.4. If the yield stress of the material is τy, what is the maximum gauge pressure
pmax that can be contained in the pipe?

Solution: For a uniform pressure inside the pipe, the force dF acting radially outward on
a segment of length dz with included angle θ is

dF = pressure × area

= prθ dz

Since the pipe is in static equilibrium (it is not tending to move), this force is exactly
counterbalanced by the forces set up within the pipe material. If the stress is assumed to
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Figure 1.4: Stresses in a pipe wall due to pressure.

be uniform across the pipe wall thickness, then

dF = wall stress × area

= 2τ (R− r) sin 1
2θ dz

Therefore,
p rθ dz = 2τ (R− r) sin 1

2θ dz

For small angles, sin( 1
2θ) ≈

1
2θ, so that

p =
(R− r)

r
τ

and

pmax =
t

r
τy

where t is the wall thickness. In practice, the maximum allowable stress is considerably lower
because of prescribed factors of safety, allowances for the way the pipe was manufactured
and heat treated, possible corrosion effects, and the addition of fittings and joints, which all
tend to weaken the pipe.

Example 1.6: Bulk modulus and compressibility

(a) Calculate the fractional change in volume of a fixed mass of seawater as it moves from
the surface of the ocean to a depth of 5000 ft.
(b) Calculate the fractional change in density of a fixed mass of air as it moves isothermally
from the bottom to the top of the Empire State Building (a height of 350m, equivalent to
a change in pressure of about 4100Pa).

Solution: For part (a), from equation 1.1,

dp = −K dV

V

so that the fractional change in volume is given by

dV

V
= −dp

K
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For seawater, the bulk modulus K = 2.28×109N/m2 (see Table Appendix-C9). The change
in pressure due to the change in depth may be found as follows. One standard atmosphere
is equal to 101, 325N/m2, but it can also be expressed in terms of an equivalent height of
water, equal to 33.90 ft (see Table 2.1). Therefore

dV

V
= −dp

K
=

5000
33.90 × 101, 325N/m2

2.28× 109N/m2
= 0.0066 = 0.66%

We see that seawater is highly incompressible.
For part (b), we use the ideal gas law (equation 1.3), where

p = ρRT

with R = 287.03m2/s2K for air. When the temperature is constant, we obtain

dp = RTdρ

so that
dp

p
=
dρ

ρ

Therefore,
dρ

ρ
=

4100

101325
= 0.0405 = 4.05%

We see that air is much more compressible than seawater.

Example 1.7: Bulk modulus and compressibility

In Section 1.5, we considered pushing down on the handle of a bicycle pump to decrease
its air volume by 50% (Figure 1.7). If the air was initially at atmospheric pressure and
20◦C, and its temperature remains constant, estimate the bulk modulus of air, and the
force required to be applied on the handle if if the pump has an internal diameter of 1.25 in.

Solution: Halving the air volume at constant temperature increases its density and pressure
by a factor of two. Since the air was initially at atmospheric pressure, its pressure increases
by one atmosphere (14.696 psi, or 101, 325Pa), and its density increases by an amount equal
to 1.204 kg/m3 (see Table Appendix-C.1). Using equation 1.2,

K = ρ
dp

dρ
= 1.204

101325

1.204
Pa = 101, 325Pa

Also, with a pump diameter of 1.25 in., the required force is

14.7 psi× 1
4π (1.25 in)

2
lbf = 18.1 lbf

Example 1.8: Compressibility and Mach number

(a) Calculate the change in pressure ∆p of water as it increases its speed from 0 to 30mph
at a constant height.
(b) What air speed V corresponds to M = 0.6 when the air temperature is 270K?

Solution: For part (a), using equation 1.4,

∆p = − 1
2ρ
(
V 2

2 − V 2
1

)
In this case,

∆p = − 1
2ρV

2
2
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where 1000 kg/m3 and V2 = 30mph = (30/2.28)m/s (Appendix B). Hence,

∆p = − 1
2 × 1000×

(
30

2.28

)2

Pa = 86, 565Pa

That is, the change in pressure is a little less than one atmosphere.
For part (b), from equation 1.6

a =
√
γRT

For air, R = 287.03m2/s2K, and γ = 1.4. Since M = V/a,

V = aM = 0.6×
√

1.4× 287.03× 270m/s = 197.6m/s

Example 1.9: Dynamic and kinematic viscosity

What are the dynamic and kinematic viscosities of air at 20◦C? 60◦C? What are the values
for water at these temperatures?

Solution: From Table Appendix-C.1, we find that for air at 20◦C, µ = 18.2×10−6N s/m2

and ν = 15.1× 10−6m2/s. At 60◦C, µ = 19.7× 10−6N s/m2 and ν = 18.6× 10−6m2/s.
From Table Appendix-C.3, we find that for water at 20◦C, µ = 1.002 × 10−3N s/m2

and ν = 1.004×10−6m2/s. At 60◦C, µ = 0.467×10−3N s/m2 and ν = 0.475×10−6m2/s.
Note that: (a) the viscosity of air increases with temperature, while the viscosity of

water decreases with temperature; (b) the variation with temperature is more severe for
water than for air; and (c) the dynamic viscosity of air is much smaller than that of water,
but its kinematic viscosity is much larger.

Example 1.10: Forces due to viscous stresses

Consider plane Couette flow, as shown in Figure 1.14. Note that if there is no force acting
on the top plate, it will slow down and eventually stop because of the viscous stress exerted
by the fluid on the plate. That is, if the plate is to keep moving at a constant speed, the
viscous force set up by the shearing of the fluid must be exactly balanced by the applied
force. Find the force required to keep the top plate moving at a constant speed U in terms
of the fluid viscosity µ, U , its area A, and the gap distance h. Also find the power required.

Solution: The stress τw required to keep the plate in constant motion is equal to the viscous
stress exerted by the fluid on the top plate. For a Newtonian fluid, we have

τw = µ
du

dy

∣∣∣∣
wall

so that

F = τwA = µ
U

h
A

We see that as the velocity and the viscosity increase, the force increases, as expected, and
as the gap size increases, the force decreases, again as expected. Also,

µ =
hτwA

U
=
hF

U

We can use this result to determine the viscosity of a fluid by measuring F at a known speed
and gap width.

The power required to drive the top plate is given by the applied force times the plate
velocity. Hence,

power = FU = τwAU = µA
U2

h
which shows that the power is proportional to the velocity squared.
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Example 1.11: Viscous stress in a boundary layer

A particular laminar boundary layer velocity profile is given by

u

Ue
= 2

(y
δ

)
− 2

(y
δ

)2

for y ≤ δ so that at y = δ, u = Ue, where δ is the boundary layer thickness, and Ue is the
freestream velocity, that is, the velocity outside the boundary layer region. Find the shear
stress τ as a function of the distance from the wall, y.

Solution: We have

τ = µ
du

dy

so that

τ = µ
d

dy

[
Ue

(
2
(y
δ

)
− 2

(y
δ

)2
)]

= µUe

(
2

δ
− 2y

δ2

)
=

2µUe
δ

(
1− y

δ

)
At the wall, where y = 0, τ = τw, and so

τw =
2µUe
δ

Example 1.12: Reynolds number

(a) Find the Reynolds number of a water flow at an average speed V = 20 ft/s at 60◦F in
a pipe with a diameter D = 6 in.
(b) If the flow is laminar at Reynolds numbers below 2300, what is the maximum speed at
which we can expect to see laminar flow?

Solution: For part (a), we have the Reynolds number for pipe flow

Re =
ρV D

ν
=
V D

ν

where ν is the kinematic viscosity (= µ/ρ). Using Table Appendix-C.4, we find that for
water at 60◦F , ν = 1.21× 10−5 ft2/s, so that

Re =
V D

ν
=

20 ft/s× 0.5 ft

1.21× 10−5 ft2/s
= 8.26× 105

For part (b), we have

V max =
Remax × ν

D
=

2300× 1.21× 10−5 ft2/s

0.5 ft
= 0.056 ft/s

so that the flow is laminar for velocities less than 0.056 ft/s (0.67 in/s or 15mm/s). This
is a very slow flow. In most practical applications on this scale, such as in domestic water
supply systems, we would therefore expect to see turbulent flow.
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Problems

1.1 A body requires a force of 400N to accelerate at a rate of 1.0 m/s2. Find the mass
of the body in kilograms, slugs, and lbm.

1.2 What volume of fresh water at 20◦C will have the same weight as a cubic foot of
lead? Oak? Seawater? Air at atmospheric pressure and 100◦C? Helium at atmospheric
pressure and 20◦C?

1.3 What is the weight of one cubic foot of gold? Pine? Water at 40◦F? Air at
atmospheric pressure and 60◦F? Hydrogen at 7 atmospheres of pressure and 20◦C?

1.4 What is the weight of 5000 liters of hydrogen gas at 20◦C and 100 atm on earth?
On the moon?

1.5 What is the specific gravity of gold? Aluminum? Seawater? Air at atmospheric
pressure and −20◦C? Argon at atmospheric pressure and 20◦C?

1.6 When the temperature changes from 20◦C to 30◦C at atmospheric pressure:
(a) By what percentage does the viscosity µ of air change?
(b) Of water?
(c) By what percentage does the kinematic viscosity ν of air change?
(d) Of water?

1.7 (a) Find the altitude (in meters) where the density of air has fallen to half its value
at sea level.
(b) Find the altitude (in meters) where the pressure has fallen to half its value at sea level.
(c) Why is the answer to part (a) different from the answer to part (b)?

1.8 How much will it cost to run a 10hp motor for 8hrs if 1 kW · hr costs 10 cents?

1.9 A scuba diving tank initially holds 0.25 ft3 of air at 3000 psi. If the diver uses the
air at a rate of 0.05 kg/min, approximately how long will the tank last? Assume that the
temperature of the gas remains at 20◦C.

1.10 A hollow cylinder of 30 cm diameter and wall thickness 20mm has a pressure of
100 atm acting on the inside and 1 atm acting on the outside. Find the stress in the cylinder
material.

1.11 What is the change in volume of 1 kilogram of fresh water kept at 5◦C as it moves
from a depth of 1m to a depth of 100m. Take the isothermal bulk modulus of water to be
2× 104 atm.

1.12 (a) Find the dynamic viscosity µ of water at 20C.
(b) What is the specific gravity of aluminum? Ethyl alcohol? Ice?
(c) Calculate the fractional change in volume of 1 kg of seawater at the ocean surface
compared to its volume at a depth of 1000 m.

1.13 A square submarine hatch 60 cm by 60 cm has 3.2 atm pressure acting on the outside
and 2.6 atm pressure acting on the inside. Find the resultant force acting on the hatch.

1.14 A Boeing 747 airplane has a total wing area of about 500m2. If its weight in
level cruise is 500, 000 lbf , find the average pressure difference between the top and bottom
surfaces of the wing, in psi and in Pa.
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1.15 (a) Estimate the average pressure difference between the bottom and the top of a
fully loaded (maximum take-off weight) Boeing 747 wing.
(b) Does this value change with altitude?
(c) What are the implications of your answer to 2(b)?

1.16 Find the force acting on the wall of a house in the eye of a hurricane, when the
pressure inside the house is 1, 000mbar, and the pressure outside is 910mbar. The wall
measures 3.5m by 8m. Express the answer in N and lbf .

1.17 The pressure at any point in the atmosphere is equal to the total weight of the air
above that point, per unit area. Given that the atmospheric pressure at sea level is about
105 Pa, and the radius of the earth is 6370 km, estimate the mass of all the air contained in
the atmosphere.

1.18 Estimate the change in pressure that occurs when still air at 100◦F and atmo-
spheric pressure is accelerated to a speed of 100mph at constant temperature. Neglect
compressibility effects.

1.19 For the previous problem, estimate the error in the calculation of the pressure
change due to compressibility. Assume an isothermal acceleration.

1.20 Compute the Mach number of a flow of air at a temperature of −50◦C moving at
a speed of 500mph.

1.21 Compute the Mach number of bullet fired into still air at a temperature of 60◦F at
a speed of 1500 ft/s.

1.22 An airplane of length 100 ft travels at 300 mph at an altitude of 20,000 ft.
(a) Find the Mach number.
(b) Find the Reynolds based on length.

1.23 A circular hockey puck of diameter D slides at a constant speed V at a height h
over a smooth surface. If the velocity distribution in the gap is linear, and the viscosity of
air is µ, find the force acting on the puck required to overcome viscous effects.

1.24 A boogy board of area 1m2 slides at a speed of 3m/s over the beach supported
on a film of water 3mm thick. If the velocity distribution in the film is linear, and the
temperature of the water is 30◦C, find the force applied to the board.

1.25 An experiment is performed where a plate of area A = 1m2 slides at a constant
velocity V = 1m/s over a stationary surface. The gap between the plates is h = 1mm,
and it is filled with a fluid of viscosity µ. If the force required overcome the viscous drag
opposing the motion of the plate is 1N , and the velocity gradient is observed to be linear,
what is the viscosity of the fluid?

1.26 A cylinder of radius r rotates concentrically inside a larger cylinder of radius R with
an angular velocity ω. The gap between the two cylinders is filled with a fluid of viscosity
µ. Find the force required to rotate the inner cylinder if the cylinders are of length L and
the velocity varies linearly across the gap.

1.27 A circular shaft of radius R1 and length L rotates concentrically within a stationary
cylindrical bearing of radius R2. The gap between the shaft and bearing is filled with an oil
of viscosity µ. If the velocity profile is linear, find the angular speed of the shaft in terms
of the torque T applied to the shaft and R1, R2, µ and L (torque is force times lever arm).
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Figure P1.28

1.28 The viscosity of a Newtonian liquid can be estimated using the instrument shown in
Figure P1.28. The outer cylinder rotates at an angular speed ω. If the torque (dimensions
of force times length) required to keep the inner cylinder stationary is T , and the velocity
distribution in the gap is linear, find an expression for the viscosity µ in terms of T , ω, H,
δ, and R.

1.29 A long cylinder of diameter d1 slides at a velocity U inside a long stationary tube
of diameter d2, so that the cylinder and tube are concentric. If the gap is filled with a fluid
of viscosity µ, and if the fluid velocity varies linearly across the (small) gap, find the force
per unit length required to keep the inner cylinder moving at a constant velocity.

1.30 A cylinder of length L and diameter D rotates concentrically in another cylinder of
the same length with diameter D + 2ε, where ε << D. A fluid of viscosity µ fills the gap.
The inner cylinder is driven by a motor so that it rotates at an angular speed ω, while the
outer cylinder remains fixed. If the velocity profile in the gap is linear, find (in terms of L,
D, ε, µ and ω):
(a) the torque (force times length) exerted on the outer cylinder, and
(b) the power expended by the motor.

1.31 A Taylor-Couette apparatus consists of an inner cylinder and an outer cylinder that
can rotate independently. The gap between the cylinders is filled with a Newtonian fluid.
For a particular experiment at 20◦C, we find that when the inner cylinder is held stationary
and a force of 0.985N is applied to the outer cylinder, the outer cylinder rotates at a speed
of 1Hz. Find the viscosity of the fluid, assuming that the velocity profile in the gap is
linear. The inner and outer cylinders have radii of 200mm and 150mm, respectively, and
the cylinders are 300mm long. Can you suggest which fluid is being tested?

1.32 A 10 cm cube of mass 2 kg, lubricated with SAE 10 oil at 20◦C (viscosity of 0.104N ·
s/m2), slides down a 10◦ inclined plane at a constant velocity. Estimate the speed of the
body if the oil film has a thickness of 1mm, and the velocity distribution in the film is
linear.

1.33 When water at 40◦F flows through a channel of height h, width W and length L
at low Reynolds number, the flow is laminar and the velocity distribution is parabolic, as
shown in Figure P1.33. When h = 2 in., W = 30 in., L = 10 ft, and the maximum velocity
is 1 ft/s:
(a) Calculate the Reynolds number based on the channel height and the maximum velocity.
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Figure P1.33

(b) Find the viscous stress at the wall τw, and the total viscous force acting on the channel,
assuming τw is constant.

1.34 Given that the mean free path of a given gas is inversely proportional to its density,
and that the mean free path of air at sea level is 0.089µm, find the mean free path at 30 km
altitude, and at 50 km altitude. Estimate the altitude where the mean free path is 5mm.
Can we apply the continuum approximation under these conditions?

1.35 By making reasonable estimates of characteristic speeds and lengths, estimate the
Reynolds number for the following:
(a) a professionally pitched baseball
(b) a shark swimming at full speed
(c) a passenger jet at cruise speed
(d) the wind flow around the Empire State Building
(e) methane (CH4) flowing in a 2m diameter pipe at 40 kg/s
(f) a mosquito flying in air.

1.36 Find the characteristic Reynolds number of a submarine of length 120m moving at
20m/s in water. If a 12:1 model is to be tested at the same Reynolds number, describe the
test conditions if you were to use
(a) water
(b) air at standard temperature and pressure
(c) air at 200 atmospheres and 20◦C (assume that the viscosity is not a function of pressure).

1.37 The largest artery in the body is the aorta. If the maximum diameter of the aorta
is 2 cm, and the maximum average velocity of the blood is 20 cm/s, determine if the flow
in the aorta is laminar or turbulent (assume that blood has the same density as water but
three times its viscosity — blood, after all, is thicker than water).

1.38 Find the height to which water at 300◦K will rise due to capillary action in a glass
tube 3mm in diameter.

1.39 A liquid at 10◦C rises to a height of 20mm in a 0.4mm glass tube. The angle of
contact is 45◦. Determine the surface tension of the liquid if its density is 1, 200 kg/m3.

1.40 What is the pressure inside a droplet of water 0.1mm diameter if the ambient
pressure is atmospheric?

1.41 A beer bubble has an effective surface tension coefficient of 0.073N/m. What is
the overpressure inside the bubble if it has a diameter of 1.0mm?

1.42 A glass ring has a circular cross-section of diameter d and it has a mass of 5 g. What
is the maximum value for d for the ring to continue to float on a water surface at 20◦C?



Chapter 2

Fluid Statics

2.1 Study Guide

• The hydrostatic equation, dp/dz = −ρg, expresses the pressure variation with depth,
where z is measured vertically up.

• For a constant density fluid, the pressure increases linearly with depth.

• Gauge pressure is the absolute pressure relative to the local atmospheric pressure, that
is, pg = p− patm.

• For fluids in rigid body motion, use Newton’s second law, where the pressure gradient
balances the inertial force acting on a fluid particle due to the total acceleration
(including gravity).

To find the resultant force acting on a submerged surface due to hydrostatic
pressure differences:

Step 1. Choose a coordinate system. It is best to choose a set which makes the task
of expressing the shape of the surface as straightforward as possible. Clearly show the
origin and direction of your coordinate system.

Step 2. Mark an element of area dA on the surface.

Step 3. Find the depth of dA, that is, its distance below the surface, measured
vertically down (that is, in the direction of the gravitational vector).

Step 4. Determine if it is possible to use gauge pressure instead of absolute pressure.
If the gauge pressure acting on dA is pg, then pg = p − pa = ρg × depth. Then the
force acting on dA is dF = pg × dA (if gauge pressure can be used).

Step 5. Integrate to find F . For a double integral, do the integral at a constant depth
first. The shape of the surface sets the limits of integration.

To find the point of action of the resultant force acting on a submerged surface
due to hydrostatic pressure differences, we take moments:

Step 1. Look for symmetry since this will always lead to simplifications. For instance,
in the example given above, F will act on y-axis so that x̄ = 0.

Step 2. Choose the axis about which to take moments (the x-axis in the example given
above). Then dM = y × dF , where y is the moment arm of dF about the x-axis, and
F × ȳ =

∫
dM =

∫
y × dF =

∫
ypg dA, (if gauge pressure can be used).

13
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Step 3. Integrate to find M . For a double integral, do the integral at a constant depth
first. The shape of the surface sets the limits of integration.

2.2 Worked Examples

Example 2.1: Density and specific gravity

(a) Find the density of a rectangular block with dimensions 300mm× 100mm× 25mm, of
mass 10 kg.
(b) Find the density of a rectangular block with dimensions 12 in. × 4 in. × 1 in., of mass
20 lbm. (c) Find the specific gravity of the density of the material in part (a).

Solution: For part (a)

ρ =
mass

volume
=

10

300× 100× 25× 10−9
kg/m3 = 13, 333 kg/m3

For part (b), the unit lbm is not part of the engineering system of units, so we first convert
it to slugs, where

mass in slugs =
mass in lbm

32.1739

Therefore,

ρ =
20× 12× 12× 12

32.2× 12× 4× 1
slug/ft3 = 22.36 slug/ft3

For part (c), we see from Table Appendix-C.7 that this material has a density somewhere
between lead and gold. Its specific gravity is equal to its density divided by the density of
water at 20◦C. For the material in part (a), therefore, the specific gravity = 13, 333/998.2 =
13.36.

Example 2.2: Manometers

Consider the manometer shown in Figure 2.5. Let z1 be the height of point 1 above a
horizontal reference level, z2 be the height of point 2, and so on. If ρ1/ρ3 = 2, and z1 = 10 in.,
z2 = 8 in., z3 = 6 in. and z6 = 14 in., find the ratio ρ2/ρ3.

Solution: We know that p1 = p6 = pa and p3 = p4. Therefore, if we equate pressures at
height z3, we get

ρ1g (z1 − z3) = ρ3g (z6 − z5) + ρ2g (z5 − z4)

= ρ3g (z6 − z2) + ρ2g (z2 − z3)

That is,

ρ2 (z2 − z3) = ρ1 (z1 − z3)− 1
2ρ1 (z6 − z2)

and

ρ2

ρ1
=

(z1 − z3)− 1
2 (z6 − z2)

(z2 − z3)
=

1

2
=
ρ2

ρ3

ρ3

ρ1

and since ρ1/ρ3 = 2, we see that ρ2/ρ3 = 1.
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Figure 2.1: Tank, with stand-pipe.

Example 2.3: Forces and moments on vertical walls

A cubic tank of dimension h contains water of density ρ. It has a pipe open to atmosphere
located in its top surface. This pipe contains water to a height L, as shown in Figure 2.1.
A square vent of size D in the top surface is just held closed by a lid of mass m.
(a) Find the height L in terms of m, D and ρ.
(b) Find the force F due to the water acting on a vertical face of the tank in terms of ρ, g,
h and L.
(c) Find where this force acts in terms of h and L.

Solution: For part (a), the weight of the lid mg is just balanced by the water pressure
acting on the area of the lid. Using gauge pressure (since the atmospheric pressure acts
everywhere equally), this pressure is given by ρg(depth) = ρgL. Hence,

ρgLD2 = mg

and so

L =
m

ρD2

For part (b), we identify an element of area dA on a vertical wall of the tank. Atmospheric
pressure acts everywhere, so dF , the force due to water pressure acting on dA is given by

dF = pg dA = ρg (depth) dA = ρg (L+ z) dA

Note that the depth is measured from the free surface, not the top of the tank Since the
wall is of constant width (= h), dA = h dz, and

dF = ρg (L+ z)h dz

To find F we integrate

F =

∫ h

0

ρg (L+ z)h dz = ρgh

[
Lz +

z2

2

]h
0

so that

F = ρgh2

(
L+

h

2

)
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For part (c), we take moments about the top of the tank side wall (where z = 0). If dM
is the moment due to dF ,

dM = z dF = ρg (L+ z) zh dA

Integrating, we obtain:

M = F × z̄ =

∫ h

0

ρg (L+ z) zh dz

= ρgh

[
L
z2

2
+
z3

3

]h
0

= ρgh2

(
L
h

2
+
h2

3

)
Therefore, the resultant force acts at a distance z̄ below the top of the tank, where

z̄ =
M

F
=
Lh2 + h2

3

L+ h
2

=
h(L+ 2h

3 )

2L+ h

Example 2.4: Equilibrium of a hinged gate

Sometimes we have a problem where the equilibrium of a solid body depends on the sum of
the moments. For instance, if a hinged gate is placed in a vertical wall, the water pressure
will try to open the gate unless a moment of sufficient strength is exerted on the gate to
keep it shut. Consider a simple case where the whole wall serves as a gate. The gate is
vertical and rectangular in shape, of width W and height h [Figure 2.2(a)]. The top of the
gate is level with the surface of the water, where it is supported by a frictionless hinge H.
Halfway down the gate, an arm sticks out horizontally and a weight mg hangs at a distance
a from the gate. The bottom of the gate rests against a stop. Atmospheric pressure acts
everywhere. Neglect the weight of the gate and the arm. What is the minimum value of m
necessary to keep the gate shut?

Solution: Consider the free body diagram for the gate [Figure 2.2(b)]. This diagram shows
the forces and moments acting on the gate when it is at the point of opening, so that the
reaction force exerted on the gate by the stop at the foot of the gate is zero. The force F
exerted by the water pressure on the gate acts from the left in the horizontal direction, and
it tends to rotate the gate in a counterclockwise direction. We know from our previous work
that it has a magnitude F = 1

2ρgWh2 and that it acts at a distance 2
3h from the top of the

gate. The weight mg acts at a distance a horizontally out from the gate, and it tends to
rotate the gate in a clockwise direction. There is also a force FH exerted by the hinge on
the gate, but the hinge exerts no moment since it is frictionless (a hinge without friction
cannot exert a moment). Since the gate is not moving, it is in static equilibrium under the
action of these forces and moments.

How do we find the critical value of m, where the gate is just on the point of opening?
We know that ΣF = 0 and ΣM = 0. If we use ΣF = 0, we see from the free body diagram
that there is a force exerted at the hinge FH that needs to be found separately before the
force balance can be solved for m. We may be able to find FH using the moment equation
ΣM = 0, but instead we can use the moment equation to find m directly. If we choose the
moment axis to coincide with the top of the gate, then the hinge force FH exerts no moment
about this axis and we need not consider it any further. We simply balance the moments
about the hinge exerted by the weight mg and the force due to water pressure. That is,

mg × a− 1

2
ρgWh2 × 2h

3
= 0
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Figure 2.2: (a) Simple gate, hinged at the level of the free surface. (b) Free body diagram of gate.

and so we find

m =
ρWh3

3a

Example 2.5: Another hinged gate

In Figure 2.3, a gate is shown, hinged at the top using a frictionless hinge H, located at
the same level as the water surface. There is a rectangular overhang in the gate that sticks
out a distance a horizontally from the gate. There is a stop at the bottom of the gate to
resist the force of the water pressure on the inside of the gate, and to prevent it opening in
a counterclockwise direction. However, as a is increased, there will come a point where the
weight of the water in the overhang will be large enough to cause the gate to move away
from the stop with a clockwise rotation. What is this critical value of a?

Solution: If we were to draw the free body diagram of this gate, we would see that it is
best to take moments about the hinge line since the unknown force exerted by the hinge on
the gate has no moment about this axis.

We could solve the problem by considering each vertical part of the wall separately,
and find the moments about the hinge exerted by the forces acting on each surface (these
moments are all counterclockwise), and then find the moment exerted by the forces acting
on the horizontal parts of the overhang (these moments are clockwise). For equilibrium, the
sum of the moments must be zero, and so we could find a.

However, there is a simpler way. The total horizontal force is equal to the sum of the
forces acting on all the vertical parts of the gate, and therefore it is equal to the force acting
on a vertical wall of the same height, given by 1

2ρgWh2, where W is the width of the gate.
It acts at a distance 2

3h from the top of the gate, and so its moment can be found directly.

As for the overhang, there are two approaches. First, we work in terms of the pressures
acting on the top and bottom surfaces of the overhang. We can find the pressure acting
on the bottom surface, multiply by the area of the bottom surface to find the force (since
the bottom surface is at a constant depth, the pressure is constant over the area), and then
multiply by its moment arm to find its (clockwise) moment. The moment arm is equal to 1

2a,
since the loading on the bottom surface is uniformly distributed. If we say that clockwise
moments are positive, then, for the bottom surface of the overhang,

pressure on bottom surface = 2
3ρgh

force on bottom surface = 2
3ρghWa

CW moment due to force on bottom surface = 2
3ρghWa× 1

2a
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Figure 2.3: Gate with overhang, hinged at the
level of the free surface.

Figure 2.4: Gate with cut-out.

Similarly, for the top surface of the overhang, we find for the clockwise moment:

pressure on top surface = 1
3ρgh

force on top surface = 1
3ρghWa

CW moment due to force on top surface = − 1
3ρghWa× 1

2a

Therefore the resultant clockwise moment exerted by the overhang is 1
3ρghWa× 1

2a.
In the second, alternative approach, we note that the moment produced by the overhang

is due to the weight of water contained in it, and this weight is the volume multiplied by the
density, that is, 1

3ρghWa. The moment arm of this weight is given by the distance to the
centroid of the volume, located at a point 1

2a out from the hinge, so that the total clockwise
moment exerted by the overhang is 1

3ρghWa× 1
2a, as before.

The sum of all the moments is given by the moment due to the weight of water contained
by the overhang, plus the moment due to the water acting on the vertical portions of the
gate. That is, a can be found from:

1
3ρghWa× 1

2a−
1
2ρgWh2 × 2

3h = 0

That is,

a =
√

2h

Example 2.6: A final hinged gate

What happens if the overhang in Example 2.4 was negative, as shown in Figure 2.4? That
is, if instead of an overhang there was a cut-out of the same dimensions?

Solution: The moment due to the water acting on the vertical parts of the gate is the same
as in Example 2.4: about the hinge, it is counterclockwise, of magnitude 1

2ρgWh2 × 2
3h.

For the cut-out, the moment due to pressure acting on the bottom surface is 2
3ρghWa× 1

2a
in the clockwise direction, and for the top surface it is 1

3ρghWa × 1
2a in the counterclock-

wise direction. The resultant moment produced by the horizontal surfaces of the cut-out
is therefore 1

3ρghWa × 1
2a in the clockwise direction, exactly the same as that found in

Example 2.4. So the moment equilibrium of the gate shown in Figure 2.4 is the same as for
the gate shown in Figure 2.3, and the critical value of a is also the same.
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Figure 2.5: Pressure exerted on the bottom of differ-
ent shaped containers.

Figure 2.6: Pascal’s rain barrel.
From Martin and Conner, Basic
Physics, 8th ed., published by Whit-
combe & Tombs Pty. Ltd., Mel-
bourne, Australia, 1962, with permis-
sion.

Example 2.7: Weight and forces due to pressure

Consider the two containers shown in Figure 2.5. They have a width w, and they are filled
with water to the same height, h. Assume the weight of each container is negligible. From
the hydrostatic equation, we know that the pressure at depth h will be the same for both
vessels. Therefore, if the bottom area A is the same, the force exerted on the bottom of
the container will be equal, that is, F1 = F2, in spite of the obvious difference in the total
weight of liquid contained. Is there a paradox?

Solution: We must be careful to consider all the forces, including the forces acting on
the side walls, the bottom of the container, and the reaction from the surface it is resting
on. Note that the forces on the side walls (Fs) act at right angles to the wall, and that the
horizontal components of the side-wall forces cancel out since they act in opposing directions.

Consider the forces acting on the container shown in the upper part of Figure 2.5. The
vertical component of of Fs acts downward, and for static equilibrium

R1 = ρghA+ 2Fs sinα

The force Fs is given by equation 2.14, where α = 1
2π − θ. Hence,

R1 = ρghA+ ρgWh2 tanα

which is exactly equal to the weight of the water in the container, as it should be.
Consider now the forces acting on the container shown in the lower part of Figure 2.5.

The vertical component of Fs acts upward, and for static equilibrium

R2 = ρghA− 2Fs sinα

Hence,

R2 = ρghA− ρgWh2 tanα
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which is exactly equal to the weight of the water in this particular container. So the external
reaction forces on the base in each case (R1 and R2) are equal to the weight of the liquid
in the container, so that R1 > R2, but the force acting on the base from the inside of the
container is the same in each case, since it is due to hydrostatic pressure which only depends
on depth.

In 1646, the French scientist Blaise Pascal gave an interesting illustration of this principle.
He placed a long vertical pipe in the top of a barrel filled with water and found that by
pouring water into the pipe he could burst the barrel even though the weight of water added
in the pipe was only a small fraction of the force required to break the barrel (Figure 2.6).
This is a case where the force due to hydrostatic pressure is overwhelmingly greater than
the external reaction force acting on the base of the barrel.

Example 2.8: Choosing moment axes

Consider a rectangular tank filled with water, with a triangular gate located in its side-wall
(Figure 2.7). The top edge of the gate is level with the surface of the water. Atmospheric
pressure acts everywhere outside the tank. The gate is held on by three bolts. Find the
force in each bolt.

Solution: Since the gate is in static equilibrium, the sum of the forces in any given direction
must be zero. That is, in the horizontal direction,

ΣFx = F1 + F2 + F3 − F = 0

where F is the force exerted by the water pressure on the gate. It is clear that we need
additional information to solve for F1, F2 and F3. This information will come from the
moment equation; since the gate is in static equilibrium, the sum of the moments must
also be zero. This is true for any axis we choose, but some axes are better than others.
For example, if we choose the z-axis, F1 and F2 need not be considered since they have
no moment about the z-axis (their moment arm about the z-axis is zero). Therefore the
moment exerted by F3 about the z-axis must balance the moment exerted by F about the
z-axis, and F3 can be found directly. Similarly, F2 can be found by taking moments about
the y-axis, and so, together with ΣFx = 0, we have three equations for three unknowns.

Figure 2.7: Wall with triangular gate.
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Figure 2.8: Gate with circular section on one side, and triangular section on the other.

Example 2.9: Complex two-dimensional surfaces

What is the resultant force on the gate shown in Figure 2.8, given that atmospheric pressure
acts everywhere?

Solution: The shape of the gate is rather complex, and it is best to treat it in two parts,
where the forces acting on the left hand side and the right hand side of the gate are found
separately, and the resultant force is found by simple addition. We will not give the full
solution here, only an outline of how the problem may be solved. Here is the basic result
for the left hand side

F1 =

∫∫
pg dy dz =

∫ a

−a
pg(z)

(∫ 0

−
√
a2−z2

dy

)
dz =

∫ a

−a
pg(z)

√
a2 − z2 dz

where pg(z) = ρg(H − z). The integration can be completed using a table of standard
integrals.

To find the force acting on the right hand side, we need to subdivide the area further:
the top half (A2t) is described by the equation z = a − y, and the bottom half (A2b) is
described by the equation z = y − a. Here is the basic result for the top half

F2t =

∫
pgdA2t =

∫ a

0

pg(z)

(∫ a−z

0

dy

)
dz =

∫ a

0

pg(z) (a− z) dz

For the bottom half

F2b =

∫
pgdA2b =

∫ 0

−a
pg(z)

(∫ a+z

0

dy

)
dz =

∫ 0

−a
pg(z) (a+ z) dz

Finally
F = F1 + F2t + F2b

Example 2.10: The tip of an iceberg

Consider an iceberg floating in seawater. Find the fraction of the volume of the iceberg that
shows above the sea surface.

Solution: If the volume of the iceberg is υ, and the fraction showing above the surface is
∆υ, the buoyancy force acting up on the iceberg is given by ρswg(υ − ∆υ), where ρsw is
the density of sea water. For static equilibrium, this must equal the weight of the iceberg,
which is given by ρicegυ, where ρice is the density of ice. That is

ρswg (υ −∆υ) = ρicegυ
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Figure 2.9: Fluid in rigid body motion under the action of gravity and a constant horizontal
acceleration.

so that
∆υ

υ
= 1− ρice

ρsw

Ice has a density of 920 kg/m3 (it is made up of fresh water), and seawater has a density of
1025 kg/m3 (Table Appendix-C.7). Hence

∆υ

υ
= 0.102

so that only about 10% of the bulk of an iceberg is visible above the surface of the sea (see
Figure 2.3).

Example 2.11: Rigid body motion

For the case shown in Figure 2.9, find the horizontal acceleration that would make the water
spill out of the container.

Solution: From equation 2.30, we know that the slope of the water surface under a constant
horizontal acceleration is given by

dz

dx
= − ax

g + az
= −ax

g

since az = 0. From the shape of the container, we see that the water will spill out of the
container when

dz

dx
= −

1
3h
3
2h

= −2

9

which requires a horizontal acceleration

ax = 2
9g

Problems

2.1 Express the following pressures in psi:
(a) 2.5× 105 Pa
(b) 4.3 bar
(c) 31 in. Hg
(d) 20 ftH2O
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Figure P2.6

2.2 Express the following pressures in Pa:
(a) 3 psia
(b) 4.3 bar
(c) 31 in. Hg
(d) 8mH2O

2.3 Express the following absolute pressures as gauge pressures in SI and BG units:
(a) 3 psia
(b) 2.5× 105 Pa
(c) 31 in. Hg
(d) 4.3 bar
(e) 20 ftH2O

2.4 In a hydraulic press, a force of 200N is exerted on the small piston (area 10 cm2).
Determine the force exerted by the large piston (area 100 cm2), if the two pistons were at
the same height.

2.5 For the hydraulic press described in the previous problem, what is the the force
produced by the large piston if it were located 2m above the small piston? The density of
the hydraulic fluid is 920 kg/m3.

2.6 A device consisting of a circular pipe attached to a rectangular tank is filled with
water as shown in Figure P2.6. Neglecting the weight of the tank and the pipe, determine
the total force on the bottom of the tank. Compare the total weight of the water with this
result and explain the difference.

2.7 Two cylinders of cross-sectional areas A1 and A2 are joined by a connecting passage,
as shown in Figure P2.7. A force F1 acts on one piston, and a force F2 acts on the other.
Find F2 in terms of F1, A1, A2, ρ, g and H, where ρ is the fluid density. Ignore the weights
of the pistons.

2.8 If the average person can generate about 1 psi (7000 Pa) of negative gauge pressure
(that is, suction) in their mouth, what’s the longest straw they can possibly drink out of?
The density of air is 1000 kg/m3.

2.9 The gauge pressure at the liquid surface in the closed tank shown in Figure P2.9 is
4.0 psi. Find h if the liquid in the tank is
(a) water
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Figure P2.7

Figure P2.9

(b) kerosene
(c) mercury

2.10 Find the maximum possible diameter of the circular hole so that the tank shown
in Figure P2.10 remains closed. The lid has a mass M = 50 kg.

2.11 A hollow cylinder of diameter 1m has a closed bottom, which is pushed into a
swimming pool to a depth of 3m. The cylinder is open to atmosphere at the top, and the
swimming pool is at sea level.
(a) Find the force acting on the bottom of the cylinder when the pool contains fresh water,
and the air pressure is taken to be constant everywhere.
(b) How does the answer to part (a) change when the pool contains sea water?
(c) How does the force found in part (a) change when the variation in air pressure inside

Figure P2.10
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Figure P2.12

Figure P2.14 Figure P2.15

the cylinder is taken into account?
(d) Do the answers to parts (a), (b) and (c) change if the swimming pool is moved to the
top of a 5000m mountain?

2.12 For the manometer shown in Figure P2.12, both legs are open to the atmosphere.
It is filled with liquids A and B as indicated. Find the ratio of the liquid densities.

2.13 A U-tube manometer consists of a glass tube bent into a U-shape, and held verti-
cally. Water is poured in one side and allowed to settle so that the free surface in both legs
is at the same height. Alcohol (specific gravity 0.8) is added to the right hand leg without
mixing so that after the liquids have settled the depth of alcohol in the right hand leg is
100mm. Find the difference in height between the left and the right leg of the manometer.

2.14 A manometer of constant cross-sectional area A contains two fluids of density ρ1

and ρ2, as shown in Figure P2.14. One end of the manometer is closed by a weight W , and
the other end is open to atmospheric pressure pa. Find W in terms of ρ1, ρ2, h1, h2, g, and
A when h2 is large enough to be on the point of lifting up the weight.

2.15 A manometer tube is filled with a two fluids with densities ρ1 = 1000 kg/m3, and
ρ2 = 800 kg/m3, as shown in Figure P2.15. The tube has a diameter of 10 mm. One end
is open to atmospheric pressure, and the other end is blocked by a block of steel of mass
M = 0.1 kg. Find the height h where the steel block is about to be dislodged.

2.16 Find the pressure at an elevation of 3000m if the temperature of the atmosphere
decreases at a rate of 0.006◦K/m. The ground-level temperature is 15◦C, and the barometer
reading is 29.8 in. Hg. (The gas constant for air is = 287.03 m2s2K.)
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Figure P2.22

Figure P2.23

2.17 Find the reduction in pressure in N/m2 at an altitude of 1000m if the density of
air ρ in kg/m3 decreases with altitude z (in meters) according to ρ = 1− 2× 10−4z.

2.18 At a particular point in the Pacific Ocean, the density of sea water increases with
depth according to ρ = ρ0 + mz2, where ρ0 is the density at the surface, z is the depth
below the surface and m is a constant. Develop an algebraic equation for the pressure as a
function of depth.

2.19 An underwater cave contains trapped air. If the water level in the cave is 60 m
below the surface of the ocean, what is the air pressure in the cave? Express the answer in
terms of gauge pressure in atmospheres.

2.20 The vertical wall of a dam can withstand a total force of 500, 000N . It has a width
of 10m. At what depth of (fresh) water will it fail?

2.21 Repeat the previous question, where this time the wall is inclined at 60◦ to the
horizontal.

2.22 Given that the specific gravity of concrete is 2.4, find the vertical reactions R1 and
R2 per unit width of the concrete dam shown in Figure P2.22.

2.23 The gate shown in Figure P2.23 has a width W and a height h and it is pivoted on
a frictionless hinge at a point z∗ below the surface of the water. The top of the gate is level
with the surface of the water. The water is of density ρ, and outside the tank the pressure
is uniform everywhere and equal to the atmospheric pressure.
(a) Find the magnitude of the resultant force F on the gate, in terms of ρ, g, W and h.
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Figure P2.25

Figure P2.26

(b) Find the value of z∗ so that there is no resultant moment about the hinge tending to
open the gate.

2.24 A gate 3 ft square in a vertical dam has air at atmospheric pressure on one side
and water on the other. The resultant force acts 2 in. below the center of the gate. How far
is the top of the gate below the water surface?

2.25 A gate of width W stands vertically in a tank, as shown in Figure P2.25, and it is
connected to the bottom of the tank by a frictionless hinge. On one side the tank is filled
to a depth h1 by a fluid density ρ1; on the other side it is filled to a depth h2 by a fluid
density ρ2. Find h2/h1 in terms of ρ2/ρ1 if the gate is in static equilibrium.

2.26 The tank shown in Figure P2.26 has a gate which pivots on a vertical, frictionless
hinge locate at the top of the gate. Find the ratio of the depths of water h1/h2 in terms of
the densities ρ1 and ρ2 when the gate is in static equilibrium.

2.27 A rectangular door of width w and height H is located in a vertical wall. There is
water of density ρ on one side of the door, so that the top of the door is a distance d below
the level of the water. The door is held in the wall by a frictionless hinge at the top of the
door.
(a) Find the force acting on the door due to the water.
(b) Find the minimum moment about the hinge required to keep the door shut.

2.28 A rectangular door of width W and height 2b is placed in side wall of a tank
containing water of density ρ and depth 3b, as shown in Figure P2.28. The tank is open to
the atmosphere. Find the resultant force due to the water acting on the door, and where it
acts, in terms of ρ, W , g, and b. Show your coordinate system, and all working.
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Figure P2.28

Figure P2.29

2.29 A rectangular gate is located in a dam wall as shown in Figure P2.29. The reservoir
is filled with a heavy fluid of density ρ2 to a height equal to the height of the gate, and
topped with a lighter fluid of density ρ1.
(a) Write down the variation of pressure for z ≤ D, and for D ≤ z ≤ D + L.
(b) Find the resultant force acting on the gate due to the presence of the two fluids.
(c) Find the point where this resultant force acts.

2.30 A primitive safety valve for a pressure vessel containing water is shown in Fig-
ure P2.30. The water has a density ρ, and it has a constant depth H. The gauge pressure
exerted on the surface of the water is pw, and the pressure outside the vessel is atmospheric.
The gate is rectangular, of height B and width w, and there is a spring at the hinge which
exerts a constant clockwise moment Mh. Find pw for which the gate is just on the point of
opening.

2.31 A square gate of dimension b separates two fluids of density ρ1 and ρ2, as shown in
Figure P2.31. The gate is mounted on a frictionless hinge. As the depth of the fluid on the
right increases, the gate will open. Find the ratio ρ2/ρ1 for which the gate is just about to
open in terms of H1, H2 and b.

2.32 The symmetric trough shown in Figure P2.32 is used to hold water. Along the
length of the trough, steel wires are attached to support the sides at distances w apart. Find
the magnitude of the resultant force exerted by the water on each side, and the magnitude
of the tension in the steel wire, neglecting the weight of the trough.

2.33 A rigid uniform thin gate of weight Mg and constant width W is pivoted on a
frictionless hinge as shown in Figure P2.33. The water depth on the left hand side of the
gate is H and remains constant. On the right hand side of the gate the level of water is
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Figure P2.30

Figure P2.31

slowly decreased until the gate is just about to open. Find the depth D at which this occurs.

2.34 Repeat Problem 2.27, where this time the wall and the door are inclined at an angle
θ to the horizontal.

2.35 The rectangular gate shown in Figure P2.35 (of width W and length L) is made
of a homogeneous material and it has a mass m. The gate is hinged without friction at
point B. Determine the mass required to hold the gate shut when the water depth at the
point B is H.

Figure P2.32
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Figure P2.33

Figure P2.35

2.36 A gate of constant width W is hinged at a frictionless hinge located at point O
and rests on the bottom of the dam at the point A, as shown in Figure P2.36. Find the
magnitude and direction of the force exerted at the point A due to the water pressure acting
on the gate.

2.37 A rectangular gate 1m by 2m, is located in a wall inclined at 45◦, as shown in
Figure P2.37. The gate separates water from air at atmospheric pressure. It is held shut by
a force F . If the gate has a mass of 100 kg, find F .

2.38 Figure P2.38 shows a very delicate balancing act. On one side of a weightless wedge
there is fluid of density ρ1, and on the other side there is fluid of density ρ2. If the wedge
is just balanced, find the ratio ρ2/ρ1 in terms of H1, H2 and θ.

2.39 A rectangular window of width W is set into the sloping wall of a swimming pool,
as shown in Figure P2.39. Find the point of action of the resultant force acting on the
window.

2.40 A triangular trough contains two fluids, with densities ρ1 and ρ2, and depths H1

and H2, respectively, as shown in Figure P2.40. Find the resultant hydrostatic force acting
on the divider, and where it acts.

Figure P2.36
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Figure P2.37:

Figure P2.38

2.41 A rigid, weightless, two-dimensional gate of widthW separates two liquids of density
ρ1 and ρ2, respectively, as shown in Figure P2.41. The gate pivots on a frictionless hinge
and it is in static equilibrium. Find the ratio ρ2/ρ1 when h = b.

