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Sir Isaac Newton (1642-1727) set forth a Pierre de Fermat (1601-1665) developed the
theory of optics in which light emissions consist principle that light travels along the path of

of collections of corpuscles that propagate least time.

rectilinearly.




Light is an electromagnetic wave phenomenon described by the same theoretica
principles that govern all forms of electromagnetic radiation. Electromagnetic radiatios
propagates in the form of two mutually coupled vector waves, an electric-field waw
and a magnetic-field wave. Nevertheless, it is possible to describe many optita
phenomena using a scalar wave theory in which light is described by a single scala:
wavefunction. This approximate way of treating light is called scalar wave optics, o
simply wave optics. : ,

When light waves propagate through and around objects whose dimensions are
much greater than the wavelength, the wave nature of light is not readily discerned, sc
that its behavior can be adequately described by rays obeying a set of geometrical rules.
This model of light is called ray optics. Strictly speaking, ray optics is the limit of wave
optics when the wavelength is infinitesimally small. ‘)

Thus the electromagnetic theory of light (electromagnetic optics) encompasses wave
optics, which, in turn, encompasses ray optics, as illustrated in Fig. 1.0-1. Ray optics
and wave optics provide approximate models of light which derive their validity from
their successes in producing results that approximate those based on rigorous electro-
magnetic theory. : i

Although electromagnetic optics provides the most complete treatment of light
within the confines of classical optics, there are certain optical phenomena that are
characteristically quantum mechanical in nature and cannot be explained classically.
These phenomena are described by a quantum electromagnetic theory known as
quantum electrodynamics. For optical phenomena, this theory is also referred to as

- quantum optics.

Historically, optical theory developed roughly in the follawfng sequence: (1) ray
optics; - (2) wave optics; — (3) electromagnetic optics; — (4) quantum optics. Not

Quantum optics

Electromagnetic
optics

Figure 1.0-1 The theory of quantum optics provides an explanation of virtually all optical
phenomena. The electromagnetic theory of light (electromagnetic optics) provides the most
complete treatment of light within the confines of classical optics. Wave optics is a scalar
approximation of electromagnetic optics. Ray optics is the limit of wave optics when the

_ wavelength is very short.
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surprisingly, these models are progressively more difficult and sophisticated, having
being developed to provide explanations for the outcomes of successively more complex
and precise optical experiments.

For pedagogical reasons, the chapters in this book follow the historical order noted
above. Each model of light begins with a set of postulates (provided without proof),
from which a large body of results are generated. The postulates of each model are
then shown to follow naturally from the next-higher-level model. In this chapter we
begin with ray optics.

Ray Optics

Ray optics is the simplest theory of light. Light is described by rays that travel in
different optical media in accordance with a set of geometrical rules. Ray optics is
therefore also called geometrical optics. Ray optics is an approximate theory. Although
it adequately describes most of our daily experiences with light, there are many
phenomena that ray optics does not adequately describe (as amply attested to by the
remaining chapters of this book).

Ray optics is concerned with the location and direction of light rays. It is therefore
useful in studying image formation—the collection of rays from each point of an object
and their redirection by an optical component onto a corresponding point of an image.
Ray optics permits us to determine conditions under which light is guided within a
given medium, such as a glass fiber. In isotropic media, optical rays point in the
direction of the flow of optical energy. Ray bundles can be constructed in which the
density of rays is proportional to the density of light energy. When light is generated
isotropically from a point source, for example, the energy associated with the rays in a
given cone is proportional to the solid angle of the cone. Rays may be traced through
an optical system to determine the optical energy crossing a given area.

This chapter begins with a set of postulates from which the simple rules that govern
the propagation of light rays through optical media are derived. In Sec. 1.2 these rules
are applied to simple optical components such as mirrors and planar or spherical
boundaries between different optical media. Ray propagation in inhomogeneous
(graded-index) optical media is examined in Sec. 1.3. Graded-index optics is the basis
of a technology that has become an important part of modern optics.