2.42 A gate of uniform composition, and of length L, width w, and mass m, is held by
a frictionless hinge at H and a string at A, as shown in Figure P2.42. Find the water depth
h at which the tension in the string is zero, in terms of m, L, w, θ and ρ (the density of the
water). Indicate all your working clearly, and state all your assumptions.

2.43 A symmetrical, triangular prism of uniform composition and width w is balanced
vertically on its apex as shown in Figure P2.43. A fluid of depth H1 and density ρ1 acts
on the left hand side, while a fluid of depth H2 and density ρ2 acts on the right hand side.
Find the ratio of the densities in terms of the ratio of the depths. Show all your working,
and state all your assumptions.

2.44 A gate of length L and width w separates two liquids of different density, as shown
in Figure P2.44. The gate is held by a frictionless hinge at H. Find the ratio of densities
ρ2/ρ1 in terms of L, θ, h1 and h2 when the gate is about to open. Indicate all your working
clearly, and state all your assumptions.

Figure P2.39
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Figure P2.40 Figure P2.41

Figure P2.42

2.45 A rectangular door of width w and length b is placed in the sloping side wall of a
tank containing water of density ρ and depth H. The top of the door is hinged without
friction at point T, as shown in Figure P2.45. On the other side of the door is a pressurized
chamber containing air at gauge pressure pc. Find the value of pc at the point where the
door is just about to open, in terms of ρ, w, g, b, H and θ. The top of the tank is open to
the atmosphere, and the door has no mass. Show your coordinate system(s).

2.46 An underwater cave has a gate of width w, uniform thickness, and weight W
mounted on a frictionless hinge at a point 0, as shown in Figure P2.46. Find the inter-
nal gauge pressure pc when the gate is on the point of opening. Indicate all your working
clearly, and state all your assumptions. (Hint: use gauge pressure throughout).

2.47 A horizontal lever arm of length 3a is pivoted without friction at a point 2a along
its length. A cubic mass of density ρ, dimension b and mass M1 hangs from the long part
of the lever arm and a mass M2 hangs from the short part of the lever arm. The lever arm
is in balance when mass M1 is immersed in water to a depth c. When M1 = M2, express
the specific gravity of the M1 material in terms of b and c.

Figure P2.43
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Figure P2.44

Figure P2.45

2.48 A gate of length L, width w, uniform thickness t, and density ρs is held by a
frictionless hinge at O and rests against a vertical wall at P, as shown in Figure P2.48. On
the one side the gate is exposed to atmospheric pressure, and on the other side there is
water of density ρ. When the water depth is h, the gate is about to open. Under these
conditions, find the thickness of the plate in terms of L, ρs ρ, θ, and h. Indicate all your
working clearly, and state all your assumptions, and indicate your coordinate system.

2.49 A gate of width w, length L, mass M , and uniform thickness, separates two fluids
of equal density ρ, with depths b and 2b, as shown in Figure P2.49. The gate is pivoted
without friction at the hinge H, and it is in equilibrium when it is inclined at an angle θ
to the horizontal. Find the mass M in terms of ρ, b, w, θ and L. Show your coordinate
system, and all your working.

Figure P2.46
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Figure P2.48

Figure P2.49

2.50 A sightseeing boat has a window in its side of length L and width w, as shown in
Figure P2.50. The bottom of the window is a depth h below the surface. The water has a
density ρ. Find the magnitude of the resultant force acting on the window due to the water
pressure, and its location, in terms of L, ρ, θ, g and h. Indicate all your working clearly,
and state all your assumptions, and indicate your coordinate system.

2.51 A weightless gate of width w separates two reservoirs of water of depths h1 and h2,
as shown in Figure P2.51. The two sides of the gate are inclined to the horizontal at angles
θ1 and θ2. The gate is pivoted without friction at the hinge H. Find the ratio h2/h1 when
the gate is in static equilibrium in terms of θ1 and θ2. Show your coordinate system, and
all your work.

2.52 A gate of length L and width w is hinged without friction at the point O, as shown
in Figure P2.52. The gate is of uniform thickness and it has a weight of W . There is another

Figure P2.50



PROBLEMS Chapter 2 35

Figure P2.51

Figure P2.52

weight W suspended a distance L from the hinge by a link that is rigidly connected to the
gate, and at right angles to it. The water has a density ρ. Find the magnitude of W , in
terms of L, ρ, θ, and g so that the gate is on the point of opening. Show all your working
and state all your assumptions. Indicate your coordinate system clearly.

2.53 A symmetrical trapdoor with doors of width w and length L is located on the
bottom of a tank that is filled with water of density ρ to a depth h, as shown in Figure P2.53.
The doors are hinged without friction at the point O, and they have a negligible mass. Find
the value of pg at which the doors are about to open, where pg is the gauge pressure on the
air side of the trapdoors.

2.54 The closed tank shown in Figure P2.54 is filled with water of density ρ to a depth
h. The absolute pressure in the air trapped above the water is p1 = 2pa, where pa is the
atmospheric pressure. The tank has a width w (into the page)
(a) Find the height H of the open water column in terms of pa, ρ, g and h.

Figure P2.53
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Figure P2.54

Figure P2.55

(b) Find the magnitude of the resultant force due to the water pressure acting on one of the
sloping sides of the tank. Remember that p1 = 2pa.
(c) Find the moment (magnitude and direction) due to the water pressure acting on one of
the sloping sides of the tank about the point B. Remember that p1 = 2pa.

2.55 A steel gate of density ρs, width w, thickness t, and length L is pivoted at a
frictionless hinge, as shown in Figure P2.55. The dam is filled with water of density ρ until
the gate is about to open. The atmospheric pressure is pa.
(a) Find the resultant force (magnitude and direction) due to the water pressure acting on
the gate in terms of ρ, g, θ, L, w and H.
(b) Find the density of steel in terms of ρ, g, θ, t, L and H.
(c) If the depth of the water was halved, what moment must be applied at the hinge if the
gate is still about to open?

2.56 1 Your first foray into ice fishing takes a bad turn when a sudden overnight thaw
sends your shack to the bottom of the lake with you sleeping inside, as shown in Figure P2.56.
Luckily your shack is completely watertight and maintains atmospheric pressure inside. It
settles on the bottom at an angle θ. On one wall of the shack (the one pointing down in the
figure), there is a square window measuring H/3 on a side that is hinged on the top and
swings outward. The top of the window is 3H below the surface.
(a) What is the minimum force required to open the window, in terms of ρ, g, H and θ?
(b) Where would you need to apply this force, in terms of H and θ?

2.57 A rigid gate of width w is pivoted at a frictionless hinge as shown in Figure P2.57.
A force F acts at the top of the gate so that it is at right angle to the gate. The dam is
filled with water of density ρ of depth 2H. The atmospheric pressure pa acts everywhere
outside the water.

1With thanks to Lester Su
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Figure P2.56

Figure P2.57

(a) Find the resultant force vector due to the water pressure acting on the gate in terms of
ρ, g, θ, L, w and H.
(b) If the water depth was reduced to H, find the minimum force F required to keep the
gate from opening in terms of ρ, g, w, θ, and H.
(c) If the water depth was increased again to 2H, find the new value of the minimum force
F required to keep the gate from opening in terms of ρ, g, w, θ, and H.

2.58 An aquarium of depth h has a passage under the main tank, as shown in Fig-
ure P2.58 (the passage goes into the paper).
(a) Find the magnitude and direction of Fp, where Fp is the resultant force due to the water
pressure acting on one half of the passage.
(b) Find the line of action of Fp.
(c) Find the magnitude and direction of Ft, where Ft is the resultant force due to the water
pressure acting on both halves of the passage.

Figure P2.58
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Figure P2.65

2.59 A rectangular block of wood of density ρw is floating in water of density ρ. If the
block is immersed to 80% of its height, find the specific gravity of the wood.

2.60 A submarine of volume V and weight W is lying on the ocean bottom. What is the
minimum force required to lift the submarine to the surface?

2.61 A beach ball of weight Mg and diameter D is thrown into a swimming pool. If the
ball just floats, what is the diameter of the ball?

2.62 A square tray measuring h × h, supporting a metal cube of dimension h/4, floats
on water immersed to a depth h/10. Find the specific gravity of the metal cube, neglecting
the weight of the tray.

2.63 A rectangular steel barge measuring 15m× 4m in planform with a depth of 1.5m
floats in water (density ρ = 1000 kg/m3) to a depth of 1m. Find the weight of the barge.
The barge develops a slow leak of 1 liter/s. Calculate how long it will take before the barge
sinks.

2.64 Determine what fractions of the volume of an ice cube are visible above:
(a) the surface of a glass of fresh water, and (b) the surface of a glass of ethanol. Do these
answers change if we were on the surface of the moon?

2.65 A 1m3 of aluminum, of specific gravity 2.7, is tied to a piece of cork, of specific
gravity 0.24, as shown in Figure P2.65. What volume of cork is required to keep the
aluminum block from sinking in water if both masses are completely submerged?

2.66 A concrete block rests on the bottom of a lake. The block is a cube, 1 ft on a side.
Calculate the force required to hold the block at a fixed depth. The density of concrete is
2400 kg/m3.

2.67 A cube of an unknown material measuring h per side has a weight Mg in air, and
an apparent weight of Mg/3 when fully submerged in water. Find the specific gravity of
the material.

2.68 A triangular wooden block is resting on the bottom of a tank, as shown in Fig-
ure P2.68. Water is slowly added to the tank, and when the depth of the water is h = a/2,
the block is on the point of lifting off the bottom. Find the specific gravity of the wood.

2.69 A two-dimensional symmetrical prism floats in water as shown in Figure P2.69.
The base is parallel to the surface. If the specific gravity of the prism material is 0.25, find
the ratio a/d.
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Figure P2.68

Figure P2.69

2.70 A cubic container of dimension b that is initially empty floats so that the water
surface is b/4 from the bottom of the container. Water is then added slowly to the container.
What is the depth of water inside the container (with respect to b) when it sinks?

2.71 A rectangular barge of length L floats in water (density ρw) and when it is empty
it is immersed to a depth D, as shown in Figure P2.71. Oil of density ρo is slowly poured
into the barge until it is about to sink. Find the depth of oil in terms of H, D, ρw and ρo.

2.72 A cylinder of diameter D and length L has one closed end and one open end. It is
filled with air. The open end is lowered vertically down into a pool of water of density ρ,
and then the air inside the cylinder is pressurized so that no water is allowed to enter the
cylinder. The cylinder floats so that 75% of its length is below the surface of the water.
(a) Find the gauge pressure of the air trapped in the cylinder in terms of ρ, L, and the
acceleration due to gravity g.
(b) Find the weight of the cylinder in terms of ρ, L, D and g.

2.73 For the example shown in Figure 2.16,what will happen if the steel cylinders are
replaced by logs of wood?

2.74 A cubic tray measuring D along any of its edges floats on water. Gold coins of
density ρg and volume V are slowly placed in the tray until it is about to sink. At this point
there are n coins in the tray. Neglecting the mass of the tray, find the specific gravity of
gold in terms of D, n, and V .

Figure P2.71
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Figure P2.78

2.75 A cork float with dimensions a × a × a and specific gravity 0.24 is thrown into a
swimming pool with a water surface area 2a × 2a, and an initial depth of 2a. Derive an
expression for the pressure at the bottom of the pool.

2.76 A circular cylinder of length 3 ft and diameter 6 in. floats vertically in water so that
only 6 in. of its length protrudes above the water level. If it was turned to float horixontally,
how far would its longitudinal axis be below the water surface?

2.77 A rigid, helium-filled balloon has a total mass M and volume υ, and it is floating
in static equilibrium at a given altitude in the atmosphere. Using Archimedes’ Principle,
describe what happens when ballast of mass m is dropped overboard. How does this answer
change if the balloon is no longer rigid but it is allowed to stretch?

2.78 The circular cylinder shown in Figure P2.78 has a specific gravity of 0.9. (a) If the
system is in static equilibrium, find the specific gravity of the unknown liquid. (b) Do you
think the system is stable?

2.79 A sunken ship of mass M is to be raised using a spherical balloon. If the density of
the gas in the balloon is ρb, find the minimum diameter of the balloon necessary to lift the
ship when the ballon is fully under water. Neglect the weight of the balloon material, and
the volume of the submarine.

2.80 A wooden cube with specific gravity of 1/3 floats on water. The cube measures
b× b× b, and it is immersed to a depth of b/6. A spherical balloon of radius R filled with
helium is attached to the wooden cube (its volume is 4πR3/3). The specific gravity of air
is 1/800, and the specific gravity of helium is 1/6000. Neglect the weight of the balloon
material. Find R.

2.81 A simple buoy can be made from a weighted piece of wood, as shown in Figure P2.81.
If the wood has a specific gravity of 0.75, and a cross-section w × w and a length L, find
the weight of steel W attached to the bottom of the buoy such that 7L/8 is submerged in
terms of ρ (density of water), L, w and g. Neglect the volume of the steel.

2.82 A square cylinder measuring a × a × b floats on water so that the b-dimension is
vertical. The cylinder is made of a uniform material of specific gravity equal to 0.8. When
b << a, the cylinder is stable under a small angular deflection. When b >> a, it is unstable.
Find b/a when the cylinder is neutrally stable.

2.83 A rectangular body of length a and width b has a specific gravity of 0.8. It floats
at the interface between water and another liquid with a specific gravity of 0.7, as shown in
Figure P2.83. If a > b, find the position of the body relative to the interface between the
two fluids.

2.84 A float and lever system is used to open a drain valve, as shown in Figure P2.84.
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Figure P2.81

Figure P2.83

The float has a volume V and a density ρf . The density of the water is ρw. Find the
maximum force available to open the drain valve, given that the hinge is frictionless. Hint:
first consider the forces acting on the cork float, then consider the free-body diagram of the
gate.

2.85 A rectangular cork float is attached rigidly to a vertical gate as shown in Fig-
ure P2.85. The gate can swing about a frictionless hinge. Find an expression for the depth
of water D where the gate will just open, in terms of a, b, L, and h. The cork float has the
same width W as the gate, and the specific gravity of cork is 0.24.

2.86 The two-dimensional gate shown in Figure P2.86 is arranged so that it is on the
point of opening when the water level reaches a depth H. If the gate is made of a uniform
material that has a weight per unit area of mg, find an expression for H.

2.87 A rectangular gate of width W and height h is placed in the vertical side wall of
a tank containing water. The top of the gate is located at the surface of the water, and

Figure P2.84
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Figure P2.85

Figure P2.86

a rectangular container of width W and breadth b is attached to the gate, as shown in
Figure P2.87. Find d, the depth of the water required to be put into the container so that
the gate is just about to open, in terms of h and b. The top and sides of the tank and
container are open to the atmosphere. Neglect the weight of the container.

2.88 A rigid gate of width W is hinged without friction at a point H above the water
surface, as shown in Figure P2.88. Find the ratio b/H at which the gate is about to open.
Neglect the weight of the gate.

2.89 If the weightless gate shown in Figure P2.89 was just on the point of opening, find
an expression for B in terms of h.

2.90 A certain volume of water is contained in a square vessel shown in Figure P2.90.
Where the sealing edges of the inclined plate come into contact with the vessel walls, the
reactive forces are zero.
(a) Find the magnitude and direction of the force F required to hold the plate in position.

Figure P2.87
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The weight of the plate may be neglected.
(b) Where does this force F act?
(c) If the inclined plate is replaced by a horizontal one, find the relative position of the new
plate if the force used to maintain position has the same magnitude as before. The volume
of fluid remains the same as before.

2.91 Figure P2.91 shows a vessel of constant width W that contains water of density
ρ. Air is introduced above the surface of the water at pressure p1. There is a rectangular
blow-off safety lid of width W and length ` hinged without friction at point O, which is
located at the same height as the water surface. At what pressure will the lid open? Express
the answer in terms of W , d, `, θ, ρ, and m, the mass keeping the lid closed.

2.92 A vessel of constant width W is filled with water, and the surface is open to atmo-
spheric pressure. On one side, a relief valve is located, as shown in Figure P2.92. The relief
valve has the same width as the vessel, and it has a length D. It is hinged without friction
at point A. At point B, a mass m is connected to the gate to keep it shut. Find m in terms
of H, D, θ and ρ, where ρ is the density of water.

2.93 The rectangular submarine escape hatch shown in Figure P2.93 (of width W and
length L) will open when the constant pressure inside the chamber, pi, exceeds a critical
value pic. The hatch has negligible mass and it is hinged without friction at point A which
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Figure P2.91

Figure P2.92

is located at a depth D below the surface. Find pic in terms of W , L, D, ρ, g and θ.

2.94 The gate AB shown in Figure P2.94 is rectangular with a length L and a width W .
The gate has a frictionless hinge at point A and it is held against a stop at point B by a
weight mg. Neglecting the weight of the gate, derive an expression for the water height h
at which the gate will start to move away from the stop.

2.95 The gate shown in Figure P2.95 has a constant width W . The gate has a frictionless
hinge at point A and it is held against a stop at point B. Neglecting the weight of the gate,
find the magnitude of the resultant force exerted on the gate by the water, and the dimension
b for which there is no force on the gate at point B.

2.96 A tank of water of density ρ has a symmetric triangular gate of height H and
maximum width 2a, as shown in Figure P2.96. Calculate the force F exerted by the water

Figure P2.93
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Figure P2.94

Figure P2.95. Figure P2.96

on the gate, and where it acts, in terms of ρ, g, h, H and a. The air pressure outside the
tank is uniform everywhere.

2.97 A rigid, weightless, two-dimensional gate of widthW separates two liquids of density
ρ1 and ρ2 respectively. The gate has a parabolic face, as shown in Figure P2.97, and it is
in static equilibrium. Find the ratio ρ2/ρ1 when h = `.

2.98 A rigid, submerged, triangular gate is hinged as shown in Figure P2.98. (a) Find
the magnitude and direction of the total force exerted on the gate by the water. (b) A
weight Mg on a rigid lever arm of length L is meant to keep this gate shut. What is the
depth of water D when this gate is just about to open? Neglect the weight of the gate, and
the weight of the lever arm.

Figure P2.97
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Figure P2.98

Figure P2.99

2.99 A circular gate of radius R is mounted halfway up a vertical dam face as shown
in Figure P2.99. The dam is filled to a depth h with water, and the gate pivots without
friction about a horizontal diameter.
(a) Determine the magnitude of the force due to the water pressure acting on the gate.
(b) Determine the magnitude and sign of the force F required to prevent the gate from
opening.

2.100 An elevator accelerates vertically down with an acceleration of 1
4g. What is the

weight of a 120 lbf person, as measured during the acceleration?

2.101 A rocket accelerating vertically up with an acceleration of a carries fuel with a
density ρ in tanks of height H. The top of the tank is vented to atmosphere. What is the
pressure at the bottom of the tank?

2.102 A car accelerates at a constant rate from 0mph to 60mph in 10 s. A U-tube
manometer with vertical legs 2 ft apart is partly filled with water and used as an accelerom-
eter.
(a) What is the difference in height of the water level in the two legs?
(b) Starting from rest, how fast would the car be going at the end of 10 s if the difference
in level were 1.0 in. larger?

2.103 The cart shown in Figure 2.9 is now moving upward on a 5◦ incline at a constant
acceleration ai. Find the value of ai that would make the water spill out of the container.

2.104 A 10 cm diameter cylinder initially contains 10 cm of water. It is then spun about
its axis at an angular speed of ω. Find the value of ω where the bottom of the container
just becomes exposed to air.



Chapter 3

Equations of Motion in Integral
Form

3.1 Study Guide

• Write down the principle of conservation of mass in words.

• What are the dimensions of mass flow rate? What are its typical units?

• What are the dimensions of momentum flow rate? What are its typical units?

• At approximately what included angle do you expect the flow in a diffuser to separate?

• Describe the differences in the flow through a sudden contraction and the flow through
a sudden expansion.

• Describe the differences between turbulent flow and separated flow.

• For unsteady flow, write down the integral form of the continuity equation. Explain
each term in words.

• For unsteady inviscid flow, write down the integral form of the momentum equation.
Explain each term in words.

3.2 Worked Examples

Example 3.1: Computing fluxes

A uniform flow of air with a velocity of 10m/s and density 1.2 kg/m3 passes at an angle of
30◦ in the [x,y]-plane through an area of 0.1m2, as shown in Figure 3.1. Find the volume
flux, the mass flux, the x-component of the momentum flux, and the kinetic energy flux
passing through the area.

Solution: We first evaluate the volume flux, as per equation 3.3. We will need to express
the velocity in vector notation, and so we choose a Cartesian coordinate system where

V = ui + vj + wk

and u, v and w are the velocity components in the x, y and z directions, respectively. In
this particular case, u = −10 cos 30◦ = 8.66m/s, v = −10 sin 30◦ = 5m/s, and w = 0, so
that

V = −8.66 i + 5 j (m/s)

47
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Figure 3.1: Notation for Example 3.2.

Also, the unit vector normal to the area lies in the x-direction, so that n = i. Therefore, for
a uniform flow,

volume flux =

∫
n ·V dA = (n ·V) A

= i · (−8.66i + 5j) A

= −8.66m/s× 0.1m2

= −0.866m3/s

We can find the mass flux by using equation 3.4, so that for a uniform flow,

mass flux =

∫
n · ρV dA = (n · ρV) A = (n ·VA) ρ

= −0.866m3/s× 1.2 kg/m3

= −1.04 kg/s

For the momentum flux we use equation 3.5. We can obtain the x-momentum flux by
taking the dot product of the momentum vector with the unit vector in the x-direction.
That is, for a uniform flow,

x-momentum flux = i ·
∫

(n · ρV)V dA =

∫
(n · ρV) i ·V dA

= (n · ρV)uA = (n · ρVA)u

= −1.04 kg/s× (−8.66)m/s

= 9.0 kgm/s2 = 9.0N

Finally, we can find the kinetic energy flux by using equation 3.6, so that for a uniform
flow,

kinetic energy flux =

∫
(n · ρV) 1

2V
2 dA = (n · ρV) 1

2V
2A = (n · ρVA) 1

2V
2

= −1.04 kg/s×
(

1
2 × 102

)
m2/s2

= −52 kg ·m2/s3 = −52watt

Example 3.2: Flux of mass and momentum

Water flows through a duct of height 2h and width W , as shown in Figure 3.2. The velocity
varies across the duct according to

U

Um
= 1−

(y
h

)2
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Figure 3.2: Fully-developed flow through a duct of constant width.

Find the volume, mass, and momentum fluxes over the cross-sectional area of the duct.

Solution: We note that the flow is always in the x-direction, so that V = U i, and the area
of interest is the cross-sectional area of the duct, which has a unit normal vector n = i.
Hence, n ·V = i · U i = U . Also, dA = W dy, and so we have from equation 3.3

volume flux =

∫
(n ·V) dA =

∫
U W dy =

h∫
−h

Um

(
1−

(y
h

)2
)
W dy

= 2UmW

h∫
0

(
1−

(y
h

)2
)
dy = 2UmW

[
y − y3

3h2

]h
0

= 4
3UmWh

To find the mass flux, we use equation 3.4. For a constant density flow,

mass flux =

∫
(n · ρV) dA = ρ

∫
(n ·V) dA

= 4
3ρUmWh

To find the momentum flux, we use equation 3.5. For a constant density flow,

momentum flux =

∫
(n · ρV) V dA = ρ

∫
(U)U iW dy = ρW i

∫
U2 dy

= ρW i

h∫
−h

U2
m

(
1−

(y
h

)2
)2

dy

= 2ρU2
mW i

h∫
0

(
1− 2

(y
h

)2

+
(y
h

)4
)
dy

= 2ρU2
mW i

[
y − 2y3

3h2
+

y5

5h4

]h
0

= 16
15ρU

2
mWh i

We see that the momentum flux is a vector, pointing in the positive x-direction.

Example 3.3: Mass conservation in steady, one-dimensional flow

Flow in a diverging duct is illustrated in Figure 3.3. Apply the principle of mass conservation
for steady flow through the control volume.
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Figure 3.3: Flow through a diverging duct.

Solution: The continuity equation for steady flow (equation 3.11) gives∫
n · ρV dA = 0

The integral is over the entire surface of the control volume. Areas A1 and A2 are the only
places where mass is entering or leaving the control volume, and so∫

n · ρV dA =

∫
n1 · ρ1V1 dA1 +

∫
n2 · ρ2V2 dA2 = 0

From Figure 3.3, we have V1 = V1i, V2 = V2i, n1 = −i, and n2 = i. Therefore,

−
∫
A1

ρ1V1dA +

∫
A2

ρ2V2dA = 0 (3.1)

If the densities and velocities are uniform over their respective areas, we obtain

− ρ1V1A1 + ρ2V2A2 = 0

and we recover the result for a one-dimensional steady flow first given in Section 3.2.

Example 3.4: Conservation of mass

A cylinder of diameter d and length ` is mounted on a support in a wind tunnel, as shown
in Figure 3.4. The wind tunnel is of rectangular cross section and height 4d. The incoming
flow is steady and uniform, with constant density and a velocity V1. Downstream of the
cylinder the flow becomes parallel again, and the shape of the velocity profile is as shown.
Find the magnitude of V2 in terms of V1.

Figure 3.4: A cylinder in a wind tunnel.
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Solution: We draw a large control volume that encloses the cylinder but does not cut
the walls of the duct (CV in the Figure). As in any control volume problem, we examine
each face of the control volume in turn. We see that there is flow into the control volume
over the left hand face and flow out over the right hand face. The downstream flow is not
actually one-dimensional since the velocity is varying across the cross-section of the wind
tunnel. Nevertheless, it can be treated as one-dimensional by considering separately the
two regions where the velocity is different, and then adding the result. By applying the
continuity equation in this way we obtain

ρV1 (4`d)− ρV2 (2`d)− ρ 1
2V2 (2`d) = 0

so that
V2 = 4

3V1

Example 3.5: Mass conservation in steady, two-dimensional flow

In many cases the velocity is not uniform over the inlet and outlet areas and the one-
dimensional assumption cannot be made. However, the streamlines of the flow entering and
leaving the control volume are often parallel, and then it may be possible to assume that
the pressure is uniform over the inlet and outlet areas (see Section 4.2.2.)

Consider the steady duct flow shown in Figure 3.5. The duct has a constant width W ,
and the inflow and outlet velocities vary along the flow in the x-direction, and across the
flow in the y-direction. The flow is two-dimensional since the velocity distributions depend
on two space variables (x and y). For this particular problem, the velocity distribution over
the inlet is parabolic, but as the area expands the profile becomes less “full” at the exit.
(a) Find the average velocities over the inlet and outlet areas, where the average velocity V
is defined by

V =
1

A

∫
udA (3.2)

so that V is equal to the volume flow rate divided by the cross-sectional area A.
(b) Find the velocity ratio Vm2/Vm1.

Solution: For part (a), first consider the inlet area. Here

V1 =
1

A1

∫
udA1 =

1

2bW

∫ b

−b
V1(y)Wdy

=
2

2bW

∫ b

0

Vm1

[
1−

(y
b

)2
]
Wdy

Figure 3.5: Two-dimensional duct showing control volume.
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So V1 =
Vm1

b

∫ b

0

[
1−

(y
b

)2
]
dy = 2

3Vm1

For the outlet area

V2 =
1

A1

∫
udA1 =

2

2BW

∫ B

0

Vm2

(
1− y

B

)
Wdy = 1

2Vm1

For part (b), we use mass conservation. The application is very similar to that given in
Example 5.2, in that the continuity equation reduces to that given in equation 3.1, where

−
∫
A1

ρ1V1dA +

∫
A2

ρ2V2dA = 0

To evaluate the integrals over areas A1 and A2 we use symmetry, so that

−2

b∫
0

(ρ1V1)Wdy + 2

B∫
0

(ρ2V2)Wdy = 0

Since the densities are uniform over the inlet and outlet areas,

2ρ1

b∫
0

Vm1

(
1−

(y
b

)2
)
dy = 2ρ2

B∫
0

Vm2

(
1− y

B

)
dy

ρ1Vm1

[
y − y3

3b2

]b
0

= ρ2Vm2

[
y − y2

2B

]B
0

ρ1Vm1
2b

3
= ρ2Vm2

B

2

Finally
Vm2

Vm1
=

ρ1

ρ2

4b

3B

Example 3.6: Mass conservation for a moving piston in a cylinder

A leakproof piston moves with velocity V into a cylinder filled with liquid of density ρ, as
shown in Figure 3.6. The cylinder has a cross-sectional area Ac, and the spout has an exit
cross-sectional area As. Find U , the velocity at the exit from the spout, at any instant
of time. The flow may be assumed to be one-dimensional. Solution: We select a control

volume not containing the piston or cylinder but only the spout. Since the spout is always
full of fluid, the mass of fluid inside this control volume is not changing with time, and the
flow is steady for this control volume. Therefore

∂

∂t

∫
ρ dυ = 0

We see that there is a mass influx over the left face of the control volume, and there is an
outflux over the right face, so that∫

n · ρVdA =

∫
−i · ρV idAc +

∫
i · ρU idAs = −ρV Ac + ρUAs = 0

Hence,

U =
Ac
As
V
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Figure 3.6: Control volume for an unsteady piston flow.

Example 3.7: Momentum balance in steady, one-dimensional flow

In Section 3.4, we considered the continuity equation applied to the diverging duct flow
shown in Figure 3.3. We now find the x-component of the force exerted by the duct on
the fluid, as in Figure 3.7. The flow is taken to be inviscid, steady and horizontal, and the
pressures and densities are constant over areas A1 and A2.

Solution: Consider the x-component of the momentum equation. This equation is found
by taking the dot product of equation 3.20 with the unit vector in the x-direction, i. For
steady, inviscid flow

i ·
∫

(n · ρV) V dA = −i ·
∫

n p dA+ i ·
∫
ρg dV + i ·Rext

so that ∫
(n · ρV) i ·V dA = −

∫
i · n p dA+ 0 +Rxext

where Rxext is the x-component of the force exerted by the duct on the fluid, and it was
taken to be positive in the x-direction (the actual direction will come out as part of the
solution, so that if we find that Fx is negative, it means it actually points in the negative
x-direction).

The integrals are over the entire surface of the control volume. Areas A1 and A2 are the
only places where the pressure is not atmospheric, so

−
∫

i · n p dA = −
∫
−p1g dA1 −

∫
+p2g dA2 =

∫
p1g dA1 −

∫
p2g dA2

Areas A1 and A2 are the only places where mass is entering or leaving the control volume,
so ∫

(n · ρV) i ·V dA =

∫
(−ρ1V1) (+V1) dA1 +

∫
(ρ2V2) (+V2) dA2

Figure 3.7: Flow through a diverging duct.
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= −
∫
ρV 2

1 dA1 +

∫
ρV 2

2 dA2

Therefore

Rxext = −
∫
p1g dA1 +

∫
p2g dA2 −

∫
ρ1V

2
1 dA1 +

∫
ρ2V

2
2 dA2

For a one-dimensional flow, this simplifies to

Rxext = − (p1gA1 − p2gA2) + ρ2V
2
2 A2 − ρ1V

2
1 A1

which is the same result given by equation 3.13.

Example 3.8: Momentum balance in steady, two-dimensional flow

In Section 3.4, we considered the continuity equation applied to the diverging duct flow
shown in Figure 3.5. We now find the x-component of the force exerted by the duct on the
fluid, as in Figure 3.8. The flow is steady, two-dimensional flow, and the duct has a width
W . The pressure outside the duct is atmospheric everywhere, and over the inlet and outlet
areas the gauge pressures are p1g and p2g, and the densities are ρ1 and ρ2, respectively. The
pressures and densities are uniform over A1 and A2.

Solution: If we ignore gravity and friction, the only forces acting on the fluid will be
forces due to pressure differences, and the force exerted by the duct on the fluid, Rext. We
begin by finding Rxext, the x-component of the force exerted by the duct on the fluid. The
x-component of the momentum equation (equation 3.20) is given by∫

(n · ρV) i ·V dA = p1gA1 − p2gA2 +Rxext

so that

Rxext = p2gA1 − p1gA2 −
∫
ρ1V

2
1 dA1 +

∫
ρ2V

2
2 dA2

= p2gA1 − p1gA2 − 2ρ1W

b∫
0

V 2
1 dy + 2ρ2W

B∫
0

V 2
2 dy

= p2gA1 − p1gA2 − 16
15ρ1V

2
m1Wb+ 2

3ρ2V
2
m2WB

What about the y-direction? We see that the momentum only changes in the x-direction,
and that the forces due to pressure differences only act in the x-direction. So the y-
component of the force exerted by the duct on the fluid must be zero.

Figure 3.8: Two-dimensional duct showing control volume.
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Example 3.9: Lift and drag on an airfoil

Consider an airfoil of span b placed in a wind tunnel of height h, as shown in Figure 3.9.
The flow is steady and of constant density, and the airfoil develops a lift force and a drag
force. The lift force FL is defined as the force on the airfoil normal to the direction of the
incoming flow, and the drag force FD is defined as the force in the direction of the incoming
flow. The incoming flow velocity is uniform across the wind tunnel with a magnitude V1,
but downstream the velocity varies across the tunnel in the y-direction. The velocity in
the wake of the airfoil is less than V1, and therefore, by conservation of mass, the velocity
outside the wake must be greater than V1. There is also a pressure difference, so that p2

is less than p1, but since the streamlines at stations 1 and 2 are parallel, the pressures are
constant across the wind tunnel (we will ignore gravity). Find the lift and drag forces.

Solution: We start with the x-momentum balance for the control volume shown in Fig-
ure 3.9 to find Rxext, the x-component of the force exerted by the airfoil on the fluid. If
viscous forces on the surface of the control volume can be neglected,∫

(n · ρV) i ·V dA = −
∫

i · np dA+Rxext

Hence

−ρV 2
1 bh+ 2

∫ h/2

0

ρV 2
2 b dy = (p1 − p2) bh+Rxext

For the velocity distribution shown,

Rxext = − (p1 − p2) bh− ρV 2
1 bh+ 1

3ρV
2
2mbh

Rxext is the force exerted by the airfoil on the fluid, and so the force exerted by the fluid on
the airfoil is −Rxext, and therefore FD = −Rxext. That is,

FD = (p1 − p2) bh+ ρV 2
1 bh− 1

3ρV
2
2mbh

We can show that V2m = 2V1 by using the continuity equation. In addition, we can make
the drag force nondimensional by dividing through by 1

2ρV
2
1 bh (we recognize this as the

upstream dynamic pressure multiplied by the cross-sectional of the tunnel). Therefore

FD
1
2ρV

2
1 bh

=
(p1 − p2)

1
2ρV

2
1

− 2

3

Non-dimensionalizing has cleaned up the final expression, and it has also revealed the pres-
ence of a pressure coefficient on the right hand side, similar to that introduced in Sec-
tion 4.3.1, as well as a new nondimensional parameter called a drag coefficient , C ′D, on the

Figure 3.9: Lift and drag on an airfoil in a windtunnel.
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left hand side, defined by

C ′D =
FD

1
2ρV

2
1 bh

In the usual form of the drag coefficient, the plan area of the wing is used instead of the
cross-sectional area of the tunnel. That is, for a rectangular wing,

CD ≡
FD

1
2ρV

2
1 bc

(3.3)

where c is the chord length of the airfoil (the distance between its leading and trailing edges).
To find the lift force, we start by finding Ryext, the y-component of the force exerted by

the airfoil on the fluid using the y-momentum balance. That is,∫
(n · ρV) j ·V dA = −

∫
j · np dA+Ryext

Since there is no flow in the y-direction

0 =

∫
b

pb b dx−
∫
t

pt b dx+Ryext

where pb and pt are the pressure distributions over the bottom and top faces of the control
volume. Ryext is the force exerted by the airfoil on the fluid, and so the force exerted by the
fluid on the airfoil is −Ryext, and therefore FL = −Ryext. That is,

FL = b

(∫
b

pb dx−
∫
t

pt dx

)
Therefore, the lift force can be found by measuring the pressure distributions on the upper
and lower tunnel walls. When we divide through by 1

2ρV
2
1 bh, we obtain

FL
1
2ρV

2
1 bh

=
1

1
2ρV

2
1 h

(∫
b

pb dx−
∫
t

pt dx

)
We now have a nondimensional lift coefficient C ′L on the left hand side. In its more usual
form, it is defined using the plan area of the wing so that

CL ≡
FL

1
2ρV

2
1 bc

(3.4)

Example 3.10: Unsteady flow and moving control volumes

A steady jet of water having a velocity Vj hits a deflector which is moving to the right at a
constant velocity Vd (see Figure 3.10). The deflector turns the flow through an angle π− θ.
Find F, the force exerted by the fluid on the deflector. Assume that the effects of gravity
and friction can be neglected.

Solution: The first thing to note is that the problem is unsteady for a stationary observer.
This complicates the analysis considerably since we would need to use the unsteady form
of the continuity and momentum equations, and Bernoulli’s equation cannot be used. If
the observer moves with the deflector, however, the problem becomes steady and these
complications are avoided. A velocity transformation using a constant translating velocity
has no effect on the forces acting on a system. That is, the forces are the same whether
a motion is viewed in a stationary coordinate system or one that is moving at a constant
velocity. The control volume for this steady flow is shown in Figure 3.11.
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Figure 3.10: Moving deflector: unsteady
flow.

Figure 3.11: Moving deflector: steady flow.

Along the surface of the jet, we see that the pressure is constant and equal to the atmo-
spheric pressure. The pressure is also constant across the jet over the inlet and outlet areas,
since the streamlines are parallel and the jet is in free fall. Since the flow in this framework is
steady and there is no friction, Bernoulli’s equation applied along any streamline that starts
at the inlet and finishes at the outlet indicates that the magnitude of the inlet and outlet
velocities are equal. The deflector changes the velocity direction, but not its magnitude.
Then, from the continuity equation, we know that the cross-sectional area of the jet, A,
must remain constant.

The momentum equation gives

−F−
∫
pn dA =

∫
(n · ρV) V dA

where +F is the force exerted by the fluid on the deflector, and so −F is the force exerted
on the fluid by the deflector. The pressure is constant everywhere, so that

∫
pndA = 0 for

the control volume shown. Over the inlet, the velocity is (Vj − Vd) i, and n = −i. Over the
outlet the velocity magnitude is the same, but its direction is different, so that the outlet
velocity is (Vj − Vd) (− cos θi + sin θj), and n = − cos θi + sin θj. Hence,

−F = −ρ (Vj − Vd)2
iA+ ρ (Vj − Vd)2

(− cos θi + sin θj)A

= −ρA (Vj − Vd)2
[(1 + cos θ) i− sin θj]

and so: F = ρA (Vj − Vd)2
[(1 + cos θ) i− sin θj]

We can check this answer by taking the limit when Vj = Vd, and the limit when θ = π. In
both cases, F = 0, as expected.

Example 3.11: Drag force on a cylinder

Consider the flow shown in Figure 3.12. The reduced velocity region downstream of the
cylinder is called the wake (see figure 4.3). This flow was first considered in Example 3.3,
where mass conservation was used to show that V2 = 4

3V1. Here, we find the forces that act
on the cylinder. The presence of the cylinder changes the pressure and momentum of the
fluid, because the cylinder exerts a force on the fluid, Rext. Hence, the force exerted by the
fluid on the cylinder is equal to −Rext, and this force FD is the drag force. We will now
find FD, assuming that forces due to viscous stresses and gravity are negligible, and that
the pressure is constant over the inlet and outlet areas.
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Figure 3.12: A cylinder in a wind tunnel.

Solution: To find the drag force FD, we need to find Rext, which is the force by the cylinder
on the fluid. As usual, we will assume Rext acts in the positive x-direction. It is important
to understand how Rext makes an appearance in the momentum equation for the fluid. In
our choice of control volume, the cylinder is inside the volume, and the surface of the volume
“cuts” through the support holding the cylinder in place. In effect, it is the support that
applies the force to the fluid inside the control volume.

The resultant force acting on the fluid is then given by Rext plus the force due to pressure
differences. In finding the rate of change of momentum, we treat the downstream flow as
two separate one-dimensional flows and add the result. Newton’s second law applied to the
fluid in the control volume then gives,

Rext + p1 (4`d)− p2 (4`d) = ρV 2
2 (2`d) + ρ

(
1
2V2

)2
(2`d)− ρV 2

1 (4`d)

With FD = −Rext, and V2 = 4
3V1 (from Example 3.3), we obtain:

FD = 4 (p1 − p2) `d− 4
9ρV

2
1 `d (3.5)

Example 3.12: Converging duct

A steady flow of air of constant density ρ passes through a converging duct of constant
width w, as shown in Figure 3.13. Find the average pressure pav acting on the side walls,
given that viscous and gravity forces may be neglected. The continuity equation for the
control volume shown in the figure gives

2hw V1 = hw V2

so that
V2 = 2V1

The x-component momentum equation gives

p1 (2hw)− p2 (hw)− Fpx = ρV 2
2 (hw)− ρV 2

1 (2hw)

where Fpx is the x-component of the force due to the pressure acting on the side walls. The
total force due to pressure on the side wall, Fp, is given by

Fp = 2pav(Lw) = 2pav
h

2 sin θ
w

and so
Fpx = Fp sin θ = pavhw

Hence
2p1 − p2 − pav = ρV 2

2 − 2ρV 2
1

and so, by using the result that V2 = 2V1

pav = 2p1 − p2 − 2ρV 2
1
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Figure 3.13: Control volume for the flow through a converging duct.

Example 3.13: Control volume selection

Consider the steady flow of constant density air through the sudden expansion shown in
Figure 3.14. We aim to find the force exerted by the fluid on the duct, FD.1 Suppose that
at the entry and exit from the control volume CV1 (stations 1 and 2, respectively), the
flow is approximately uniform so that the assumption of one-dimensional flow can be made.
However, inside the control volume the flow is very complex (see, for example, Figure 3.15)
and there are energy losses. We assume that at the entry to and exit from the control
volume the pressures are approximately uniform across the flow, and at the exit it is equal
to atmospheric pressure. In addition, at the entrance to the sudden expansion, the flow
is approximately parallel, so that the pressure is approximately equal to the pressure in
the recirculation zones (we will show why this is so in Section 4.2.2), and therefore we can
assume that the pressure acting at section s-s is uniform across the flow.

We use two different control volumes to illustrate how the control volume selection
governs the information that can be obtained. First, we use a control volume that encloses
the duct, and cuts through the walls of the duct at an upstream section (CV1 in Figure 3.14).
Where the control volume cuts through the walls, there will be a reaction force Rext acting
on the fluid, so that the force exerted by the fluid on the duct is given by FD = −Rext. If
we use gauge pressure in the x-component momentum equation, we obtain

Rext + p1gA1 = ρV 2
2 A2 − ρV 2

1 A1

since the only place where the pressure is not atmospheric is at station 1. There is no viscous
force acting on this control volume. Outside the duct there is no fluid motion, and there
are clearly no viscous stresses acting. Over the parts of the control volume surface that lie
inside the duct, there are no velocity gradients, and again there are no shearing stresses
acting. For this control volume, viscous forces do not play a role. By using the continuity
equation (V1A1 = V2A2) we obtain, since FD = −Rext,

FD = p1gA1 + ρV 2
1 A1

(
1− A1

A2

)
(3.6)

If we know the geometry of the duct, we can determine FD by measuring the gauge pressure
upstream, and either the inlet or the outlet velocity.

Second, we choose a control volume that coincides with the inside surface of the sudden
expansion (CV2 in Figure 3.14). There is now no reaction force acting on the fluid inside
the control volume since the control volume does not cut the walls of the duct. The pressure
distribution along the horizontal surfaces of the control volume is unknown, but the resulting
force is in the vertical direction so it does not enter the x-momentum equation. However,

1This problem was adapted from an example given in the book Engineering Fluid Mechanics by Alan
Mironer, published by McGraw-Hill, 1979.
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Figure 3.14: Alternative control volumes for the flow through a sudden expansion. The regions of
separated flow are shown as recirculating eddies.

Figure 3.15: Free-body diagram for the sudden expansion.

the viscous shearing stresses along the horizontal surfaces give rise to a horizontal frictional
force on the fluid, −Fv, which must be included (the sign conforms to what is shown in
Figure 3.14: we expect it to be a retarding force for the fluid, but its actual direction will
come out of the analysis). The x-component momentum equation becomes

−Fv + p1A2 − p2A2 = ρV 2
2 A2 − ρV 2

1 A1

By using the continuity equation and gauge pressures (so that p1g = p1− p2, since p2 = pa)

Fv = p1gA2 + ρV 2
1 A1

(
1− A1

A2

)
(3.7)

We see that Fv is positive since A2 > A1, and therefore it will act in the direction shown
in the figure. If the duct is relatively short, or if the expansion ratio A2/A1 is large, Fv is
usually small compared to the force due to pressure differences, and it can be neglected.
The gauge pressure at the upstream location p1g can then be found by measuring either V1

or V2.
Finally, we can draw the free-body diagram for the duct showing the forces acting in the

horizontal direction (Figure 3.15). When the viscous force Fv is negligible,

FD = −p1g (A2 −A1) .

The same result can be obtained by combining equations 3.6 and 3.7 for Fv = 0.

Problems

3.1 Air at 60◦F at atmospheric pressure flows through an air conditioning duct mea-
suring 6 in. by 12 in. with a volume flow rate of 5 ft3/s. Find:
(a) The mass flow rate.
(b) The average velocity.
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3.2 Water at 20◦C flows through a 10 cm pipe with a volume flow rate of 0.5m3/s.
Find:
(a) The mass flow rate.
(b) The average velocity.
(c) The momentum flow rate.

3.3 The largest artery in the body is the one that supplies blood to the legs. As it
comes down the trunk of the body, it splits into a Y-junction, as shown in Figure P3.3.
Blood with specific gravity of 1.05 is pumped into the junction at a speed V1 = 1.5m/s.
The diameter of the entrance flow is d1 = 20mm, and for the exit flow d2 = 15mm and
d3 = 12mm. If the mass flow rates at stations 2 and 3 are equal, find V2 and V3.

3.4 Air enters an air conditioning duct measuring 1 ft by 2 ft with a volume flow rate
of 1000 ft3/min. The duct supplies three classrooms through ducts that are 8 in. by 15 in.
Find the average velocity in each duct.

3.5 In the hovercraft shown in Figure P3.5, air enters through a 1.2m diameter fan at
a rate of 135m3/s. It leaves through a circular exit, 2m diameter and 10 cm high. Find the
average velocity at the entry and the exit.

3.6 Water flows radially toward the drain in a sink, as shown in Figure P3.6. At a
radius of 50mm, the velocity of the water is uniform at 120mm/s, and the water depth is
15mm. Determine the average velocity of the water in the 30mm diameter drain pipe.

3.7 A circular pool, 15m diameter, is to be filled to a depth of 3m. Determine the inlet
flow in m3/s and gpm if the pool is to be filled in 2hrs. Find the number of 2 in. diameter
hoses required if the water velocity is not to exceed 10 ft/s.

3.8 A tank 10 ft in diameter and 6 ft high is being filled with water at a rate of 0.3 ft3/s.
If it has a leak where it loses water at rate of 30 gpm, how long will it take to fill the tank
if it was initially half full?

3.9 Is the tank shown in Figure P3.9 filling or emptying? At what rate is the water
level rising or falling? Assume that the density is constant. All inflow and outflow velocities
are steady and constant over their respective areas.

3.10 A gas obeying the ideal gas law flows steadily in a horizontal pipe of constant
diameter between two sections, 1 and 2. If the flow is isothermal and the pressure ratio
p2/p1 = 1

2 , find the velocity ratio V2/V1.

3.11 A gas obeying the ideal gas law enters a compressor at atmospheric pressure and

Figure P3.3:
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Figure P3.5:

Figure P3.6:

20C, with a volume flow rate of 1m3/s. Find the volume flow rate leaving the compressor
if the temperature and pressure at the exit are 80◦C and 200 bar, respectively.

3.12 For the vessel shown in Figure P3.12, the flow is steady, with constant density, and
it may be assumed to be one-dimensional over the entry and exit planes. Neglect forces due
to gravity, and assume the pressure outside the box is atmospheric. Find the mass flow rate
and the volume flow rate out of area A3, and find the x- and y-components of the force
exerted on the box by the fluid, in terms of ρ, A1, θ and V1.

3.13 A rectangular duct of width w and height h carries a flow of air of density ρ and
viscosity µ. The velocity profile is parabolic, so that

U

Um
= 1−

(
2y

h

)2

where Um is the maximum velocity, which occurs on the centerline where y = 0.

Figure P3.9
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Figure P3.12 Figure P3.14

Figure P3.15

(a) Plot the shear stress as a function of y/h, given that h = 10 mm, w = 200 mm, Um = 1
m/s, the air temperature is 20C, and the pressure is atmospheric.
(b) Find the area-averaged velocity U (need to integrate).
(c) Find the volume flow rate and the mass flow rate through the duct.
(d) Find the Reynolds number of the flow based on the average velocity and the height of
the duct.
(e) Find the skin friction coefficient Cf = τw/(

1
2ρU

2
), where τw is the shear stress at the

wall of the duct.

3.14 Find the force F required to prevent rotation of the pipe shown in Figure P3.14
about the vertical axis located at the point O. The pipe diameter is D, and the fluid density
is ρ.

3.15 A porous circular cylinder, of diameter D is placed in a uniform rectangular wind
tunnel section of height 4D and width W , as shown in Figure P3.15. The cylinder spans the
width of the tunnel. An air volume flow rate of q̇ per unit width issues from the cylinder.
The flow field is steady and has a constant density. The pressures p1 and p2 are uniform
across the entry and exit areas, and the velocity profiles are as shown. A force F is required
to hold the cylinder from moving in the x-direction. Find U2 in terms of q̇, U1 and D. Then
find F .

3.16 A jet of cross-sectional area A1 steadily issues fluid of density ρ at a velocity V1,
into a duct of area A2 = 5A1, as shown in Figure P3.16. The pressures at sections A and B
are uniform across the duct. The surrounding flow in the duct has the same density ρ and a
velocity V2 = 1

2V1. The flow mixes thoroughly, and by section B the flow is approximately
uniform across the duct area. Find the average velocity of flow at Section B in terms of V1,
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Figure P3.16

Figure P3.18

and the pressure difference between sections A and B in terms of ρ and V1.

3.17 Water at 60F enters a 6 in. diameter pipe at a rate of 3000 gpm. The pipe makes
a 180◦ turn. Find the rate of change of momentum of the fluid. If the pressure in the pipe
remains constant at 60 psi, what is the magnitude and direction of the force required to
hold the pipe bend?

3.18 Air of constant density ρ flows at a constant velocity V through a horizontal pipe
bend, as shown in Figure P3.18, and exits to the atmosphere. The pipe is circular and has
an internal radius R. A force F must be applied at the flange to keep the bend in place.
Find F in terms of ρ, R, and V . Neglect any pressure changes, and assume that the flow is
one-dimensional.

3.19 An effectively two-dimensional jet of water impinges on a wedge as shown in Fig-
ure P3.19. The wedge is supported at its apex such that the lower surface remains horizontal.
If the thicknesses t2 and t3 are equal and U2 = U3 = 2U1, find the angle for which the mag-
nitude of the x- and y-components of the reaction force at the apex are equal. Neglect
gravity. The pressure is atmospheric everywhere.

3.20 A steady water jet of density ρ is split in half as it encounters a wedge of included
angle 2α and constant width w, as shown in Figure P3.20. For the velocity distributions
given in the diagram, find the force required to hold the wedge in place in terms of U1, h,
α, and the density of water ρ, assuming that the viscous effects and the weight of the water
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Figure P3.19

Figure P3.20

and wedge are negligible and the pressure is uniform everywhere.

3.21 Air is flowing through a duct of square cross-section of height h, as shown in Fig-
ure P3.21. An orifice plate with a square hole measuring 1

2h by 1
2h is placed on the centerline.

The plate experiences a drag force FD. The air density ρ is constant. Far upstream, the
pressure and velocity are uniform and equal to p1 and U1, respectively. Far downstream,
the pressure is p2 and the velocity distribution is as shown. A manometer measures the
pressure difference, and shows a deflection of ∆. The manometer fluid has a density ρm.
The flow is steady, and friction can be neglected. Find the maximum velocity at the outlet
U2 in terms of U1, and the drag force FD in terms of h, ρ, ρm, ∆, g and U1.

3.22 Figure P3.22 shows a two-dimensional flow of a constant density fluid between
parallel plates a distance 2h apart. The velocity distribution is given by V = Vm

(
1− y2/h2

)
,

where Vm is the maximum velocity. Find the average velocity and the mass flow rate.

3.23 Two rectangular air-conditioning ducts, of constant width W (into the page), meet
at right angles as shown in Figure P3.23. The flow is steady and the density is constant.

Figure P3.21
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Figure P3.22 Figure P3.23

Figure P3.24

All velocities are normal to the exit and entrance areas. The velocity profiles at stations 1
and 2 are parabolic. Find the mass flow rate at station 3. Is it in or out?

3.24 In the rectangular duct shown in Figure P3.24, two parallel streams of a constant
density gas enter on the left with constant velocities U1 and U2. After mixing, the gas exits
on the right with a parabolic profile and a maximum value of U3. Find U3 in terms of U1

and U2.

3.25 Figure P3.25 shows a sketch of a simple carburetor. The air enters from the left
with a uniform velocity, and flows through a contraction where fuel-rich air of the same
density enters at a rate of q̇ m3/s. The mixture then exits on the right with a triangular
velocity profile as shown. The flow is steady, and the cross-sectional areas at stations 1
and 2 are rectangular of constant width W . Assume that all velocities are normal to their
respective areas. Find q̇ when U2 = 2U1.

3.26 A two-dimensional duct of constant width carries a steady flow of constant density
fluid (density ρ), as shown in Figure P3.26. At the entrance, the velocity s constant over

Figure P3.25
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Figure P3.26

Figure P3.27

the area and equal to U0. At the exit, the velocity profile is parabolic according to U =
Um

(
1− (2y/h)2

)
.

(a) Find Um as a function of U0, b and h.
(b) Will Um increase or decrease if a heater is inserted into the duct as shown?

3.27 A constant density fluid flows steadily through a duct of width W , as shown in
Figure P3.27. Find Um in terms of U1 and U2. What is the momentum flux passing through
the exit of the duct?

3.28 For the rectangular duct of width W shown in Figure P3.28, the flow is steady and
the density is constant. Find Um in terms of U1, a and b, and find the y-component of the
momentum flux leaving the duct.

3.29 For the constant density flow in the rectangular duct of width W shown in Fig-
ure P3.29, find Um in terms of a, b and U1, and the (vector) momentum flux leaving the
duct.

Figure P3.28
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Figure P3.29

Figure P3.30

3.30 A fluid enters the rectangular duct shown in Figure P3.30 with constant velocity
U1 and density ρ1. At the exit plane, the fluid velocity is U2 and the density has a profile
described by a square root relationship, with a maximum value of ρ2. Find ρ2 in terms of
ρ1 when U1 = U2. Also find the net vector momentum flux leaving the duct.

3.31 A fluid flows through a two-dimensional duct of width W , as shown in Figure P3.31.
At the entrance to the box (face 1), the flow is one-dimensional and the fluid has density
ρ1 and velocity U1. At the exit (face 2), the fluid has a uniform density ρ2 but the velocity
varies across the duct as shown. Find the rate at which the average density inside the box
is changing with time.

3.32 The wake of a body is approximated by a linear profile as sketched in Figure P3.32.

Figure P3.31
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Figure P3.32

Figure P3.33

The flow is incompressible, steady and two-dimensional. Outside of the wake region the
flow is inviscid and the velocity is U2. The upstream velocity, U1, is uniform.
(a) Find U2/U1 as a function of δ/H.
(b) Find the pressure coefficient (p2 − p1)/( 1

2ρU
2
1 ) as a function of δ/H.

(c) Find a nondimensional drag coefficient FD/(
1
2ρU

2
1H) as a function of δ/H, where FD is

the drag force per unit body width.

3.33 Air of constant density flows steadily through the rectangular duct of width W
shown in Figure P3.33. At the entrance, the velocity is constant across the area and equal
to Uav. The velocity at the exit has a parabolic distribution across the duct, with a maximum
value Um. The pressure is constant everywhere. By using the continuity equation, find the
ratio b/a such that Um = Uav. Then find the force F exerted by the flow on the duct,
assuming that the wall friction is negligible.

3.34 A steady, constant density flow of air with a uniform velocity U1 is sucked into a
two-dimensional Venturi duct of width w and enters the rest of the duct at Station 2 with
the velocity profile shown in Figure P3.34. Find:
(a) U2 in terms of U1.
(b) The force required to hold the duct in terms of U1, a, w, θ, p2g (the gauge pressure at
Station 2), and the air density ρ.

3.35 A cylinder is held in a two-dimensional duct of constant width W and height H,
as shown in Figure P3.35. As a result, the downstream velocity distribution becomes as
shown. The density ρ is constant, and the flow is steady. Find U2 in terms of U1, and find
the force exerted by the fluid on the cylinder in terms of ρ, U1, W and H. Neglect frictional
effects and assume that p1 = p2.

3.36 A propeller is placed in a constant area circular duct of diameter D, as shown in
Figure P3.36. The flow is steady and has a constant density ρ. The pressures p1 and p2 are
uniform across the entry and exit areas, and the velocity profiles are as shown.
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Figure P3.34

Figure P3.35

(a) Find Um in terms of U1.
(b) Find the thrust T exerted by the propeller on the fluid in terms of U1, ρ, D, p1 and p2.

3.37 Air of constant density ρ enters a duct of width W and height H1 with a uniform
velocity V1. The top wall diverges (as shown in Figure P3.37) so that the pressure remains
uniform everywhere. Downstream, on the top and bottom wall, the velocity profiles are given

by V/V1 = (y/δ)
1/4

. Given that H2 = 1.1H1, find δ in terms of H1, and find the magnitude
and direction of the force F exerted by the air on the duct in terms of a nondimensional
force coefficient F/ρV 2

1 H1W (ignore viscous stresses).

3.38 A fluid of constant density ρ enters a duct of width W and height h1 with a parabolic
velocity profile with a maximum value of V1, as shown in Figure P3.38. At the exit plane
the duct has height h2 and the flow has a parabolic velocity profile with a maximum value
of V2. The pressures at the entry and exit stations are p1 and p2, respectively, and they are
uniform across the duct.
(a) Find V2 in terms of V1, h1 and h2.
(b) Find the magnitude and direction of the horizontal force F exerted by the fluid on the

Figure P3.36
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Figure P3.37

Figure P3.38

step in terms of ρ, V1, W , p1 and p2, h1 and h2. Ignore friction. Note that at the point
where the flow separates off the step, the flow streamlines can be assumed to be parallel.

3.39 Two fences are placed inside a horizontal duct of height H and width W , as shown
in Figure P3.39. Air of constant density ρ flows steadily from left to right, and the velocity
upstream of the fences (station 1) is constant across the area and equal to Uav. The velocity
downstream of the fences (station 2) has a parabolic distribution across the duct with a
maximum value Um. The pressures at stations 1 and 2 are p1 and p2, respectively, and they
are constant across the duct area.
(a) Find the ratio Um/Uav.
(b) Find the force F acting on the fences, assuming that the wall friction is negligible.
Express the result in terms of the nondimensional drag coefficient CD = F/

(
1
2ρU

2
1HW

)
,

and the nondimensional pressure coefficient

Figure P3.39
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Figure P3.40

Figure P3.41

Cp = (p1 − p2)/
(

1
2ρU

2
1

)
.

3.40 Air of constant density ρ flows steadily into a rectangular duct of constant width
W , as shown in Figure P3.40. There is inflow over area A1 = 3hW and outflow over area
A3 = 2hW . Area A2 = hW . Across A1 and A2 the velocities are constant and equal to
U1, and U2, respectively, as shown. Across A3 the velocity distribution is parabolic with
a maximum value of Um. Over area A1 the gauge pressure p1g, over area A2 the gauge
pressure is p2g, and over area A3 the pressure is atmospheric. There are no losses. ajsCan’t
apply Bernoulli here!
(a) Find the ratios U2/U1, and Um/U1.
(b) Find the pressure difference p1g − p2g in terms of ρ and U1.
(c) Find the force F acting on the fluid (magnitude and sign) between stations 1 and 3, in
terms of ρ, U1 and p1g.

3.41 The entrance region of a parallel, rectangular duct flow is shown in Figure P3.41.
The duct has a width W and a height H, where W � H. The fluid density ρ is constant, and
the flow is steady. The velocity variation in the boundary layer of thickness δ at station 2
is assumed to be linear, and the pressure at any cross-section is uniform.
(a) Using the continuity equation, show that U1/U2 = 1− δ/H.
(b) Find the pressure coefficient Cp = (p1 − p2)/

(
1
2ρU

2
1

)
.

(c) Show that
Fv

1
2ρU

2
1WH

= 1− U2
2

U2
1

(
1− 8δ

3H

)
where Fv is the total viscous force acting on the walls of the duct.

3.42 A steady jet of water of density ρ hits a deflector plate of constant width w inclined
at an angle α, as shown in Figure P3.42. For the velocity distributions given in the figure,
find the horizontal component of the force required to hold the deflector plate in place in
terms of ρ, Um, w, b, and α, assuming that viscous and gravity effects are negligible and
the pressure is uniform everywhere.
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Figure P3.42

Figure P3.43. Figure P3.44

3.43 A circular pipe carries a steady flow of air of constant density ρ. The flow exits to
atmosphere in two places through circular exits, labeled 1 and 2 in Figure P3.43. At the
entrance (labeled 0 in the figure), the gauge pressure is pg, the velocity is V , and the pipe
diameter is D. At exit 1, the diameter is D and the velocity is V/2. At exit 2, the diameter
is D/2. Assume one-dimensional, frictionless flow, and ignore gravity.
(a) Find the velocity at exit 2 in terms of V .
(b) Find the magnitude and direction of the force required to hold the duct in place.
Show your control volumes and all your working clearly, state all your assumptions, and
indicate your coordinate system.

3.44 A rectangular duct of constant width w carries a steady air flow of constant density
ρ as shown in Figure P3.44. The velocity V1 is constant across the inlet area, and the outflow
velocity V2 has a velocity profile described by a quartic function, with a maximum value
of V2m. The flow exits to atmospheric pressure, and the gauge pressure at the inlet is p1g.
Ignore viscous effects and gravity.
(a) Find V2m in terms of V1.
(b) Find the vector force required to hold the duct in place in terms of ρ, V1, h, w and θ,
when p1g = 1

2ρV
2
1 . Express the answer in nondimensional form.

3.45 A steady flow of air of constant density ρ issues from two exit areas in a two-
dimensional duct of width w and height 2h, as shown in Figure P3.45, and for each exit
plane the velocity distribution is parabolic with a maximum value of V2. The inflow to the
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Figure P3.45

Figure P3.46

duct has a uniform velocity distribution of velocity of magnitude V1, and it makes an angle
α with the outlet duct. The pressure is atmospheric at the exit, and the gauge pressure at
the inlet is p1g. Ignore the weight of the fluid.
(a) Find the ratio V2/V1 (this is a number).
(b) Find the force (x- and y-components) required to hold the duct at the connecting flange
in terms of h, w, ρ, V1, α, and p1g.

3.46 A circular pipe of diameter D carries a steady flow of air of constant density ρ
and a constant gauge pressure of pg. A portion of the flow exits to atmosphere through a
circular exit of diameter D/4 at a velocity Ve = 4V1, as shown in Figure P3.46. Assume
one-dimensional flow and ignore gravity. Show your control volumes and all your working
clearly, state all your assumptions, and indicate your coordinate system.
(a) Find V2 in terms of V1.
(b) Find the magnitude and direction of the force required to hold the length of duct between
the two flanges in place in terms of ρ, V1, D and θ.

3.47 Air flows steadily through a bend of width w, as shown in Figure P3.47. Gravity
and viscous forces are not important, and the air density ρ is constant. Show all your
working.
(a) Find the ratio V2/V1 (this is a number).
(b) Find the resultant force required to hold the bend in place in terms of ρ, V1, h, w, p1g,
p2g, and θ.

3.48 A horizontal steady jet of water of density ρ, height h, width w and velocity V hits
a flat plate mounted on a wheeled cart. The jet hits the flat plate at right angles. The cart
starts moving and accelerates until it reaches a constant velocity V/2. Find the magnitude
and direction of the frictional force acting on the cart when it reaches its terminal speed, in
terms of ρ, h, w, and V .

3.49 A steady jet of air of constant density ρ issues from a two-dimensional duct of width



PROBLEMS Chapter 3 75

Figure P3.47 Figure P3.49

Figure P3.50

D and depth a (into the page), as shown in Figure P3.49, with velocity distribution that is
parabolic. The jet supports a plate of width L, depth a (into the page) and weight W , and
the air is deflected horizontally. The side of the plate facing the jet experiences an average
pressure p, and the pressure is atmospheric everywhere else. Ignore the weight of the fluid.
(a) Find the average pressure p in terms of L, D, ρ, and Um.
(b) Find the weight of the plate W in terms of L, D, a, ρ, and Um.

3.50 A steady flow of air of constant density ρ issues from a two-dimensional duct of
width w and height 2h, as shown in Figure P3.50, with a velocity distribution that is
parabolic with a maximum value of V2. The inflow to the duct has a symmetrical, triangular
distribution of velocity with a maximum value of V1. The pressure is atmospheric at the
exit, and the gauge pressure at the inlet is p1g. Ignore the weight of the fluid.
(a) Find the ratio V2/V1 (this is a number).
(b) Find the force (x- and y-components) required to hold the duct at the connecting flange
in terms of h, w, ρ, V1, and p1g.

3.51 A fluid of constant density ρ flows over a flat plate of length L and width W , as
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Figure P3.51

Figure P3.52

shown in Figure P3.51. At the leading edge of the plate the velocity is uniform and equal
to U0. A boundary layer forms on the plate so that at the trailing edge the velocity profile
is parabolic. Find:
(a) The volume flow rate q̇ leaving the top surface of the control volume where y = δ.
(b) The x-component of the momentum flux leaving the control volume through the same
surface.

3.52 A model of a two-dimensional semi-circular hut was put in a wind tunnel, and the
downstream velocity profile was found to be as shown in Figure P3.52. Here, U∞ is the
freestream velocity, ρ is the air density, and D is the hut diameter. Assume that viscous
effects and pressure variations can be neglected.
(a) Draw the flow pattern over the hut (remember that continuity must be satisfied).
(b) Find the average velocity in the y-direction over the area located at y = D.
(c) Find the nondimensional force coefficient CD, where CD = F/

(
1
2ρU

2
∞D

)
, and F is the

x-component of the force acting on the hut per unit width.

3.53 A cylinder of length W is located near a plane wall, as shown in Figure P3.53. The
incoming flow has a uniform velocity U∞, and the downstream flow has a linear velocity
profile U = U∞y/H. Assuming steady, constant density, constant pressure flow, find:
(a) The average velocity in the y-direction over the area located at y = H.
(b) The x-component of the force exerted on the cylinder by the fluid. Neglect viscous
forces.

3.54 A fluid of constant density ρ flows steadily over a cylinder that is located far from
any solid boundary, as shown in Figure P3.54. Upstream, the flow has a uniform velocity U1,
and downstream the velocity distribution in the wake is triangular with a maximum value
of U1, as shown below. The pressure is atmospheric everywhere. For the control volume
shown, the x-component of the velocity is uniform on every surface of the control volume
and equal to U1.
(a) Find the average value of the velocity normal to surfaces 3 and 4.
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Figure P3.53

Figure P3.54

(b) Find the drag force acting on the cylinder (that is, the force exerted by the fluid on the
cylinder).

3.55 A layer of fluid of kinematic viscosity ν and depth h flows down a plane inclined at
an angle θ to the horizontal so that the flow is laminar with a velocity profile described by

u

Ue
= sin

(πy
2h

)
where Ue is the velocity at the free surface (see Figure P3.55). Use a control volume analysis
to find Ue in terms of ν, g, h and θ.

3.56 A square sled, where each side is of length L, rides on thin layer of oil of thickness
h and viscosity µ, as shown in Figure P3.56. The sled carries a tank of water of density ρ,
as well as a circular water jet of diameter d, inclined at an angle α to the horizontal. If the

Figure P3.55
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Figure P3.56

Figure P3.57

sled moves at a constant velocity Vs, and the exit velocity of the jet is Ve (relative to the
cart), find h in terms of the other variables.

3.57 A circular water jet of diameter D, velocity V , and density ρ impinges on a ver-
tical plate supported by a frictionless hinge a distance L above the hinge, as shown in
Figure P3.57. Find the direction and magnitude of the moment that needs to be exerted
around the hinge to maintain the plate in a vertical position. Note that D << L.

3.58 A horizontal jet of water, of constant velocity Uj strikes a deflector such that the
jet direction is smoothly changed, as shown in Figure P3.58. Find the ratio of the vertical
and horizontal components of the force required to hold the deflector stationary in terms of
the angle θ. Neglect gravitational effects. Does this force ratio change when the deflector
moves to the right with velocity Ub?

Figure P3.58
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Figure P3.59

Figure P3.60

3.59 A horizontal jet of air of width W strikes a stationary scoop with a velocity V , as
indicated in Figure P3.59. If the jet height h remains constant as the air flows over the plate
surface, find:
(a) The force F required to hold the plate stationary.
(b) The change in F when the plate moves to the right at a constant speed V/2.

3.60 Water from a stationary nozzle impinges on a moving vane with a turning angle of
θ = 60◦, as shown in Figure P3.60. The vane moves at a constant speed U = 10m/s, and
the jet exit velocity is V = 30m/s. The nozzle has an exit area of 0.005m2. Find the force
exerted by the fluid on the vane required to keep U constant.

3.61 Water of density ρ flows steadily through a smooth contraction of width w, as shown
in Figure P3.61, and exits to atmospheric pressure. A Pitot tube in the jet is connected to
a manometer where the other end is open to atmospheric pressure. The manometer fluid
has the same density as water. The jet of water strikes a vane that turns the fluid an angle
θ.
(a) Find the ratio V2/V1 (this is a number), given that the gauge pressure upstream of the
contraction is 12ρV 2

1 .
(b) Find V2 in m/s when h = 1m.
(c) Find the resultant force required to hold the vane in place in terms of ρ, V2, H2, w and
θ. Gravity and viscous forces are not important.
(d) If the vane now moves at a constant velocity V2/2 to the right, how does the resultant
force required to hold the vane change?

3.62 A snow plow mounted on a truck clears a path 12 ft wide through heavy wet snow.
The snow is 8 in deep and its density is 10 lbm/ft

3. The truck travels at 20mph, and the
plow is set at an angle of 45◦ from the direction of travel and 45◦ above the horizontal, as
shown in Figure P3.62. The snow is therefore discharged from the plow at an angle of 45◦

from the direction of travel and 45◦ above the horizontal. Find the force required to push
the plow.2

3.63 A pump submerged in water contained in a cart ejects the water into the atmo-

2Adapted from Fox & McDonald, Introduction to Fluid Mechanics, 4th ed., John Wiley & Sons, 1992.
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Figure P3.61

Figure P3.62

sphere, as shown in Figure P3.63. The flow area leaving the ejector is 0.01m2, and the exit
of the ejector is at the same height as the top edge of the side of the cart.
(a) If the ejection flow velocity is 3m/s, the flow will be returned to the cart. Find F , the
force necessary to restrain the cart.
(b) If the ejection flow velocity is 4m/s, the flow will just clear the side of the cart. Find
F , the force necessary to restrain the cart.
(c) Find L, the minimum distance between the ejection exit and the side of the cart for the
flow in part (b).

Figure P3.63



Chapter 4

Kinematics and Bernoulli’s
Equation

4.1 Study Guide

• What is meant by the term “steady, one-dimensional flow?”

• Give the definitions of a streamline, and a pathline. Under what condition are they
the same?

• Write down Bernoulli’s equation. Under what conditions does this relationship hold?

• Explain the terms “total pressure” and “dynamic pressure”. What does a Pitot tube
measure? What does a Pitot-static tube measure?

• To find the velocity of a flow using a Pitot probe, what measurements need to be
made?

• Draw a sketch illustrating a simple stagnation point in a uniform flow. What is the
stagnation pressure? Why do you think it is sometimes called the “total” pressure?

4.2 Worked Examples

Example 4.1: Flow in a jet

Consider a tank draining through a small orifice, where the orifice outlet points up at an
angle θ, as in Figure 4.1. The magnitude of the exit velocity is still Ve =

√
2gH. As the jet

issues into the atmosphere, the vertical component of the velocity, w, decreases under the
action of gravity. At the top of the jet trajectory w = 0, and then becomes negative. The
horizontal component of the fluid velocity, u, remains constant throughout the trajectory
when air friction is neglected, because the only force acting is due to gravity. Find zm, the
maximum height to which the jet rises.

Solution: Consider a streamline that starts at the exit and follows the path of the jet. The
pressure everywhere outside the jet is atmospheric, and since there are no pressure gradients
across the jet (it is in free fall), the pressure inside the jet is also atmospheric. If there are
no losses,

1
2V

2
e = 1

2V
2 + gz = constant

81
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Figure 4.1: Tank draining with exit pointing up at angle θ.

Now V 2 = u2 +w2, and for the exit velocity, V 2
e = u2

e +w2
e . Since the horizontal component

of the fluid velocity remains constant, ue = u = constant (there are no forces acting on the
fluid in this direction). Bernoulli’s equation reduces to

1
2w

2
e = 1

2w
2 + gz (4.1)

The highest point of the trajectory is given by point where z = zm and w = 0. That is,

gzm = 1
2w

2
e

Since we = Ve sin θ =
√

2gH sin θ,

gzm = 1
2

(
2gH sin2 θ

)
and

zm = H sin2 θ

We can check this answer by taking limits. For θ = 90◦, zm = H, and for θ = 0◦, zm = 0,
as expected.

Example 4.2: Forces exerted by an exiting jet

A tank sits on a balance scale to measure the vertical force Fz and Fx. The tank has an
opening near the bottom that points up at an angle θ to the horizontal (Figure 4.2). The
water level is kept constant so that W , the weight of the tank and its contents, is constant
and the flow is steady. We will assume that there are no losses, and that the fluid is of
constant density ρ.
(a) What is Fz?
(b) What is Fx?
(c) Find Ww, the weight of water in flight between the jet exit and the point of maximum
jet height.

Solution: For part (a) we use the control volume labeled CV1. The z-momentum leaving
the control volume is given by the product of the mass flow rate ρVeAe and the z-component
of the velocity Ve sin θ, where Ve is the velocity and Ae is the cross-sectional area of the jet
at the exit. The momentum equation in the z-direction then gives

−W + Fz = ρVeAe (Ve sin θ)

Hence,
Fz = W + ρVeAe (Ve sin θ) (4.2)
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Figure 4.2: Reactive forces acting when a tank drains.

For part (b), we can use either control volume CV1 or control volume CV2, since the
horizontal component of the momentum does not change in the x-direction (no forces act
in that direction). The x-momentum leaving the control volume is given by the product of
the mass flow rate ρVeAe and the x-component of the velocity Ve cos θ, so for CV1 or CV2

Fx = ρVeAe (Ve cos θ) (4.3)

For part (c), we can use either control volume CV2 or control volume CV3. For CV2, the
momentum equation in the z-direction is

−W −Ww + Fz = 0

From equation 4.2,
Ww = Fz −W = ρVeAe (Ve sin θ) (4.4)

For control volume CV3, the momentum equation in the z-direction becomes

−Ww = −ρVeAe (Ve sin θ)

so that
Ww = ρVeAe (Ve sin θ)

which is the same result obtained using CV2 (equation 4.4). That is, the z-momentum
leaving CV1 is the same as the weight of the water in flight.

Example 4.3: Jet on a cart

A pipe of cross-sectional area A is connected by a flange to a large, pressurized tank which
supplies air of constant density ρ to a jet of cross-sectional area 1

4A, as shown in Figure 4.3.
The tank sits on a cart equipped with frictionless wheels so that it can roll freely, and the
jet exits to atmosphere with a velocity V . Find:
(a) The gauge pressure pg in the pipe at the flange;
(b) The force holding the pipe to the tank at the flange, Ff ; and
(c) The tension in the string holding the cart, T .

Solution: For part (a), we will assume that the flow is quasi-steady (it is a large tank),
and that there are no losses downstream of the flange, so that Bernoulli’s equation can be
used between a point in the pipe at the location of the flange, where the velocity is V1, and
a point in the exit plane of the jet, where the pressure is atmospheric. Hence

pg + 1
2ρV

2
1 = 1

2ρV
2
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Figure 4.3: Jet on a cart, held in place by a string.

From the continuity equation we have

V1A = 1
4V

so that
pg = 15

32ρV
2

For part (b), we use control volume CV 1 and apply the x-momentum equation. Let
Rext be the x-component of the force exerted by the pipe on the fluid. Therefore

Rext + pgA = 1
4ρV

2A− ρV 2
1 A = 1

4ρV
2A− 1

16ρV
2A

so that
Rext = −pgA+ 3

16ρV
2A = − 15

32ρV
2A+ 3

16ρV
2A = − 9

32ρV
2A

Rext is the force exerted by the pipe on the fluid. Therefore the force exerted by the
fluid on the pipe is −Rext, so Ff , the force holding the pipe to the tank at the flange is
FD = −(−Rext) = Rext.

For part (c), we use control volume CV 2 and apply the x-momentum equation. Let Fc
be the x-component of the force exerted by the cart on the fluid. Therefore

Fc = 1
4ρV

2A

Hence the force exerted by the cart on the fluid is −Fc, and T , the tension in the string
holding the cart , is T = −(−Fc) = Fc.

Problems

4.1 Consider the velocity field given by V = xi + yj. Find the general equation for the
streamlines. Sketch the flow field.

4.2 Consider the velocity field given by V = xi + yj. Find the general equation for the
pathlines. Compare with the results obtained in the previous problem.

4.3 Consider the velocity field given by V = x−1i + x−2j. Find an equation for the
streamline passing through the point [1, 2].

4.4 Consider the velocity field given by V = x2i − xyj. Find an equation for the
streamline passing through the point [2, 1]. How long does it take a particle of fluid to move
from this point to the point where x = 4?
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Figure P4.5

4.5 For the flows shown in Figure P4.5, give reasons why Bernoulli’s equation can or
cannot be used between points:
(a) 1 and 2;
(b) 3 and 4;
(c) 5 and 6;
(d) 7 and 8;
(e) 8 and 9;
(f) 9 and 10.

4.6 For the duct flow shown in Figure P4.6, the pressure at the exit (point 4) is atmo-
spheric, the density ρ is constant, and the duct is of constant width w.
(a) Sketch the flow pattern.
(b) Can you use Bernoulli’s equation between points 2 and 4? Why?
(c) Are the pressures at points 2 and 3 equal? Why?
(d) Find the gauge pressure at point 2 in terms of ρ and V1.
(e) Find the gauge pressure at point 1 in terms of ρ and V1.

4.7 Fluid passes through a fan placed in a duct of constant area, as shown in Fig-
ure P4.7. The density is constant.
(a) Is the volume flow rate at station 1 equal to that at station 2? Why?
(b) Can Bernoulli’s equation be applied between stations 1 and 2? Why?

4.8 Consider a constant density gas flowing steadily through a smooth, circular, hor-
izontal contraction. Calculate the velocity and pressure as the radius decreases to half its
original value. State all your assumptions.

Figure P4.6
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Figure P4.7

Figure P4.14

4.9 Air flows through a smooth contraction so that the velocity increase by a factor of
5. What is the change in pressure? Express the answer in non-dimensional form. List all
your assumptions.

4.10 A Venturi tube is a tube that has a decreasing and then increasing diameter, and
it is designed to have very small losses. Assume one-dimensional flow, and neglect gravity.

(i) What is the maximum included angle on the expansion to avoid separation?
(ii) If losses can be neglected, find the change in pressure at the narrowest point in terms

of the diameter ratio, the upstream velocity, and the fluid density. Express the answer in
non-dimensional form.

4.11 A Pitot tube is used to measure the total pressure in a wind tunnel. If the total
pressure is 1200Pa, and the local static pressure is 100Pa, what is the wind tunnel speed
if the air density ρ is 1.2 kg/m3? What assumptions did you make?

4.12 Consider a constant density gas flowing steadily over an airfoil. Far upstream the
velocity is V0. Halfway along the top surface, the velocity has increased to 2V0. Halfway
along the bottom surface, the velocity has decreased to V0/2. Find the pressure difference
between the top and bottom surface at this location. State all your assumptions.

4.13 A wing is tested in a wind tunnel at a speed of 10m/s. The pressure in the wind
tunnel is atmospheric. Find the gauge pressure at the stagnation point if the air density
ρ = 1.2 kg/m3. What is the static (gauge) pressure at the point where the velocity on the
wing is 15m/s? What assumptions did you make?

4.14 A wind tunnel carrying air of density ρ has two pressure taps in its walls to measure
the static pressure, as shown in Figure P4.14. One tap is located upstream of the contraction
where the cross-sectional area is A1, the velocity is V1, and the pressure is p1, and the other
tap is located in the working section where the area is A2, the velocity is V2 and the pressure
is p2. If A1 � A2, find V2 in terms of ρ, p1 and p2. Show your working and state all your
assumptions.

4.15 An airplane is moving at a speed of 250mph at an elevation of 12, 000 ft. By using
Bernoulli’s equation, find the pressure at the stagnation point, and at a point on the upper



PROBLEMS Chapter 4 87

Figure P4.18 Figure P4.19

Figure P4.20

surface of the wing where the local velocity is 350mph. Assume a Standard Atmosphere
(Table Appendix-C.6).

4.16 An airplane is moving through still air at 60m/s. At some point on the wing, the
air pressure is −1200N/m2 gauge. If the density of air is 0.8 kg/m3, find the velocity of the
flow at this point. Carefully list the assumptions you have made in your analysis. Express
your answer in terms of the nondimensional pressure coefficient Cp.

4.17 Water flows steadily at a rate of 0.6ft3/s through a horizontal cone-shaped contrac-
tion the diameter of which decreases from 4.0 in. to 3.0 in. over a length of 1.2 ft. Assuming
that conditions are uniform over any cross section, find the rate of change of pressure with
distance in the direction of the flow at the section 0.6 ft from the end of the contraction.

4.18 Consider the steady flow of air with no losses through the circular duct shown in
Figure P4.18. The air has constant density ρ, and the duct exits to atmospheric pressure.
Assume one-dimensional flow.
(a) Find p1g, the gauge pressure at station 1, in terms of ρ and V1.
(b) Find the direction of the force F that is necessary to hold the duct in place.

4.19 A one-dimensional air flow of constant density ρ exits steadily into the ambient
atmosphere from the contraction shown in Figure P4.19. The contraction is bolted onto a
constant area duct at station 1, and the area ratio A1/A2 = 4. If the total force in the bolts
is Fx, find Fx/ρU

2
1A1. Show all your work, and state your assumptions clearly. Would your

analysis hold if the flow direction was reversed?

4.20 Neglecting friction, find the axial force produced at the flange when water discharges
at at 200 gpm into atmospheric pressure from the circular nozzle shown in Figure P4.20.

4.21 Air of constant density ρ flows steadily through the circular pipe of radius R with
no losses at a velocity V , as shown in Figure P4.21. Find the vector force F, exerted at the
flange required to hold the pipe in place, in terms of ρ, R, V , and θ. Ignore gravity. For
this problem, the nozzle is not attached to the exit.
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Figure P4.21 Figure P4.23

Figure P4.24

4.22 A nozzle with an exit radius of 1
2R is attached to the exit of the pipe bend described

in the previous problem. Find the new vector force F′, exerted at the flange required to
hold the pipe in place, in terms of ρ, R, V , and θ. Ignore gravity, and neglect losses.

4.23 Air of constant density ρ flows steadily through the horizontal pipe system shown
in Figure P4.23. The air flow exits to atmosphere through a 4:1 contraction. Assume one-
dimensional flow, neglect losses, and neglect the weight of the piping.
(a) Find the gauge pressure measured by the gauge near station 1 in terms of ρ and V1.
(b) Find the resultant force acting in the flange bolts at station 1.

4.24 An incompressible fluid of density ρ flows smoothly and steadily from left to right
through the nozzle shown in Figure P4.24(a). The pressure outside the nozzle is equal to
atmospheric pressure, and the flow may be assumed to be one-dimensional. Determine the
magnitude and the direction of the force exerted by the fluid on the nozzle in terms of the
density ρ, the inlet velocity V1, and the inlet area A1, given that the pressures and velocities
at stations 1 and 2 are uniform across the areas A1 and A2, and that A1/A2 = 4.

4.25 Consider the previous problem in the case where the flow is from right to left
[Figure P4.25(b)]. What additional information (beyond the density ρ, the inlet velocity V1,
and the inlet area A1) would you require to determine the force exerted by the fluid on the
nozzle with this new flow direction?

4.26 Water in an open cylindrical tank 10 ft in diameter and 6 ft deep drains through
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Figure P4.30

Figure P4.31

a 2 in diameter nozzle in the bottom of the tank. Neglecting friction and the unsteadiness
of the flow, find the volume of water discharged in 20 s, given that the pressure at the exit
is atmospheric.

4.27 Water flows into a large circular tank at a rate of q̇ m3/s that is open to the
atmosphere. Water also leaves through a smooth circular nozzle of diameter d a distance h
below the free surface. Determine the height h for the flow to be independent of time.

4.28 A tube of constant cross-sectional area A is used to siphon water of density ρ from
a large open tank to a point a distance H below the water level in the tank.

(i) Find the maximum volume flow rate in terms of ρ, g and H.
(ii) Find the dynamic pressure at the exit. Show your working and state all your as-

sumptions.

4.29 A siphon is used to empty a large tank. The exit of the siphon is located a distance
h below the surface of the water, and points up at an angle θ to the horizontal. The water
is allowed to stream out of the exit without loss. Find the maximum vertical distance the
water reaches.

4.30 Given the siphon arrangement shown in Figure P4.30, find the exit velocity of the
siphon assuming no losses. What limit exists on the maximum value of L if the siphon is to
continue to function? What limit exists on the value of H?

4.31 Water exits from a reservoir as shown in Figure P4.31. As H increases, the exit
velocity increases until a critical elevation is reached and cavitation occurs. Find this value
of H. Assume uniform flow and no losses, and that the vapor pressure is 0.25 psia.

4.32 A tube of constant area At is used as a siphon, and it draws fluid of constant density
ρ without loss from an infinitely large reservoir, as shown in Figure P4.32. The fluid exits
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Figure P4.32

Figure P4.34:

with velocity Ve, at an angle θ to the horizontal, at a distance H1 below the surface of the
reservoir.
(a) Explain what the practical restrictions are on the maximum height of the siphon tube,
H2.
(b) Express the ratio of the cross-sectional area of the jet to the cross-sectional area of the
tube as a function of H1 and height y.
(c) Find H3, the maximum height reached by the jet, as a function of H1 and θ.
(d) Find the volume of water contained in the jet between stations A and B.

4.33 Water leaves a small hole in the vertical side of a bucket in a continuous, initially
horizontal jet.
(a) If the head of water above the hole is 1.25m, what is the jet velocity at exit?
(b) If the jet strikes the ground at a point situated 2.21m horizontally from the hole, and
the ground is 1m below the hole, recalculate the jet velocity at exit. Why might this result
be different from that obtained in part (a)?

4.34 Water flows from a large open reservoir and discharges into air at atmospheric
pressure through a circular, horizontal pipe fitted with a nozzle, as shown in Figure P4.34.
Subsequently, it strikes the ground a distance x downstream from the nozzle. Neglecting
losses, find
(a) The velocity at the nozzle exit;
(b) The velocity and pressure in the pipe near the nozzle;
(c) The distance x.

4.35 A jet issues without loss from a hole in a water tank that is open to the atmosphere.
The hole is located a distance H below the free surface, and the jet issues at an angle θ to
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Figure P4.36 Figure P4.37

Figure P4.38

the horizontal direction, and it has an exit area of A. Express the maximum height of the
jet as a function of θ and H (which is held constant). What is the the horizontal component
of the force exerted on the tank by the jet? Ignore losses.

4.36 A jet of constant density fluid rises into the atmosphere, without loss, from the
bottom of a large tank, as shown in Figure P4.36.
(a) Find the exit velocity V in terms of g and H. State all assumptions clearly.
(b) Find the horizontal component of the force the jet exerts on the tank in terms of ρ, V1,
θ and the exit area A.
(c) As the jet rises, its vertical velocity decreases but its horizontal velocity remains constant.
Find the maximum height of the jet in terms of H and θ.

4.37 A jet of constant density fluid rises without loss into the atmosphere at an angle θ
from a large tank, as shown in Figure P4.37. The exit is located very near the bottom, and
the change in water depth H with time may be neglected.
(a) What is the maximum height, relative to the tank bottom, to which the jet rises?
(b) What is the vertical force F required to support the tank? The weight of the tank and
its contents is W .

4.38 A large tank issues a jet of water from an orifice at a depth H below the surface,
as shown in Figure P4.38. The orifice has an exit area A2 and it points upwards at an angle
of θ to the horizontal. Assuming that A1 � A2, and that there are no losses,
(a) Find the maximum height of the jet (= H3) in terms of H1 and θ.
(b) Find the volume of water in flight between the jet exit and the point of maximum jet
height in terms of A2, H1 and θ.

4.39 Water of density ρ issues from a spigot of circular cross-section into the atmosphere,
as shown in Figure P4.39. At the flange, the velocity is V . The diameter decreases from D
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Figure P4.39

Figure P4.41

at the flange to 1
4D at the exit. Ignoring losses,

(a) Find the gauge pressure at the flange in terms of ρ and V .
(b) Find the magnitude and direction of the force exerted by the water on the spigot in
terms of ρ, D and V (ignore the weight of water contained in the spigot).

4.40 For a constant density fluid flowing in a duct, show that the change in total pressure
(= static pressure + dynamic pressure) after a sudden enlargement is

1

2
ρU2

1

(
1− U2

U1

)2

where U1 is the velocity upstream, and U2 the velocity well downstream of the sudden
change in the cross-section. Note that at the point where the fluid enters the enlargement,
the streamlines are nearly parallel. Explain why the velocity U2 must be taken to be well
downstream of the sudden enlargement and support your explanation with a sketch of the
flow pattern.

4.41 Consider the steady flow of a fluid of constant density in a duct of constant width
w. The fluid flows smoothly up a bump, as shown in Figure P4.41, and then separates such
that the streamlines are initially straight and parallel. Determine the magnitude and the
direction of the horizontal component of the force exerted by the fluid on the bump in terms
of the density ρ, the inlet velocity V1, the inlet height H1 and the width w, given that the
pressures and velocities at stations 1 and 2 are uniform across the heights H1 and H2, and
that H1/H2 = 2.

4.42 A fluid of density ρ1 flows through a circular nozzle as shown in Figure P4.42. The
pressure difference between sections 1 and 2 is measured using a manometer filled with a
liquid of density ρ2. Find the pressure difference p1 − p2 and the area ratio A1/A2 in terms
of z1 − z2, D, ρ1, ρ2, and V1.

4.43 Air of constant density ρa flows steadily through a circular pipe of diameter D,
which is downstream of a frictionless nozzle of diameter d, as shown in Figure P4.43. Assume
one-dimensional flow. If the manometer reads a deflection of h, find the velocity V at the
nozzle exit in terms of h, D, d, ρa and the density of the manometer fluid ρm.
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Figure P4.42:

Figure P4.43

4.44 A fluid flows steadily from left to right through the duct shown in Figure P4.44.
Another fluid of a different density enters from a second duct at right angles to the first. The
two fluids mix together and at station 3 the resultant fluid has a uniform composition. This
mixed fluid then exits without loss to atmosphere through a contraction with no further
change in density. At stations 1, 2, 3 and 4 the flow properties and parameters are constant
over their respective areas. Find the pressure p1 in terms of ρ1, A1 and U1. Ignore the
effect of gravity. Assume U2 = 2U1, ρ2 = 3ρ1, ρ3 = 2ρ1, ρ3 = ρ4, A2 = 1

4A1, A1 = A3, and
A4 = 1

4A1.

4.45 Two gases of density ρ1 and ρ3 are being mixed in the device shown in Figure P4.45.
The device is of height d and constant width. Gas of density ρ1 and velocity U1 enters from
the left, and it is mixed with gas of density ρ3 and velocity U3 entering through two ducts
each of size 1

4d. The mixing is complete at station 2, so that both the velocity U3 and
density ρ3 are uniform across the duct. The mixture then accelerates smoothly through a
contraction to exit at atmospheric pressure with a velocity U4 and an unchanged density

Figure P4.44
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Figure P4.45

Figure P4.46

(ρ4 = ρ2). You are given that ρ3 = 2ρ1, and U3 = 3U1 = U4. Find the ratio ρ2/ρ1, and the
pressure coefficient Cp, where

Cp =
p1 − p2
1
2ρ1U2

1

4.46 Water issues steadily without loss from the smooth, circular funnel shown in Fig-
ure P4.46 under the action of gravity.
(a) Find the area ratio A3/A2 in terms of h1 and h2.
(b) By using the momentum equation, find the volume of fluid contained in the jet between
stations 2 and 3 in terms of h1, h2 and A2. Assume that A1 � A2.

4.47 A circular hovercraft, of weight Mg, hovers a distance h above the ground, as shown
in Figure P4.47. Far from the inlet the air is at atmospheric pressure and may be considered
stationary. The air density remains constant throughout. The expansion downstream of the
fan occurs without loss, and the exit streamlines are parallel to the ground. Find h in terms
of the inlet velocity Vi, the diameter of the fan d, the diameter of the exit plane D, the
density ρ and the weight Mg. Assume one-dimensional flow over the entry and exit areas.