Optical components are often centered about an optical axis, around which the rays
travel at small inclinations. Such rays are called paraxial rays. This assumption is the
basis of paraxial optics. The change in the position and inclination of a paraxial ray as
it travels through an optical system can be efficiently described by the use of a
2 X 2-matrix algebra. Section 1.4 is devoted to this algebraic tool, called matrix optics.

1.1 POSTULATES OF RAY OPTICS
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In this chapter we use the postulates of ray optics to determine the rules governing
the propagation of light rays, their reflection and refraction at the boundaries between
different media, and their transmission through various optical components. A wealth
of results applicable to numerous optical systems are obtained without the need for any
other assumptions or rules regarding the nature of light. ;

Propagation in a Homogeneous Medlum : "
In a homogeneous medium the refractive index is the same everywhere, and so is the
speed of light. The path of minimum time, required by Fermat’s principle, is therefore
also the path of minimum distance. The principle of the path of minimum distance is
known as Hero’s principle. The path of minimum distance between two points is a
straight line so that in a homogeneous medium, light rays travel in straight lines (Fig.
1.1-1).

Figure 1.1-1 Light rays travel in straight lines.
Shadows are perfect projections of stops.
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Figure 1.1-2 (a) Reflection from the surface of a curved mirror. (b) Geometrical construction
to prove the law of reflection.

Reflection from a Mirror
Mirrors are made of certain highly polished metallic surfaces, or metallic or dielectric
films deposited on a substrate such as glass. Light reflects from mirrors in accordance
with the law of reflection:

The reflected ray lies in the plane of incidence;
the angle of reflection equals the angle of incidence.

The plane of incidence is the plane formed by the incident ray and the normal to the
mirror at the point of incidence. The angles of incidence and reflection,  and 6, are
defined in Fig. 1.1-2(a). To prove the law of reflection we simply use Hero’s principle.
Examine a ray that travels from point 4 to point C after reflection from the planar
mirtor in Fig. 1.1-2(b). According to Hero’s principle the distance 4B + BC must be
minimum. If C’ is a mirror image of C, then BC= BC', so that AB + BC’ must be a
minimum. This occurs when ABC' is a straight line, i.e., when B coincides with B’ and
6=¢9".

Reflection and Refraction at the Boundary Between Two Media
At the boundary between two media of refractive indices n, and n, an incident ray is
split into two—a reflected ray and a refracted (or transmitted) ray (Fig. 1.1-3). The

Figure 1.1-3 Reflection and refraction at the boundary between two media.
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reflected ray obeys the law of reflection. The refracted ray obeys the law of refraction:

The refracted ray lies in the plane of incidence; the
angle of refraction 0, is related to the angle of
incidence @, by Snell’s law,

nlsin 01 =n25in02. (1.1"1)
Snell’s L,qaw

L
EXERCISE 1.1-1 :
Proof of Snell's Law. The proof of Snell’s law is an exercise in the apphcatlon of
Fermat’s principle. Referring to Fig. 1.1-4, we seek to minimize the optical path length
nyAB + n,BC between points 4 and C. We therefore have the following optimization
problem: Find 6, and 8, that minimize n,d, sec 8, + n,d, sec 8,, subject to the condition

d, tan 8, + d, tan 0, = d. Show that the solution of this constrained minimization prob-
lem yields Snell’s law. ,

Figure 1.1-4 Construction to prove
Snell’s law. A

The three simple rules—propagation in straight lines and the laws of reflection and
refraction—are applied in Sec. 1.2 to several geometrical configurations of mirrors and
transparent optical components, without further recourse to Fermat’s principle.

1.2 SIMPLE OPTICAL COMPONENTS

A. Mirrors

Planar Mirrors

A planar mirror reflects the rays originating from a point P, such that the reflected
rays appear to originate from a point P, behind the mirror, called the image (Flg
1.2-1).