4.48 An axisymmetric body of cross-sectional area a moves steadily down a tube of cross-
sectional area A, which is filled with a fluid of constant density ρ, as shown in Figure P4.48.
The flow over the main part of the body is streamlined, but the flow separates over the rear
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Figure P4.47

Figure P4.48

part of the body such that the pressure over the section x-x immediately downstream of the
base is uniform. Neglecting viscous shear forces at the wall, show that the velocity of the
body is given by

V =

(
A− a
a

)√
2F

ρA

where F is the force necessary to keep the body moving at a constant speed.

4.49 Air flows steadily through a tee-piece of width w, as shown in Figure P4.49. Gravity
is not important, and the air density ρ is constant. The flow exits to atmospheric pressure
pa. If the resultant force acting on the tee-piece is zero:
(a) Find the ratios V2/V1 and V3/V1 (these are numbers).
(b) find the gauge pressure pig at the flange in terms of ρ, V1, h, and w.

Figure P4.49
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Figure P4.50

Figure P4.51

4.50 A duct carries a steady flow of air of constant density ρ and exits to atmosphere,
as shown in Figure P4.50. At its entrance the gauge pressure is pg, the velocity is V , and
the area is A. At its exit the area is A/2. Assume one-dimensional, frictionless flow, and
ignore gravity.
(a) Find the velocity at the exit in terms of V .
(b) Find pg in terms of ρ and V .
(c) Find the magnitude and direction of the force required to hold the duct in place.
Show your control volumes and all your working clearly, state all your assumptions, and
indicate your coordinate system.

4.51 A steady flow of air of constant density ρ is drawn into a duct of constant width w
and height 2h, as shown in Figure P4.51. Viscous effects and energy losses are important
only downstream of point 1. The effects of gravity can be neglected. For the velocity
distributions and pressures given in the figure:
(a) Show that the pressure p0 = 10ρV 2

1 , given that p2 = 0.75p0, and p1 − p2 = 2ρV 2
1 .

(b) Show that the velocity V2 = 3V1/2.
(c) Show that

F
1
2ρV

2
1 hw

= −26

5

where F is the horizontal component of the force required to hold the duct (including the
contraction) in place at point 2.

4.52 A water deflector is held onto a pipe of area A1 at a flange. The deflector has two
exits, as shown in Figure P4.52, which exit to atmospheric pressure. The flow is steady,
one-dimensional, and the water has a constant density ρ. With both exits open, velocity
V2 = V1, and area A2 = A1/2. Ignore the effects of gravity. Show your control volumes and
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Figure P4.52

all your working clearly, state all your assumptions, and indicate your coordinate system.
(a) Find the velocity V3 in terms of V1, given that A3 = A1.
(b) Find the magnitude and direction of the x-component of the force at the flange (station
1) required to hold the deflector onto the pipe, in terms of V1, A1, ρ, α, and p1g (the gauge
pressure at station 1).
(c) Similarly, find the magnitude and direction of the y-component of the force at the flange
required to hold the deflector onto the pipe.
(d) If the exit at station 3 was closed, find p1g in terms of V1 and ρ. Ignore losses.

4.53 A flange connects a pipe section of inlet area A1, as shown in Figure P4.53. The
pipe section reduces its area smoothly, and the air flow exits to atmospheric pressure though
an area A2. The exiting jet impacts a baffle placed normal to the incoming flow. The flow
is steady, one-dimensional, and the air has a constant density ρ. The gauge pressure at
station 1 is p1g. Ignore the effects of gravity. Show your control volumes and all your
working clearly, state all your assumptions, and indicate your coordinate system.
(a) Find the magnitude and direction of the force Fb required to hold the baffle in place in
terms of ρ, V1, A1, and A2.
(b) Find p1g in terms of ρ, V1, A1, and A2. Ignore losses.
(c) Find the magnitude and direction of the x-component of the force at the flange (station
1) required to hold the pipe section in place, in terms of ρ, V1, A1, A2, and α.
(d) Similarly, find the magnitude and direction of the y-component of the force at the flange
required to hold the pipe section in place, in terms of ρ, V1, A1, A2, and α.

4.54 A flange connects a pipe section of inlet area A, as shown in Figure P4.54. The pipe
section splits smoothly into two separate streams that both exit to atmospheric pressure
though areas A/4. The flow is steady, one-dimensional, and the air has a constant density
ρ. The gauge pressure at station 1 is p1g. Ignore the effects of gravity. Show your control
volumes and all your working clearly, and state all your assumptions.
(a) Find p1g in terms of ρ and V1. Ignore losses.
(b) Find the magnitude and direction of the x-component of the force at the flange (station
1) required to hold the pipe section in place, in terms of ρ, V1, A, and θ.
(c) Similarly, find the magnitude and direction of the y-component of the force at the flange
required to hold the pipe section in place, in terms of ρ, V1, A, and θ.

4.55 A spray head steadily discharges a fluid of constant density ρ symmetrically over
two side branches, as shown in Figure P4.55. You can neglect gravity, and the fluid viscosity.
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Figure P4.53

Figure P4.54

(a) Find p1g, the gauge pressure at station 1, in terms of ρ, V1, A1 and A2.
(b) Find the resultant force (magnitude and direction) required to hold the spray head onto
the duct, in terms of ρ, θ, V1, A1 and A2.
(c) Express the answer to part (b) as a non-dimensional force coefficient.

Figure P4.55



Chapter 5

Differential Equations of Motion

5.1 Study Guide

• State the definition of the total derivative. Define all symbols and notations, and
describe the meaning of all terms in words.

• Write down the x-component of the acceleration following a fluid particle given that
V = ui + vj + wk, where V is the velocity and i, j and k are the unit vectors in a
Cartesian coordinate system.

• State the continuity equation in differential form. Define all symbols and notations,
and describe the meaning of all terms in words.

• Write down the vector differential form of the momentum equation for an inviscid,
incompressible fluid. Define all symbols and notations, and describe the meaning of
all terms in words.

• When is a flow steady? Incompressible?

• Write down the integral and differential forms of the continuity equation for:
(a) Steady flow.
(b) Constant density flow.

5.2 Worked Examples

Example 5.1: Streamlines and pathlines in steady flow

Consider the flow field given by

V = xi− yj

This flow is steady (independent of time) and two-dimensional (it depends on two space
coordinates, x and y).
(a) Describe the velocity field.
(b) Find the shape of the streamlines.
(c) Find the shape of the pathlines.

Solution: For part (a), the vector velocity makes an angle θ with the x-axis, so that

tan θ =
v

u
= −y

x

99
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Along the x-axis, y = 0, and θ = 0◦ (or 180◦), and V has the same sign and magnitude
as x, so that the velocity points directly along the x-axis and increases in magnitude with
distance from the origin. Along the y-axis, x = 0, and θ = 90◦ (or 270◦). Here, V has the
opposite sign but the same magnitude as y, so that the velocity points along the negative
y-axis and increases in magnitude with distance from the origin. At y = x, θ = −45◦, and
so forth. Hence, the entire velocity field can be built up by successively finding the velocity
direction and magnitude at all points in the flow. This procedure will show that the flow
field represents a stagnation point flow, as illustrated in Figure 4.8.

For part (b), the shape of the streamlines is given by the solution of:

dy

dx
=
v

u
= −y

x

The variables can be separated and integrated to give∫
dy

y
= −

∫
dx

x

That is
ln y = − lnx+ constant

This can be written as
xy = C

where C is a constant. That is, the streamlines are hyperbolae in the x-y plane (see Fig-
ure 4.8).

For part (c), we can find the pathlines by using:

u =
dx

dt
= x, and v =

dy

dt
= −y

That is,
dx

x
= −dy

y

Multiplying through by xy gives

y dx+ x dy = d (xy) = 0

The equation to the pathline is then
xy = C

the same result obtained for the equation to the streamline. This is expected, since stream-
lines and pathlines are identical in steady flow.

Example 5.2: Streamlines and pathlines in unsteady flow

Consider the flow field given by
V = xi + ytj

This flow is unsteady (it depends on time) and two-dimensional (it depends on two space
coordinates, x and y). Find the shape of
(a) The streamline and;
(b) The pathline passing through the point [1, 1] at time t = 0.

Solution: For part (a), the shape of the streamlines is given by the solution of

dy

dx
=
v

u
=
yt

x
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The variables can be separated and integrated to give

ln y = t lnx+ constant

This can be written as
y = C1x

t

where C1 is a constant. For the streamline passing through the point [1, 1] at t = 0, C1 = 1,
so for this particular streamline,

y = xt (5.1)

For part (b), to find the pathlines, we use the fact that u = dx/dt, and v = dy/dt. For
this problem,

dx

dt
= x, and

dy

dt
= yt

Integration gives

x = C2e
t

and y = C3 e
t2/2

where C2 and C3 are constants. For the particle located at the point [1, 1] at t = 0,
C2 = C3 = 1, so for this particular pathline

x = et

and y = et
2/2

Eliminating time gives
2 ln y = (lnx)

2
(5.2)

Note that the results given in Equations 5.1 and 5.2 are different because in an unsteady
flow streamlines and pathlines do not coincide.

Example 5.3: Rate of change of density

Given the Eulerian, Cartesian velocity field V = 3i + 2xj, and a density field described by
ρ = 4y2, find the rate of change of density following a fluid particle.

Solution: We need to find the total derivative of the density, that is,

Dρ

Dt
=

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z

For these particular velocity and density fields, w = 0, and

∂ρ

∂t
= 0

u
∂ρ

∂x
= 3

∂4y2

∂x
= 0

v
∂ρ

∂y
= 2x

∂4y2

∂y
= 16xy

Therefore,
Dρ

Dt
= 16xy
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Example 5.4: Acceleration of a fluid particle

Given the Eulerian, Cartesian velocity field V = 2ti + xzj − t2yk, find the acceleration
following a fluid particle.

Solution: We need to find the total derivative of the velocity, that is,

DV

Dt
=

∂V

∂t
+ u

∂V

∂x
+ v

∂V

∂y
+ w

∂V

∂z

For this particular velocity field,

∂V

∂t
=

∂(2t)

∂t
i +

∂(xz)

∂t
j +

∂(−t2y)

∂t
k = 2i + 0− 2tyk

u
∂V

∂x
= 2t

[
∂(2t)

∂x
i +

∂(xz)

∂x
j +

∂(−t2y)

∂x
k

]
= 2t [0 + zj− 0] = 2tzj

v
∂V

∂y
= xz

[
∂(2t)

∂y
i +

∂(xz)

∂y
j +

∂(−t2y)

∂y
k

]
= xz

[
0 + 0− t2k

]
= −xzt2k

w
∂V

∂z
= −t2y

[
∂(2t)

∂z
i +

∂(xz)

∂z
j +

∂(−t2y)

∂z
k

]
= −t2y [0 + xj− 0] = −xyt2j

Finally,

DV

Dt
= 2i− 2tyk + 2tzj− xzt2k− xyt2j = 2i +

(
2tz − xyt2

)
j−
(
2ty + xzt2

)
k

Example 5.5: Incompressibility

Determine if the Eulerian velocity field V = 2xi + t2j is incompressible.

Solution: A velocity field is incompressible if ∇ ·V = 0. For the Cartesian velocity field
given here,

∇ ·V =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
=
∂(2x)

∂x
+
∂(t2)

∂y
= 2

and the flow field is therefore not incompressible.

Example 5.6: Euler equation

Find the x-component of the acceleration of an inviscid fluid under the action of a pressure
gradient ∇p = x2i + 2zj. The x-direction is horizontal.

Solution: The flow of an inviscid fluid is described by the Euler equation (equation 5.10).
That is,

ρ
DV

Dt
= −∇p+ ρg

We take the x-component by forming the dot product with the unit vector i, so that

ρ
D(i ·V)

Dt
= −i · ∇p+ i · ρg

That is,
Du

Dt
= −1

ρ

∂p

∂x
+ 0

Hence, for the flow field given here, the x-component of the acceleration is

Du

Dt
= −1

ρ

∂x2

∂x
= −2x

ρ
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Example 5.7: Navier-Stokes equation

Consider the steady flow of a viscous fluid in a long horizontal duct of height 2h, where
V =

(
1− (y/h)2

)
i. Find the corresponding pressure gradient.

Solution: The flow of a viscous fluid is described by the Navier-Stokes equation (equa-
tion 5.19). That is,

ρ
DV

Dt
= −∇p+ ρg + µ∇2V

The acceleration for this particular flow is given by

DV

Dt
=

D

Dt

(
1−

(y
h

)2
)

i = 0

Since the channel is horizontal, the Navier-Stokes equation reduces to

0 = −∇p+ µ∇2V

The viscous term becomes

µ∇2V = µ∇2

(
1−

(y
h

)2
)

i

= µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)(
1−

(y
h

)2
)

i = −2µ

h2
i

and therefore

∇p = −2µ

h2
i

The pressure gradient acts only in the x-direction, so that

∂p

∂x
=
dp

dx
= −2µ

h2

and we see that the pressure drops linearly in the streamwise direction. This is an example
of a fully-developed flow where the velocity profile does not change in the flow direction,
and the acceleration term goes to zero. Other examples of fully-developed flows will be
considered in Chapter 8.

Example 5.8: Eulerian velocity field

An Eulerian, Cartesian velocity field is given by V = ax2i− 2axyj.
(a) Is it one-, two-, or three-dimensional?
(b) Is it steady or unsteady?
(c) Is it incompressible?
(d) Find the slope of the streamline passing through the point [1,−1].

Solution: For parts (a) and (b), we see that the velocity field is described by two space
coordinates (x and y), and it does not depend on time, so that it is two-dimensional and
steady.

For part (c), we have

∇ ·V =
∂u

∂x
+
∂v

∂y
=

∂(ax2)

∂x
+
∂(−2axy)

∂y
= 2ax− 2ax = 0

so the flow field is incompressible.
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For part (d), we know from the definition of a streamline that its slope in the [x, y]-plane
is given by the angle α, where

tanα =
v

u
=
−2axy

ax2
=
−2y

x
= 2

Therefore, at the point [1,−1] the streamline makes an angle of 63.4◦ with the x-axis.

Problems

5.1 For a velocity field described by V = 2x2i − zyk, is the flow two- or three-
dimensional? Incompressible?

5.2 For an Eulerian flow field described by u = 2xyt, v = y3x/3, w = 0, find the slope
of the streamline passing through the point [2, 4] at t = 2.

5.3 Find the angle the streamline makes with the x-axis at the point [-1, 0.5] for the
velocity field described by V = −xyi + 2y2j

5.4 A Cartesian velocity field is defined by V = 2xi + 5yz2j− t3k. Find the divergence
of the velocity field. Why is this an important quantity in fluid mechanics?

5.5 Is the flow field V = xi and ρ = x physically realizable?

5.6 For the flow field given in Cartesian coordinates by u = y2, v = 2x, w = yt:
(a) Is the flow one-, two-, or three-dimensional?
(b) What is the x-component of the acceleration following a fluid particle?
(c) What is the angle the streamline makes in the x-y plane at the point y = x = 1?

5.7 For an Eulerian flow field described by u = 2xyt, v = y3x/3, w = 0:
(a) Find the rate of change of density following a fluid particle as a function of x, y and t.
(b) Find the x-component of the acceleration as a function of x, y and t.

5.8 A velocity field is described (in Cartesian coordinates) by u = 2−x3/3, v = x2y−zt,
w = 0.
(a) Write down the y-component of the acceleration of a fluid particle (in the Eulerian
system) for this flow field.
(b) Is this flow field incompressible?

5.9 For the velocity field given by V = 6xi− 2yzj + 3k, determine where the flow field
is incompressible.

5.10 Consider the following velocity field (in Cartesian coordinates): u = xt + 2y, v =
xt2 − yt, w = 0. Is this flow incompressible?

5.11 Is the flow field

V = (2x2 − xy + z2)i +
(
x2 − 4xy + y2

)
j +
(
−2xy − yz + y2

)
k

compressible or incompressible?

5.12 A flow field is described in Cartesian coordinates by

V =
(
2x2 + 6z2x

)
i +
(
y2 − 4xy

)
j−
(
2z3 + 2yz

)
k
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Figure P5.16

Is it incompressible?

5.13 A flow field is described (in Cartesian coordinates) by

u =
4x

t
, v =

y2

t
, w = 0, ρ = 3 +

t

x

Find the rate of change of density following a fluid particle two different ways. Is this flow
field possible?

5.14 For an Eulerian flow field described by u = 2x, v = 16 (y + x), w = 0, ρ = at2 +xy,
find the rate of change of density of a particle of fluid with respect to time t in two different
ways. Is this flow field possible?

5.15 For an Eulerian flow field described by u = 2xt, v = y2x/2, w = 0,
(a) How many dimensions does the flow field have?
(b) Find the rate of change of density (per unit mass) following a fluid particle as a function
of x, y and t.
(c) Find the x-component of the acceleration as a function of x, y and t.

5.16 In Cartesian coordinates, a particular velocity field is defined by V = −2x2i +
4xyj + 3k.
(a) Is this flow field compressible or incompressible?
(b) Find the acceleration of the fluid at the point (1,3,0)
(c) Find the volume flux passing through area A shown in Figure P5.16.
(d) What are the dimensions of volume flux?

5.17 For the Cartesian velocity field V = 2x2yi + 3j + 4yk:
(a) Find 1

ρ
Dρ
Dt .

(b) Find the rate of change of velocity following a fluid particle.

5.18 A Cartesian velocity field is defined by V = 3x2i + 4zxtk.
(a) Is the flow field steady?
(b) Is the flow field two- or three-dimensional?
(c) Find the rate of change of velocity following a fluid particle.
(d) Is the flow field incompressible?

5.19 For an Eulerian flow field described by u = 2xyt, v = y3x/3, w = 0:
(a) Is this flow one-, two-, or three-dimensional?
(b) Is this flow steady?
(c) Is this flow incompressible?
(d) Find the x-component of the acceleration vector.
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5.20 For the flow field described by V = 2xyi− 3y2j.
(a) Is the flow field incompressible?
(b) Is the flow field steady?
(c) Is the flow field two- or three-dimensional?
(d) Find the angle the streamline makes that passes through the point (3,−2).
(e) Find the acceleration of the flow field.

5.21 For the flow field described by u = 2, v = yz2t, w = −z3t/3.
(a) Is this flow one-, two-, or three-dimensional?
(b) Is this flow steady?
(c) Is this flow incompressible?
(d) Find the z-component of the acceleration vector.

5.22 For an Eulerian flow field described by u = xyz, v = t2, w = 3:
(a) Is this flow one-, two-, or three-dimensional?
(b) Is this flow steady?
(c) Is this flow incompressible?
(d) Find the x-component of the acceleration vector.

5.23 A velocity field is described by V = 2xyzi− y2zj.
(a) Is the flow field one-, two- or three-dimensional?
(b) Is the flow field steady?
(c) Find the acceleration at the point [1,−1, 1].
(d) Find the slope of the streamline passing through the point [1,−1, 1].

5.24 An Eulerian flow field is described in Cartesian coordinates by V = 4i+xzj+5y3tk.
(a) Is it compressible?
(b) Is it steady?
(c) Is the flow one-, two- or three-dimensional?
(d) Find the y-component of the acceleration.
(e) Find the y-component of the pressure gradient if the fluid is inviscid and gravity can be
neglected.

5.25 For the flow field described by u = 2− x3/3, v = x2y − zt, w = 0.
(a) Is this flow two- or three-dimensional?
(b) Write down the x-component of the acceleration.
(c) Is this flow field incompressible?

5.26 A fluid flow is described (in Cartesian coordinates) by u = x2, v = 4xz.
(a) Is this flow two-dimensional or three-dimensional?
(b) Is this flow field steady or unsteady?
(c) Find the simplest form of the z-component of velocity if the flow is incompressible.

5.27 For the flow field given in Cartesian coordinates by u = 0, v = x2z, w = z3:
(a) Is the flow compressible?
(b) What is the y-component of the acceleration following a fluid particle?

5.28 An Eulerian velocity field in Cartesian coordinates is given by u = x2y, v = −xy2,
w = 2xy.
(a) Is the flow field two- or three-dimensional?
(b) Is this flow field compressible or incompressible?
(c) Is this flow field rotational or irrotational?

5.29 For the flow field given in Cartesian coordinates by u = 2xt+ y, v = −2yt, w = 0:



PROBLEMS Chapter 5 107

(a) Is the flow one-, two- or three-dimensional?
(b) Is the flow steady?
(c) Is the flow compressible?
(d) What is the vector acceleration following a fluid particle?

5.30 A fluid flow is described in Cartesian coordinates by u = 2xyz, v = −y2z, w = 0.
(a) Is the flow field two- or three-dimensional?
(b) Is this flow field compressible or incompressible?
(c) What is the x-component of the acceleration?
(d) What is the angle a streamline makes in the x-y plane at the point [1, 1].

5.31 An Eulerian velocity field in Cartesian coordinates is given by u = 2y − 3x, v =
3y + 2xz, w = 0:
(a) Is the flow one-, two- or three-dimensional?
(b) Is the flow steady?
(c) Is the flow compressible or incompressible?
(d) What is the vector acceleration following a fluid particle?
(e) If viscous and gravitational forces are negligible, use the Navier-Stokes equation to find
the pressure gradient vector.

5.32 An Eulerian velocity field in Cartesian coordinates is given by u = x, v = −2y,
w = z.
(a) Is the flow field two- or three-dimensional?
(b) Is this flow field compressible or incompressible?
(c) Find the rate of change of velocity following a fluid particle.

5.33 For the Eulerian flow field given in Cartesian coordinates by u = 3y4zx, v = 0,
w = 2z2:
(a) Is the flow one-, two- or three-dimensional?
(b) Is the flow steady?
(c) Is the flow compressible or incompressible?
(d) What is the y-component of the acceleration following a fluid particle?
(e) Find the viscous force per unit volume (= µ∇2V).

5.34 An Eulerian velocity field in Cartesian coordinates is given by u = ax2y, v = bxy2,
w = xyz.
(a) Is the flow field two- or three-dimensional?
(b) Find values for a and b for which the flow field is incompressible.
(c) Find the rate of change of the y-component of velocity following a fluid particle.

5.35 For the Eulerian flow field given in Cartesian coordinates by u = −2x2, v = 2z3,
w = 4xz:
(a) Is the flow one-, two- or three-dimensional?
(b) Is the flow steady?
(c) Is the flow compressible or incompressible?
(d) What is the rate of change of velocity following a fluid particle?
(e) If this flow is inviscid, and gravity is not important, find ∇p as a function of [x,z].

5.36 An Eulerian velocity vector field is described by V = 2xi− y2jm/s, where i and j
are unit vectors in the x- and y-directions, respectively.
(a) Find the angle the streamline makes at the point (1,1).
(b) Find the equation describing the streamline passing through the point (1,1).
(c) If the flow is inviscid and has constant density, find the change in pressure between
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points (1,1) and (e, 2
3 ), where e = 2.71828... Ignore gravity, and use ρ = 1.2 kg/m3.

5.37 An Eulerian velocity vector field is described by V = 2xi− y2j− 3k, where i, j and
k are unit vectors in the x-, y- and z-directions, respectively.
(a) Is the flow one-, two- or three-dimensional?
(b) Is the flow compressible or incompressible?
(c) Does the the density field ρ = 2x/y satisfy the continuity equation?
(d) What is the acceleration following a fluid particle?

5.38 An Eulerian velocity vector field is described by V = 2i + yz2tj − z3t
3 k, where i, j

and k are unit vectors in the x-, y- and z-directions, respectively.
(a) Is this flow one-, two-, or three-dimensional?
(b) Is this flow steady?
(c) Is the flow incompressible or compressible?
(d) Find the z-component of the acceleration vector.

5.39 An Eulerian velocity vector field is described by V = 2x2yi− 2xy2j− 4xyk, where
i, j and k are unit vectors in the x-, y- and z-directions, respectively.
(a) Is the flow one-, two- or three-dimensional?
(b) Is the flow compressible or incompressible?
(c) What is the x-component of the acceleration following a fluid particle?
(d) Bonus question: Is the flow irrotational?

5.40 An Eulerian velocity vector field is described by V = i + 2zj− 3x2k, where i, j and
k are unit vectors in the x-, y- and z-directions, respectively.

(i) Is the flow incompressible or compressible?
(ii) Find the rate of change of velocity following a fluid particle.
(iii) Find the viscous force per unit volume (that is, the viscous term in the Navier-Stokes

equation).

5.41 An Eulerian velocity vector field is described by V = 3xzj + yk, where i, j and k
are unit vectors in the x-, y- and z-directions, respectively.
(a) Is the flow one-, two- or three-dimensional?
(b) Is the flow compressible or incompressible?
(c) What is the acceleration following a fluid particle?
(d) If gravity and viscous forces can be neglected, what is the pressure gradient?

5.42 An Eulerian velocity vector field is described by V = 2yi − 3z2j + t2k, where i, j
and k are unit vectors in the x-, y- and z-directions, respectively.
(a) Is this flow one-, two-, or three-dimensional?
(b) Is this flow steady?
(c) Is the flow incompressible or compressible?
(d) Find the x-component of the acceleration vector.
(e) Find the x-component of the vorticity vector.

5.43 For a two-dimensional, incompressible flow, the x-component of velocity is given
by u = xy2. Find the simplest y-component of the velocity that will satisfy the continuity
equation.

5.44 Find the y-component of velocity of an incompressible two-dimensional flow if the
x-component is given by u = 15− 2xy. Along the x-axis, v = 0.

5.45 A two-dimensional flow field has an x-component of velocity given in Cartesian
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coordinates by u = 2x− 3y.
(a) Find v, the y-component of velocity, if the flow is incompressible and v = 0 when x = 0.
(b) If the flow follows the Bernoulli equation, find an expression for the pressure distribution
as a function of x and y, given that the pressure is p0 at the stagnation point.

5.46 The velocity in a one-dimensional compressible flow is given by u = 10x2. Find the
most general variation of the density with x.

5.47 The x-, y- and z-components of a velocity field are given by u = ax + by + cz,
v = dx + ey + fz, and w = gx + hy + jz. Find the relationship among the coefficients a
through j if the flow field is incompressible.

5.48 For a flow in the xy-plane, the y-component of velocity is given by v = y2−2x+2y.
Find a possible x-component for steady, incompressible flow. Is it also valid for unsteady,
incompressible flow? Why?

5.49 The x-component of velocity in a steady, incompressible flow field in the xy-plane
is u = A/x. Find the simplest y-component of velocity for this flow field.

5.50 The flow of an incompressible fluid in cylindrical coordinates is given by

uθ =

(
1 +

4

r2

)
sin θ − 1

r

Find ur if ur = 0 at r = 2 for all θ. The flow does not depend on z.

5.51 An air bearing is constructed from a circular disk that issues air from many small
holes in its lower surface.
(a) Find an expression for the radial velocity under the bearing, assuming that the flow is
uniform, steady and incompressible.
(b) The bearing floats 1.5mm above the table and the air flows through the bearing with
an average velocity of 2m/s. If the bearing is 1m in diameter, find the magnitude and
location of the maximum radial acceleration experienced by a fluid particle in the gap.

5.52 Show that the velocity distribution in the linear Couette flow illustrated in Fig-
ure 1.14 is an exact solution to the incompressible Navier-Stokes equation (the pressure is
constant everywhere). Find all the components of the viscous stress for this flow.
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Chapter 6

Irrotational, Incompressible
Flows

6.1 Study Guide

For an irrotational flow field:

• The flow can be described completely by the scalar velocity potential φ, instead of the
vector velocity V.

• The function φ can be found by solving Laplace’s equation, ∇2φ = 0.

• Laplace’s equation is a linear equation, so that solutions for complex flow fields can
be constructed from the linear addition of the solutions for simpler flow fields.

• The velocity field can be found by taking the gradient of the velocity potential, that
is, V = ∇φ.

• The pressure can be found using Bernoulli’s equation, as long as the flow is also
incompressible and steady.

For a two-dimensional, incompressible flow field:

• The flow can be described completely by the scalar stream function ψ, instead of the
vector velocity V.

• Lines of constant ψ are streamlines.

• If the flow is also irrotational, the function ψ can be found by solving Laplace’s equa-
tion, ∇2ψ = 0.

6.2 Worked Examples

Example 6.1: Stream functions and velocity potentials

Show that φ = x3−3xy2 is a valid velocity potential, and that it describes an incompressible
flow field. Determine the corresponding stream function. Find the stagnation points, and
the pressure distribution, given that the flow is steady.
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Solution: To be a valid velocity potential, φ must satisfy the condition of irrotationality.
For this two-dimensional, Cartesian flow field, we have

u =
∂φ

∂x
and v =

∂φ

∂y

Therefore

u = 3x2 − 3y2 and v = −6xy (6.1)

The curl of the velocity is given by

∇×V =

(
∂v

∂x
− ∂u

∂y

)
k = (−6y + 6y) k = 0

and so φ is a valid velocity potential.

The divergence of the velocity field is given by

∇ ·V =
∂u

∂x
+
∂v

∂y
= 6x− 6x = 0

and so the flow field is incompressible.

From the definition of the stream function

u =
∂ψ

∂y
and v = −∂ψ

∂x

Using the result given in equation 6.1, we obtain by integration

ψ = 3x2y − y3 + f(x) + C1

and ψ = 3x2y + g(y) + C2

where C1 and C2 are constants of integration, and f and g are unknown functions of x and
y, respectively. By comparing the two results for ψ, we get

ψ = 3x2y − y3 + C

The constant is arbitrary (we are only interested in the derivatives of ψ), so we can set it
to zero by choosing ψ = 0 at the origin. Finally,

ψ = 3x2y − y3

The stagnation points can be found by locating the points where u = v = 0. For the
velocity field given by equation 6.1, this happens only at the origin, so there is only one
stagnation point, at [0, 0].

The pressure distribution is given by Bernoulli’s equation, so that

p+ 1
2

(
u2 + v2

)
= p0

where p0 is a constant for the entire flow field since it is irrotational. Hence

p− p0 = 9
(
x2 + y2

)2
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Example 6.2: Solutions obtained by superposition

We have demonstrated that it is possible to generate some interesting two-dimensional flows
by superposition of some basic building blocks such as uniform flow, sources, and sinks. In
the same way, we can add vortices, and generate even more flow patterns. Unfortunately,
the procedure is rather tedious, especially when a large number of elements are used. To
reduce the effort involved in generating such flows, it is possible to use the “Ideal Flow
Machine” available on the web at http://www.engapplets.vt.edu/ . By using this resource
(a) Generate the streamline patterns for a source and a sink of equal strength q̇ = Ua, first
separated by a distance a, and then by a distance 2a in the direction of a uniform flow of
strength U .
(b) Repeat this example with the axis joining the source and sink placed at right angles to
the uniform flow.
(c) For the case in part (a), add a vortex of strength Γ = Ua, located halfway between the
source and the sink, and then repeat using a vortex of strength Γ = 2Ua.

Example 6.3: Lift

Consider a wing traveling at a velocity V , with a span equal to 20c, where c is the chord
length. Given a lift coefficient of 2.0 at a zero angle of attack, find the strength of the
bound vortex, and the velocity at which the trailing vortices move downward under their
own induced velocity field.

Solution: For a two-dimensional wing, the Joukowski lift law (equation 6.42) gives

FL = ρU∞ΓK

If we assume that the wing has a sufficiently large wingspan so that the two-dimensional
lift estimate is reasonable, we have (since FL is the force per unit span)

CL =
FL

1
2ρV

2c
=
ρV ΓK
1
2ρV

2c
= 2

Therefore,
ΓK = V c

If the trailing vortices are approximated as a pair of line vortices of infinite extent, the
downward propagation velocity is given by equation 6.44, so that

up =
Γ

πs

Hence,

up =
V c

π20c
=

V

20π

so that
up
V

=
1

20π

Problems

6.1 Define vorticity in terms of the vector velocity field. How is the “rotation” of a
fluid particle related to its vorticity? In Cartesian coordinates, write down the general form
of the z-component of vorticity. What is the condition on the vector velocity field such that
a flow is irrotational?



114 PROBLEMS Chapter 6

6.2 For a certain incompressible two-dimensional flow, the stream function, ψ(x, y) is
prescribed. Is the continuity equation satisfied?

6.3 If u = −Ae−ky cos kx and v = −Ae−ky sin kx, find the stream function. Is this flow
rotational, or irrotational?

6.4 An inviscid flow is bounded by a wavy wall at y = H and a plane wall at y = 0.
The stream function is ψ = A

(
e−ky − eky

)
sin kx, where A and k are constants.

(a) Does the flow satisfy the continuity equation?
(b) Is the flow rotational or irrotational?
(c) Find the pressure distribution on the plane wall surface, given that p = 0 at [0, 0].

6.5 An inviscid flow is bounded by a wavy wall at y = H and a plane wall at y = 0.
The stream function is ψ = A

(
e−ky − eky

)
sin kx+By2, where A, B, and k are constants.

(a) Does the flow satisfy the continuity equation?
(b) Is the flow rotational or irrotational?
(c) Find the pressure distribution on the plane wall surface, given that p = 0 at [0, 0].

6.6 For the flow defined by the stream function ψ = V0y:
(a) Plot the streamlines.
(b) Find the x and y components of the velocity at any point.
(c) Find the volume flow rate per unit width flowing between the streamlines y = 1 and
y = 2.

6.7 Find the stream function for a parallel flow of uniform velocity V0 making an angle
α with the x-axis.

6.8 A certain flow field is described by the stream function ψ = xy.
(a) Sketch the flow field.
(b) Find the x and y velocity components at [0, 0], [1, 1], [∞, 0], and [4, 1].
(c) Find the volume flow rate per unit width flowing between the streamlines passing through
points [0, 0] and [1, 1], and points [1, 2] and [5, 3].

6.9 Express the stream function ψ = 3x2y − y3 in cylindrical coordinates (note that
sin3 θ = 3 sin θ cos2 θ−sin3 θ). Sketch the streamlines, and find the magnitude of the velocity
at any point.

6.10 For the previous four problems, find the velocity potential, and sketch lines of
constant φ.

6.11 The velocity potential for a steady flow field is given by x2− y2. Find the equation
for the streamlines.

6.12 The velocity components of a steady flow field are u = 2cxy and v = c(a2 +x2 +y2).
Is the flow incompressible? Is it rotational or irrotational? Find the velocity potential and
the stream function.

6.13 The velocity potential for a certain flow is given in cylindrical coordinates by
Cr2 cos 2θ, where C is a constant. Show that this represents the flow in a right-angle
corner. If the velocity at r = 1m, θ = 0 is −10m/s, find the velocity at r = 2m, θ = π/4.

6.14 A fluid flows along a flat surface parallel to the x-direction. The velocity u varies
linearly with y, the distance from the wall, so that u = ky.
(a) Find the stream function for this flow.
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Figure P6.15:

Figure P6.20:

(b) Is this flow irrotational?

6.15 Consider the parallel two-dimensional flow shown in Figure P6.15. Is the flow
irrotational? Find the stream function, given that u = 1.5m/s at y = 0, and u = 4m/s at
y = 1.2m.

6.16 Given ur = 1/r and uθ = 1/r, find the stream function ψ, and sketch the flow field.

6.17 An irrotational, incompressible velocity field is described by the velocity potential
φ = Aθ (A > 0).
(a) Sketch lines of constant φ.
(b) Find the velocity components ur and uθ at any point.
(c) Find ψ, and sketch a few streamlines.

6.18 An irrotational, incompressible velocity field is described by the stream function
ψ = 2

3r
3/2 sin 3

2θ.
(a) Plot the streamline ψ = 0.
(b) Find the velocity at the points defined by the cylindrical coordinates [2, π3 ] and [3, π6 ].
(c) Find the velocity potential φ.

6.19 Consider the two-dimensional flow of an inviscid, incompressible fluid described by
the superposition of a parallel flow of velocity V0, a source of strength q, and a sink of
strength −q, separated by a distance b in the direction of the parallel flow, the source being
upstream of the sink.
(a) Find the resultant stream function and velocity potential.
(b) Sketch the streamline pattern.
(c) Find the location of the upstream stagnation point relative to the source.

6.20 A static pressure probe is constructed with a semi-cylindrical nose, as shown in
Figure P6.20. Where should a pressure tap be located so that it reads the same static
pressure as that found far from the probe in a uniform flow?

6.21 A two-dimensional source is placed in a uniform flow of velocity 2m/s in the x-
direction. The volume flow rate issuing from the source is 4m3/s per meter.
(a) Find the location of the stagnation point.
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(b) Sketch the body shape passing through the stagnation point.
(c) Find the width of the body.
(d) Find the maximum and minimum pressures on the body when the pressure in the
uniform flow is atmospheric. The fluid is air and its temperature is 20◦C.

6.22 Repeat the previous problem using the Java-based potential flow solver available
at: http://www.engapplets.vt.edu, “The Ideal Flow Mapper.”

6.23 Using the potential flow solver available at: http://www.engapplets.vt.edu (“The
Ideal Flow Mapper”), place two sinks and one source along the x-direction, each of strength
1m3/s per meter, separated from each other by a distance of 2m.
(a) Plot the streamlines.
(b) Locate the stagnation points.
(c) Vary the strength of the sinks and source (keeping their relative strengths equal) until
the stagnation points are a distance of 4m apart.

6.24 Using the potential flow solver available at: http://www.engapplets.vt.edu (“The
Ideal Flow Mapper”), place two sources and two sinks alternately along the x-direction,
spaced 1m apart, each of strength 4m3/s per meter. Add a a uniform flow of velocity
2m/s in the x-direction.
(a) Plot the streamlines.
(b) Vary the strength of the sources and sinks until the streamline defining a closed body
has a major axis that is twice the minor axis.

6.25 Using the potential flow solver available at: http://www.engapplets.vt.edu (“The
Ideal Flow Mapper”), place a doublet of strength −8m3/s at the center of the field. Add a
a uniform flow of velocity 2m/s in the x-direction. Place a clockwise vortex at the center
of the field. Find the strength of the vortex that will cause the two stagnation points to
coincide.

6.26 Using the potential flow solver available at: http://www.engapplets.vt.edu (“The
Ideal Flow Mapper”), place a clockwise and a counterclockwise vortex of strength 10m3/s
along the x-direction separated by a distance of 4m.
(a) Find the velocity uc at the point halfway between them, and check the result against
equation 6.44.
(b) Add a vertical velocity equal to 0.5uc and find the location of the stagnation points.
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Dimensional Analysis

7.1 Study Guide

• What does “dimensional homogeneity” mean?

• Remember: Π = N − r. That is, the number of dimensionless groups (Π-products) is
equal to the number of dimensional parameters (N, which includes the output and all
input parameters) minus the rank of the matrix of dimensions.

• In deriving the dimensionless groups, remember that they must be independent (that
is, any one parameter cannot be formed by a combination of the other parameters). An
easy way to check is to make sure that each dimensionless group contains a parameter
that is not contained by any other group.

• For two flows to be dynamically similar, all of the dimensionless groups must have the
same value.

7.2 Worked Examples

Example 7.1: Vortex shedding

When the wind blows over a chimney, vortices are shed into the wake (see Figures 7.1 and
9.11, and Section 9.5). The frequency of vortex shedding f depends on the chimney diameter
D, its length L, the wind velocity V and the kinematic viscosity of air ν.
(a) Express the nondimensional shedding frequency in terms of its dependence on the other

nondimensional groups.
(b) If a 1/10th scale model were to be tested in a wind tunnel and full dynamic similarity
was required

(i) What air velocity would be necessary in the wind tunnel compared to the wind
velocity experienced by the full scale chimney?

(ii) What shedding frequency would be observed in the wind tunnel compared to the
shedding frequency generated by the full scale chimney?

Solution: We are given that

f = φ (D,L, V, ν)

so that N = 5.

117
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Figure 7.1: Vortex shedding from a chimney.

For part (a), we write down the matrix of dimensions:

f D L V ν

L 0 1 1 1 2
T −1 0 0 −1 −1

The rank of the largest determinant is 2, so we need to find N − r = 3 independent dimen-
sionless groups. Two obvious Π-groups are the Reynolds number and the length-to-diameter
ratio. We can also make the frequency nondimensional by using the diameter and the ve-
locity. Hence

fD

V
= φ′

(
V D

ν
,
L

D

)
The ratio fD/V is called the Strouhal number, and it always makes an appearance in
unsteady problems with a dominant frequency (see Section 9.5).

For part (b), to achieve dynamic similarity the Π-products in the model tests and the
full-scale flow must be equal. That is,(

V D

ν

)
m

=

(
V D

ν

)
p

,

(
fD

V

)
m

=

(
fD

V

)
p

,

(
L

D

)
m

=

(
L

D

)
p

where the subscripts m and p indicate the model and “prototype” or full-scale values,
respectively. Starting with the Reynolds number, similarity requires that

VmDm

νm
=
VpDp

νp
, or

Vm
Vp

=
Dp

Dm

νm
νp

Since νm = νp (the fluid is air in both cases), and Dp = 10Dm, we have

Vm = 10Vp

The Strouhal number similarity gives

fmDm

Vm
=
fpDp

Vp
, or

fm
fp

=
Dp

Dm

Vm
Vp

Since Vm = 10Vp, and Dp = 10Dm, we obtain

fm = 100fp

To have a dynamically similar model, therefore, we will need to run the wind tunnel at
a speed 10 times greater than the natural wind speed, and we expect to see a shedding
frequency 100 times greater than for the full-scale chimney.
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Figure 7.2: A cone and plate viscometer.

Example 7.2: Viscometer

A cone and plate viscometer consists of a cone with a very small angle α which rotates above
a flat surface, as shown in Figure 7.2. The torque required to spin the cone at a constant
speed is a direct measure of the viscous resistance, which is how this device can be used to
find the fluid viscosity. We see that the torque T is a function of the radius R, the cone
angle α, the fluid viscosity µ, and the angular velocity ω.
(a) Use dimensional analysis to express this information in terms of a functional dependence
on nondimensional groups.
(b) If α and R are kept constant, how will the torque change if both the viscosity and the
angular velocity are doubled?

Solution: We are given that
T = φ (R,α, µ, ω)

So that N = 5. The dimensions of torque are force × distance, that is, MLT−2L =
ML2T−2, and the dimensions of viscosity are stress over velocity gradient, that is, MLT−2L−2

×(LT−1L−1)−1 = ML−1T−1.
For part (a), we write down the matrix of dimensions

T R α µ ω

M 1 0 0 1 0
L 2 1 0 −1 0
T −2 0 0 −1 −1

The rank of the largest determinant is 3, so we need to find 2 independent dimensionless
groups. One dimensionless number is given by the angle α. The second will be a combination
of the other parameters so that the torque becomes nondimensional . Hence,

T

µωR3
= φ′ (α)

For part (b), if α is constant, the parameter T/(µωR3) must also remain constant to
maintain full similarity. So when µ and ω are both doubled, the torque T will increase by
a factor of 4.

Example 7.3: Draining tank

A large water tank slowly empties through a small hole under the action of gravity. The
flow is steady, and the volume flow rate q̇ depends on the exit velocity U , the gravitational
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acceleration g, the depth of the water h, and the diameter of the nozzle D.
(a) By using dimensional analysis, find the nondimensional groups that govern the behavior
of the nondimensional flow rate.
(b) A test is to be made on a 1/4th scale model. If the test is designed to ensure full dynamic
similarity, what is the ratio of model volume flow rate to prototype volume flow rate?
(c) If you now decide that, instead of the volume flow rate, you are interested in the mass
flow rate ṁ (the density must therefore be included in the dimensional analysis), will the
number of nondimensional groups change?
(d) If you later discover that the mass flow rate ṁ depends on the viscosity µ and the surface
tension σ (dimensions of force per unit length), in addition to ρ, U , g, h, and D, find all
the relevant nondimensional groups.

Solution: For part (a), we are given that

q̇ = φ (U, g, h,D)

so that N = 5. The dimensions of volume flow rate are L3T−1, and the matrix of dimensions
becomes

q̇ U g h D

L 3 1 1 1 1
T −1 −1 −2 0 0

The rank of the largest determinant is 2, so we need to find 3 independent dimensionless
groups. By inspection, one dimensionless number is given by the ratio of lengths D/h. The
second will be the nondimensional volume flow rate, for example, q̇/UD2, and the third will
be a Froude number, U/

√
gh. Hence,

q̇

UD2
= φ′

(
D

h
,
U√
gh

)
For part (b) dynamic similarity requires that all the nondimensional parameters take

the same values in the model and prototype. Therefore

q̇m
UmD2

m

=
q̇p

UpD2
p

Since Dp/Dm = 4, we have
q̇m
q̇p

=
Um

16Up

We also require
Um√
ghm

=
Up√
ghp

Since hp/hm = 4,
Um
Up

=

√
ghm√
ghp

=
1

2

and therefore, for dynamic similarity,

q̇m
q̇p

=
1

32

For part (c), we are given that

ṁ = φ (U, g, h,D, ρ)
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so that N = 6. The dimensions of mass flow rate are MT−1, and the matrix of dimensions
becomes

ṁ U g h D ρ

M 1 0 0 0 0 1
L 0 1 1 1 1 −3
T −1 −1 −2 0 0 0

The rank of the largest determinant is 3, so we will still have 3 independent dimensionless
groups. By inspection we find that they are ṁ/ρUD2, D/h, and U/

√
gh.

For part (d), we are given that

ṁ = φ (U, g, h,D, ρ, µ, σ) .

so that N = 8. The dimensions of the surface tension are force per unit length, MT−2, and
the matrix of dimensions becomes

ṁ U g h D ρ µ σ

M 0 0 0 0 0 1 1 1
L 3 1 1 1 1 −3 −1 0
T −1 −1 −2 0 0 0 −1 −2

The rank of the largest determinant is 3, so we will need to find 5 independent dimensionless
groups. We already have three: the nondimensional mass flow rate ṁ/ρUD2, the ratio of
lengths D/h and the Froude number, U/

√
gh. The fourth Π-product will be a Reynolds

number, ρUd/µ, and the fifth will be a nondimensional surface tension such as σ/ρU2D.
Hence

ṁ

ρUD2
= φ′

(
D

h
,
U√
gh
,
ρUD

µ
,

σ

ρU2D

)

Example 7.4: Nuclear explosion

Imagine you were given a film of the first atomic bomb explosion in New Mexico. In the
movie, there are some images of trucks and other objects that provide a length scale, so
that you can plot the radius of the fireball r as a function of time t. Can you estimate E,
the energy released by the explosion?

Solution: The most difficult part is choosing the shortest, correct list of variables. If we
had some insight, and some luck, we might suppose that

r = fb (E, t, ρ)

where ρ is the ambient density before the explosion takes place. Energy has the dimensions
of a force × a length, that is, ML2T−2, and the matrix of dimensions is

r E t ρ

M 0 1 0 1
L 1 2 0 −3
T 0 −2 1 0

We see that N = 4, the rank of the matrix is 3, and therefore the number of dimensionless
groups is 1. So

Π1 =
r5ρ

t2E
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Figure 7.3: The first nuclear explosion in history took place in New Mexico, on July 16 1945,
5:29:45 A.M., at the Alamogordo Test Range, on the Jornada del Muerto (Journey of Death)
desert, in the test named Trinity. Left: Trinity at 6, 16, and 34 ms. Right: 53, 90, and 109 ms. At
6 ms, the fireball is about 100 m in diameter. Photos by Berlyn Brixner, LANL.

or, better,

Π1
′ =

r

t2/5

( ρ
E

)1/5

The constant Π1
′ must be found by experiment. For example, we can use film of another

explosion of conventional explosives where the energy release is known to find Π1
′. This

experiment can also be used to check the analysis: if r varies as t2/5, as predicted, then our
analysis is substantiated and the film of the atomic explosion contains all the information
required to find the energy released by the bomb.

This analysis was first performed by the British scientist Sir Geoffrey Ingram Taylor
at a time when information on the explosive power of atomic bombs was highly classified.
He used films of the explosion, such as the one illustrated in Figure 7.3. When he tried to
publish his findings, which gave a very good estimate of the actual energy released, he found
his paper immediately classified at such a level that even he was not allowed to read it.

Problems

7.1 The velocity of propagation c of surface waves in a shallow channel is assumed to
depend on the depth of the liquid h, the density ρ, and the acceleration due to gravity g.
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By means of dimensional analysis, simplify this problem and express this dependence in
nondimensional terms.

7.2 The period of a pendulum T is assumed to depend only on the mass m, the length
of the pendulum `, the acceleration due to gravity g, and the angle of swing θ. By means of
dimensional analysis, simplify this problem and express this dependence in nondimensional
terms.

7.3 The sound pressure level p′ generated by a fan is found to depend only on the fan
rotational speed ω, the fan diameter D, the air density ρ, and the speed of sound a. Express
this dependence in nondimensional terms.

7.4 The power input to a water pump, P , depends on its efficiency η, its discharge
(volume flow rate) q̇, the pressure increase ∆p across the pump, the density of the liquid ρ,
and the diameter of the impeller D. Express this dependence in nondimensional terms.

7.5 The thrust T of a marine propeller is assumed to depend only on its diameter D,
the fluid density ρ, the viscosity µ, the revolutions per unit time ω, and its forward velocity
V . Express this dependence in nondimensional terms.

7.6 In Section 1.6.3, it was argued that the viscosity must depend on the average
molecular speed ῡ, the number density ρ and the mean free path `. Express this dependence
in nondimensional terms.

7.7 A ship 100m long moves in fresh water at 15◦C. Find the kinematic viscosity of a
fluid suitable for use with a model 5m long, if it is required to match the Reynolds number
and Froude number. Comment on the feasibility of this requirement.

7.8 The height h to which a column of liquid will rise in a small-bore tube due to surface
tension is a function of the density of the liquid ρ, the radius of the tube r, the acceleration
due to gravity g, and the surface tension of the liquid σ (see Section 1.9.3).
(a) Express this dependence in nondimensional terms.
(b) If the capillary rise for liquid A is 25mm in a tube of radius 0.5mm, what will be the
rise for a liquid B having the same surface tension but four times the density of liquid A in
a tube of radius 0.25mm a dynamically similar system? Also find rB .

7.9 A chimney 100 ft high is being forced to vibrate at a frequency f in a wind of
20 ft/s by vortices that are shed in its wake. This phenomenon depends on the fluid density
ρ and viscosity µ and the chimney material modulus of elasticity E, where E = stress/strain.
A model is constructed which is geometrically similar to the chimney in every way and is
10 ft high. The mass per unit length, m, of chimney model can be adjusted by attaching
dummy masses inside without affecting its elastic behavior. Gravity is not involved in this
problem.
(a) Using dimensional analysis derive all relevant nondimensional groups. Try to use phys-
ically meaningful nondimensional groups wherever possible. Make sure these groups are
independent.
(b) If the full-scale chimney is made from steel with a modulus of elasticity E = 30 ×
106 lbf/in

2, find the necessary modulus of elasticity so as to simulate the correct conditions
at the model scale.
(c) At what frequency would you expect the full scale chimney to vibrate if the model
vibrates at 5Hz?

7.10 Two cylinders of equal length are concentric: the outer one is fixed and the inner
one can rotate with an angular speed ω. A viscous incompressible fluid fills the gap between
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them.
(a) Using dimensional analysis, derive an expression for the torque T required to maintain
constant-speed rotation of the inner cylinder if this torque depends only on the diameters
and length of the cylinders, the viscosity and density of the fluid, and the angular speed of
the inner cylinder.
(b) To test a full-scale prototype, a half-scale model is built. The fluid used in the prototype
is also to be used in the model experiment. If the prototype angular speed is ωp and the
prototype torque is Tp

(i) At what angular speed must the model be run to obtain full dynamical similarity?
(ii) How is the model torque related to the prototype torque?

7.11 The power P required to drive a propeller is known to depend on the diameter of
the propeller D, the density of fluid ρ, the speed of sound a, the angular velocity of the
propeller ω, the freestream velocity V , and the viscosity of the fluid µ.
(a) How many dimensionless groups characterize this problem?
(b) If the effects of viscosity are neglected, and if the speed of sound is not an important
variable, express the relationship between power and the other variables in nondimensional
form.
(c) A one-half scale model of a propeller is built, and it uses Pm horsepower when running
at a speed ωm. If the full-scale propeller in the same fluid runs at ωm/2, what is its power
consumption in terms of Pm if the functional dependence found in part (b) holds? What
freestream velocity should be used for the model test?

7.12 The torque T required to rotate a disk of diameter D with angular velocity ω in a
fluid is a function of the density ρ and the viscosity µ of the fluid (torque has units of work).
(a) Find a nondimensional relationship between these quantities.
(b) Calculate the angular velocity and the torque required to drive a 750mm diameter disc
rotating in air if it requires a torque of 1.2Nm to rotate a similar disc of 230mm diameter
in water at a corresponding speed of 1500 rpm. Assume the temperature is 15◦C.

7.13 Consider geometrically similar animals of different linear size, L. Assume that the
distance an animal can jump, H, is a function of L, the average density ρ, the average
muscle stress σ (that is, muscle force over leg cross-sectional area), and the gravitational
constant g.
(a) Find a nondimensional functional expression for H.
(b) In Swift’s Gulliver’s Travels, the Lilliputians were a race of very small people, tiny
compared to Gulliver’s size. If the Lilliputians had the same ρ and σ as Gulliver, what
conclusions can you draw on dimensional grounds? Would they jump higher than Gulliver?
The same height as Gulliver? Lower than Gulliver?

7.14 A simple carburetor is sketched in Figure P7.14. Fuel is fed from a reservoir (main-
tained at a constant level) through a tube so as to discharge into the airstream through an
opening where the tube area is a. At this point, the flow area for the air is A and the fuel
level is a distance L higher. Let the density and mass flow rate for the air and fuel be ρa,
ṁa and ρf , ṁf respectively.
(a) Assuming the flows are inviscid, perform a dimensional analysis to determine the fuel-air
ratio, ṁf/ṁa as a function of the other dimensionless parameters.
(b) Analyze the problem dynamically and determine a specific relationship between ṁf/ṁa

and the relevant variables.

7.15 A golf ball manufacturer wants to study the effects of dimple size on the performance
of a golf ball. A model ball four times the size of a regular ball is installed in a wind tunnel.
(a) What parameters must be controlled to model the golf ball performance?
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Figure P7.14

(b) What should be the speed of the wind tunnel to simulate a golf ball speed of 200 ft/s?
(c) What rotational speed must be used if the regular ball rotates at 60 revolutions per
second?

7.16 When a river flows at a velocity V past a circular pylon of diameter D, vortices
are shed at a frequency f . It is known that f is also a function of the water density ρ and
viscosity µ, and the acceleration due to gravity, g.
(a) Use dimensional analysis to express this information in terms of a functional dependence
on nondimensional groups.
(b) A test is to be performed on a 1/4th scale model. If previous tests had shown that
viscosity is not important, what velocity must be used to obtain dynamic similarity, and
what shedding frequency would you expect to see?

7.17 A propeller of diameter d develops thrust T when operating at N revolutions per
minute with a forward velocity V in air of density ρ.
(a) Use dimensional analysis to express this information in terms of a functional dependence
on nondimensional groups. Try to choose groups that look familiar.
(b) The single propeller described above is to be replaced by a pair of two propellers of
the same shape operating at the same forward velocity and together producing the same
thrust in air with the same density. Use the concepts of dynamic similarity to determine
the diameter d2 and the rotational speed N2 of each of the propellers.
(c) What change in power, if any, is required?

7.18 The lift force F on a high-speed vehicle is a function of its length L, velocity V ,
diameter D, and angle of attack α (the angle the chord line makes with the flow direction),
as well as the density ρ and speed of sound a of air (the speed of sound of air is only a
function of temperature).
(a) Express the nondimensional lift force in terms of its dependence on the other nondimen-
sional groups.
(b) If a 1/10th scale model were to be tested in a wind tunnel at the same pressure and
temperature (that is, the same sound speed) as encountered in the flight of the full-scale
vehicle, and full dynamic similarity was required

(i) What air velocity would be necessary in the wind tunnel compared to the velocity of
the full-scale vehicle?

(ii) What would be the lift force acting on the model compared to the lift force acting
on the vehicle in flight?

7.19 The drag of a golf ball FD depends on its velocity V , its diameter D, its spin rate
ω (commonly measured in radians/sec, or revolutions per minute), the air density ρ and
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viscosity µ, and the speed of sound a.
(a) Express the nondimensional drag force in terms of its dependence on the other nondi-
mensional groups.
(b) If it was decided that the speed of sound was not important, how would this change the
dimensional analysis? Under these conditions, if an experiment was carried out in standard
air at a velocity of 2V , what diameter and spin rate would be required to be dynamically
similar to an experiment at a velocity of V ?
(c) Design an experiment to investigate the influence of the speed of sound on the drag.
Start by considering the requirements for dynamic similarity, and then explain how the
influence of sound speed on the drag could be isolated by an experiment. Be as specific as
you can.

7.20 Consider a hydraulic jump in a viscous fluid.
(a) Carry out a dimensional analysis of a hydraulic jump that includes the effects of viscosity.
(b) Find the minimum number of nondimensional parameters describing this flow, and write
the functional relationship governing the ratio of downstream to upstream depth.
(c) If a 1/4th scale model of a hydraulic jump was to be tested in the laboratory

(i) What is the ratio of incoming flow velocities for the model and the full-scale required
for dynamic similarity.

(ii) What is the ratio of kinematic viscosities required for the model and the full-scale?

7.21 A large water tank empties slowly through a small hole under the action of gravity.
The flow is steady, and the mass flow rate ṁ depends on the exit velocity V , the gravitational
acceleration g, the depth of the water h, the diameter of the nozzle D, the viscosity µ, and
the surface tension σ (force/unit length).
(a) Express the nondimensional mass flow rate in terms of its dependence on the other
nondimensional groups.
(b) If an experiment was carried out using the same fluid (water) in a 1/5th scale model

(i) What is the ratio of the model mass flow rate to prototype mass flow rate that would
be needed to obtain dynamical similarity.

(ii) Do you anticipate any difficulties in obtaining full dynamical similarity?

7.22 Tests on a model propeller in a wind tunnel at sea level (air density ρ = 1.2 kg/m3)
gave the following results for the thrust at given forward velocities:

V (m/s) 0 10 20 30
Thrust (N) 300 278 211 100

The propeller diameter was 0.8m and it was spun at 2000 rpm.
(a) Using dimensional analysis find the nondimensional parameters which govern this ob-
served behavior.
(b) Using the experimental data given in the table find the thrust generated by a geo-
metrically similar propeller of diameter 3m, spinning at 1500 rpm at a forward velocity of
45m/s, while operating at an altitude where the density is half that at sea level. You may
interpolate from tabulated values.

7.23 In testing the aerodynamic characteristics of golf balls, the scientific officers at
the USGA collected the experimental data given below. The diameter is always D, the
roughness height is k, the air density is ρ (= 1.2 kg/m3), the freestream velocity is V , the
lift force L is in Newtons, and the rate of spin ω is measured in revolutions per second.
(a) How many nondimensional parameters describe this problem?
(b) Express all the experimental data in nondimensional form and plot the data in this
form.
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(c) By comparing the results from Balls 1 and 2, what can you say about the effect of
roughness?
(d) By comparing the results from Balls 1 and 3, can you say that the experiments were
dynamically similar?

ω 20 40 60 80
L -1.8 +0.9 +7.2 +18

Ball 1: D = 42.7mm, k = 0, V = 100m/s

ω 5 15 25 35
L -0.23 -0.23 +0.68 +2.7

Ball 2: D = 42.7mm, k = 1mm, V = 50m/s

ω 1 2 3 4
L -0.87 -0.29 +1.7 +5.8

Ball 3: D = 171mm, k = 4mm, V = 20m/s

7.24 The resistance of a sea-going ship is due to wave-making and viscous drag, and it
may be expressed in functional form as

FD = f (V,L,B, ρ, µ, g)

where FD is the drag force, V is the ship speed, L is its length, B is its width, ρ and µ are
the sea water density and viscosity, and g is the gravitational constant.
(a) Find the nondimensional parameters that describe the problem.
(b) If we are to test a model of the ship, what are the requirements for dynamic similarity?
(c) We are going to test a 1/25th scale model of a 100m long ship. If the maximum velocity
of the full-scale ship is 10m/s, what should the maximum speed of the model be? What
should the kinematic viscosity of the model test fluid be compared to the kinematic viscosity
of sea water?

7.25 The drag force FD acting on a ship depends on the forward speed V , the fluid
density ρ and viscosity µ, gravity, its length L and width B and the average roughness
height k.
(a) Use dimensional analysis to express this information in terms of a functional dependence
on nondimensional groups.
(b) If the ship moved from fresh water to salt water, where the density and viscosity are
both increased by 10%, how would its drag force change at fixed speed?

7.26 The drag D of a ship’s hull moving through water depends on its speed V , its
width W , length L and depth of immersion H, the water density ρ and viscosity µ, and the
gravitational acceleration g.
(a) Use dimensional analysis to express this information in terms of a functional dependence
on nondimensional groups. Try to choose groups that look familiar.
(b) The full-scale ship will have a velocity V1 and it will operate in sea water with a kinematic
viscosity ν1.

(i) If the wave pattern produced by a 1/30th scale model is to be similar to that observed
on the full-scale ship, what must be the model test velocity V2?

(ii) To obtain full dynamic similarity, what must be the kinematic viscosity ν2 of the test
fluid?

7.27 A 1/10th scale model of a windmill is placed in a wind tunnel. The power Ẇs

depends on the number of blades n, the wind velocity V , the diameter of the blades D, the
density of the air ρ, and the frequency of rotation ω.
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(a) Express the non-dimensional power as a function of the other nondimensional groups.
Show all your working.
(b) If the experiment was carried out at the same velocity as the full-scale prototype, what
is the ratio of the model rotation frequency to prototype rotation frequency that would
be needed to obtain dynamical similarity? What would be the ratio of model power to
prototype power?

7.28 The lift force (F ) produced by a fly depends on the wing beat frequency (f), its
forward velocity (V ), the density (ρ) and viscosity (µ) of the fluid, the length or “span” (S),
and width or “chord” (c) of the wings, and the Youngs modulus of the wing material (E,
dimensions of stress).
(a) Express the non-dimensional lift force as a function of the other non-dimensional groups.
(b) A fly is observed to travel at 1 m/s when it beats its wings at 120 Hz. If a dynamically
similar robotic fly was built 100 times larger than a real fly, what would the forward velocity
and wing beat frequency be if it was tested in silicon oil with a density equal to that of
water, but with a viscosity 50 times that of water?

7.29 The power P required to turn a ship will depend on its velocity V , its length L, its
width B, the water density ρ and viscosity µ, the rate of turning ω, and the acceleration
due to gravity g.
(a) Express the non-dimensional power in terms of its dependence on the other non-dimensional
groups. Show all your working.
(b) It is proposed to test a model ship at 1/100th scale. What scaled velocity, kinematic
viscosity, and turning rate would be required for the test to be dynamically similar? Do you
foresee any possible difficulties in performing this test?

7.30 The drag force (F ) produced by an eel swimming on the surface of a lake depends
on the frequency of the tail beat (f), the peak-to-peak amplitude of the tail movement (d),
its forward velocity (V ), the density (ρ) and viscosity (µ) of the fluid, its length (L), and
the acceleration due to gravity (g).
(a) Express the non-dimensional drag force as a function of the other non-dimensional
groups. Try to use groups that are in common use.
(b) An eel is observed to travel at 1m/s in water when it beats its tail at 1Hz. What would
the forward velocity and tail beat frequency of a dynamically similar robotic eel that is 3
times larger than a real eel? What would the kinematic viscosity of the test fluid need to
be (compared to water) to maintain dynamic similarity?

7.31 A waterfall designed for the Ground Zero memorial consists of a sheet of water
(density ρ, viscosity µ, surface tension σ) of thickness h and velocity V passing over a short
ramp inclined at an angle α to the horizontal. As the sheet falls under the action of gravity
(acceleration g) , it breaks up into a number of ribbons of width w.
(a) Express the non-dimensional ribbon width in terms of its dependence on the other non-
dimensional groups (surface tension has the dimensions of force/unit length). Show all your
working.
(b) It is proposed to test a model waterfall at 1/10th scale. If water is used in the model
test, what scaled velocity would be required for the model test to be dynamically similar
to the full scale? Explore all possibilities. Do you foresee any difficulties in performing this
test?

7.32 The pressure difference across a pump (∆p) is a function of the volume flow rate
through the machine (q̇), the size of the machine, denoted by, for example, the diameter of
the rotor (D), the rotational speed (N) usually measured in rpm or revolutions per second,
and the density (ρ) and viscosity (µ) of the fluid.
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(a) Express the non-dimensional pressure drop as a function of the other non-dimensional
groups.
(b) Tests on a model water pump are performed at one-half scale. To achieve dynamic
similarity in the model test, what would the ratio of the model to full-scale prototype
rotational speeds need to be? What would the ratio of the volume flow rates need to be?
Water is used in the test and the prototype.

7.33 The support for a Pitot probe on an aircraft is a circular cylinder of diameter D
inclined at an angle α to the local velocity direction. When the aircraft flies at a speed V ,
the support sheds vortices at a frequency f . The shedding frequency depends on D, α, V ,
the fluid density ρ and viscosity µ, and the speed of sound a.
(a) Express the non-dimensional frequency in terms of its dependence on the other non-
dimensional groups. Show all your working.
(b) It is proposed to test a model support at 1/5th scale. If air were used in the model test,
what scaled velocity would be required for the model test to be dynamically similar to the
full scale? Explore all possibilities. Do you foresee any difficulties in performing this test?

7.34 The drag force experienced by a commercial transport (such as a 787) in cruise
depends on its surface area (A), its velocity (V ), the speed of sound (a), the density (ρ) and
viscosity (µ) of the fluid, and its angle of attack (α).
(a) Express the non-dimensional drag as a function of the other non-dimensional groups.
(b) Tests on a model 787 are performed at 1/40th scale. Assume that the speed of sound in
the wind tunnel is one-half the speed of sound of the full-scale aircraft. To achieve dynamic
similarity in the model test, what would the wind tunnel speed need to be in the model
compared to the full-scale prototype? What would the kinematic viscosity of the wind
tunnel fluid be compared to air?

7.35 The drag force F acting on a bullet of diameter D and length L is described in
terms of its velocity V , the fluid density ρ and viscosity µ, the speed of sound a, and γ (the
ratio of the specific heat at constant pressure to the specific heat at constant volume).
(a) Express the nondimensional drag force in terms of its dependence on the other non-
dimensional groups. Show all your working.
(b) It is proposed to test a model bullet at 1/2 scale. If air were used in the model test
(as in the full scale prototype), what velocity would be required for the model test to be
dynamically similar to the full scale? Explore all possibilities. Do you foresee any difficulties
in performing this test?

7.36 The power or energy per unit time (P ) generated by a windmill depends on the
number of blades (N), the length (L) and chord or width (C) of each blade, the blade angle
of attack (α), the frequency of rotation (ω), the wind velocity (V ), and the density (ρ) and
viscosity (µ) of the air.
(a) Express the non-dimensional power as a function of the other non-dimensional groups.
(b) Tests on a model windmill are performed in a wind tunnel at 1/5th scale.

(i) Find the speed of the flow in the wind tunnel necessary to achieve full similarity
relative to that experienced by the full-scale windmill.

(ii) What would be the power generated by the model compared to the full-scale proto-
type?

(iii) What would the frequency of rotation be of the model compared to the full scale?

7.37 Particles are injected into water flowing through a pipe. N , the number of parti-
cles per unit volume in the flow at any given station downstream of the point of injection,
depends on the distance from the point of injection x, the particle diameter d, the density
of the particles ρp, the density of water ρ, the viscosity of the water µ, the pipe diameter
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D, the average flow velocity V , and the acceleration due to gravity g.
(a) Express the non-dimensional number of particles per unit volume in terms of its depen-
dence on the other non-dimensional groups. Show all your working.
(b) It is proposed to test a model pipe at 1/4 scale. If the test fluid used in the model
test were not known, what velocity would be required for the model test to be dynamically
similar to the full scale? What would the kinematic viscosity of the test fluid need to be
compared to water to obtain full dynamic similarity?

7.38 The distance s a rotating ball will skip on the surface of water depends on its initial
velocity V , initial height above the water h, initial angular velocity ω, the ball diameter d,
the gravitational acceleration g, and the coefficient of restitution of the water surface e (the
ratio of incoming and rebound velocities).
(a) Express the non-dimensional distance as a function of the other non-dimensional groups.
(b) Tests on a model ball are performed at 4× full scale. To achieve dynamic similarity in
the model test, what would the initial velocity need to be in the model test compared to
the full-scale? What would the initial rotation rate need to be in the model test compared
to the full-scale?

7.39 The distance s a golf ball carries depends on its initial velocity V and angular
velocity ω, its diameter d, the air density ρ and dynamic viscosity µ, and the average depth
of the dimples k.
(a) Express the non-dimensional distance as a function of the other non-dimensional groups.
(b) Tests on a model golf ball are performed in a wind tunnel at 4× full scale. To achieve
dynamic similarity in the model test, what would the wind tunnel speed need to be in the
model test compared to the full-scale? What would the rotation rate need to be in the
model test compared to the full-scale?

7.40 The thrust T developed by a marine propeller depends on the flow velocity V , the
density of the water ρ, the propeller diameter D, its rate of rotation ω, the absolute pressure
at the depth of the propeller p, and the viscosity µ.
(a) Express the non-dimensional thrust as a function of the other non-dimensional groups.
(b) Tests on a model propeller are performed in water at half full scale. Assume that the
Reynolds number is large enough so that the effects of viscosity can be neglected. To achieve
dynamic similarity in the model test:

(ii) What would the flow velocity need to be in the model test compared to the full-scale,
assuming the absolute pressures are matched?

(i) What would the rate of rotation need to be in the model test compared to the full-
scale?

7.41 The pressure difference ∆p produced by a water pump, and the power P required
to operate it, each depend on the size of the pump, measured by the diameter D of the
impeller, the volume flow rate q̇, the rate of rotation ω, the water density ρ and dynamic
viscosity µ.
(a) Express the non-dimensional pressure difference and power as separate functions of the
other non-dimensional groups.
(b) Tests on a model pump are performed at 0.5 × full scale, at a rotation rate that is 2
× the full-scale value. To achieve dynamic similarity in the model test: (i) what would the
volume flow rate of the water need to be in the model test compared to the full-scale? (ii)
What would the pressure difference be compared to the full scale? (iii) What would the
power consumption be relative to the full scale?

7.42 The power P developed by the helical flagellum of a bacteria swimming in water,
as shown in Figure P7.42, depends on the helix angle θ, the flagellum diameter d, the helix
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Figure P7.42

diameter D, its length L, its rate of rotation ω, the fluid viscosity µ, and the stiffness of
the helix as measured by the product of Young’s modulus and the moment of inertia EI
(Pa.m4).
(a) Express the non-dimensional power as a function of the other non-dimensional groups.
(b) Tests on a model flagellum are performed in a fluid with a viscosity 1000 times larger
than water, at a model scale 100 times larger than the organism. The stiffness EI of the
model is 109 times greater than in the organism. To achieve dynamic similarity in the model
test:

(i) What would the rate of rotation need to be in the model test compared to the
organism?

(ii) What power would be be required to drive the model compared to the organism?

7.43 Wind blowing past a flag causes it to flutter in the breeze. The frequency of this
fluttering, ω, is assumed to be a function of the wind speed V , the air density ρ, the accel-
eration due to gravity g, the length of the flag `, and the area density ρA (with dimensions
of mass per unit area) of the flag material. It is desired to predict the flutter frequency of
a large 12m flag in a 10m/s wind. To do this a model flag with ` = 1.2m is to be tested
in a wind tunnel.
(a) Express the non-dimensional frequency as a function of the other non-dimensional
groups.
(b) Determine the required area density of the model flag material if the large flag has
ρA = 1 kg/m2.
(c) What wind tunnel velocity is required for testing the model?
(d) If the model flag flutters at 6Hz, predict the frequency for the large flag.

7.44 The pressure difference ∆p required to drive the flow of water in a needle depends
on the water viscosity µ, the surface tension σ (force per unit length), the needle diameter
D, the flow velocity V , and the speed of sound in air a.
(a) Express the non-dimensional pressure difference as a function of the other non-dimensional
groups.
(b) Tests on a model needle are performed at twice full scale. Assume that the effects of
compressibility can be neglected. To achieve dynamic similarity in the model test:

(i) What would the flow velocity need to be in the model test compared to the full-
scale?

(ii) What would the pressure difference need to be in the model test compared to the
full-scale?
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Chapter 8

Viscous Internal Flows

8.1 Study Guide

• What is the Moody Diagram?

• Explain briefly why a faucet acts to control the flow rate.

• What is a reasonable upper limit on the Reynolds number for laminar pipe flow?

• At what Reynolds number would you expect fully developed pipe flow to become
turbulent? Write down the definition of the Reynolds number for pipe flow and explain
your notation.

• Compare the velocity profile, the wall shear stress, and the pressure drop per unit
length for laminar and turbulent pipe flow (draw some diagrams to illustrate your
answer).

• In Section 8.9, it is stated that squeezing a hose at its exit will only increase the exit
velocity for fL/D > 1. By using the energy equation, demonstrate the accuracy of
this statement.

8.2 Worked Examples

Example 8.1: Pipe flow with friction

Consider a large tank filled with water draining through a long pipe of diameter D and
length L = 100D, located near the bottom of the tank (Figure 8.1). The entrance to the
pipe is square-edged, and there is a ball valve to control the flow rate. The valve is wide

Figure 8.1: Tank draining through a pipe, with losses.
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open, and the pipe is horizontal. Find an expression for the average exit velocity V . The
Reynolds number of the pipe flow is 2000, so that the flow is laminar. The flow can be
assumed to be steady and adiabatic.

Solution: For laminar flow, α = 2. The loss coefficient K for a square-edged entrance is
0.5, and at the exit, all the kinetic energy of the flow is lost, so that the loss coefficient at this
point is 1.0 (see Table 8.2). The ball valve has an equivalent length Le/D = 3 (Table 8.3).
At this Reynolds number, the friction factor f = 0.032 (Figure 8.7). The one-dimensional
energy equation (equation 8.30), starting at a point on the free surface of the tank and
ending at the exit of the pipe, gives(
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Therefore

V = 0.542
√
gH =

√
0.294gH

We see that the exit velocity found here is very much less than the ideal value for frictionless
flow (=

√
2gH).

Example 8.2: Pipe flow with friction

Figure 8.2 shows water at 60◦F flowing in a cast iron pipe. The pressure drop p1 − p2 =
3500 lbf/ft

2, the height difference z2 − z1 = 30ft, the length L = 150ft, and the diameter
D = 3 in. Find the volume discharge rate q̇. Ignore minor losses, and assume that the flow
is turbulent.

Solution: To find q̇, we need to know the average velocity in the pipe V . The one-
dimensional energy equation gives:(

p1

ρ
+ α1

V
2

2
+ gz1

)
−

(
p2

ρ
+ α2

V
2

2
+ gz2

)
= gh`

Figure 8.2: Water flowing uphill in a smooth pipe.
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For turbulent flow, α2 = α1 = 1.0, and

f
L

D

V
2

2
=

p1 − p2

ρ
+ g (z1 − z2)

To find V , we need to know the friction factor. But the friction factor depends on the
Reynolds number, and without knowing V , we cannot find the Reynolds number. However,
if the Reynolds number is large enough, the friction factor for a rough pipe is independent of
Reynolds number (see Figure 8.7). From Table 8.1, we see that cast iron pipes typically have
k = 0.00085 ft, so that k/D = 0.0034. For large Reynolds numbers, the Moody diagram
then gives f ≈ 0.027. Therefore

V
2

=
2

f

D

L

[
p1 − p2

ρ
+ g (z1 − z2)

]
=

2

0.027

0.25

150

(
3500 lbf

1.938 slug/ft3
− 32.2 ft/s2 × 30 ft

)
and so

V = 10.2 ft/s

Hence
q̇ = π

4D
2V = 0.50 ft3/s

Before we accept this answer, we need to check that the Reynolds number is high enough
for the pipe to be fully rough. That is,

Re =
V D

ν
=

10.2× 0.25

1.21× 10−5
= 211, 000

The Moody diagram shows that at this Reynolds number the flow is not yet fully rough,
and the friction factor is a little higher than we assumed — closer to 0.028 than 0.027. To
obtain a more accurate answer for the volume flow rate, we would need to iterate. When
we use f = 0.028, we find that V = 10.0 ft/s, q̇ = 0.49 ft3/s, and Re = 207, 000. The
corresponding friction factor is again 0.028, so this second value of q̇ is accurate enough.

Example 8.3: Pipe flow with shaft work

Consider the previous example, where a 20hp pump is now placed halfway along the pipe.
We will assume that the pressure drop remains the same at 3500 lbf/ft

2, and the friction
factor is 0.028. Find the volume flow rate through the pipe.

Solution: The energy equation becomes(
p1

ρ
+ α1

V
2

2
+ gz1

)
−

(
p2

ρ
+ α2

V
2

2
+ gz2

)
= gh` −

Ẇshaft

ṁ

where Ẇshaft is positive since the pump does work on the fluid. That is,

p1 − p2

ρ
+ g (z1 − z2) = f

L

D

V
2

2
− Ẇshaft

ṁ

Ẇshaft = 20hp, so that

Ẇshaft

ṁ
=

20× 550

1.938× π
4D

2V
ft2/s2 =

115, 630

V
ft2/s2
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Figure 8.3: Control volume for the pump.

where V is measured in ft/s. The energy equation becomes

1806− 966 = 8.4V
2 − 115, 630

V

so that
V

3 − 100V − 13765 = 0

This equation has one physically meaningful solution, where V = 25.4 ft/s. Finally, the
volume flow rate is given by

q̇ = π
4D

2V = 1.25 ft3/s

By comparing this value with the result from the previous example, we see that the addition
of a 20hp pump has more than doubled the volume flow rate.

Example 8.4: Power required to drive a pump

A pump delivers 20 l/s (liters per second) of water at 5◦C, increasing the pressure from
1.5 atm to 4.0 atm (see Figure 8.3). The inlet diameter is 10 cm, and the outlet diameter
is 2.5 cm. The inlet and outlet are approximately at the same height, and the change in
internal energy is negligible. The flow can be assumed to be one-dimensional. If there is no
heat transfer to the fluid, and there is no work done by viscous forces:
(a) Find the power required to drive the pump, Ẇpump.
(b) Find the change in enthalpy of the water.

Solution: For part (a), we apply the one-dimensional energy equation (equation 8.30) to
the control volume shown in Figure 8.3. We have Q̇ = 0 and Ẇ ′ = Ẇshaft = Ẇpump, where

Ẇshaft is the work done on the water by the pump. Hence,

p2

ρ2
− p1

ρ1
+ 1

2V
2
2 − 1

2V
2
1 =

Ẇshaft

ṁ
=
Ẇpump

ṁ

To find Ẇpump, we need to find the mass flow rate ṁ, V1, and V2. The volume flow rate
q̇ = 20 l/s, and so

ṁ = ρq̇ =
1000 kg/m3 × 20 l/s

103 l/m3
= 20 kg/s

Also,

V1 =
q̇

A1
=

20 l/s

103 l/m3
× 1

π
4 (0.1)2m2

= 2.55m/s

and

V2 =
q̇

A2
=

20 l/s

103 l/m3
× 1

π
4 (0.025)2m2

= 40.7m/s
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Figure 8.4: Closed-loop wind tunnel.

With p1 = 151, 988Pa and p2 = 405, 300Pa, we obtain

Ẇpump = 20 kg/s

[
(405, 300− 151, 988)Pa

1000 kg/m3
+ 1

2

(
40.72 − 2.552

)
m2/s2

]
= 21, 566watt

This is equivalent to 21, 566/746hp = 28.9hp

For part (b), we use the definition of enthalpy, h = û+ p/ρ. That is,

h2 − h1 =

(
û2 +

p2

ρ2

)
−
(
û1 +

p1

ρ1

)
=

p2 − p1

ρ
=

(405, 300− 151, 988)Pa

1000 kg/m3
= 253m2/s2

Example 8.5: Wind tunnel

Consider a closed-loop wind tunnel, as shown in Figure 8.4, driven by a 60 kW fan with
an efficiency of 80% at its top speed. The losses in the system are dominated by the
minor losses in the bends and the screens that are used to improve the flow quality. Each
bend is equipped with guide vanes (see Figure 8.12), and they each have a loss coefficient
Kb = 2. There are three screens, each with Ks = 1, and one honeycomb flow straightener
with Kh = 0.3. The expansion downstream of the working section is in two parts. Each
expansion increases the area by a factor of 3, and each has a loss coefficient Ke = 0.7 based
on the maximum velocity. The contraction upstream of the working section decreases the
area by a factor of 9, and it has a loss coefficient Kc = 0.2 based on the maximum velocity.
Find the maximum flow velocity in the working section, which has a cross-sectional area of
0.7m2, assuming that there are no major losses and there is no heat transfer.

Solution: We apply the energy equation around the circuit, starting and ending in the
working section where the velocity is V . Hence

0 = gh`,min −
Ẇshaft

ṁ
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Figure 8.5: Control volume for diverging duct.

where Ẇshaft is positive since the fan does work on the fluid. That is,

Ẇshaft

ṁ
= Ke

V
2

2
+ (2Kb +Ke)

(V /3)2

2
+ (2Kb + 3Ks +Kh)

(V /9)2

2
+Kc

V
2

2

With ρ = 1.2 kg/m3, we obtain

Ẇshaft = 1.2× 0.7V

[
Ke +Kc + (2Kb +Ke)

1

9
+ (2Kb + 3Ks +Kh)

1

81

]
V

2

2

where V is measured in m/s. With Ẇshaft = 60× 0.8 kW , we have

V = 42m/s

Example 8.6: Energy equation applied to duct flow

An incompressible fluid flows steadily through a duct, as shown in Figure 8.5. The duct
has a width W . The velocity at entrance to the duct is uniform and equal to V0, while the
velocity at the exit varies linearly to its maximum value, which is equal to V0. Find the the
net enthalpy transport out of the control volume in terms of ρ, V0, Q̇, W and H1, where Q̇
is the rate at which heat is transferred to the fluid.

Solution: Since the flow is steady and there is no shaft work (we will ignore the work done
by viscous forces), the energy equation (equation 3.25) becomes:∫

(n · ρV)

(
û+

p

ρ
+ 1

2V
2 + gz

)
dA = Q̇

Ignoring potential energy changes due to changes in height, and introducing the enthalpy
h = û+ p/ρ, we have ∫

(n · ρV)
(
h+ 1

2V
2
)
dA = Q̇

That is, ∫
(n · ρV)h dA = net enthalpy flux = −

∫
(n · ρV) 1

2V
2 dA+ Q̇

The net rate of enthalpy transport out of the duct is given by the net rate of transport of
kinetic energy out of the control volume plus the net rate of heat transfer to the fluid in the
control volume. Since the entrance and exit areas are the only places where there is a flux,
the net enthalpy flux is given by

− (−ρV0) 1
2V

2
0 WH1 −

∫ H2

0

(
ρV0

(
y

H2

))
1
2V

2
0

(
y

H2

)2

Wdy + Q̇

= 1
2ρV

3
0 WH1 − 1

2ρV
3
0 W

∫ H2

0

(
y

H2

)3

dy + Q̇

= 1
2ρV

3
0 WH1 − 1

8ρV
3
0 WH2 + Q̇
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We can relate H1 to H2 by using the continuity equation, where, for steady flow∫
n · ρV dA = 0

(equation 3.11). That is,

−ρV0WH1 +

∫ H2

0

ρV0

(
y

H2

)
Wdy = 0

so that
H1 = 1

2H2

Finally,
net enthalpy flux = 1

4ρV
3
0 WH1 + Q̇

Problems

8.1 Calculate the Reynolds number for pipe flow with diameter 12mm, average velocity
50mm/s, and kinematic viscosity 10−6m2/s. Will the flow be laminar or turbulent?

8.2 Would you expect the flow of water in an industrial quality pipe of diameter 0.010m
to be laminar or turbulent, when the average velocity was 1m/s, and the kinematic viscosity
was 10−6m2/s?

8.3 What is the likelihood that a flow with an average velocity of 0.15 ft/s in a 6 in.
water pipe is laminar? Find the speed at which the flow will always be laminar.

8.4 If the critical Reynolds number for a river is 2000 based on average velocity and
depth, what is the maximum speed for laminar flow in a river 10 ft deep? 2 ft deep? Do
you expect any river flow to be laminar?.

8.5 Find the Reynolds number for water at 15◦C flowing in the following conduits,
indicating in each case whether you expect the flow to be laminar or turbulent.
(a) A tube of 6mm diameter with an average velocity of 10 cm/s.
(b) A pipe of 20 cm diameter with an average velocity of 1m/s.
(c) A tube of 2m diameter with an average velocity of 3m/s.

8.6 A given pipe first carries water and then carries air at 15◦C and atmospheric pres-
sure. What is the ratio of the mass discharge rates and the volume discharge rates, if the
friction factors were the same for these two flows?

8.7 Two horizontal pipes of the same length and relative roughness carry air and water,
respectively, at 60◦F . The velocities are such that the Reynolds numbers and pressure drops
for each pipe are the same. Find the ratio of the average air velocity to water velocity.

8.8 Water flows steadily through a smooth, circular, horizontal pipe. The discharge
rate is 1.5 ft3/s and the pipe diameter is 6 in. Find the difference in the pressure between
two points 400 ft apart if the water temperature is 60◦F .

8.9 A 2000-gallon swimming pool is to be filled with a 0.75 in. diameter garden hose.
If the supply pressure is 60 psig, find the time required to fill the pool. The hose is 100 ft
long, with a friction factor equal to 0.02.
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Figure P8.15

8.10 A hole in the bottom of a large open tank discharges water to the atmosphere. If
the exit velocity in the absence of losses is Ve, find the loss coefficient for the hole if the
actual velocity is Ve/2. Assume turbulent flow.

8.11 Air enters a duct at a speed of 100m/s and leaves it at 200m/s. If no heat is added
to the air and no work is done by the air, what is the change in temperature of the air as
it passes through the duct?

8.12 Air enters a machine at 373◦K with a speed of 200m/s and leaves it at 293◦C. If
the flow is adiabatic, and the work output by the machine is 105N ·m/kg, what is the exit
air speed? What is the exit speed when the machine is delivering no work?

8.13 Two jets of air with the same mass flow rate mix thoroughly before entering a large
closed tank. One jet is at 400◦K with a speed of 100m/s and the other is at 200◦K with
a speed of 300m/s. If no heat is added to the air, and there is no work done, what is the
temperature of the air in the tank?

8.14 A basketball is pumped up isothermally using air that is originally at 20◦C and
1.05× 105 Pa. As a result, the air is compressed to 20% of its original volume. If the mass
of air is 0.1 kg, find
(a) The final pressure;
(b) The work required;
(c) The changes in internal energy and enthalpy.

8.15 Figure P8.15 shows a pipeline through which water flows at a rate of 0.07m3/s.
If the friction factor for the pipe is 0.04, and the loss coefficient for the pipe entrance at
point A is 1.0, calculate the pressure at point B.

8.16 Water flows from a large reservoir down a straight pipe of 2500m length and 0.2m
diameter. At the end of the pipe, at a point 500m below the surface of the reservoir, the
water exits to atmosphere with a velocity Ve. If the friction factor for the pipe is 0.03, and
the loss coefficient for the pipe entrance is 1.0, calculate Ve.

8.17 Figure P8.17 shows a pipeline connecting two reservoirs through which water flows
at a rate of q̇ m3/s. The pipe is 700m long, it has a diameter of 50mm, and it is straight.
If the friction factor for the pipe is 0.001 and the loss coefficients for the pipe entrance and
exits are 0.5 and 1.0 respectively, find q̇, given that the difference in height between the
surfaces of the two reservoirs is 100m.

8.18 A pump is capable of delivering a gauge pressure p1, when pumping water of density
ρ. At the exit of the pump, where the diameter of the exit pipe is D and the velocity is V ,
there is a valve with a loss coefficient of 0.6, as shown in Figure P8.18. At a distance 100D
downstream, the diameter of the pipe smoothly reduces to D/2. At a further distance 100D
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Figure P8.17

Figure P8.18

downstream, the flow exits to atmosphere. The pipes are horizontal. Calculate the pressure
p1 in terms of the density ρ and V , when the friction factor f is taken to be constant and
equal to 0.01 everywhere.

8.19 Figure P8.19 shows a pipeline through which water flows at a rate of 0.06m3/s.
The pipe is 3000m long, it has a diameter of 120mm, and it is straight. If the friction
factor for the pipe is 0.03 and the loss coefficient for the pipe entrance is 1.0, calculate H,
the depth of the reservoir, given that the pipe exits to atmosphere.

8.20 A water tank of constant depth H, open to the atmosphere, is connected to the
piping system shown in Figure P8.20. After a length of pipe L of diameter D, the diameter
decreases smoothly to a value of D/2 and then continues on for another length L before
exiting to atmosphere. The friction factor f is the same for all piping. CD1 and CD2 are the
loss coefficients for the entry and exit. Calculate the depth of the tank required to produce
an exit velocity of V .

8.21 A small gap is left between a window and the windowsill, as shown in Figure P8.21.
The gap is 0.15mm by 30mm, and the width of the window is 1m. The pressure difference
across the window is 60Pa. Estimate the average velocity and the volume flow rate through
the gap. The air temperature is 0◦C. Ignore minor losses.

8.22 For a constant mass flow rate, and a constant friction factor, show that the pressure
drop in a pipe due to friction varies inversely with the pipe diameter to the fifth power.

Figure P8.19
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Figure P8.20

Figure P8.21:

8.23 (a) Simplify the Navier Stokes equation for steady, fully developed flow in the x-
direction between two infinite parallel plates, where one plate is held stationary and the
other is moving at a constant velocity U0. The pressure is constant everywhere, and you
can neglect gravity.
(b) Find the equation for the velocity profile, given that the gap between the plates is h.

8.24 In fully developed two-dimensional channel flow of height 2h, the velocity profile is
described by

u

V
=

3

2

(
1−

(y
h

)2
)

where y is the distance measured from the centerline, and V is the average velocity in the
channel. Express the viscous stress at the wall (that is, at y = ±h) in terms of the fluid
viscosity µ, V and h.

8.25 The laminar flow of a fluid with viscosity µ and density ρ in a circular pipe of radius
R has a velocity distribution described by

U

UCL
= 1−

( r
R

)2

where UCL is the velocity on the centerline where r = 0.
(a) Using a control volume analysis, find τw, the shear stress at the wall, in terms of R and
the pressure gradient dp/dx.
(b) Using the expression for the velocity profile, find τw, the shear stress at the wall, in
terms of µ, R, and UCL.
(c) Find the average velocity U in terms of UCL.
(d) Using the results from parts (a)-(c), show that

f =

(
dp
dx

)
D

1
2ρU

2 =
64

Re
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Figure P8.25

Figure P8.27:

where Re is the Reynolds number based on the diameter D.

8.26 A 0.5hp fan is to be used to supply air to a class room at 60◦F through a smooth
air-conditioning duct measuring 6 in. by 12 in. by 50 ft long. Find the volume flow rate,
and the pressure just downstream of the fan. Use the concept of hydraulic diameter. State
all your other assumptions.

8.27 Water at 60◦F is siphoned between two tanks as shown in Figure P8.27. The
connecting tube is 2.0 in. diameter smooth plastic hose 20 ft long. Find the volume flow
rate and the pressure at point P, which is 8 ft from the entrance to the tube. Ignore minor
losses. (To begin, assume a friction factor, then iterate.)

8.28 Due to corrosion and scaling, the roughness height of a pipe k increases with its
years in service t, varying approximately as

k = k0 + εt,

where k0 is the roughness of the new pipe. For a cast iron pipe, k0 ≈ 0.26mm, and
ε ≈ 0.00001m per year. Estimate the discharge (volume flow rate) of water through a 20 cm
diameter cast iron pipe 500m long as a function of time over a 20-year period. Assume the
pressure drop is constant and equal to 150 kPa.1

8.29 Oil of kinematic viscosity ν = 4 × 10−4ft2/s at room temperature flows through
an inclined tube of 0.5 in. diameter. Find the angle α the tube makes with the horizontal if
the pressure inside the tube is constant along its length and the flow rate is 5 ft2/hr. The
flow is laminar.

8.30 Water at 60◦F flows at a rate of 300 ft3/s through a rectangular open channel that
slopes down at an angle α, as shown in Figure P8.30. The depth of the water is 5 ft, and
the width of the channel is 8 ft. The channel is made of concrete which has a friction factor

1Adapted from John & Haberman, Introduction to Fluid Mechanics, Prentice Hall, 1988.
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Figure P8.30:

Figure P8.33

f = 0.02. Find the angle α.

8.31 You have a choice between a 3 ft or a 2 ft diameter steel pipe to transport 2000
gallons per minute of water to a power plant. The larger diameter pipe costs more but
the losses are smaller. What is the relative decrease in head loss if you choose the larger
diameter pipe? The kinematic viscosity is 1× 10−5 ft2/s.

8.32 A farmer must pump at least 100 gallons of water per minute from a dam to a
field, located 25 ft above the dam and 2000 ft away. She has a 10hp pump, which is
approximately 80% efficient. Find the minimum size of smooth plastic piping she needs to
buy, given that the piping is sized by the half-inch. Use ν = 10−5ft/s. Ignore minor losses.2

8.33 Under the action of gravity, water of density ρ passes steadily through a circular
funnel into a vertical pipe of diameter d, and then exits from the pipe, falling freely under
gravity, as shown in Figure P8.33. Atmospheric pressure acts everywhere outside the funnel
and pipe. The entrance to the pipe has a loss coefficient K1 = 0.5, the pipe has a friction
factor f = 0.01, and the exit from the pipe has a loss coefficient K2 = 1.0. The kinetic
energy coefficient α = 1. Find the outlet velocity in terms of g and d. You may assume that
D � d.

8.34 Determine the horsepower required to pump water vertically through 300 ft of
1.25 in. diameter smooth plastic piping at a volume flow rate of 0.1 ft3/s.

8.35 Water flows with a volume flow rate of 100 liters/s from a large reservoir through
a pipe 100m long and 10 cm diameter which has a turbomachine near the exit. The outlet

2Adapted from Potter & Foss Fluid Mechanics, Great Lakes Press, Inc., 1982.
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is 10m below the level of the reservoir, and it is at atmospheric pressure. If the friction
factor of the pipe is 0.025, find the power added to, or provided by the turbomachine. Is it
a pump or a turbine? Neglect minor losses.

8.36 Repeat the previous problem for a volume flow rate of 10 liters/s.

8.37 Water at 10◦C is pumped from a large reservoir through a 500m long, 50mm
diameter plastic pipe to a point 100m above the level of the reservoir at a rate of 0.015m3/s.
If the outlet pressure must exceed 106 Pa, find the minimum power required. Neglect minor
losses.

8.38 The laminar flow of water in a small pipe is given by

u

Umax
= 1−

( r
R

)2

where R = 0.5 cm is the pipe radius, and Umax = 20 cm/s. Assume the temperature is
15◦C.
(a) Find the wall shear stress.
(b) Find the pressure drop in a 10 cm length of the pipe.
(c) Verify that the flow is indeed laminar.

8.39 The velocity distribution in a fully developed laminar pipe flow is given by

u

UCL
= 1−

( r
R

)2

where UCL is the velocity at the centerline, and R is the pipe radius. The fluid density is
ρ, and its viscosity is µ.
(a) Find the average velocity V .
(b) Write down the Reynolds number Re based on average velocity and pipe diameter. At
what approximate value of this Reynolds number would you expect the flow to become
turbulent? Why is this value only approximate?
(c) Assume that the stress/strain rate relationship for the fluid is Newtonian. Find the wall
shear stress τw in terms of µ, R and UCL. Express the local skin friction coeffient Cf in
terms of the Reynolds number Re.

8.40 A fully developed two-dimensional duct flow of width W and height D has a
parabolic velocity profile, as shown in Figure P8.40.
(a) If w � D, show that the wall shear stress τw is related to the pressure gradient dp/dx
according to dp/dx = −2τw/D.
(b) Express the pressure gradient in terms of the velocity on the centerline, the fluid viscos-
ity µ, and the duct height D.
(c) How does the z-component of vorticity vary with y?

8.41 Water of density ρ and viscosity µ flows steadily vertically down a circular tube of
diameter D, as shown in Figure P8.41. The flow is fully developed, and it has a parabolic
velocity profile given by

u

Uc
= 1−

(
2r

D

)2

where the maximum velocity is Uc and the other notation is given in the figure.
(a) Find the shear stress acting at the wall in terms of the density ρ, the gravitational
constant g and the diameter D.
(b) Express the kinematic viscosity in terms of D, Uc and g.
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Figure P8.40

Figure P8.41

8.42 A thin layer of water of depth h, flows down a plane inclined at an angle θ to the
horizontal, as shown in Figure P8.42. The flow is laminar, and fully developed (velocity
does not change in the x-direction).
(a) Find a theoretical expression for the velocity profile and for the volume flow rate per
unit width. Use the boundary condition that at the edge of the layer the shear stress is
zero.
(b) If the flow is turbulent and the surface fully rough, find the volume flow rate in terms
of h, g, and f .

8.43 Consider the steady, laminar, fully developed flow of water of depth h down a plane
inclined at an angle θ to the horizontal, as shown in Figure P8.43. The velocity profile is
quadratic, as shown, and the velocity at the free surface is Ue. Show that Ue = gh2 sin θ/2ν,
where ν is the kinematic viscosity of water.

8.44 As shown in Figure P8.44, water flows from a large tank of depth 2m through a
square-edged entrance with a loss coefficient K1 = 0.5 to a pump that delivers a mass flow
rate ṁ = 2.83 kg/s through a circular pipe of diameter D = 0.03m, a length of 30m, and a
friction factor of 0.01. The pipe exits to atmospheric pressure with an exit loss coefficient of

Figure P8.42
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Figure P8.43

Figure P8.44

K2 = 1.0. Given that the density of water is 1000 kg/m3, and the kinetic energy coefficient
α = 1, find the power required to drive the pump, Ẇshaft.

8.45 A water tank of constant depth H, open to the atmosphere, is connected to the
piping system, as shown in Figure P8.45. After a length of pipe L of diameter D, the
diameter decreases smoothly to a value of D/2 and then continues on for another length L
before exiting to atmosphere. The flow is turbulent and the friction factor f is the same for
all piping. CD1 and CD2 are the loss coefficients for the entry and exit. Calculate the depth
of the tank required to produce a mean exit velocity of V .

8.46 At a ski resort, water of density ρ flows through a pipe of diameter D and turbulent
flow friction factor f for a distance L from a large reservoir with a free surface elevation of
1500m to a snow making machine at an elevation of 1400m, as shown in Figure P8.46. K1

and K2 are the loss coefficients for the entry and exit, respectively, and along the way the
flow passes through 5 bends, each with a loss coefficient of K3.
(a) Determine the exit velocity if D = 0.1m, L = 100m, f = 0.01, K1 = K2 = K3 = 1.0.
(b) Compare the computed exit velocity to the exit velocity if there were no losses.

Figure P8.45
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Figure P8.46

Figure P8.47

(c) If a pump was put in the system to double the exit velocity, what is its required minimum
power (ρ = 1000 kg/m3)?

8.47 Water of density ρ flows from a large tank through a pipe of diameter D, length L,
and friction factor f , as shown in Figure P8.47. K2 and K3 are the loss coefficients for the
entry and exit, respectively, and towards the end of the pipe there is one bend with a loss
coefficient of K4. The flow in the pipe is turbulent. The exit from the pipe is a distance H
below the level of the water in the tank.
(a) Determine the exit velocity V3 if D = 0.05m, L = 10m, f = 0.01, K2 = K3 = K4 = 1.0,
and H = 1m.
(b) Under the conditions given in (a), find the height h to which the jet of water issuing
from the pipe rises above the exit.
(c) If a pump was put in the system to increase h by a factor of 10, what is its required
minimum power (ρ = 1000 kg/m3)?

8.48 Water of density ρ (= 1000 kg/m3) flows from a large tank through a pipe of
diameter D, total length L, and friction factor f , as shown in Figure P8.48. The loss
coefficients for the entry and exit are K1 and K3, respectively, and along the length of the
pipe there are four bends each with a loss coefficient of K2. The flow in the pipe is turbulent.
The entrance to the pipe is a distance H below the level of the water in the tank.
(a) Determine the exit velocity V3 ifD = 0.025m, L = 10m, f = 0.01, K1 = K2 = K3 = 1.0,
and H = 2m.
(b) Under the conditions given in (a), find the gauge pressure at the point 2 along the pipe
(p2g), where point 2 is at located at a distance L/2 along the pipe, at a height 2H above
the entrance to the pipe.
(c) If a pump was put in the system to double the flow rate, what is its required minimum
power?
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Figure P8.48

Figure P8.49

8.49 Water of density 1000 kg/m3 is pumped from a sump tank up a distance of H before
exiting to atmospheric pressure, as shown in Figure P8.49. The entrance and exit have a
loss coefficient of K = 1. Each bend also has a loss coefficient of K, but the valve has a
loss coefficient of 2K. The pipe has a diameter D, L1 = L2 = 50D, and the friction factor
f = 0.01. Find the power expended by the pump if the volume flow rate is 40 liters/s, given
that D = 50mm, and H = 2m. Assume that the flow in the pipe is turbulent.

8.50 A large tank feeds a straight pipe that delivers water to a turbine, and then exits
to atmosphere, as shown in Figure P8.50. The friction factor f = 0.01, the length L = 100
m, the diameter of the pipe D = 0.1 m, the loss coefficients K1 = K2 = 1, the water density
ρ = 1000 kg/m3, the water viscosity µ = 15 × 10−3 N.s/m2, the bulk velocity in the pipe
V = 2 m/s, and the turbine develops 500 W.
(a) Do you expect the flow in the pipe to be turbulent or laminar?
(b) Find the height H.

8.51 A pump delivers water through the piping system which exits to atmosphere, as
shown in Figure P8.51. The friction factor f = 0.01, the overall length of the pipe L = 10
m, the diameter of the pipe D = 0.1 m, the loss coefficients K1 = K2 = 1, the water density
ρ = 1000 kg/m3, the bulk velocity in the pipe V = 4 m/s, H = 5 m, and the pump develops
750 W. Find the gauge pressure at the inlet to the pump, pig.

8.52 A large tank feeds a siphon as shown in the figure. For the flow in the siphon, the
friction factor f = 0.01, the length of the siphon L = 1 m, and its diameter D = 0.01 m,
the loss coefficients K1 = K2 = K3 = K4 = 1, and the water density ρ = 1000 kg/m3.
(a) If there were no losses, what is the exit velocity of the siphon?
(b) Assuming the flow in the siphon to be turbulent, and taking into account all losses, what
is the actual exit velocity of the siphon?



150 PROBLEMS Chapter 8

Figure P8.50

Figure P8.51

(c) If a pump was added somewhere in the siphon, and taking into account all losses, what
would be the output power of the pump if the exit velocity was seen to double?

Figure P8.52



Chapter 9

Viscous External Flows

9.1 Study Guide

• Describe what is meant by the term “boundary layer.” Illustrate your answer using a
diagram.

• A laminar boundary layer is observed to grow on a flat plate of width w and length
L such that the pressure and the freestream velocity Ue is constant everywhere. The
total skin friction coefficient CF is defined according to

CF =
F

1
2ρU

2
ewL

Here, F is the total frictional force acting on one side of the plate, and ρ is the
fluid density. By using the momentum equation and the continuity equation, find
the relationship between CF and the momentum thickness θ for an arbitrary velocity
profile. Indicate all your assumptions.

• What is the definition of the displacement thickness? Momentum thickness? Shape
factor? Give physical interpretations for these parameters.

• Give brief physical explanations and interpretations of the following terms:
(a) The 99% boundary layer thickness.
(b) The boundary layer displacement thickness δ∗.
(c) The boundary layer momentum thickness θ.

• Describe the differences between laminar and turbulent boundary layers in terms of:
(a) The velocity profile.
(b) The frictional drag.
(c) The behavior in adverse pressure gradients (that is, the tendency to separate).

• Consider the differences between a laminar and a turbulent boundary layer in a zero
pressure gradient. If the boundary layer thickness was the same: (a) Sketch the
velocity profile for each flow. (b) Which flow has the higher wall shear stress? Why?
(c) How do these observations explain why a dimpled golf ball can travel further than
a smooth golf ball?

• Draw the flow around a typical power plant smoke stack. Identify the laminar and
turbulent boundary layers, the points of separation, the separated flow, the vortex
shedding, and the freestream flow.

151
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• Consider a laminar and a turbulent boundary layer at the same Reynolds number.
(a) How do the velocity profiles compare?
(b) Which boundary layer grows faster?
(c) Which boundary layer has the larger ratio of displacement thickness to momentum
thickness (δ∗/θ)?
(d) When subjected to the same adverse pressure gradient, which boundary layer will
separate sooner?

9.2 Worked Examples

Example 9.1: Boundary layer flow

A flat plate 10 ft long is immersed in water at 60◦F , flowing parallel to the plate at 20 ft/s.
The boundary layer is initially laminar, then transitions to turbulent flow at Rex = 105.
(a) Find the approximate boundary layer thickness at x = 5 ft and x = 10 ft, where x is
measured from the leading edge.
(b) Find the total drag coefficient CF . (c) Find the total drag per unit width of the plate
if the water covers both sides.

Solution: First, we need to know where transition is likely to occur. The boundary layer
is laminar for Rex < 105, so that

x <
ν × 105

Ue
=

1.21

20
ft = 0.73 in.

We see that the region of laminar flow is very short, and we can assume that the boundary
layer is turbulent from the leading edge on.

For part (a), we use the power law approximation for turbulent boundary layer given by
equation 9.21. For x = 5 ft

Rex =
xUe
ν

=
5× 20

1.21× 10−5
= 8.26× 106

and
δ

x
=

0.37

Re0.2
x

= 0.0153

so that

δ = 0.0765 ft = 0.92 in.

For x = 10, ft, Rex = 16.5× 106, and δ = 0.133 ft = 1.60 in. Note how thin the boundary
layer is compared to the development length x.

For part (b), the total drag coefficient is given by equation 9.20, so that

CF =
0.074

Re0.2
L

With L = 10 ft, ReL = 16.5× 106, and CF = 0.00266.
For part (c), we have a total viscous force acting on the plate equal to 2Fv, where Fv is

the force acting on one surface. From the definition of the total drag coefficient, the total
drag on the plate per unit width is given by

2Fv
W

= ρU2
eLCF = 1.938

slugs

ft3
× 400

ft2

s2
× 10 ft× 0.00266 lbf = 20.6

lbf
ft
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Example 9.2: Vortex shedding

In an exposed location, telephone wires will “sing” when the wind blows across them. Find
the frequency of the note when the wind velocity is 30mph, and the wire diameter is 0.25 in.
For air, we assume that ν = 15× 10−6m2/s.

Solution: First we need to know the Reynolds number, Re, where

Re =
V D

ν

=

(
30mihr × 5280 ft

mi × 12 in.ft × 0.0254 m
in. ×

1
3600

hr
s

) (
0.25in.× 0.0254 m

in.

)
15× 10−6m2

s

= 2774.

From Figure 9.12, we see that at this Reynolds number the Strouhal number is approximately
equal to 0.21. That is,

St =
fD

V
= 0.21

so that

f =
0.21V

D
Hz

=

(
0.21× 30mihr × 5280 ft

mi × 12 in.ft × 0.0254 m
in. ×

1
3600

hr
s

)
0.25in.× 0.0254 m

in.

Hz

= 444Hz,

which is very close to the note middle A (above middle C) (= 440Hz).

Example 9.3: Drag of a submarine model

A submarine has the shape of an 8:1 ellipsoid. Find the power required to maintain a
velocity of 20 ft/s when it is fully submerged under water. The sea water temperature is
68◦F . The submarine has a frontal area of 50 ft2, and a drag coefficient CD = 0.15.

Solution: The drag coefficient is given by

CD ≡
FD

1
2ρV

2A

(equations 3.3 and 7.12), where A is the cross-sectional area of the body, and FD is the drag
force acting on the body. Hence

FD = 1
2ρV

2ACD

The density of sea water at 68◦F is 1, 025 kg/m3, that is, 1.989 slug/ft3 (Table 1.2). There-
fore

FD = 1
2 × 1.989 slug/ft3 × 400 ft2/s2 × 50 ft2 × 0.15 lbf = 2983 lbf

The power required to overcome the drag is the work done per unit time, that is, the drag
force times the velocity of motion. Therefore

power required = FD × V = 2, 983× 20 ft · lbf/s = 59, 700 ft · lbf/s

= 59, 700 ft · lbf/s
1.341hp

737.5 ft · lbf/s
= 108hp
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Problems

9.1 The flow over a leaf is being studied in a wind tunnel. If the wind blows at 8mph,
and the leaf is aligned with the flow, is the boundary layer laminar or turbulent?

9.2 For steady, fully developed flow of a constant property fluid in a two-dimensional,
rectangular duct of height 2h the velocity profile is parabolic. Find the ratio of the displace-
ment thickness δ∗ to the half-height h (assume you can put the freestream velocity equal to
the maximum velocity, and h equal to the boundary layer thickness).

9.3 For the boundary layer velocity profile given by:

u

Ue
=
y

δ
(y ≤ δ)

Find the wall shear stress, the skin friction coefficient, the displacement thickness, and the
momentum thickness.

9.4 (a) A laminar pipe flow is described by a parabolic velocity profile. The fluid has
viscosity µ and a density ρ. The coordinate y is measured from the centerline of the pipe.
The velocity profile is described by

u

V
= 1

[
1−

( y
R

)2
]

where R is the pipe radius and V is the average velocity. Find the viscous stress at the wall
τw and express it non-dimensionally in terms of a skin friction coefficient and the Reynolds
number based on diameter and average velocity.
(b) Given the velocity profile in part (b), calculate the displacement thickness and the
momentum thickness, using the centerline velocity instead of the freestream velocity.

9.5 Consider fully developed, steady flow of a constant density Newtonian fluid in a
circular pipe of diameter D, as shown in Figure P9.5.
(a) Show that the pressure gradient dp/dx = 4τw/D, where τw is the viscous shear stress at
the wall.
(b) If the velocity distribution is triangular, find the average velocity V at any cross section,
and express the skin friction coefficient

Cf =
τw

1
2ρV

2

in terms of the Reynolds number based on V .

9.6 A rectangular duct of height h mm and width w mm carries a flow of air of density

Figure P9.5
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Figure P9.8

ρ, and viscosity µ. The velocity profile is quartic, so that

U

Um
= 1−

(
2y

h

)4

where Um m/s is the maximum velocity, which occurs on the centerline where y = 0.
(i) Find the skin friction coefficient Cf = τw/(

1
2ρUm

2), where τw is the shear stress at
the wall of the duct, in terms of µ, Um and h.

(ii) Express Cf in terms of the Reynolds number based on Um and h.

9.7 In laminar flow, the growth of the boundary layer thickness δ with distance down-
stream x is given by

δ

x
=

K√
Rex

where Rex = xUe/ν, ν is the fluid kinematic viscosity, Ue is the freestream velocity, and K
is a constant.
(a) Given that the velocity profile is described by U/Ue = y/δ, find the growth of the
displacement thickness, and the momentum thickness with downstream distance.
(b) What is the shape factor H?

9.8 A constant density, constant pressure laminar boundary layer is growing on flat
plate of width W in a stream of velocity Ue, as shown in Figure P9.8. Show that the total
drag force F acting on the plate is given by F/ρU2

e δW = (4− π)/2π when the velocity
profile is given by

u

Ue
= sin

(πy
2δ

)
for

y

δ
≤ 1

9.9 For the boundary layer profile given in the previous problem, show that the dis-
placement thickness δ∗ = δ(1− 2/π).

9.10 A laminar boundary layer is formed on a flat plate of width w and length L in a zero
pressure gradient. The fluid has viscosity µ and a density ρ. The coordinate x is measured
from the leading edge, and the coordinate y is measured from the wall. The velocity profile
is described by

U

Ue
= a

(y
δ

)
+ b

(y
δ

)2

where δ is the boundary layer thickness and Ue is the freestream velocity.
(a) Find the constants a and b by using the definition of the boundary layer thickness and
given that

τw =
3µUe

2δ
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Figure P9.11

where τw is the shear stress at the wall.
(b) For the flow described in part (a), find the total viscous drag exerted on one side of the
plate in terms of w, L, µ, ρ, c, and Ue, given that

δ

x
=

c√
Rex

where Rex is the Reynolds number based on x.
(c) For the flow described in part (a), find the displacement thickness δ∗.

9.11 Consider the two-dimensional, laminar, fully developed flow of water of depth δ
down a plane inclined at an angle θ to the horizontal, as shown in Figure P9.11. The
velocity profile may be assumed to be linear, and the velocity at the free surface is Vs.
(a) Find the shear stress at the wall by

(i) Using a control volume analysis.
(ii) Using the given velocity profile.

(b) Express the skin friction coefficient Cf in terms of
(i) the angle θ, and a Froude number based on δ and Vs.
(ii) the Reynolds number based on δ and Vs.

9.12 For a turbulent boundary layer velocity profile given by u/Ue = (y/δ)1/9, where Ue
is the freestream velocity and δ is the boundary layer thickness, calculate the displacement
thickness, the momentum thickness, and the shape factor.

9.13 A flat plate 1m long and 0.5m wide is parallel to a flow of air at a temperature of
25◦C. The velocity of the air far from the plate is 20m/s.
(a) Is the flow laminar or turbulent? (b) Find the maximum thickness of the boundary
layer.
(c) Find the overall drag coefficient CF , assuming that transition occurs at the leading edge.
(d) Find the total drag of the plate if the air covers both sides.

9.14 Repeat problem 9.13 for the case where the fluid is water at 15◦C, assuming the
Reynolds number is kept constant by changing the freestream velocity.

9.15 Air at 80◦F flows over a flat plate 6 ft long and 3 ft wide at a speed of 60 ft/s.
Assume the transition Reynolds number is 5× 105.
(a) At what distance from the leading edge does transition occur?
(b) Plot the local skin friction coefficient Cf = τw/(

1
2ρV

2) as a function of Rex = Uex/ν.
(c) Find the total drag of the plate if the air covers both sides.

9.16 Find the ratio of the friction drags of the front and rear halves of a flat plate
of total length ` if the boundary layer is turbulent from the leading edge and follows a
one-seventh-power law velocity distribution.
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9.17 For a particular turbulent boundary layer on a flat plate, the velocity profile is
given by u/Ue = (y/δ)1/7, where u is the streamwise velocity, Ue is the freestream velocity
and δ is the boundary layer thickness. Given that the boundary layer thickness grows as in
equation 9.21:
(a) Find the distribution of the vertical velocity component v(y).
(b) Calculate the angle the flow vector makes with the flat plate at y/δ = 0.05, 0.2, and 0.8
at Rex = 106.

9.18 A turbulent boundary layer on a flat plate of length L and width w has a velocity
distribution described by

U

Ue
=
(y
δ

)1/7

where Ue is the freestream velocity, y is the distance measured normal to the plate, and δ
is boundary layer thickness.
(a) Using a control volume analysis, find k such that

FD
ρU2

ewL
= k

δ

L

Here FD is the total viscous force acting on the plate, and ρ is the fluid density. Assume
that the pressure is constant everywhere.
(b) Using the result from part (a), show that

dδ

dx
=

τw
kρU2

e

where τw is the wall shear stress.
(c) Hence find τw, given that

δ

x
=

0.37

Re0.2
x

9.19 Air enters a long two-dimensional duct of constant height h, as shown in Fig-
ure P9.19. Identical boundary layers develop on the top and bottom surfaces. In the core
region, outside the boundary layers, the flow is inviscid and no losses occur. The flow is
steady and the density is constant.
(a) Show that

U2

U1
=

h

h− 2δ∗

where δ∗ is the displacement thickness at station 2.
(b) Given the information in part (a), find the pressure drop between stations 1 and 2 along
the central streamline.

9.20 In the previous problem, if you were given that velocity u at station 3 varied with
y according to:

u

Um
= 1−

(
2y

h

)2

(a) What is the distribution of the viscous stress, and what is its value at the wall?
(b) What is the distribution of the z-component of vorticity, and what is its value at the
wall?

9.21 A laminar boundary layer velocity profile may be described approximately by
u/Ue = sin(πy/2δ). Find the shear stress at the wall, τw, and express the local skin friction
coefficient Cf = τw/(

1
2ρU

2
e ) in terms of a Reynolds number based on Ue and δ.
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Figure P9.19

9.22 Consider the entrance section to a circular pipe of diameter D. The incoming
velocity is constant over the area and equal to U1, as shown in Figure P9.22. Downstream,
however, a boundary layer grows and this causes the flow in the central region to accelerate.
The flow has a constant density ρ. Find U2/U1 given that δ∗ = D/16 at station 2. (Note
that δ << D)

9.23 Assuming that the velocity profile in a laminar boundary layer of thickness δ is
given by

u

Ue
= 2

(y
δ

)
−
(y
δ

)3

where u is the velocity at distance y from the surface and Ue is the freestream velocity (as
shown in Figure P9.23), demonstrate that

θ

δ
=

31

420
and Cf ≡

τw
1
2ρU

2
e

=
4ν

Ueδ

where θ is the momentum thickness, τw is the viscous stress at the wall, Cf is the local skin
friction coefficient at a distance x from the leading edge of the plate, ρ is the density and ν
is the kinematic viscosity.

9.24 (a) For the laminar velocity profile given by

U

Ue
=

3

2

(y
δ

)
− 1

2

(y
δ

)3

where Ue is the freestream velocity and δ is the boundary layer thickness, find the displace-
ment thickness δ∗, the momentum thickness θ, and the shape factor H.
(b) What is the relationship between the total drag force on a flat plate FD, and the mo-
mentum thickness θ measured at the downstream end of the plate?

Figure P9.22
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Figure P9.23

(c) Compare and contrast the general attributes of laminar and turbulent boundary layers
on a flat plate (4 points).
(d) Compare and contrast the behavior of laminar and turbulent boundary layers in an
adverse pressure gradient (4 points).

9.25 For two-dimensional, constant pressure, constant density, laminar flow over a flat
plate, the boundary layer velocity profile is crudely described by the following relationship:

u

Ue
=

y

δ
for y ≤ δ

where u is the velocity parallel to the surface, Ue is the (constant) freestream velocity, y is
the distance normal to the surface, and δ is the boundary layer thickness.
(a) Evaluate dθ/dx, where θ is the momentum thickness, and x is the distance along the
surface measured from the leading edge of the plate, in terms of the boundary layer growth
rate.
(b) Evaluate the skin friction coefficient Cf .
(c) Using the results from parts (a) and (b), show that θ grows as

√
x.

9.26 A laminar boundary layer is observed to grow on a flat plate such that the pressure
is constant everywhere. If the boundary layer velocity profile is given by:

u

Ue
=

3

2

(y
δ

)
− 1

2

(y
δ

)3

for y ≤ δ

where u is the velocity at a distance y from the surface, δ is the boundary layer thickness
and Ue is the freestream velocity.
(a) Show that θ/δ = 0.139, where θ is the momentum thickness.
(b) Find the viscous stress on the plate in terms of the viscosity, the boundary layer thickness,
and the freestream velocity.

9.27 A laminar boundary layer is observed to grow on a flat plate such that the pressure
is constant everywhere. If the boundary layer velocity profile is given by:

U

Ue
=

3

2

(y
δ

)
− 1

2

(y
δ

)3

(for y ≤ δ), where U is the velocity at a distance y from the surface, δ is the boundary layer
thickness and Ue is the freestream velocity.
(a) Find the viscous stress on the plate τw (the local wall shear stress) in terms of the
viscosity µ, the boundary layer thickness δ, and the freestream velocity Ue.
(b) Express the answer to part (a) in terms of non-dimensional parameters (that is, in terms
of the skin friction coefficient and the Reynolds number based on δ).
(c) Find the ratio of the displacement thickness to the boundary layer thickness (this is a
number).
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9.28 (a) If the boundary layer velocity profile for y ≤ δ is given by

U

Ue
= sin

(π
2

y

δ

)
where U is the velocity at a distance y from the surface, δ is the boundary layer thickness
and Ue is the freestream velocity.

(i) Find the ratio of the displacement thickness to the boundary layer thickness (this is
a number).

(ii) Find the ratio of the momentum thickness to the boundary layer thickness (this is a
number).
(b) Air enters a two-dimensional duct with a uniform velocity profile. As the boundary
layers on the top and bottom walls grow with downstream distance, the velocity in the
freestream tends to increase. However, if the walls diverged with downstream distance so
that the freestream velocity remained constant, express the angle of divergence of the walls
in terms of the boundary layer displacement thickness δ∗ and the distance along the duct
x.
(c) A laminar boundary layer is observed to grow on a flat plate of width w and length
x = L such that the pressure is constant everywhere. If the skin friction coefficient Cf is
given by:

Cf =
0.654√
Rex

By integrating the shear stress on the surface, find the frictional force coefficient CF as a
function of the Reynolds number based on L, where CF is defined according to:

CF =
F

1
2ρU

2
ewL

Here F is the total frictional force acting on one side of the plate, ρ is the fluid density, and
Ue is the freestream velocity.

9.29 A ship 200 ft long with a wetted area of 5000 ft2 moves at 25 ft/s. Find the friction
drag, assuming that the ship surface may be modeled as a flat plate, and ρ = 1.94 slugs/ft3

and ν = 1.2 × 10−5 ft2/s. What is the minimum power required to move the ship at this
speed?

9.30 For the flow over a body completely immersed in a fluid, what is meant by the terms
“pressure drag” and “viscous drag”? Using these terms, explain the difference between a
“bluff” body and a “streamlined” body.

9.31 The vehicle shown in Figure P9.31 has a circular cross-section of diameter D, and
it is traveling at a velocity U in air with a density of ρ and a viscosity µ. It has a total drag
coefficient CD, given by

CD =
FD

1
2ρU

2 π
4D

2

where FD is the total drag force. The skin friction coefficient is given by

Cf =
τw

1
2ρU

2
=

0.37

Re0.2
x

where τw is the viscous stress, Rex = xU/ν, and x is the distance along the vehicle surface.
Find the ratio Fv/FD in terms of CD, the Reynolds number based on the length L, and the
aspect ratio L/D, where Fv is the total viscous force exerted over the surface of the vehicle.



PROBLEMS Chapter 9 161

Figure P9.31

9.32 Explain why dimples on a golf ball help to reduce drag.

9.33 Pylons supporting a bridge over a fast-flowing river often have footings (the part of
the pylon below and just above the water level) shaped like a wedge, both in the upstream
and downstream direction. Why do you think this is done?

9.34 A disk 15 cm in diameter is placed in a wind tunnel at right angles to the incoming
flow. The drag of the plate is found to be 3.2N when the air velocity is 20m/s and the air
temperature is 25◦C. Using this information, estimate the drag of a disk 40 cm in diameter
in a water flow having a velocity 5m/s at a temperature of 15◦C.

9.35 A rectangular banner 2 ft high by 10 ft long is carried by marchers in a parade that
is moving at 2mph. A 30mph wind is blowing. If the air density is 2.4 × 10−3 slug/ft3,
find the maximum force exerted on the banner by the wind. Estimate how many marchers
it might take to hold the banner safely.

9.36 Air flows over a 60 ft high circular smoke stack at a uniform speed of 30mph. Find
the total force acting on the stack if its diameter is 6 ft and the air temperature is 70◦F .

9.37 A 0.5 in. diameter cable is strung between poles 120 ft apart. A 60mph wind is
blowing at right angles to the cable. Find the force acting on the cable due to the wind.
The air temperature is 40◦F .

9.38 A beach ball 20 cm in diameter traveling at a speed of 50m/s in still air at 30◦C
is found to have a drag of 8N .
(a) Find the velocity at which the drag of a 60 cm sphere immersed in water at 15◦C can
be found from the above data.
(b) What is the drag of the larger sphere at this velocity?

9.39 (a) Find the aerodynamics drag force on a car traveling at 75mph if the drag
coefficient is 0.4 and the frontal area is 24 ft2.
(b) Find the maximum possible speed of a minivan, on the level with no wind, if it has
a frontal area of 30 ft2, a drag coefficient of 0.6 and a 120-horsepower engine that is 80%
efficient. How will this speed change if there is a 30mph headwind?

9.40 A spherical dust particle of density ρp and radius R falls at a constant velocity V
in an atmosphere of density ρa under its own weight. Find V if ρp/ρa = 1000, R = 0.5mm,
and the drag coefficient CD = F/(0.5ρaV 2πR2) = 1, where F is the drag force acting on
the sphere. Ignore the buoyancy force.

9.41 A spherical rain drop of diameter D falls at its terminal velocity V in air of density
ρa and viscosity µa. The raindrop has a drag coefficient given by

CD =
FD

1
2ρaV

2
(
π
4D

2
) =

24

Re

where FD is the drag force acting on the drop and Re is the Reynolds number based on the
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drop diameter. What is V when ρa = 1.2 kg/m3, µa = 18× 10−6 N.s/m2, and the density
of water ρw = 1000 kg/m3? The volume of a sphere is given by πD3/6. State all your
assumptions.

9.42 A skydiver of mass 75 kg is falling freely, while experiencing a drag force due to air
resistance. If her drag coefficient is 1.2, and her frontal area is 1m2, and assuming standard
atmospheric conditions, find her terminal velocity at 10◦C.

9.43 Find the terminal velocity of a parachutist, assuming that the parachute can be
modeled as a semicircular cup of diameter 6m. Use standard atmosphere properties of air
corresponding to an altitude of 3000m. The total mass of the person and parachute is 90 kg.

9.44 Find the terminal velocity of a steel sphere of density 7850 kg/m3 and diameter
0.5mm diameter, falling freely in SAE 30 motor oil, which has a density of 919 kg/m3 and
a viscosity of 0.04N · s/m2.

9.45 A bracing wire used on a biplane to strengthen the wing assembly is found to vibrate
at 5000Hz. Estimate the speed of the airplane if the wire has a diameter of 1.2mm. If the
natural frequency of the wire is 500Hz, at what speed will the wire vibration resonate?

9.46 An automobile radio aerial consists of three sections having diameters 1
8 in.,

3
16 in.,

and 1
4 in. Find the frequency of the vortex shedding when the car is traveling at 35mph

and 65mph.

9.47 For problems 9.36 and 9.37 find the vortex shedding frequency. Estimate the wave-
length between successive vortices.



Chapter 10

Open Channel Flow

10.1 Study Guide

• What is the propagation speed of a small planar disturbance in a shallow water basin?

• Write down the speed of a small amplitude gravity wave in shallow water. Use this
result to describe qualitatively the formation of a breaking wave on a beach. How
does the slope of the beach affect the formation of this wave?

• For open channel flow, name one mechanism by which the flow can become supercrit-
ical, and one mechanism by which the flow can become subcritical.

• Write down the definition of Froude number. Give two physical interpretations for its
significance.

• Water flows over a rock in a river, and near the crest of the rock the water level
is seen to go down. Is the upstream Froude number subcritical or supercritical? If
downstream of the rock there is a hydraulic jump, what can you say about the Froude
number downstream of the rock and before the hydraulic jump?

Summary of flow in a constriction without losses:

1. When F < 1 everywhere, the water level drops in the converging part, and rises in
the diverging part. The Froude number first increases, and then decreases.

2. When F > 1 everywhere, the water levels rises in the converging part, and falls in
the diverging part. The Froude number first decreases, and then increases.

3. F = 1 only at the throat.

4. The downstream solution is indeterminate when F = 1 at the throat. However,
when there are no losses, only two possibilities exist: a supercritical solution and a
subcritical solution. These solutions are independent of the upstream conditions, and
depend only on the downstream conditions. In particular, they correspond to two
special values for the downstream depth. If the downstream conditions require that
the downstream depth be different from these special values, hydraulic jumps will
appear and losses will occur.

5. Remember: hydraulic jumps can only occur at places where the hydraulic jump
relationship is satisfied. That is, jumps occur where the Froude number is such that
the change in height due to the jump is of the “right” value. Downstream of the jump,
F < 1, and the water surface will continue to rise as the channel expands.
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Figure 10.1: Partially opened sluice gate.

10.2 Worked Examples

Example 10.1: Flow under a sluice gate

Water flows steadily under a partially open gate of width W , as shown in Figure 10.1. The
flow in the vicinity of the gate is complicated but at some distance upstream of the gate,
the streamlines are initially straight and the water depth is Y1. Some distance downstream
of the gate, the streamlines are again straight and the water depth is Y2/Y1 = 0.5. If there
are no frictional effects on the flow, that is, the water flows smoothly through the gate and
there are no losses:
(a) What is F1, the Froude number of the upstream flow?
(b) Show that the flow downstream of the gate is supercritical.

Solution: From mass conservation

V1Y1W = V2Y2W

It is generally a good idea to nondimensionalize the equations. Multiplying and dividing
the left hand side of the continuity equation by

√
gY1, and the right hand side by

√
gY2, we

obtain
V1√
gY1

Y1

√
gY1 =

V2√
gY2

Y2

√
gY2

That is,

F 2
1 = F 2

2

(
Y2

Y1

)3

(10.1)

To find F1, we need to know something about F2. Since there are no losses, we could use
Bernoulli’s equation along the surface streamline. This may seem somewhat of a stretch, in
that the surface streamline takes two sharp corners and is in contact with a solid surface.
However, if we assume that the losses are small, and the flow is steady, then along the
surface streamline

1
2V

2
1 + gY1 = 1

2V
2
2 + gY2

Non-dimensionalizing by dividing through by gY1, we get

1
2

V 2
1

gY1
+ 1 = 1

2

V 2
2

gY2

Y2

Y1
+
Y2

Y1

That is,

1
2F

2
1 + 1 = 1

2F
2
2

Y2

Y1
+
Y2

Y1
=

Y2

Y1

(
1
2F

2
2 + 1

)
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Eliminating F2 by using mass conservation (equation 10.1) gives

1
2F

2
1 + 1 =

Y2

Y1

[
1
2F

2
1

(
Y1

Y2

)3

+ 1

]

and by collecting terms

F 2
1 =

2− 2Y2

Y1(
Y1

Y2

)2

− 1

Since Y2/Y1 = 0.5,

F1 =
1√
3

In addition, from equation 10.1

F2 = F1

(
Y1

Y2

)3/2

=

√
8

3

so that the upstream Froude number is subcritical, and the downstream Froude number is
supercritical.

Example 10.2: Force on a sluice gate

For the gate shown in Figure 10.1, find the force required to hold the gate fixed. Express
the result nondimensionally.

Solution: The force R required to hold the gate fixed is shown in the figure as acting in the
negative x-direction. Therefore the force exerted by the fluid on the gate is R, and the force
acting on the fluid is −R. We also have the force due to differences in hydrostatic pressure,
similar to that considered in the analysis of the hydraulic jump (Section 10.7). Therefore,
the x-component momentum equation becomes, for one-dimensional flow,

−R+
ρgY 2

1 W

2
− ρgY 2

2 W

2
= −ρV 2

1 Y1W + ρV 2
2 Y2W

where friction has been ignored. By dividing through by ρV 2
1 Y1W , and by substituting for

V2 from the continuity equation, we obtain

− R

ρV 2
1 Y1W

+
gY 2

1

2V 2
1 Y1

− gY 2
2

2V 2
1 Y1

= −1 +
V 2

2 Y2

V 2
1 Y1

=
V 2

1 Y
2
1

V 2
1 Y1Y2

Hence
R

1
2ρV

2
1 Y1W

=
1

F 2
1

(
1− Y 2

2

Y 2
1

)
+ 2

(
1− Y1

Y2

)

Example 10.3: Flow over a bump

Water flows from left to right in an open channel of constant width, as shown in Figure 10.2.
The flow becomes supercritical as it passes over a bump of height H. It remains supercritical
for some distance downstream, reaching a maximum Froude number of 1.83 at station 3. It
then becomes subcritical by means of a hydraulic jump.
(a) Find the nondimensional water depth at the throat (Y2/Y1).
(b) Find the nondimensional height of the bump (= H/Y1).
(c) Find the nondimensional water depth before the hydraulic jump (= Y3/Y1).
(d) Find the nondimensional water depth after the hydraulic jump (= Y4/Y1).
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Solution: For part (a), we use mass conservation:

V1Y1 = V2Y2

Non-dimensionalizing, as we have done a number of times, we obtain

F 2
1 = F 2

2

(
Y2

Y1

)3

(10.2)

We are given that F1 = 0.5 and F2 = 1, so that

Y2

Y1
= 0.63

For part (b), Bernoulli’s equation can be used along the surface streamline in the region
where there are no losses. Between stations 1 and 2, therefore

1
2V

2
1 + gY1 = 1

2V
2
2 + g (Y2 +H)

Non-dimensionalizing by dividing through by gY1, we obtain

1
2F

2
1 + 1 = 1

2F
2
2

Y2

Y1
+
Y2

Y1
+
H

Y1

Hence

1.125 =
3

2

Y2

Y1
+
H

Y1

and
H

Y1
= 0.180

For part (c) we can use mass conservation again, this time between stations 1 and 3:

F 2
1 = F 2

3

(
Y3

Y1

)3

Since F1 = 0.5 and F3 = 1.83,
Y3

Y1
= 0.421

For part (d), we use the hydraulic jump relationship (equation 10.9), so that

Y4

Y3
=

1

2

(√
1 + 8F 2

3 − 1

)
= 2.136

S Hence
Y4

Y1
=

Y4

Y3

Y3

Y1
= 2.136× 0.421 = 0.899

Figure 10.2: Flow over a bump.
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Figure 10.3: Bore traveling upstream in a river.

Example 10.4: Moving hydraulic jump

Water flows in a rectangular channel at a depth of 1 ft and a velocity of 10 ft/s. When a
gate is suddenly placed across the end of the channel, blocking the entire flow, a bore travels
upstream with velocity Vb, as indicated in Figure 10.3. Find Vb when the depth of the water
behind the bore is 3 ft.

Solution: To use the hydraulic jump relationship (equation 10.9), we need to move in a
frame of reference where the flow is steady. This is accomplished by moving with the bore.
Relative to the bore, the incoming water velocity is Vb + 10 ft/s, and the incoming Froude
number F1 is given by

F1 =
Vb + 10√
32.2× 1

where Vb is in ft/s. From the hydraulic jump relationship (equation 10.9), we obtain

Y2

Y1
=

1

2

(√
1 + 8F 2

1 − 1

)
so that

8F 2
1 =

(
2Y2

Y1
+ 1

)2

Hence

8
(Vb + 10)√

32.2
= 48

and

Vb = 3.90 ft/s

Problems

10.1 Calculate the Froude angle for a flow of depth 0.102m moving at 2m/s.

10.2 Determine the minimum depth in a 3m wide rectangular channel if the flow is to
be subcritical with a flowrate of 30m3/s.

10.3 Estimate the speed of a tsunami as it travels across the Pacific Ocean, given that
the average depth of the water is about 2000m. State your assumptions.
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10.4 Consider a small amplitude gravity wave moving at a speed cm from left to right
into a shallow basin of depth y, as shown in Figure P10.4. The water in this basin is moving
from right to left at speed U .
(a) Find the wave speed cm in terms of y and U , stating all your approximations clearly.
(b) What happens when the Froude number based on y and U equals one?

10.5 To find the drift velocity δv for a small amplitude gravity wave, the linear analysis
given in Section 10.2 is not sufficient. By repeating the same analysis without linearization,
show that

δv ≈
2
(
c2 − gy

)
3c

10.6 As an open channel flow enters a smooth constriction, the water level is observed
to fall. What can you say about the upstream Froude number?

10.7 Water flows in a channel and passes over a bump on the channel floor. The water
level is seen to decrease and stay low. What can you say about the upstream and downstream
Froude numbers?

10.8 Consider the one-dimensional open channel flow shown in Figure P10.8.
(a) Using the continuity principle and Bernoulli’s equation, show that

dy

dx
=

1

F 2 − 1

dh

dx

where F is the local Froude number.
(b) Discuss the implications of this result for subcritical flow everywhere, supercritical flow
everywhere, and for F = 1 at station 2.

10.9 A rectangular channel has a contraction that smoothly changes the width to a
minimum width of 1.5 ft (the throat). If the flow is critical at the throat, find the volume
flow rate when the depth at the throat is 1.5 ft.

10.10 Water in an open channel of constant width flows over a bump of height 1 ft, as
shown in Figure P10.10. What is the depth of the water Y2? Assume uniform flow of
constant width with no losses.

10.11 Water flows smoothly over a small bump in a channel of constant width, as shown
in Figure P10.11. At any cross-section the velocity may be considered constant over the
entire area. If V1 is the velocity at entry, where the depth is Y1, and V2 is the velocity where
the bump has its highest point, where the depth is Y2. If Y1/Y2 = 1.8, find
(a) The Froude number of the flow at entry.
(b) The Froude number at the top of the bump.

10.12 Water in a two-dimensional channel flows smoothly over a submerged obstacle of
height H as shown in Figure P10.12. The water depth at the peak of the obstacle is Y2,

Figure P10.4
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Figure P10.8

Figure P10.10

where Y2 = Y1/3.
(a) Find the value of the Froude number of the incoming flow, F1, given that the Froude
number is unity at the point where the depth is Y2.
(b) Find the nondimensional height of the obstacle, H/Y1.

10.13 Water in a two-dimensional channel flows over a bump, as shown in Figure P10.13.
If H2/H1 = 1/4, find the Froude numbers at entry and exit, F1 and F2.

10.14 For the flow shown in Figure P10.14,
(a) Find the Froude number at station 1, where the water exits the tank.
(b) Find the water depth at station 2 in terms of h1 and h2, given that the Froude number
at station 2 is one.

10.15 A smooth transition section connects two open channels of the same width, as
shown in Figure P10.15. The water depth decreases so that the ratio of the downstream to
upstream depths Y2/Y1 = 0.5. If the upstream Froude number F1 = 0.35, determine the
downstream Froude number F2, and the ratio h/Y1.

10.16 An exit of width W allows water to flow from a large tank into an open channel of
the same width, as shown in Figure P10.16. The depth of water in the tank is maintained
constant at H, which is large compared to h1, where h1 is the depth of the water at the exit.
As the water flows smoothly over a bump of height b, the depth increases so that the ratio
h3/h1 = 4. There are no losses anywhere. Show that the Froude number F1 is supercritical.
Use Bernoulli’s equation and continuity to find the numerical value of F1 and the ratio b/h1.

Figure P10.11
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Figure P10.12

Figure P10.13

10.17 A smooth transition section connects two rectangular channels, as shown in Fig-
ure P10.17. The channel width increases from B1 to B2 and the water surface elevation is
the same in each channel. If the upstream depth of flow is H1, determine h, the amount the
channel bed needs to be raised across the transition section to maintain the same surface
elevation.

10.18 Water of density ρ flows in an open channel of constant width w with an initial
depth of H1. At some point, the bottom rises smoothly to a height H3 and the depth of the
water decreases to H2, as shown in Figure P10.18. If the upstream Froude number F1 = 0.4,
and the downstream Froude number F2 = 1.0:
(a) Find H2/H1 (this is a number).
(b) Find H3/H1 (this is a number).
(c) Find the force Fx exerted by the water on the step in the horizontal direction. Express
the result in terms of the non-dimensional force coefficient using ρ, g, w, and H2 (this is a
number).
Show all your working, and state all your assumptions. Viscous forces can be neglected.

10.19 Water flows steadily with no losses in an open-channel flow that contracts in width,
as shown in Figure P10.19. The velocity of the water at the upstream station is V1, the
Froude number is F1, the width of the channel is W1, and the depth is h1. At the point of
minimum cross-sectional area (the throat), the velocity is V2, the Froude number F2 = 1,
the width of the channel is W2, and the depth h2 = 3h1/4. Assume one-dimensional flow.
(a) Find F1 (this is a number).
(b) Find W2/W1 (this is a number).
(c) Find the horizontal force exerted by the fluid on the contracting part of the channel in
terms of the non-dimensional force coefficient CD = F/(ρgW1h

2
1) (this is a number).

Figure P10.14
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Figure P10.15

Figure P10.16

Figure P10.17

Figure P10.18

Figure P10.19
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Figure P10.20

Figure P10.21

10.20 Water flows steadily and smoothly down a ramp of height b in an open-channel flow
of constant width, as shown in Figure P10.20. The Froude number at the upstream station
is subcritical and equal to F1, and the depth at this station is h1. Downstream, the Froude
number is F2, and it is found by experiment that surface waves make an angle of 30◦ to the
flow direction. State all your assumptions.
(a) Find F2 (this is a number).
(b) Find F1 if h1/h2 = 2 (this is a number).
(c) Find b/h1 (this is a number).

10.21 Water flows steadily and smoothly through an open-channel flow of varying width,
as shown in Figure P10.21. The Froude number at the upstream station is subcritical and
equal to F1, and the width and depth at this station are w1 and h1, respectively. At the
point of minimum channel width (the “throat”), the Froude number F2 = 1, and the width
and depth are w2 and h2. Downstream of the throat the channel expands to a constant
width, and at this point the Froude number is F3 and the width and depth of the flow are
w3 and h3. Note that h2/h1 = 3/4, and w3 = w1. State all your assumptions.
(a) Find F1 (this is a number).
(b) Find w2/w1 (this is a number).
(c) Show that h1/h3 is approximately equal to 2.37.

10.22 A smooth transition section connects two open channels of the same width, as
shown in Figure P10.22. The water depth decreases so that the ratio of the downstream to
upstream depths Y2/Y1 = 1/4. The upstream Froude number F1 = 0.3.
(a) Determine the downstream Froude number F2, and the ratio h/Y1.
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Figure P10.22

Figure P10.23

(b) Find the drag coefficient F/(ρV 2
1 wY1) where F is the force exerted by the fluid on the

bump (this is a number).

10.23 Water flows steadily over a bump of height h, as shown in Figure P10.23. The
width of the channel is constant. At position 1, the depth of the water is H1 and its velocity
is V1, and at position 2, the depth of the water is H2 and its velocity is V2. The Froude
number at position 1 is F1 = 0.2.
(a) Find the Froude number at position 2 if H1/H2 = 2 (this is a number).
(b) Find the h/H1 (this is a number).

10.24 A river of width w flows over a large rock of height h, as shown in Figure P10.24.
(a) By examining the water profile, is the flow upstream of the rock subcritical or super-
critical?
(b) Find the Froude number upstream of the rock, given that H2/H1 = 1.5, assuming that
there are no losses, and that the Froude number at the top of the rock F2 = 1.
(c) Find the non-dimensional height of the rock h/H1.
(d) Find the drag coefficient FD/ρgwH

2
1 , where FD is the drag force acting on the rock.

Neglect friction on the river bottom.

10.25 Consider the steady, frictionless open channel flow of water through the constric-
tion, as shown in Figure P10.25. At position 1, the depth is Y1, the velocity is V1 and the
Froude number is F1 = V1/

√
gY1. A similar notation is used at position 2 (the throat), and

Figure P10.24
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Figure P10.25

positions 3 and 4. You may assume one-dimensional flow.
(a) If Y1 > Y2 > Y3, is F1 supercritical, or subcritical? Also, is F3 supercritical, or subcriti-
cal?
(b) If Y1 < Y2, and Y3 < Y2, is F1 supercritical, or subcritical? Also, is F3 supercritical, or
subcritical?
(c) Given that Y2/YI = 0.75, and that Y3 < Y2, find F1, and B2/B1 (these answers are
numbers).
(d) What is the smallest value of Y2/Y1 that can be achieved?

10.26 By combining the momentum and continuity equations (equations 10.6 and 10.7),
obtain equation 10.8 where F1 is the upstream Froude number, that is, F1 = U1/

√
gH1.

10.27 By using the definition of the Bernoulli constant (equation 8.34), the continuity
equation (equation 10.10), and the hydraulic jump relationship (equation 10.9), obtain equa-
tion 10.12 for a two-dimensional channel flow.

10.28 The water depth upstream of a stationary hydraulic jump is 1m, while the depth
after the jump is 2m. Find the upstream and downstream velocities and Froude numbers.

10.29 The depth of water in a rectangular channel is 1.5 ft. The channel is 6 ft wide and
carries a volume flow rate of 200 ft3/s. Find the water depth after a hydraulic jump.

10.30 Draw and label a hydraulic jump (in a channel of constant width).
(a) Indicate regions of supercritical and subcritical flow.
(b) What happens to Bernoulli’s constant through the jump?
(c) Write down the relationship between the ratio of upstream and downstream water depths,
and the upstream Froude number.
(d) Derive a relationship between the ratio of upstream and downstream water depths, and
the downstream Froude number.
(e) A surge is moving at 5m/s into an estuary of depth 1m where the water is moving out
to sea at 1m/s. Find the water depth behind the surge.

10.31 A surge is moving at 10 ft/s into a depth 2 ft where the speed is zero. Find the
water depth behind the surge.

10.32 A tidal bore is moving at 5m/s into a stagnant basin of depth 1m. What is the
depth of water behind the bore?
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Figure P10.34

Figure P10.38

10.33 Consider a bore traveling at 6m/s into tidal basin of depth 1.5m. Calculate the
depth of the water behind the bore.

10.34 A bore is moving with velocity Ub into a stagnant tidal channel of depth Y1, as
shown in Figure P10.34. When Ub =

√
3gY1, find U2/Ub.

10.35 A surge is moving at 9 ft/s into a basin of depth 1.4 ft where the speed is zero.
Find the water depth behind the surge and the drift velocity behind the surge (that is, the
velocity downstream of the surge in a stationary frame of reference).

10.36 A river of depth 2m flows downstream at 1m/s. A surge of depth H moves up the
river at 5m/s relative to a stationary observer on the bank of the river. Find H.

10.37 A tidal bore is moving upstream into a river of constant width and of depth 1.5 m.
The river is flowing at a speed of 2 m/s. Find the speed of the bore relative to a stationary
observer if the height of the water downstream of the bore is 3 m.

10.38 A planar bore moves at a speed of 2m/s against a flow that has a speed of 1m/s
and a depth of 0.5m, as shown in Figure P10.38. Find H, the depth of the water behind
the bore.

10.39 A surge of depth H moves into a stagnant tidal pool of depth 1m at a speed of
6m/s relative to a stationary observer on the bank of the pool. Find H, and then find the
drift velocity behind the surge, relative to the stationary observer.

10.40 A surge is observed to enter a tidal channel that is moving at 1m/s against the
surge. If the depths of the water upstream and downstream of the surge are 1m and 2m,
respectively, what is the speed of the surge relative to a stationary observer on the bank of
the channel?

10.41 A tidal bore is moving upstream into a river of depth 1m, and constant width, and
the bore raises the water level by 1m. The river is flowing downstream at a steady velocity
of 2m/s.

(i) Find the velocity of the bore relative to a stationary observer.
(ii) Find the velocity of the water downstream of the bore relative to a stationary ob-

server.
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Figure P10.45

10.42 A bore (a moving hydraulic jump) travels into a stagnant basin where the depth is
1 m. The depth of the water behind the bore is 2 m.
(a) Find the speed of the bore relative to a stationary observer.
(b) Find the speed of the water behind the bore relative to a stationary observer.

10.43 A bore moving at 10m/s moves upstream into a river, which is moving downstream
at 2m/s. The river has a constant width and a depth of 2m. Find the speed of the river
flow downstream of the bore.

10.44 Show that the head loss in a hydraulic jump can be expressed as:

head loss =
(Y2 − Y1)

3

4Y1Y2

where Y1 and Y2 are the water depths upstream and downstream of the jump, respectively.
The head loss is the difference between the upstream and downstream values of the Bernoulli
constant, and it has the dimensions of length.

10.45 Consider the steady open channel flow of water in the smooth constriction shown
in the plan view in Figure P10.45. At position 1, the depth is Y1 and the width is B1.
You may assume that B1 is much larger than either B2 or B3, the widths of the channel
at positions 2 and 3, respectively. A hydraulic jump is observed between positions 3 and
4 where the upstream depth Y3 = Y1/3. You may assume one-dimensional flow, and that
F1 < 1.
(a) Find Y2, the depth at position 2, in terms of Y1.
(b) Find F3, the Froude number at position 3.
(c) Find Y4, the depth just downstream of the hydraulic jump, in terms of Y1.
(d) Find F4, the Froude number just downstream of the hydraulic jump.
(e) Find F5, the Froude number at the exit, given that Y5 = 1.1Y4.

10.46 Consider the steady open channel flow of water in the smooth constriction shown in
plan view in Figure P10.46. At position 1, the depth is Y1, the width is B1 and the Froude
number F1 = 4. A similar notation is used at positions 2, 3 and 4. A hydraulic jump is
observed just downstream of position 2 where the Froude number F2 = 2. You may assume
one-dimensional flow.
(a) Find Y2, the depth at position 2, in terms of Y1.
(b) Find Y3, the depth just downstream of the hydraulic jump, in terms of Y1.
(c) Find F3, the Froude number just downstream of the hydraulic jump.
(d) Find F4, the Froude number at the exit, given that Y3/Y4 = 1.2.
(e) Find B4/B1.

10.47 A two-dimensional channel flow flows smoothly over a small bump, as shown in
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Figure P10.46

Figure P10.47

Figure P10.47.
(a) If the Froude number at station 2 equals unity (F2 = 1), find Y2/Y1 in terms of F1 and
H/Y1.
(b) If Y3/Y1 = 0.5, find F3 in terms of F1.
(c) If F3 =

√
3, find Y4/Y1 such that a hydraulic jump is formed in front of the barrier.

10.48 Water flows steadily and smoothly over a bump of height b in an open-channel flow
of constant width, as shown in Figure P10.48. The Froude number at the upstream station
is F1, and the depth is h1. The point of minimum depth (the throat) occurs at the crest of
the bump, where the Froude number is F2 = 1, and the depth h2 = b = h1/2. A stationary
hydraulic jump is located between points 3 and 4. Assume one-dimensional flow.
(a) Find F1 (this is a number).
(b) Derive an equation for h1/h3 in terms of F1. Do not attempt to solve.
(c) Find h4/h1 (this is a number).

10.49 A circular jet of water impinges on a flat plate as shown in Figure P10.49. The
water spreads out equally in all directions and at station 1, the flow is essentially uniform
over the depth Y1. The jet exit velocity V is 10m/s and the exit diameter D is 10mm. If
you are given that R = 8D, and Y1 = D/4
(a) Find the Froude number of the flow at station 1.
(b) If you are given that a circular hydraulic jump forms near station 1, estimate the depth
of water after the hydraulic jump using the one-dimensional hydraulic jump relationship.
Under what conditions will the accuracy of this estimate improve?

10.50 Consider the steady flow of water under the sluice gate shown in Figure P10.50.
The velocity of the flow at sections 1, 2 and 3 is independent of depth, and the streamlines

Figure P10.48
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Figure P10.49

Figure P10.50

are parallel.
(a) Show that for h2 < h1 the flow at section 2 is always supercritical. Assume the flow
between sections 1 and 2 occurs without loss.
(b) Between sections 2 and 3 a stationary hydraulic jump is formed. If h2/h1 = 0.5, find
h3/h2.

10.51 Water flows in an open channel of constant width as shown in Figure P10.51. The
upstream Froude number F1 = 0.5. At the point where the water flows over a bump of
height H, the Froude number equals one.
(a) Find the depth ratio Y2/Y1.
(b) Find the ratio H/Y1.
(c) Given that a hydraulic jump occurs downstream of the bump such that Y4/Y3 = 8, find
Y3/Y1.

10.52 A smooth transition section connects two rectangular channels. In the direction of
flow, the channel width increases from B1 to B2 and the water surface elevation decreases
so that the ratio of the downstream to upstream depths Y2/Y1 = 0.5.
(a) If the upstream Froude number F1 = 1.5, find the downstream Froude number F2, and
the ratio B2/B1.
(b) If a stationary hydraulic jump occurs in the channel downstream of the expansion,
determine Y3, the depth downstream of the jump, in terms of Y1.

10.53 Consider the steady open channel flow of water in the smooth constriction shown in

Figure P10.51
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Figure P10.53

Figure P10.54

plan view in Figure P10.53. At position 1, the depth is Y1, the width is B1 and the Froude
number is F1 = 1/

√
2. A similar notation is used at positions 2, 3 and 4. A hydraulic jump

is observed just downstream of position 3 where the depth Y3 = Y1/4. You may assume
one-dimensional flow.
(a) Find F3, the Froude number at position 3 (this is a number).
(b) Find B3, the width of the channel at position 3 in terms of B1.
(c) Find Y4, the depth of the water at position 4, downstream of the hydraulic jump, in
terms of Y1.

10.54 Water flows steadily and smoothly over a bump in an open-channel flow of constant
width, as shown in Figure P10.54. The Froude upstream of the bump is F1, and at the point
of minimum channel depth the Froude number F2 = 1. Downstream of the bump the channel
bottom has risen by an amount a, and the water has a depth of H3. Further downstream,
there is a stationary hydraulic jump where the downstream water depth is H4. If H1 = 2H2

and F3 = 2,
(a) Find F1 (this is a number).
(b) Find H3/H1 (this is a number).
(c) Find a/H1 (this is a number).
(d) Find H4/H1 (this is a number).

10.55 An oil boom of width w is placed in a river to catch oil drops on the surface of
water of density ρ flowing in a shallow river, as shown in Figure P10.55.
(a) Find the Froude number upstream of the boom, given that H1/H2 = 2, assuming that
there are no losses.
(b) Find the Froude number downstream of the boom.
(c) Find the drag coefficient FD/ρgwH

2
1 , where FD is the drag force acting on the boom.

Neglect friction on the river bottom.
(d) Find the Froude number downstream of the hydraulic jump.

10.56 Water flows steadily in a smooth constriction, as shown in plan view in Fig-
ure P10.56. At position 1, where the depth of the water is Y1 and the width of the channel
is B1, the Froude number is 0.5. A hydraulic jump is located between positions 3 and 4
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Figure P10.55

Figure P10.56

where the upstream depth is Y3. Assume one-dimensional flow. Show all your working.
(a) Find the ratio of depths Y2/Y1, where Y2 is the depth of the water at the throat.
(b) Find the ratio of channel widths B2/B1, where B2 is the width of the channel at the
throat.
(c) Find the Froude number F3 just upstream of the hydraulic jump, where Y3/Y1 = 0.375.
(d) Find the Froude number F4 just downstream of the hydraulic jump.

10.57 Water issues from a large reservoir in the form of a jet of width W and depth Y1,
as shown in Figure P10.57. The cross-sectional area of the tank A is much larger than the
jet area WY1, and the depth H is much larger than Y1.
(a) Calculate the exit Froude number F1, and show that F1 > 1.
(b) Show that Y2, the depth at the crest of the bump of height h, is given by the solution to(

Y2

Y1

)3

−
(

1 +
F 2

1

2
− h

Y1

)(
Y2

Y1

)2

+
F 2

1

2
= 0

Carefully note all your assumptions.

10.58 Consider water flowing without friction through a contraction in an open channel.

Figure P10.57
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Figure P10.58

Figure P10.60

The channel and the surface profile are shown in Figure P10.58.
(a) Is the Froude number at station 1 subcritical or supercritical?
(b) Given that Y2/Y1 = 2, and B2/B1 = 0.6, find the Froude number at station 2 (this is a
number).
(c) If there was a hydraulic jump downstream of station 2, what would be the height of the
jump in terms of Y1?

10.59 For the flow described in the previous problem, find the force FH exerted by the
water on the flume. Use the continuity equation and the momentum equation to find the
nondimensional force coefficient FH/(ρgB1Y

2
1 ) in terms of the incoming Froude number and

the length ratios Y2/Y1, and B2/B1.

10.60 An open channel flow of constant width W flows over a small obstruction, as shown
in Figure P10.60. Show that

R

ρU2
1Wh1

=
h1

h2
− 1− 1

2F 2
1

(
1− h2

2

h2
1

)
where R is the force exerted by the fluid on the obstruction, ρ is the density and F1 is the
Froude number of the incoming flow. Neglect viscous forces on the channel floor.

10.61 For the open-channel flow in the smooth contraction shown in plan view in Fig-
ure P10.61, the depth of the incoming flow is Y1 and the depth of the exiting flow is Y2.
The flow attains the critical Froude number at the throat. If the upstream Froude number
is much less than unity, show that Y2/Y1 ≈ 2/3, and that

Fv
1
2ρgY

2
1 B1

= 1− 4

3

B2

B1

where Fv is the force acting on the contraction walls, and B1 and B2 are the upstream and
downstream channel widths, respectively. Ignore all viscous forces.
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Figure P10.61

Figure P10.62

10.62 Water flows smoothly over a bump of height h in the bottom of a channel of constant
width W , as shown in Figure P10.62. If the upstream depth is Y1, the upstream Froude
number F1 is 0.7, and Y1/Y2 = 2, find
(a) The downstream Froude number F2. Is it supercritical?
(b) The magnitude and direction of the horizontal force exerted by the fluid on the bump,
in terms of g, W , h and Y1.
(c) If the flow was now subcritical everywhere again find the force on the bump.
(d) If a hydraulic jump is located downstream of the bump (and F1 is 0.7 again), calculate
the Froude number of the flow downstream of the jump.

10.63 Water flows steadily in an open channel of width W , as shown in Figure P10.63. It
passes smoothly over a bump of height h. Initially, the Froude number F1 = 0.5, and the
depth of the water is Y1. The water depth decreases to a depth of Y2 over the bump, and
then continues to decrease downstream of the bump to a depth of Y3.
(a) What is the Froude number Y2?
(b) Use Bernoulli’s equation and continuity to find the numerical value of Y2/Y1, and the
numerical value of h/Y1.
(c) If Y3/Y1 = 0.422, find the numerical value of the force coefficient CD = D/(ρgWY 2

1 ),
where D is the horizontal force exerted by the fluid on the bump, ρ is the water density,
and g is the gravitational acceleration. Ignore friction.

10.64 Consider the steady, smooth flow of water in an open channel of constant width W ,
as shown in Figure P10.64. A deflector plate causes the water to accelerate to a supercritical

Figure P10.63
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Figure P10.64

Figure P10.65

speed. At position 1 the depth is Y1 and the Froude number F1 = 0.2. At position 2 the
depth is Y2 and the Froude number F2 = 3.38. Assume one-dimensional flow.
(a) Find the ratio Y2/Y1 two different ways (this is a number).
(b) Find the nondimensional ratio 2R/ρgY 2

1 W , where R is the force exerted on the fluid by
the deflector plate, in term of Y2/Y1, F1 and F2.

10.65 Water in an open-channel flow of constant width flows steadily over a dam as shown
in Figure P10.65. The velocity of the water far upstream of the dam is V , the Froude number
is F and the depth is h. Far downstream of the dam the depth is h/4.
(a) Find the horizontal force per unit width acting on the dam in terms of V , h, g and the
density ρ. Ignore friction.
(b) There is a hydraulic jump located even further downstream. Find the depth of water
downstream of the jump in terms of F and h.

10.66 Water in a two-dimensional open channel flows smoothly and steadily over a sub-
merged obstacle of height H and width W as shown in Figure P10.66. The flow over the
peak of the obstacle becomes critical at the point where the depth is Y2, where Y2 = Y1/3.
(a) Find F1, the Froude number of the incoming flow.
(b) Find H/Y1, the nondimensional height of the obstacle.
(c) Find the resultant force acting on the obstacle in terms of ρ, g, W , and Y1, given that
Y3/Y1 = 0.165.

Figure P10.66
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Chapter 11

Compressible Flow

11.1 Study Guide

• Weak pressure disturbances in a flowing fluid create a wave that makes an angle of
αM with the flow direction, where sinαM = 1/M , where M is the Mach number .

• Define enthalpy and entropy in terms of other thermodynamic variables.

• Define Cp, Cv, γ, and express Cp and Cv in terms of R and γ for an ideal gas.

• What are the relationships between pressure an temperature, and pressure and density,
for isentropic flow of an ideal gas?

• Write down the energy equation for one-dimensional, steady, adiabatic flow of a perfect
gas in terms of the total temperature, T0. What can you say about T0?

• Study how isentropic flow behaves in converging and diverging flows at subsonic and
supersonic flow (see Figure 11.8).

• What is choked flow?

• What happens to T0 across a shock wave? What happens to temperature, density,
pressure, entropy, total pressure?

• When is an oblique shock “strong” and when is it “weak”? Which is the usual case?

• What happens when the turning angle exceeds the maximum value (α > αmax) for a
given Mach number? What is the Prandtl-Meyer function, and how is it used to find
the flow properties in isentropic expansions and compressions?

11.2 Worked Examples

Example 11.1: Thermodynamic properties

When a fixed mass of air is heated from 20◦C to 100◦C:
(a) What is the change in enthalpy?
(b) For a process at constant volume, what is the change in entropy?
(c) What is the change in entropy for a process at constant pressure?
(d) For an isentropic process, find the changes in density and pressure.
(e) Compare the isentropic speed of sound in air to its isothermal value. Assume that air
behaves as a perfect gas.

185
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Solution: For part (a), we have Cp = 1004 J/kg · K (Table Appendix-C.10 and equa-
tion 11.11). From equation 11.7

h2 − h1 = Cp (T2 − T1) = 1004 (100− 20) J/kg = 80, 320 J/kg

For part (b), we use equation 11.16. Since the process is at constant volume, ρ2 = ρ1,
and

s2 − s1 = Cv ln

(
T2

T1

)
=
Cp
γ

ln

(
T2

T1

)
Therefore

s2 − s1 =
1004

1.4
ln

(
100 + 273.15

20 + 273.15

)
J/kg ·K = 173 J/kg ·K

For part (c), we use equation 11.17. Since the process is at constant pressure, p2 = p1,
and

s2 − s1 = Cp ln
T2

T1
= 1004 ln

(
100 + 273.15

20 + 273.15

)
J/kg ·K = 242.3 J/kg ·K

For part (d), we use 20◦C as the reference temperature in the isentropic relationships
(equation 11.18). With γ = 1.4, we obtain

ρ100

ρ20
=

(
T100

T20

)2.5

=

(
100 + 273.15

20 + 273.15

)2.5

= 1.828

and
p100

p20
=

(
T100

T20

)3.5

=

(
100 + 273.15

20 + 273.15

)3.5

= 2.327

For part (e), the isentropic speed of sound is given by equation 11.20:

as =
√
γRT =

√
1.4× 287.03× (20 + 273.15)m/s = 343.2m/s

The isothermal speed is given by

a =

√
∂p

∂ρ

∣∣∣∣
T

For an ideal gas at constant temperature

p

ρ
= RT = constant.

By differentiating this relationship, we find that

dp

p
− dρ

ρ
= 0

Therefore
∂p

∂ρ

∣∣∣∣
T

= a2
T =

p

ρ
= RT

That is,

aT =
√
RT =

√
287.03× (20 + 273.15) m/s = 290.07m/s

When Newton attempted to compute the speed of sound, he wrongly assumed that the
transmission of sound was an isothermal, rather than an isentropic phenomenon. We see
that for air this error leads to an estimate that is about 18% too low.
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Example 11.2: Normal shock relations

A normal shock is observed in an air flow at Mach 3 at 100◦K. The density of the air is
0.8 kg/m3. Find
(a) The stagnation temperature.
(b) The density, pressure, temperature, and Mach number downstream of the shock.
(c) The entropy rise across the shock.
To find the solutions, use the normal shock relations given here. You should then check the
results using the compressible flow calculator available on the web at http://www.engapplets.vt.edu/ .

Solution: For part (a), equation 11.25 (with γ = 1.4):

T0 = 100×
(
1 + 0.2× 32

)
= 100× 2.8◦K = 280◦K

For part (b), we use equations 11.42, and 11.48 to 11.50. Hence,

M2 =
32 + 5

7× 32 − 1
= 0.226

ρ2 =
0.8× 2.4× 32

0.4× 32 + 2
kg/m3 = 3.086 kg/m3

and

p2 =

]
1 +

2.8

2.4

(
32 − 1

)]
p1 = 10.33p1

From the ideal gas law, p1 = 0.8× 287.03× 100Pa = 22, 962Pa, and so

p2 = 237, 202Pa

Finally,

T2 =
p2

p1

ρ1

ρ2
T1 = 10.33× 0.8

3.086
× 100◦K = 267.8◦K

For part (c), we use equations 11.51 and 11.52. Hence,

p02

p01
= 10.33×

(
100

267.8

)3.5

= 0.329

and

s2 − s1 = 287.03× ln

(
1

0.329

)
J/kg ·K = 319.4 J/kg ·K

Example 11.3: Unsteady shock motion

Consider a constant area duct with a normal shock wave moving through it (Figure 11.1).
This situation occurs in a shock tube where two gases at different pressures are initially
separated by a thin diaphragm. When the diaphragm is broken, the high pressure gas
propagates into the low pressure gas and this pressure “wave” rapidly forms into a moving
shock. This process is very similar to that which generates a moving hydraulic jump (see
Section 10.9).

The pressure, temperature and velocity upstream of the shock are p1 = 75 kPa, T1 =
20◦C, and V1 = 0m/s. Downstream of the shock the pressure, temperature and velocity
are p2 = 180 kPa, T2 = 97◦C, and V2 = 280m/s. Find the shock speed, and the Mach
number of the upstream flow relative to an observer moving with the shock.

Solution: To a stationary observer, the flow is not steady: first, nothing would be happen-
ing, then a shock moves past, followed by a steady flow of gas. If we move with the shock,
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Figure 11.1: Moving normal shock in a constant area duct. (a) In a stationary frame of reference.
(b) In a frame of reference moving with the shock.

however, the flow becomes steady. For a control volume moving with the shock, the steady
one-dimensional continuity equation gives

−ρ1VsA+ (Vs − V2) ρ2A = 0

where Vs is the speed of the shock relative to a stationary observer. Using the ideal gas law
(equation 1.3)

−p1

p2

T2

T1
Vs + Vs − V2 = 0

and so:

− 80

180

380

293
Vs + Vs − 280 = 0

where Vs is in meters per second. Hence,

Vs = 661m/s

From Section 11.4.4, a =
√
γRT , so that, relative to the moving shock, the upstream flow

has a Mach number of

M =
Vs√
γRT1

=
661√

1.4× 287.03293
= 1.93

Example 11.4: Flow over a wedge

A supersonic airfoil with a symmetrical diamond-shaped cross-section is moving at Mach 3
in air at 100◦K (see Figure 11.2). Shocks form at the leading edge as the flow is turned over
the front part of the airfoil, and also at the trailing edge where the flow is turned back in the
freestream direction. At the shoulder, an expansion fan forms, and this will be discussed in
Section 11.10. Here, we consider only the flow over the leading edge, which has a half-angle
of 10◦ . The density of the air is 0.8 kg/m3. Find
(a) the stagnation temperature.
(b) the angle the shock on the leading edge makes with the freestream (assuming the weak
solution).
(c) the density, pressure, temperature, and Mach number downstream of the shock.
(d) the entropy rise across the shock.

Solution: For part (a), we use the definition of the total temperature (equation 11.25)

T0

T
= 1 +

γ − 1

2
M2

and we find that with γ = 1.4, M = 3 and T = 100◦K, the stagnation temperature
T0 = 380◦K.

For part (b) we find from Figure 11.15 that the shock angle for the weak solution is
β ≈ 27◦. A more accurate value can be found by iterating equation 11.64, but 27◦ is
accurate enough for our purposes here.
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Figure 11.2: Diamond-shaped airfoil in a supersonic flow.

For part (c), we use equations 11.59 to 11.61, and the ideal gas law. With M1 = 3 and
β = 27◦, M2

1 sin2 β = 1.855, so that

1. Density: ρ2/ρ1 = 1.624, so that ρ2 = 1.299 kg/m3.

2. Pressure: p2/p1 = 1.997. From the ideal gas law, p=ρ1RT1 = 0.8 × 287.03 ×
100Pa = 22, 962Pa. Hence, p2 = 45, 866Pa.

3. Temperature: From the ideal gas law, T2 = p2/(ρ2R) = 45, 866/ (287.03 ×
1.299)◦K = 123◦K.

4. Mach number: From equation 11.61, we see that M2
2 sin2 (β − α) = 0.572, so that

M2 = 2.587.

For part (d), we use equations 11.51 and 11.52. Hence, p02/p01 = 0.9676, and ∆s =
9.444 J/kg ·K = 9.444m2/s2K.

Example 11.5: Isentropic compression and expansion

In Example 11.4, we considered a diamond-shaped airfoil traveling in air flow at Mach 3
(see Figure 11.2). The deflection angle on the top and bottom of the wedge was 10◦.
(a) If instead the compression was achieved by a series of Mach waves, so that the compres-
sion was isentropic, find the downstream Mach number and pressure.
(b) If instead of a compression, the flow experienced a 10◦ isentropic expansion, find the
downstream Mach number and pressure.

Solution: For part (a) we find
(i) By interpolation from Table Appendix-C.19 ν1 = 49.75◦. For an isentropic compres-

sion of 10◦, ν2 = 49.75◦ − 10◦ = 39.75◦. From the table, M2 = 2.527 (compared to 2.587
for the same deflection by a single oblique shock).

(ii) Since the flow is isentropic, p01 = p02, and equation 11.28 gives

p2

p1
=

[
1 + γ−1

2 M2
1

1 + γ−1
2 M2

2

] γ
γ−1

(11.1)

so that p2/p1 = 2.062 (compared to 1.997 for the same deflection by a single oblique shock).
For part (b) we find
(i) For an isentropic expansion of 10◦, ν2 = 49.75◦+10◦ = 59.75◦. From Table Appendix-

C.19, M2 = 3.578.
(ii) Equation 11.1 applies to an isentropic expansion as well, so that p2/p1 = 0.786.
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The pressure rises through a compression and falls through an expansion, and the Mach
number decreases through a compression and increases through an expansion.

Problems

11.1 What is the speed of a sound wave in air at 300◦K? What is the speed in helium
at the same temperature? Can you explain why a person who has inhaled helium speaks
with a high-pitched voice (do not try this yourself)?

11.2 Find the Mach number of an airplane traveling at 2000 ft/s at altitudes of 5000 ft,
10, 000 ft, 20, 000 ft, and 30, 000 ft. Assume a standard atmosphere (Table Appendix-C.6).

11.3 Methane (CH4) at 20◦C flows through a pipe at a speed of 400m/s. For methane,
R = 518.3 J/(kg ·K), γ = 1.32. Is the flow subsonic, sonic, or supersonic?

11.4 Find the stagnation pressure and temperature of air flowing at 100 ft/s if the
temperature in the freestream is 60◦F and the pressure is atmospheric.

11.5 Find the stagnation pressure and temperature of air flowing at 200m/s if the pres-
sure and temperature in the undisturbed flow field are 0.96×105 Pa and 10◦C, respectively.

11.6 Find the stagnation pressure and temperature of air flowing at 200m/s in a stan-
dard atmosphere at sea level, and at heights of 2000m and 10, 000m.

11.7 An airplane flies at a speed of 150m/s at an altitude of 500m, where the temper-
ature is 20◦C. The plane climbs to 12, 000m where the temperature is −56.5◦C and levels
off at a speed of 600m/s. Calculate the Mach number for both cases.

11.8 The Lockheed SR-71 reconnaissance airplane is rumoured to fly at a Mach number
of about 3.5 at an altitude of 90, 000 ft. Estimate its flight speed under these conditions.

11.9 The National Transonic Facility (NTF) is a wind tunnel designed to operate at
Mach and Reynolds numbers comparable to flight conditions. It uses nitrogen at cryogenic
temperatures as the working fluid. A schlieren photograph taken in the NTF of a 1/20th
scale model of a Concorde airplane (full-scale wingspan of 30m) shows a Mach angle of
28◦ at a point where the temperature is 100◦K and the pressure is 9, 000Pa. Find the
local Mach number and the Reynolds number based on the model wingspan, given that
the viscosity of nitrogen under these conditions is 7 × 10−6N · s/m2. Compare with the
conditions experienced by the full-scale airplane flying at 600m/s at an altitude of 20, 000m
in a standard atmosphere.

11.10 Show that the air temperature rise in ◦K at the stagnation point of an aircraft is
almost exactly (speed in mph/100)

2
.

11.11 The working section of a transonic wind tunnel has a cross-sectional area 0.5m2.
Upstream, where the cross-section area is 2m2, the pressure and temperature are 4×105 Pa
and 5◦C, respectively. Find the pressure, density and temperature in the working section
at the point where the Mach number is 0.8. Assume one-dimensional, isentropic flow.

11.12 Air at 290◦K and 105 Pa approaches a normal shock. The temperature downstream
of the shock is 540◦K. Find:
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(a) The velocity downstream of the shock.
(b) The pressure change across the shock, and compare it with that calculated for an isen-
tropic flow with the same deceleration.

11.13 A Pitot tube is placed in a supersonic flow where the freestream temperature is
90◦K and the Mach number is 2.5. A normal shock forms in front of the probe. The probe
indicates a stagnation pressure of 52× 103 Pa. If the stagnation temperature is 270◦K, find
the pressure, density, stagnation pressure and velocity of the flow upstream of the shock.

11.14 Air with a stagnation temperature of 700◦K is compressed by a normal shock. If
the upstream Mach number is 3.0, find the velocity and temperature downstream of the
shock, and the entropy change across the shock.

11.15 Find the maximum increase in density across a shock wave for a gas with γ = 1.4.

11.16 A blowdown wind tunnel is supplied by a large air reservoir where the pressure is
constant at 1.014×105 Pa and the temperature is constant at 15◦C. The air passes through
a working section of area 0.04m2 and exits to a large vacuum vessel. Find the pressure,
density, velocity and mass flow rate in the working section if the Mach number there is 4.0.

11.17 A rocket motor is designed to give 10, 000N thrust at 10, 000m altitude. The
combustion chamber pressure and temperature are 2 × 106 Pa and 2800◦K, respectively.
The gases exit the combustion chamber through a Laval nozzle. Find the exit Mach number,
and the cross-sectional areas of the exit and the throat of the nozzle. Assume the nozzle flow
is isentropic and one-dimensional, and that the ratio of specific heats γ for the combustion
gases is 1.32.

11.18 A blowdown wind tunnel exits to atmospheric pressure. In the working section
where the cross-sectional area is 0.04m2, the flow has a Mach number of 3 and a pressure
of 0.3× 105 Pa.
(a) What is the minimum stagnation pressure required?
(b) What is the minimum stagnation temperature required to avoid air condensation in the
working section (the condensation temperature under these conditions is about 70◦K)?
(c) What is the corresponding stagnation density under these conditions?
(d) What is the mass flow rate under these conditions?

11.19 Air flows through a converging and diverging nozzle with an area ratio (exit to
throat) of 3.5. The upstream stagnation conditions are atmospheric, and the back pressure
is maintained by a vacuum system. Find:
(a) The mass flow rate if the throat area is 500mm2.
(b) The range of back pressures for which a normal shock will occur within the nozzle.

11.20 A large reservoir maintains air at 6.8×105 Pa and 15◦C. The air flows isentropically
through a convergent and divergent nozzle to another large reservoir where the back pressure
can be varied. The area of the throat is 25 cm2 and the area of the nozzle exit is 100 cm2.
Find
(a) The maximum mass flow rate through the nozzle.
(b) The two values of the Mach number at the nozzle exit corresponding to this mass flow
rate.
(c) The back pressures required to produce these Mach numbers.

11.21 An air flow with a Mach number of 2.0 passes through an oblique shock wave
inclined at an angle of 45◦. Find the flow deflection angle α.
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11.22 An air flow with a Mach number of 8 is deflected by a wedge through an angle α.
What is the maximum value of α for an attached oblique shock?

11.23 A supersonic flow passes over a symmetrical wedge of semi-angle α = 10◦. At the
leading edge an attached shock of β = 30◦ is observed. Find:
(a) The upstream Mach number.
(b) The downstream Mach number.
(c) The static pressure ratio across the shock.

11.24 Air having an initial Mach number of 2.4, a freestream static pressure of 105 Pa
and a static temperature of 270◦K is deflected by a wedge through an angle of 10◦. Find:
(a) The Mach number, pressure and temperature downstream of the shock.
(b) The change in entropy across the shock.

11.25 The shock in the previous problem “reflects” at the opposite wall, as shown in
Figure P11.25. The condition on the second shock is that the flow is turned parallel to the
wall, so that the flow deflection through the second shock must be 10◦. Find:
(a) The Mach number, pressure and temperature downstream of the second shock.
(b) The change in entropy s3 − s1.
(c) The maximum wedge angle for the reflected shock to remain attached.

11.26 An air flow with an initial Mach number of 1.5 and initial pressure p1 is expanded
isentropically by passing through a deflection angle of 5◦. Find the Mach number and
pressure ratio after the deflection.

11.27 Air at Mach 3.0 is deflected through 20◦ by an oblique shock. What isentropic
expansion turning angle is required to bring the flow back to
(a) The original Mach number.
(b) The original pressure?

11.28 A flat plate airfoil with a chord length of 1m and a width of 6m is required to
generate a lift of 40, 000N when flying in air at a Mach number of 2.0, a temperature of
−20◦C and a pressure of 105 Pa. What is the required angle of attack? What is the wave
drag at this angle of attack?

11.29 A symmetrical diamond-shaped airfoil is placed at an angle of attack of 2◦ in a flow
at Mach 2 and static pressure of 2×103 Pa. The half-angle at the leading and trailing edges
is 3◦. If its total surface area (top and bottom) is 4m2, find the forces due to lift and wave
drag acting on the airfoil.

Figure P11.25
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Turbomachines

12.1 Worked Examples

These examples were adapted from Fox & Macdonald, Introduction to Fluid Mechanics,
John Wiley & Sons, 4th ed., 1992.

Example 12.1: Axial-flow fan

An axial-flow fan operates at 1200 rpm. The blade tip diameter Dt is 1.1m and the hub
diameter Dh is 0.8m. The blade inlet and outlet angles are 30◦ and 60◦, respectively. Inlet
guide vanes give the absolute flow entering the first stage an angle of 30◦. The fluid is air at
atmospheric pressure and 15◦C, and it may be assumed that it is incompressible. The axial
velocity of the flow does not change across the rotor. Assume the relative flow enters and
leaves the rotor at the geometric blade angles and use properties at the mean blade radius
for calculations.
(a) Sketch the rotor blade shapes.
(b) Draw the inlet velocity diagram.
(c) Find the volume flow rate.
(d) Draw the outlet velocity diagram.
(e) Calculate the minimum torque and power needed to drive the fan.

Solution: For parts (a) and (b), the blade shapes are as shown in Figure 12.1(a), and the
corresponding inlet velocity diagram is shown in Figure 12.1(b).

For parts (c) and (d), the continuity equation gives

ρVn1A1 = ρVn2A2

or
q̇ = Vn1A1 = Vn2A2

Since A1 = A2, then Vn1 = Vn2, and the outlet velocity diagram is as shown in Figure 12.2.
To complete the velocity diagrams, and find the volume flow rate, we need to find U , Vn1,
V1, Vt1, Vrb1 , V2, Vt2, and α2. We start with U . At the mean blade radius,

U = ωRm

The mean blade radius Rm = (Dt +Dh) /4. Also,

ω = 1200
rev

min
× 2π

rad

rev
× min

60 sec
= 126 rad/s
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Figure 12.1: Blade shapes and inlet velocity diagram.

Therefore

U =
(1.1 + 0.8) m

4
× 126

rad

sec
= 59.7m/s

From the inlet velocity diagram,

U = Vn1 (tanα1 + cotβ1)

where α1 = β1 = 30◦, so that

Vn1 = Vn2 = 25.9m/s

Hence,

V1 =
Vn1

cosα1
= 29.9m/s

Vt1 = V1 sinα1 = 15.0m/s

Figure 12.2: Outlet velocity diagram.
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and

Vrb1 =
Vn1

sinβ1
= 51.8m/s

The volume flow rate can now be found.

q̇ = Vn1A1 = Vn1
π
4

(
D2
t −D2

h

)
= 11.6m3/s

From the outlet velocity diagram

Vt2 = U − Vn2 tan (90◦ − β2) = (59.7− 25.9 tan 30◦) m/s = 44.7 m/s

Also:

tanα2 =
Vt2
Vn2

so that
α2 = 59.9◦

and

V2 =
Vn2

cosα2
= 51.6m/s

For part (d), to find the torque, we use equation 12.6, with r1 = r2 = Rm so that

Tshaft = ρq̇Rm (Vt2 − Vt1)

Hence, using SI units throughout,

Tshaft = 1.2× 11.6× 0.95

2
× (44.7− 15.0) N ·m = 196N ·m

and the power required is given by equation 12.7, so that

Ẇshaft = ωTshaft = 24.7 kW

Example 12.2: Centrifugal pump

Water at 150 gpm enters a centrifugal pump impeller axially through a 1.25 in. diameter inlet
(see Figure 12.3). The inlet velocity is axial and uniform. The impeller outlet diameter is
4 in. Flow leaves the impeller at 10 ft/s relative to the radial blades. The impeller speed is
3450 rpm. Determine
(a) The impeller exit width, b2.
(b) The minimum torque input to the impeller.
(c) The minimum power required.

Solution: For part (a), the continuity equation gives

ρV1A1 = ρV2A2

or
q̇ = Vrb22πR2b2

so that

b2 =
q̇

2πR2b2Vrb2
=

1

2π
× 150

gal

min
× 1

2 in.
× s

10 ft
× ft3

7.48 gal
× min

60 s
× 12 in.

ft

= 0.0319 ft or 0.383 in.
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For part (b), the torque is given by equation 12.6

Tshaft = ρq̇R2Vt2

since the axial inlet flow has no z-component of angular momentum. That is,

Tshaft = ρ (Vrb22πR2b2)R2 (ωR2) = 2πρωR3
2b2Vrb2

so that

ω = 3450
rev

min
× 2π

rad

rev
× min

60 sec
= 361 rad/s

Hence, using BG units throughout,

Tshaft = 2π × 1.94
slug

ft3
× 361

rad

s
× 23

123
ft3 × 0.0319 ft× 10

ft

s
= 6.50 ft · lbf

For part (c), the power required is given by equation 12.7

Ẇshaft = ωTshaft = 361
rad

sec
× 6.50

550
hp = 4.27hp

The actual input torque and power may be higher than the estimates found here because
of energy losses in the system, which are not accounted for in the analysis.

Example 12.3: Windmill performance

Calculate the ideal efficiency, actual efficiency, and thrust for a Dutch windmill with D =
26m, ω = 20 rpm, V1 = 36 km/hr, and power output of 41 kW . Assume that V4/V1 = 0.5.

Solution: We have

ω = 20
rev

min
× 2π

rad

rev
× min

60 sec
= 2.09 rad/s

The tip speed ratio is given by equation 12.39, so that

χ =
ωR

V1
=

2.09× 13× 3600

36000
= 2.72

Figure 12.20 indicates that the ideal efficiency for this value of χ is about 0.53. The actual
efficiency is given by

ηactual =
Pactual
PKEF

=
Pactual

1
2ρV

3 π
4D

2

Figure 12.3: Centrifugal pump.
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With ρ = 1.2 kg/m3,
ηactual = 0.129

which is only 24% of the ideal efficiency at this tip speed ratio.
The thrust is given by equation 12.36. With V4/V1 = 0.5, we have

F = 1
2ρV

2
1

(
V 2

4

V 2
1

− 1

)
π
4D

2 = − 3π
32 ρV

2
1 D

2

That is,
F = − 3π

32 × 1.2× 102 × 262N = 23.9 kN

The thrust is negative in the sense that it is opposite in direction to the thrust developed
by a propeller

Problems

12.1 A hydraulic turbine generates 50, 000hp at 75 rpm with a head of 100 ft. Find the
specific speed and use Figure 12.16 to determine what type of turbine is being used.

12.2 A hydraulic turbine operates at a specific speed of 100 (U.S. customary units) and
delivers 500 kW with a head of 10m. What type of turbine is being used, and what is the
rotational speed necessary to give the optimum efficiency?

12.3 When it operates at peak efficiency, a turbine delivers 25, 000hp at a speed of
450 rpm with a head of 4500 ft. What type of turbine is being used? Estimate the flow
rate and the size of the machine, assuming there are no losses in the flow upstream of the
turbine.

12.4 A Pelton wheel of 4m diameter operates with a head of 1000m. Estimate the flow
rate and power output of the machine, assuming that it operates at peak efficiency and
there are no losses in the flow upstream of the turbine.

12.5 A Pelton wheel operates with a head of 400m at 350 rpm, and it is powered by a jet
12 cm in diameter. Find the specific speed (U.S. customary units), and the wheel diameter,
if there are no losses in the flow upstream of the turbine and it operates at peak efficiency.

12.6 A turbine of the Francis type operates with a head of 200m and flow rate of 3m3/s.
The peak efficiency occurs at a head coefficient CH of 9, a flow coefficient CQ of 0.3, and a
power coefficient CP of 2.5 (as defined in Section 12.7). Estimate the size of the machine,
the maximum power produced, and the speed.

12.7 A pump delivers 0.7 ft3/s of water against a head of 50 ft at a speed of 1750 rpm.
Find the specific speed.

12.8 A water pump delivers 0.25m3/s against a head of 20m at a speed of 2400 rpm.
Find the specific speed, in U.S. customary units.

12.9 For the previous two problems, determine the type of pump that would give the
highest efficiency by using Figure 12.17.

12.10 A radial-flow pump is required to deliver 1000gpm against a total head of 350 ft.
Find the minimum practical speed using Figure 12.17.
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12.11 An axial-flow pump runs at 1800 rpm against a head of 1200 ft. Find the flow rate
delivered by the most efficient pump using Figure 12.17.

12.12 Axial-flow pumps are to be used to lift water a combined height of 150 ft at a rate
of 30 ft3/s. Each pump is designed to operate at 1800 rpm. Using Figure 12.17, find the
number of pumps required if they are all operating at their maximum efficiency. Neglect
losses in the piping.

12.13 Using the curves given in Figure 12.15 for a centrifugal water pump with an impeller
of 32 in. diameter, operating at 2000hp find:
(a) The volume flow rate, the total head, and the efficiency.
(b) The specific speed.

12.14 For the pump described in the previous problem, the inlet is located a distance
hi above the surface of the reservoir, and there are no losses in the inlet piping. The
temperature of the water is 50◦F . Find the maximum value of hi for which cavitation will
not be a problem.

12.15 Using Figure 12.18, find the effect of a 50% increase in the impeller diameter on the
rotation rate and the volume flow rate of the centrifugal water pump described in Problem
13.13, if the total head and power input remain the same, and the pump continues to operate
at its best efficiency.

12.16 Use Figure 12.18 to find the impeller diameter, power input and head for a pump
of the same family, if it operates at 900 rpm with a volume flow rate of 5000 gpm at peak
efficiency.

12.17 A basement sump pump provides a discharge of 12 gpm against a head of 15 ft.
What is the minimum horsepower required to drive this pump, given that its efficiency is
only 60%?

12.18 For a given pump, the diameter, the gauge pressures at the inlet and outlet are
−30 × 103 Pa and 200 × 103 Pa, respectively. If the flow rate is 0.1m3/s, and the power
required is 25 kW , find the efficiency. The intake and discharge are at the same height.

12.19 The impeller of a radial-flow turbine has an outer radius of 4 ft, turning at 200 rpm.
The volume flow rate is 1000 ft3/s, and it discharges in the axial direction. Neglect all losses.
If the tangential component of the velocity at the inlet is 5 ft/s, find:
(a) The torque exerted on the impeller.
(b) The power developed by the machine.

12.20 The diameter of an axial-flow impeller is 2.8m, and the inlet flow makes an angle
of 10◦ with the circumferential direction. The volume flow rate is 24m3/s over an area of
8m2 with a head of 100m, and it discharges in the axial direction without swirl. Find the
speed of the runner. Neglect losses.

12.21 A centrifugal water pump with a 200mm diameter impeller rotates at 1750 rpm.
Its width is 20mm and the blades are curved backwards so that β2 = 60◦. If the flow enters
the pump in the axial direction, and the volume flow rate is 100L/s, estimate the power
input if the pump is 100% efficient.

12.22 A centrifugal pump is designed to have a discharge of 600 gpm against a head of
200 ft. The impeller outlet diameter is 12 in., and its width is 0.5 in.. The outlet blade
angle is 65◦. What is the design speed and the minimum horsepower required to drive this



PROBLEMS Chapter 12 199

pump?

12.23 A centrifugal pump has inner and outer impeller diameters of 0.5m and 1m, re-
spectively, and a width of 0.15m. The outlet blade angle is 65◦. At 350 rpm, the volume
flow rate is 4m3/s. Find:
(a) The exit blade angle so that the water enters the pump in the radial direction. (b) The
minimum power required.

12.24 A propeller 1 ft in diameter rotates at 1200 rpm in water and absorbs 2hp. Find
the power coefficient, and estimate the power required to increase the speed to 1500 rpm if
the power coefficient remains constant.

12.25 A high-speed two-bladed wind turbine 35m in diameter operates at its peak effi-
ciency in winds of 30 km/hr. Estimate the power generated, the rotor speed, and the wind
velocity in the wake.

12.26 A propeller 2 ft in diameter moves at 20 ft/s in water and produces a thrust of
1000 lbf . Find the ratio of the upstream to downstream velocities, and the efficiency.

12.27 An airplane flies at 140mph at sea level at 60◦F . The propeller diameter is 8 ft,
and the slipstream has a velocity of 200mph relative to the airplane. Find:
(a) The propeller efficiency.
(b) The flow velocity in the plane of the propeller.
(c) The power input.
(d) The thrust of the propeller.
(e) The pressure difference across the propeller disk.

12.28 An airplane flies at 300 km/h at sea level at 20◦C. The propeller diameter is 1.8m,
and the velocity of the air through the propeller is 360 km/hr. Find: (a) The slipstream
velocity relative to the airplane.
(b) The thrust.
(c) The power input.
(d) The power output.
(e) The efficiency.
(f) The pressure difference across the propeller disk.

12.29 On a high-speed submarine the propeller diameters are limited to 15 ft, and their
maximum rotational speed is set at 200 rpm to avoid cavitation. If each propeller has an
efficiency of 86% and it is limited to 10, 000hp, find the minimum number of propellers
required to move at a speed of 35mph, and the torque in each shaft.

12.30 A modern multi-bladed windmill design is adapted to work in a tidal flow. When the
water flows at 5m/s, find the maximum power generated for a diameter of 4m. Calculate
the tip speed, and determine if cavitation could be a problem.

12.31 An American farm windmill is used to pump water from a 100 ft deep well through
clean plastic pipe of 2 in. diameter. If the rotor diameter is 6 ft, estimate the volume flow
rate when the winds are blowing at 20mph. Assume that the windmill is working at peak
efficiency, and the pump is 90% efficient. What is the expected flow rate when the wind
drops to 15mph?
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Chapter 13

Environmental Fluid Mechanics

Problems

13.1 Describe the flow of of air around a high-pressure center over Australia in terms of
its direction of rotation, its vertical movement, and its motion relative to the center.

13.2 What information is typically available from a wind rose for a given locale?

13.3 Explain the difference between the atmospheric lapse rate and the adiabatic lapse
rate.

13.4 How are the environmental (atmospheric) and the adiabatic lapse rate used to
classify the degree of stability in the atmosphere?

13.5 Classify the stability of the atmosphere on the basis of the average temperature
gradient for the following conditions:
(a) Temperature at ground level is 70◦F , temperature at 1500 ft is 80◦F .
(b) Temperature at ground level is 70◦F , temperature at 2500 ft is 60◦F .
(c) Temperature at ground level is 60◦F , temperature at 1900 ft is 48◦F .

13.6 Classify the stability of the atmosphere on the basis of the average temperature
gradient for the following conditions:
(a) Temperature at ground level is 24.6◦C, temperature at 2000m is 5◦C.
(b) Temperature at ground level is 30◦C, temperature at 500m is 20◦C.
(c) Temperature at ground level is 25◦C, temperature at 700m is 28◦C.

13.7 On a particular day, the wind speed is 2m/s at a height of 10m. Estimate the
wind speed at heights of 100m and 300m if the power law exponent on the velocity profile
is 0.15 (level ground, little cover). Repeat the estimates for an exponent of 0.4 (urban area).

13.8 The wind speed over an urban area is 10m/s at a height of 10m. Estimate the
wind speed at a height of 30m.

13.9 At a given location the ground-level temperature is 70◦F . At an elevation of 2000 ft,
the temperature of the air is 65◦F .
(a) What is the maximum mixing depth, in feet, when the normal maximum surface tem-
perature for that time is 90◦F?
(b) What if it was 84◦F?

201
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13.10 At a given location the ground-level temperature is 18◦C, while the normal maxi-
mum surface temperature for that month is known to be 30◦C. At an elevation of 700m,
the temperature of the air is 15◦C.
(a) What is the maximum mixing depth, in meters?
(b) What is it if the temperature at 700m is 20◦C?

13.11 The atmospheric lapse rate on a particular day is constant in the lower part of
the atmosphere. At ground level, the pressure is 1020mBar and the temperature is 15◦C.
At a height z1 the pressure and temperature are 975mBar and 11.5◦C. Determine the
atmospheric temperature gradient, and the height z1.

13.12 Find the terminal speed of spherical particles falling through atmospheric air at
20◦C. Particle densities of:
(a) 1.0× 10−3 g/mm3

(b) 2.0× 10−3 g/mm3

should be considered with particle diameters of 10, 100, and 1000µm. Take note of the
results given in Figure 9.14.

13.13 Find the terminal speed of spherical particles falling through water at 20◦C. Particle
densities of:
(a) 1000 kg/m3

(b) 2000 kg/m3

should be considered with particle diameters of 10, 100, and 1000µm. Take note of the
results given in Figure 9.14.

13.14 Air at 20◦C and atmospheric pressure flows horizontally through a collection cham-
ber 3m high and 5m long. The air carries particles 70µm diameter, with a specific gravity
of 1.5. What is the maximum air speed that can be used to ensure that all particles have
settled out in the chamber?

13.15 Air at 60◦F and atmospheric pressure flows horizontally at a speed of 1 ft/s through
a collection chamber 12 ft high. The air carries particles 0.002 in. diameter, with a specific
gravity of 2.0. What is the minimum length of the chamber necessary to ensure that all
particles are collected?

13.16 Air at 0◦C and atmospheric pressure flows horizontally at a speed of 0.5m/s
through a collection chamber 4m high and 20m long. The air carries particles with a
density of 1600kg/m3. What is the minimum diameter of particles that will be collected in
the chamber?



Answers to Selected Problems

Chapter 1

1.1 400 kg, 27.4 slug, 882 lbm
1.2 11.39 ft3, 0.821 ft3, 1.027 ft3, 0.001206 ft3, 0.000169 ft3

1.3 1204 lbf , 102.7 lbf , 62.5 lbf , 0.0764 lbf , 0.00379 lbf
1.4 417N , 69.5N
1.5 19.33, 2.775, 1.027, 0.001398, 0.001682
1.6 +2.20%, −25.6%, +5.96%, −25.4%
1.7 (a) 6680m, (b) 4855m
1.8 Need solution
1.9 34.8min
1.10 18, 900 psi
1.11 ∆υ = −4.79× 10−7 m3

1.12 (a) 1.002× 10−3 N · s/m2, (b) 2.73, 0.789, (c) 0.42%
1.13 21, 886N , 4920 lbf
1.14 0.645 psi, 4448Pa
1.15 (a) 0.95 psi
1.16 252, 000N , 56, 650 lbf
1.17 51.0× 1018 kg
1.18 −0.158 psi
1.19 −1.1%
1.20 0.733
1.21 1.343
1.22 (a) 0.424, (b) 168× 106

1.23 µ(V/h)πD2/4
1.24 0.798N
1.25 10−3 kg/ms
1.26 2πr2µwL/(R− r)
1.27 (R2 −R1)T/

(
2πµR3

1L
)

1.28 µ = Tδ/(2πωR3H)
1.29 2πµUd1/(d2 − d1)
1.30 (a) πµωLD3/(4ε), (b) πµω2LD3/(4ε)
1.31 0.104N · s/m2

1.32 3.27m/s
1.33 (a) 10,016, (b) 77.5× 10−5 lbf/ft

2, (c) 0.0413 lbf
1.34 5.9µm, 106µm, 78 km
1.35 (a) 220,000, (b) 21× 106, (c) 475× 106, (d) 74× 106, (e) 1.9× 106, (f) 667
1.36 (a) 240m/s, (b) 2360m/s, (c) 11.8m/s
1.37 Re = 1667 (laminar)
1.38 9.8mm
1.39 0.033N/m
1.40 104, 327Pa
1.41 584Pa
1.42 107mm
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Chapter 2

2.1 (a) 36.3 psi, (b) 62.4 psi, (c) 15.2 psi, (d) 8.67 psi
2.2 (a) 2.06× 104 Pa, (b) 430× 103 Pa, (c) 105× 103 Pa, (d) 78.5× 103 Pa
2.3 (a) −80.7× 103 Pa, −11.7 psig, (b) 149× 103 Pa, 21.6 psig, (c) 3.66× 103 Pa,

0.53 psig, (d) 329× 103 Pa, 47.7 psig, (e) −41.5× 103 Pa, −6.03 psig
2.4 2000N
2.5 1820N
2.6 ρg(a+ b)Wc
2.7 A2 (F1/A1 − ρgH)
2.8 0.714m
2.9 (a) 2.81m, (b) 3.48m, (c) 0.208m
2.10 0.072m
2.11 (a) 23.1× 103 N , (b) > 2.5%, (c) > 0.12%
2.12 ρB/ρA = 2.8
2.13 20mm
2.14 gA (ρ2h2 + ρ1h1)
2.15 1.06m
2.16 69.9× 103 Pa
2.17 −900g Pa
2.18 pg = (ρ0z +mz3/3)g
2.19 5.8 atm
2.20 3.12m
2.21 2.34m
2.22 R1 = 3496 lbf/ft, R2 = 3700 lbf/ft
2.23 (a) ρgH2w/2; (b) 2H/3
2.24 3.12 in.
2.25 h2/h1 = (ρ1/ρ2)1/3

2.26 h1/h2 =
√
ρ2/ρ1

2.27 (a) ρgwH(d+H/2), (b) ρgwH2(d/2 +H/3)
2.28 4ρgwb2, acting 7b/6 below top of door
2.29 (a) ρ1gz, ρ1gD + ρ2g(z −D), (b) F/(ρ1DgLw) = 1 + (ρ2/2ρ1)(L/D),

(c) (L/2) (1 + (2ρ2L)/(3ρ1D)) (1 + (ρ2L)/(2ρ1D)) from top of gate
2.30 pw = 2Mh/(WB2)− ρgh+ ρgB/3
2.31 ρ2/ρ1 = (3H1 − b)/(3H2 − b)
2.32 (a) 2ρWgh2

√
2/9; (b) 8ρWgh2/81

2.33 D3 − 3HD2 + 2H3 = 3(MH/ρb) cos θ sin θ
2.34 Need solution
2.35 M = ρWL/ cos θ[H + (2L/3) sin θ]
2.36 ρgbW (3h− b)/(6 cos θ), normal to the gate
2.37 ρ2/ρ1 = (H1/H2)3 cos2 θ
2.38 14d/9 from surface along wall
2.39 F = (ρ1H

2
1 − ρ2H

2
2 )Wg/2, (ρ1H

3
1 − ρ2H

3
2 )/3(ρ1H

2
1 − ρ2H

2
2 ) above apex

2.40 ρ2/ρ1 = 2
2.41 ρ2/ρ1 = 2

2.42
[
3mL cos θ sin2 θ/ρw

]1/3
2.43 ρ2/ρ1 =

(
H1
H2

)3
2.44 (2h1 − 2L sin θ) / (3h2 − 2L sin θ)
2.45 ρg (H − (b/3) sin θ)
2.46 5ρgh/6 +W sin 2θ/nw
2.47 2c/b
2.48 ρ (3h− 2L sin θ) / (3ρs cos θ)
2.49 7ρwb3/

(
3L sin2 θ cos θ

)
2.50 ρgwL [h− (L/2) sin θ], 3hL− 2L2 sin θ/ (6h− 3L sin θ) from O along the window

2.51 (sin θ2/ sin θ1)2/3
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2.52 (5/6)ρgwL2 sin θ/ ((1/2) cos θ + sin θ)
2.53 ρg (h− L sin θ/3)
2.54 (a) pa/ρg + h/2, (b) (wh/ sin θ) (pa + ρgh/2), (c)

(
wh2/2 sin2 θ

)
(pa + ρgh/3) CW

2.55 (a) (2/3)ρgwL (H − L sin θ/3), (b) (4/9t) (2H − 5L sin θ/9),
(c) ρtwtL

2 cos θ/2− ρgwL2 (H/2− L sin θ/3) /18
2.56 (a) ρg

(
H3/6 +H3 cos θ/81

)
, (b) normal to the window H/3 from the hinge

2.57 (a) 3ρgwH3/(2 sin θ), (b) ρgwH2/(2 sin θ), (c) ρgwH2(1/3 + sin2 θ)/(2 sin3 θ)
2.58 (a) 3ρgh2/(8 sin θ), normal to the surface, (b) z = 2h/9, (c) −(3ρgh2 cot θ/4)j
2.59 0.8
2.60 W − ρV
2.61 (6M/πρ)1/3

2.62 6.4
2.63 8.33hrs
2.64 (a) 0.08, (b) sinks, (c) no
2.65 volume = 2.24m3

2.66 389N , 87.3 lbf
2.67 1.5
2.68 0.75
2.69 2
2.70 3b/4
2.71 d = ρw(H −D)/ρo
2.72 (a) 3ρgL/4, (b) 3πρgLD2/16
2.74 D3/nV
2.75 2.06ρwgA
2.76 0.255D
2.78 (a) 0.85
2.79 [3M/(4π(ρw − ρb))]1/3
2.80 3.22b
2.81 ρw2Lg/8
2.82 Need solution
2.83 2b/3 below interface
2.84 3ρwgV (1− ρf/ρw)
2.85 D2(h−D/3)− 2abL(0.86− (h−D)/b) = 0
2.86 ρH3 − 3ρHL2 − 3mL2 = 0
2.87 d = 2h3/(3b2)
2.88 b = 5.2H
2.89 B = 2h
2.90 (a) 16, 564 lbf , (b) 3.93 ft along the plate from its top edge, (c) 10.6 ft from surface
2.91 2MgL cos θ/(wd2)− 2ρgd sin θ/3
2.92 M = (ρwD/ cos θ) (H/2 +D sin θ/3)
2.93 ρg(D + 2L cos θ/3)
2.94 h3 = 6WL sin2 θ/(ρw)

2.95 (a) 1
2
ρgwh2

√
(b/h)2 + 81, (b) b/h = 9

2.96 2ρgH2a/3 at 3H/4
2.97 ρ2/ρ1 = 2.5
2.98 ρgab (D − 2a/3), D = 3WL/(ρgba2) + a/2
2.99 (a) πρghR2/2, (b) πρgR3/8
2.100 80 lbf
2.101 ρ(a+ g)H
2.102 (a) 0.547 ft, (b) 69.1mph
2.103 0.134g
2.104 39.6 rad/s

Chapter 3

3.1 0.382 lbm/s; 10 ft/s
3.2 (a) 499 kg/s, (b) 63.7m/s, (c) 31, 800N
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3.3 V2 = 1.33m/s, V3 = 2.08m/s
3.4 8.33 ft/s; 6.67 ft/s
3.5 119m/s; 215m/s
3.6 0.8m/s
3.7 0.0736m3/s or 1167US gpm; 12 hoses
3.8 1011 s
3.9 Level falls at 0.0026m/s
3.10 V2/V1 = 2
3.11 0.00610m3/s
3.12 (a) 5V1A1/4, 5ρV1A1/4, (b) ρV 2

1 A1((1− 25 cos θ/32)i + (1/8− 25 sin θ/32)j)
3.13 (a) τ = −0.0146y/h, (b) 0.666m/s, (c) 1.33× 10−3 m3/s, (d) 1.61× 10−3 kg/s, (e) 0.0273
3.14 ρV 2πD2/2
3.15 U2 = U1 + q̇/2D, F/(2ρU2

1DW ) = (p2 − p1)/( 1
2
ρU2

1 ) + (q̇/DU1) ((q̇/4DU1) + 1)
3.16 VB = 0.6V1; pB − pA = ρV 2

1 /25
3.17 4275 lbf
3.18 ρV 2πR2 (cos 30◦i− (1− sin 30◦) j)
3.19 θ = π/4
3.20 ρhwU2

1 ((2/27) cosα− 1) i
3.21 U2 = 8U1/5; FD = ρh2(g∆ρm/ρ− 3U2

1 /25)
3.22 4ρbVmh/3, 2Vm/3
3.23 ṁ3 = 4ρQWb/9
3.24 U3 = 3(U1 + U2)/4
3.25 2U1W (h2 − h1)
3.26 Um/Uo = 3b/2h
3.27 3(2U1 + Um)/4, 16ρWbU2

m/15
3.28 Um = 3aU1/2b, 6ρWa2U2

1 sin θ/(5b)
3.29 Um = 2U1a/b, (4ρWa2U2

1 /(3b))j
3.30 ρ2 = 3ρ1/2; 2ρ2WhU2

2 (cos θi + sin θj)/3
3.31 (ρ1U1 − ρ2Um/2)/(2L)
3.32 (a) U2/U1 = (1− δ/2H)−1, (b) 1− (U2/U1)2, (c) 1− (U2/U1)2/(1− 5δ/(3H))
3.33 (a) b = 3a/2, (b) 2ρWU2

ava(i− 0.8j)
3.34 (a) 2U1/3, (b) ρU2

1 aw
(
2p1g/ρU

2
1 − cos θ + 5/9

)
i− ρU2

1 aw sin θj

3.35 U2 = 2U1; Fx = −ρU2
1Dw/3

3.36 T/( 1
8
ρU2

1πD
2) = (p2 − p1)/( 1

2
ρU2

1 ) + (Um/U1)2 − 2
3.37 (a) δ = 0.25D1, (b) 1/15
3.38 (a) V2 = V1h1/h2, (b) F = (p1 − p2)Wh2 + 8ρW (V 2

1 h1 − V 2
2 h2)/15

3.39 Um/Uav = 1.5; CD = Cp − 0.4
3.40 (a) U2 = 3U1, Um = 9U1/4, (b) p1 − p2 = 4ρU2

1 , (c) F/(ρU2
1hW ) = −3p1/(ρU

2
1 ) + 12/5

3.41 (b) Cp = (U2/U1)2 − 1
3.42 (16/15)ρU2

mwb (1− cosα)
3.43 (a) 2V , (b) −ρV 2A cos θi +

[
ρV 2A (sin θ − 3/4)

]
bfj

3.44 (a) 5V1/2, (b) CF = F/( 1
2
ρV 2

i wh) = (160 sin θ)i + (12− (160 cos θ/9))j

3.45 (a) 0.5, (b)−
(
2whρV 2

1 cosα+ 2hwp1g cosα+ (4/5)hwρV 2
1

)
i−
(
2whρV 2

1 sinα+ 2hwp1g sinα
)
j

3.46 (a) 3V1/4, (b) ρV 2
1 πD

2/4 [(7/16− sin θ) i + cos θj]
3.47 (a) 2, (b) −2ρV 2

1 hw
(
8/15 + 16 cos θ/15 + p1g/ρV

2
1 + p2g cos θ/2ρV 2

1

)
i

− 2ρV 2
1 hw sin θ

(
16/15 + p2g/2ρV

2
1

)
j

3.48 −ρhwV 2/4
3.49 (a) 8ρU2

mD/15L, (b) 8ρU2
mDa/15

3.50 (a) 3/4, (b) hw(3/5)ρV 2
1 i− 2hw

(
pig + ρV 2

1 /3
)
j

3.51 (a) U0δW/3; ρU2
0 δW/3

3.52 CD = 1/3
3.53 (a) U∞H/2L, (b) F = ρU2

∞HW/6
3.55 2gh2 sin θ/πν
3.56 4µVsL

2/
(
πd2ρV 2

e cosα
)

3.57 ρπD2V 2L/4 CCW
3.58 Fy/Fx = sin θ/(1 + cos θ)
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3.59 (a) ρV 2WD((cos θ − 1)i + sin θj), (b) ρV 2WD((cos θ − 1)i + sin θj)/4
3.60 F = 998i− 1729j N
3.61 (a) 5, (b) 4.4m/s, (c) −ρV 2

2 H2w((1 + cos θ)i + sin θj), (d) magnitude ×1/4
3.62 3210 lbf
3.63 (a) F = 0, (b) 113N , (c) 1.63m

Chapter 4

4.1 y − 2 = lnx
4.2 Need solution
4.3 Need solution
4.4 y = 2x; 0.25 time units
4.6 (d) p2g = −8ρV 2

1 /9, (e) p1g = 11ρV 2
1 /18

4.8 p1 − p2 = 15ρV 2
1 /2

4.9 24
4.10 7◦, (A1/A2)2 − 1
4.11 42.8m/s
4.12 15ρV 2

0 /8
4.13 −75Pa
4.14

√
2 (p2 − p1) /ρ

4.15 10.16 psia, 8.64 psia
4.16 81.2m/s; Cp = −0.833
4.17 0.517 psi/ft
4.18 (a) p1g = 15ρV 2

1 /2, (b) 25.2◦ from horizontal
4.19 Fx/(ρU

2
1A1) = 4.5

4.20 365 lbf
4.21 −ρV 2

2 πR
2((1 + cos θ)i + sin θj)

4.22 −ρV 2
2 πR

2((17/2 + 4 cos θ)i + 4 sin θj)
4.23 (a) 15

2
ρU2

1 , (b) ρA1V
2
1 (−11.96i− 2j)

4.24 −9ρV 2
1 A1/2

4.26 8.58 ft3

4.27 h = 8q̇2/(gπ2d4)
4.28 A

√
2gH, ρgH

4.29 h sin2 θ
4.30 V =

√
gL

4.31 8.21 ft
4.32 (b) A/At =

√
H1/(H1 − y), (c) H3 = H1 sin2 θ, (d) vol = 2H1At sin θ

4.33 (a) Ve = 4.95m/s, (b) V ′e = 4.89m/s
4.34 (a) 7.67m/s, (b) 2.67m/s, 25, 600Pa, (c) 7.75m
4.35 H sin2 θ; −2ρgHA cos θ
4.36 (a)

√
2gH, (b) −2ρgHA cos θ, (c) H sin2 θ

4.37 H sin2 θ; ρgH (AT + 2Aj sin θ)
4.38 H3 = H1 sin2 θ; vol = 2H1A2 sin θ
4.39 (a) 255ρV 2/2, (b) 289πρV 2D2/8 (vertical)
4.41 F = ρV 2

1 HW/2 (to right)
4.42 (a) ρ2gD, (b) (A1/A2)2 = 2g(ρ2D − ρ1(z2 − z1))/ρ1V

2
1 ) + 1

4.43 V 2 = (2ρmgh/ρa)/((D/d)4 − 1)
4.44 409ρ1U

2
1 /16

4.45 ρ2/ρ1 = 16/3; Cp = 4

4.46 (a) A3/A2 =
√
h1/(h1 + h2), (b) vol = 2

√
h1A2

(√
h1 + h2 −

√
h1

)
4.47 (d3Vi/8D)

√
(ρπ/2Mg)

4.49 (a) 0.676, 1.172, (b) −0.711ρV 2
1

4.50 (a) 2V , (b) 3ρV 2/2, (c) 5ρV 2A/2, 51.3◦

4.52 (a) V1/2, (b) −p1gA1 − ρV 12A1 (1 + (3/4) cos θ) (c) (1/4)ρV 2
1 A1 sin θ, (d) (3/2)ρV 2

1

4.53 (a) −ρA2
2V

2
1 /A

2
2 (cosαi + sinαj), (b) (1/2)ρV 2

1

[
(A1/A2)2 − 1

]
,

(c) −(1/2)ρV 2
1 A1

[
(A1/A2)2 − 2 (A1/A2) cosα+ 1

]
, (d) ρV 2

1 A2 (A1/A2)2 sinα
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4.54 (a) 3ρV 2
1 /2, (b) +ρV 2

1 (cos θ − 5/2)
4.55 (a) 0.5ρV 2

1

[
(A1/A2)2 /4− 1

]
, (b) −0.5ρV 2

1

[
(A1/A2)2 /4 + 1 + (A1/A2) sin θ

]
j

Chapter 5

5.2 4/3
5.3 45◦

5.4 ∇ ·V = 2 + 5z2

5.5 No
5.6 (a) [2], (b) 4xy, (c) 63.4◦

5.7 (a) −ρ(2yt+ y2x), (b) 2xy + 4xy2t2 + 2y3x2t/3
5.8 (a) −z + 4xy + x4y/3− ztx2

5.9 x = 3
5.10 yes, flow is incompressible
5.11 incompressible
5.12 yes, flow is incompressible
5.13 −3/x; −2(6x+ 3yx+ 2t+ yt)/(xt)
5.14 2at+ 18xy + 16x2; −18(at2 + xy)
5.15 (a) 2, (b) −2t− yx, (c) 2x(1 + 2t2)
5.16 (b) 8(i+3j), (c) 24, (d) L3/T
5.17 (a) −4xy, (b) (8x3y2 + 6x2)i + 12k
5.18 (c) DV/Dt = 18x3i + (4zx+ 12x2zt+ 16zx2t2)k, (d) ∇ ·V = 6x+ 4xt 6= 0
5.19 (d) ax = 2xy + 4xy2t2 + 2x2y3t/3
5.20 (d) θ = π/4, (e) −2xy2i + 18y3j
5.21 (d) −z3/3 + z5t2/3
5.22 (c) n0, (d) ax = xy2z2 + xzt2 + 3xy
5.23 (c) 2i− 2j, (d) 0.5
5.24 (d) 4z + 5xy3t, (e) −ρ(4z + 5xy3t)
5.25 (b) ax = x2(x3/3− 2)
5.26 [2], steady, −2xz
5.27 (a) Yes, (b) x2z3

5.28 [2], incompressible, rotational
5.29 [2], unsteady, incompressible, 2x

(
1 + 2t2

)
i− 2y

(
1− 2t2

)
j

5.30 [3], incompressible, 2xy2z2, −26.6◦, (d) 2Um/3
5.31 [3], incompressible, (9 + 4z) (xi + yj), −ρ (9 + 4z) (xi + yj)
5.32 [3], incompressible, xi + 4yj + zk
5.33 [3], steady, incompressible, 0, 4µk
5.34 [3], [-1,0.5],

(
ab+ 2b2

)
x2y3

5.35 [2], steady, incompressible, 8x3i + 24xz3j + 8x2zk, −ρ
(
8x3i + 24xz3j + 8x2zk

)
5.36 (a) −26.6◦, (b) 1/y = 0.5 lnx+ 1, (c) −14.85Pa
5.37 (a) [2], (b) compressible, (c) no, (d) 4xi + 2y3j
5.38 (a) [2], (b) no, (c) incompressible, (d) −(1/3)

(
z3 + z5t2

)
5.39 (a) [2], (b) incompressible, (c) 4x3y2, (d) −4xi + ayj−

(
4y2 + 2x2

)
k

5.40 incompressible, −6xi− 6x2j, −6µ
5.41 [3], incompressible, 3x(yj + zk), −3ρx(yj + zk)
5.42 [2], unsteady, incompressible, −6z2, 6z
5.43 −y3/3
5.44 v = y2

5.45 (a) −2y, (b) p0 − (ρ/2)
(
4x2 − 12xy + 13y2

)
5.46 ρ = c/x2

5.47 a+ e+ j = 0
5.48 u = −2yx− 2x+ f(y)
5.49 v = Ay/x2

5.50 (4/r2 − 1) cos θ
5.51 (a) ur = vr/2h, (b) ar = 2.22× 105 m/s2
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Chapter 6

6.3 ψ = −(A/k)eky cos kx
6.4 (a) yes, (b) irrotational, (c) p = ρA2k2 sin2 kx
6.5 (a) yes, (b) rotational, (c) p = −2ρA2k2 sin2 kx
6.6 (b) u = V0, v = 0, (c) V0

6.7 V0(− sinα x+ cosα y)
6.8 (b) u = x, v = −y, (c) 1
6.9 ψ = r3 sin 3θ; |V| = 3r2

6.10 (a) V0x, (b) V0(cosα x+ sinα y), (c) x2 + y2, (d) r3 cos 3θ
6.11 ψ = 2xy
6.12 ψ = c

(
x2y + a2y − y3/3

)
, φ = c

(
y2x− a2x− x3/3

)
6.13 ur = 0; uθ = 20m/s
6.14 (a) ky2/2, (b) no, flow is rotational
6.15 ψ = 1.04y2 + 1.5y m/s
6.16 θ − log r
6.17 (b) ur = 0, uθ = A/r, (c) −A log r
6.18 (b) 0,

√
2 and 1.225, −1.225, (c) (2r3/2 cos 3θ/2)/3

6.19 (a) φV0x+ q
2π

(ln
√
x2 + y2 − ln

√
(x− b)2 + y2, (b) b/2−

√
(2qb+ πb2V0)/4πV0

6.20 θ = π/6
6.21 (a) r = Q/(2πU∞), θ = π, (c) 2m, (d) (p− p∞)max = 2.408Pa, (p− p∞)min = −1.4Pa
6.23 q = 0.6m2/s
6.24 q = 3.75m2/s
6.25 Γ = −21m2/s
6.26 1.592m/s for Γ = −10m/s, s = 4m

Chapter 7

7.7 0.0129× 10−6 m2/s
7.8 12.5mm
7.9 (b) 30× 108 lbf/in

2, (c) 0.05Hz
7.10 (b) ωm = 4ωp, Tm = Tp/2
7.11 (a) 4, (c) Pp = 4Pm, Vm = Vp
7.12 (b) 1794 rpm, 0.776N ·m
7.13 same
7.14 2gL(ρfa/ṁf )2 = 1− (ρf/ρa)(a/A)2(ṁa/ṁf )2

7.15 (a) 50 ft/s, (b) 3.75 rps
7.16 (b) Vm = Vp/2, fm = 2fp
7.17 (b) d2 = d1/

√
2, N2 = N1

√
2, (c) none

7.18 (b) Vm = Vp, Fm = Fp/100
7.19 (b) Dm = Dp/2, ωm = 4ωp
7.20 (b) V1m = V1p/2, ν1m = ν1p/8
7.21 (b) 0.2
7.22 (b) 15, 600N
7.24 (b) Vm = 2m/s, ν1m = ν1p/125
7.25 (b) drag increases by 10%
7.26 (b) V2 = 0.183V1, ν2 = 0.0061ν1

7.27 (b) 10, 1/100
7.28 (b) 0.033m/s, 0.04Hz
7.29 (b) 0.1, 0.1, 0.001
7.30 (b)

√
3m/s, 1/

√
3Hz, 3

√
3νwater

7.31 1/
√

10, 10, or
√

10
7.32 (b) 4, 1/2
7.33 (b) 5Vp or Vp
7.34 (b) 0.5, 1/80
7.35 (b) 2V − p or Vp
7.36 (b) 5, 5, 25



210 ANSWERS TO SELECTED PROBLEMS

7.37 (b) 0.5, 0.125
7.38 (b) 2Vp, 0.5ωp
7.39 Need solution
7.40 (b) Vp, 2ωp
7.41 (b) 0.25q̇p, ∆pp, 0.25Pp
7.42 (b) ωp/100, 105Pp
7.43 0.1 kg/m2,

√
10m/s, 1.9Hz

7.44 (b) Vm = Vp, ∆pm = ∆pp/2

Chapter 8

8.1 600 (laminar)
8.2 10,000 (turbulent)
8.3 V < 0.065 ft/s
8.4 0.0028 ft/s, 0.0141 ft/s
8.5 (a) 519 (laminar), (b) 173,000 (turbulent), (c) 5.19× 106 (turbulent)
8.6 64.2; 0.0787
8.7 22.0
8.8 4.50 psi
8.9 87min
8.10 15
8.11 ∆T = −15◦K
8.12 26.8m/s, 448m/s
8.13 325◦K
8.14 (a) 5.25× 105 Pa, (b) 5881N ·m
8.15 pBg = 81, 500Pa
8.16 5.10m/s
8.17 q̇ = 0.022m3/s
8.18 p1g = 24.7ρV 2

8.19 480m
8.20 H = (V 2/2g)(1 + fL/16D + CD1/16 + 2fL/D + CD2)
8.21 0.22m/s, 33× 10−6 m3/s
8.23 (b) y/h = u/U0

8.24 6µV/D
8.25 (a) −(R/2)(dp/dx), (b) −2µUCL/R
8.26 40.0 ft3/s, 0.057 psig
8.27 0.456 ft3/s, −6.74 psig
8.28 0.0748m3/s (0 yrs); 0.0738m3/s (5 yrs); 0.0728m3/s (10 yrs); 0.0716m3/s (20 yrs)
8.29 13.5◦

8.30 6.5◦

8.31 h1/h2 = 7.9
8.32 2.5 in.
8.33 Ve =

√
80gd

8.34 4.7hp
8.35 +200 kW (pump)
8.36 −768 kW (turbine)
8.37 131 kW
8.38 (a) 0.0924Pa, (b) 3.70Pa, (c) Re = 865
8.39 V = UCL/2; Cf = 16/Re
8.40 (b) −8U0µ/D

2, (c) −8U0y/D
2

8.41 (a) τw = ρgD/4, (b) ν = gD2/(16Uc)

8.42 (a) u = (h2g sin θ/ν)(y/h− 1
2
(y/h)2); q̇/width = gh2 sin θ/(3ν), (b) q̇/width = h

√
2gh sin θ/f

8.44 227.5W
8.45 (16 + CD1 + 32fL/D + 16CD2)(V

2
/32g)

8.46 (a) 10.4m/s, (b) 44.3m/s, (c) 482 kW
8.47 (a) 1.81m/s, (b) 1/6m, (c) 990W
8.48 (a) 1.89m/s, (b) −30, 322Pa, (c) 109W
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8.49 75.7 kW
8.50 (a) turbulent, (b) 5.9m
8.51 57.2 kPa
8.52 (a)

√
(2gH), (b)

√
(gH/3), (c) 0.15πgH

√
(gH/3)

Chapter 9

9.1 ReL = 43, 000 (laminar)
9.2 1/3
9.3 µUe/δ, 2/Reδ, δ/2, δ/6
9.4 (a) 16/ReD, (b) πR/2, πR/6
9.5 (c) V = Um/3; Cf = 12/Re
9.6 16µ/ (ρhUm) = 16/Reh
9.7 (a) δ∗/x = (K/2)/

√
Rex, θ/x = (K/6)/

√
Rex, (b) 9/7

9.10 (a) 1.5, 0.5, (b) ((3µwUe/c)
√
ReL, (c) 0.375δ

9.11 (a) ρgδ sin θ, µVs/δ, (b) 2 sin θ/F 2
s , 2/Reδ

9.12 δ/10, 9δ/110, 11/9
9.13 (a) Rex = 1.28× 106 (turbulent), (b) 22mm, (c) 0.00444, (d) 1.05N
9.14 (a) Ue = 1.153m/s, (b) δ = 22mm, (c) 0.00444, (d) 2.94N
9.15 (a) 1.32 ft, (c) 0.462 lbf
9.16 1.35
9.17 (a) (0.037Ue/Re

0.2
x )(y/δ)8/7, (b) 0.0067◦, 0.0268◦, 0.107◦

9.18 (a) 7/72, (c) 0.296ρU2
e k/Re

0.2
x

9.19 (b) p1 − p2 = 1
2
ρU2

1 ((U2/U1)2 − 1)
9.20 (a) τw = 2µUmax/h; (b) 2Umax/h
9.21 πµUe/(2δ), π/Reδ
9.22 4/3
9.24 (a) 3δ/8, 39δ/280, 35δ/13, (b) FD = 2ρwU2

e θ
9.25 dθ/dx = (dδ/dx)/6; Cf = 2ν/Ueδ
9.26 τw = 1.5µUe/δ
9.27 (a) 3µUe/2δ, (b) Cf = 3/Reδ, (c) 0.375
9.28 (a) 0.364, 0.137, (b) δ∗/x (half angle), (c) 1.308/

√
ReL

9.29 193hp
9.31 1.85(L/D)(1/CD)Re−0.2

L

9.34 1200N
9.35 83 lbf
9.36 406 lbf
9.37 72 lbf
9.38 (a) 1.20m/s, (b) 35.6N
9.39 (a) 138 lbf , (b) 92mph, 62mph
9.40 3.61m/s
9.41 ≈ 30m/s
9.42 31.3m/s
9.43 6.95m/s
9.44 0.026m/s
9.45 28.6m/s, 3.16m/s
9.46 (a) 1035Hz, 1922Hz, (b) 690Hz, 1281Hz, (c) 517Hz, 961Hz
9.47 (a) 1.76Hz, 25 ft, (b) 422Hz, 2.5 in.

Chapter 10

10.1 30◦

10.2 4.64m
10.3 140m/s
10.4 U ±√gy
10.7 F1 < 1, F2 > 1
10.9 15.6 ft3/s
10.10 8.3 ft
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10.11 F1 = 0.386, F2 = 0.932
10.12 F1 = 0.192; H/Y1 = 0.519
10.13 F1 = 0.316; F2 = 2.53
10.14 F1 =

√
2h1/Y1; Y2 = 2(h1 − h2)/3

10.15 0.990, 0.316
10.16 (a) F1 ≈

√
2H/h1; (b) F1 = 2.53; (c) b = 1.41h1

10.17 h/H1 = 1−W1/W2

10.18 (a) 0.543, (b) 0.266, (c) CD = Fx/ρgwH
2
1 = 0.218

10.19 (a) 0.5, (b) 0.77, (c) 0.10
10.20 (a) 2, (b) 0.707, (c) 0.25
10.21 (a) 0.5, (b) 0.77
10.22 (a) 2.4, 0.075, (b) 2.2
10.23 (a) 0.567, (b) 0.44
10.24 (a) supercritical, (b) 1.837, (c) 0.438, (d) 3.541
10.25 (c) 0.5, 0.77, (d) 2/3
10.28 V1 = 5.43m/s, V2 = 2.71m/s
10.29 6.07 ft
10.30 (d) H2/H1 = (

√
1 + 8F 2

2 − 1)/4F 2
2 , or H1/H2 = (

√
1 + 8F 2

2 − 1), (e) 2.26m
10.31 2.67 ft
10.32 1.813m
10.33 2.65m
10.34 U2/Ub = 0.5
10.35 2.04 ft, 2.84ft/s
10.36 2.96m
10.37 4.64m/s
10.38 0.74m
10.39 2.25m/s, 3.34m/s
10.40 4.42m/s
10.41 3.42m/s, 0.71m/s
10.42 (a) 5.5m/s, (b) 2.7m/s
10.43 6.43m/s
10.45 (a) Y2 = 2Y1/3, (b) F3 = 2, (c) Y4 = 0.791Y1, (d) F4 = 0.547, (e) F5 = 0.30
10.46 (a) Y2 = 3Y1, (b) Y3 = 7.12Y1, (c) F3 = 0.547, (d) F4 = 0.872, (e) B4 = 0.318B1

10.47 (a) Y2/Y1 = 2
(
F 2

1 /2 + 1−H/Y1

)
/3, (b) F3 = 2

√
2F1, (c) Y4 = Y1

10.48 (a) 0.707, (b) (h1/h3)3 − 5 (h1/h3) + 4 = 0, (c) 0.97
10.49 F1 = 4.0, Y2 = 12.9mm
10.50 h3/h2 = 1.863
10.51 Y2/Y1 = 0.63, Y3/Y1 = 0.19
10.52 (a) F2 = 2.55, B2/B1 = 1.66, (b) Y3/Y1 = 1.57
10.53 (a) F3 = 2.83, (b) B3 = 2B1, (c) Y4 = 0.883Y1

10.54 (a) 0.35, (b) 0.31, (c) 0.25, (d) 0.74

10.55 (a) 1/
√

3, (b)
√

8/3, (c) 2.5, (d) 0.642
10.56 (a) 0.75, (b) 0.77, (c) 2, (d) 0.55

10.57 F1 =
√

2(H − Y1)/Y1

10.58 (a) F2 = 1.51, (b) 3.38Y1

10.59 0.39
10.62 (a) F2 = 1.98, (b) F = −0.115ρgwY 2

1 , (c) F = 0 (ignoring friction), (d) F3 = 0.552
10.63 (a) F2 = 1, (b) Y2 = 0.63Y1, h = 0.18Y1, (c) CD = 0.069
10.64 (a) 0.152, (b) 0.529
10.65 (a) 15ρgh2/32− 3ρV 2h, (b) Yd = (h/8)(

√
1 + 512F 2 − 1), Fd = (h/Yd)

1.5

10.66 (a) F1 = 0.193, (b) H = 0.519Y1, (c) 0.298ρgwY 2
1

Chapter 11

11.1 347.2m/s, 1017m/s
11.2 1.823, 1.856, 1.929, 2.010
11.3 Subsonic
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11.4 14.78 psi, 60.8◦F (520.5◦R)
11.5 122 kPa, 29.9◦C (303.1◦K
11.6 128 kPa, 34.9◦C; 102 kPa, 21.9◦C; 35.7 kPa, −30.0◦C
11.7 0.437, 2.033
11.8 3444 ft/s (2348mph)
11.9 2.13, 93× 106; 2.03, 113× 106

11.11 266 kPa, 3.74 kg/m3, −25.6◦C (247.6◦K)
11.12 (a) 255m/s, (b) 551 kPa, compared with 881 kPa
11.13 6100Pa, 0.236 kg/m3, 104 kPa, 475m/s
11.14 247m/s, 670◦K, 320 J/kg · ◦K
11.15 a factor of 6
11.16 68.6◦K, 668Pa, 0.91 kg/s
11.17 3.40, 0.0247m3, 0.0040m3

11.18 (a) 1.10× 106 Pa, (b) 196◦K, (c) 19.6 kg/m3, (d) 30 kg/s
11.19 (a) 0.120 kg/s, (b) 3.73 kPa < pb < 33.5 kPa
11.20 (a) 4.05 kg/s, (b) 0.147, 2.94, (c) 670 kPa, 20.3 kPa
11.21 14.74◦

11.22 43.79◦

11.23 (a) 2.68, (b) 2.24, (c) 1.93
11.24 (a) 2.00, 183 kPa, XX◦K, (b) 6.45 J/kg · ◦K
11.25 (a) 1.64, 312 kPa, 379◦K, (b) 4.07 J/kg · ◦K, (c) 15.5◦

11.26 1.67; p2/p1 = 0.779
11.27 23.7◦, 20.6◦

11.28 5.92◦, 41, 400N
11.29 L = 779N , D = 99.5N

Chapter 12

12.1 N ′sd = 53, Francis
12.2 303 rpm
12.3 q̇ = 50.5 ft3/s, r = 9.25 ft
12.4 q̇ = 3.34m3/s, 31.8MW
12.5 2r = 2.2m, N ′sd = 2.4
12.6 D = 0.82m, P = 5.4MW , N = 18 rad/s
12.7 Ns = 1650
12.8 Ns = 6552
12.9 centrifugal, mixed (respectively)
12.10 1280 rpm
12.11 1.85× 106 gpm
12.12 4 in series
12.13 (b) 1370
12.14 6.5 ft
12.15 347 rpm, 73, 000 gpm
12.16 1.86 ft, 172hp, 121 ft
12.17 0.076hp
12.18 92%
12.19 38, 800 ft · lbf , 1480hp
12.20 393 rpm
12.21 25.1 kW
12.22 1580 rpm, 30.4hp
12.23 (a) 61.6◦, (b) 1.05MW
12.24 0.71, 39hp
12.25 154 kW , 25 rpm, 5.6m/s
12.26 0.74, 85%
12.27 82%, 170mph, 1180hp, 2609 lbf , 0.36 psi
12.28 420 km/hr, 10, 220N , 1.02MW , 851 kW , 83%, 4020Pa
12.29 4 shafts, 244, 000 lbf · ft
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12.30 314 kW , 11m/s, yes
12.31 1.94 ft3/s, 1.40 ft3/s

Chapter 13

13.4 (a) very stable, (b) stable, (c) unstable
13.5 (a) neutral, (b) unstable, (c) stable
13.6 (a) 2.83m/s, 3.33m/s, (b) 5.02m/s, 7.80m/s
13.7 13.6m/s
13.8 (a) 6952 ft, (b) 4861 ft
13.9 (a) 2176m, (b) 948m
13.10 378m
13.11 (a) 3.0× 10−3 m/s, 0.3m/s, 4.3m/s, (b) 6.0× 10−3 m/s, 0.6m/s, 6.0m/s
13.12 (a) 5.4× 10−5 m/s, 5.4× 10−3 m/s, 0.13m/s,

(b) 1.1× 10−4 m/s, 1.1× 10−2 m/s, 0.23m/s
13.13 0.37m/s
13.14 77 ft
13.15 44µm