Parabololdal Mirrors

The surface of a paraboloidal mirror is a paraboloid of revolution. It has the useful
property of focusing all incident rays parallel to its axis to a single point called the
focus. The distance PF= f defined in Fig. 1.2-2 is called the focal length. Paraboloidal
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Figure 1.2-2 Focusing of light by a paraboloidal mirror.

i 4

- mirrors are often used as light-collecting elements in telescopes. They are also used for :
making parallel beams of light from point sources such as in flashlights.

Elliptical Mirrors , 3

An elliptical mirror reflects all the rays emitted from one of its two foci, e.g., Py, and
images them onto the other focus, P, (Fig. 1.2-3). The distances traveled by the light
from P, to P, along any of the paths are all equal, in accordance with Hero’s principle.

Figure 1.2-3 Reflection from an elliptical mirror.
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< (~R) -]

Figure 1.2-4 Reflection of parallel rays from a concave spherical mirror.

Spherical Mirrors ;

A spherical mirror is easier to fabricate than a paraboloidal or an elliptical mirror.
However, it has neither the focusing property of the paraboloidal mirror nor the
imaging property of the elliptical mirror. As illustrated in Fig. 1.2-4, parallel rays meet
the axis at different points; their envelope (the dashed curve) is called the caustic curve.
Nevertheless, parallel rays close to the axis are approximately focused onto a single
point F at distance (—R)/2 from the mirror center C. By convention, R is negative for
concave mirrors and positive for convex mirrors, ‘

Paraxial Rays Reflected from Spherical Mirrors

Rays that make small angles (such that sin § ~ 6) with the mirror’s axis are called
paraxial rays. In the paraxial approximation, where only paraxial rays are considered,
a spherical mirror has a focusing property like that of the paraboloidal mirror and an
imaging property like that of the elliptical mirror. The body of rules that results from
this approximation forms paraxial optics, also called first-order optics or Gaussian
optics.

A spherical mirror of radius R therefore acts like a paraboloidal mirror of focal
length f = R /2. This is in fact plausible since at points near the axis, a parabola can be
approximated by a circle with radius equal to the parabola’s radius of curvature (Fig.
1.2-5).

R

Figure 1.2-5 A spherical mirror approximates a paraboloidal mirror for paraxial rays.
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Figure 1.2-6 Reflection of paraxial rays from a concave spherical mirror of radius R < 0. ;

All paraxial rays originating from each point on the axis of a 'spherical mirror are
reflected and focused onto a single corresponding point on the axis. This can be seen

- (Fig. 1.2-6) by examining a ray emitted at an angle 0, from a point P, at a distance zy -

away from a concave mirror of radius R, and reflecting at angle (—4,) to meet the axis
at a point P, a distance z, away from the mirror. The angle 6, is negative since the ray
is traveling downward. Since 8, = 6, — 8 and (—6,) = 8, + 0, it follows that (~@,) +
6, = 28,. If 8, is sufficiently small, the approximation tan 0o = 6, may be used, so that
6y = y/(—R), from which -

2y
(-6,) +6,= R’ (1.2-1)

where y is the height of the point at which the reflection occurs. Recall that R is
negative since the mirror is concave. Similarly, if 0, and 6, are small, 8, =y/z,,
(=6,) = y/z,, and (1.2-1) yields ¥/zy +y/z, = 2y /(—R), from which :

B e (1.22)

This relation hold regardless of y (i.e., regardless of 6,) as long as the approximation is
valid. This means that all paraxial rays originating at point P, arrive at P,. The
distances z, and z, are measured in a coordinate system in which the z axis points to
the left. Points of negative z therefore lie to the right of the mirror.

According to (1.2-2), rays that are emitted from a point very far out on the z axis
(z, = =) are focused to a point F at a distance z; = (=R)/2. This means that within
the paraxial approximation, all rays coming from infinity (parallel to the mirror’s axis)

are focused to a point at a distance

-R
f= - (1.2-3)
Focal Length of a
Spherical Mirror
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which is called the mirror’s focal length. Equation (1.2-2) is usually written in the form

1 1 1

ERLEL b (1.2-4)

zy 2 f : Imaging Equation
(Paraxial Rays)

known as the imaging equation. Both the incident and the reflected rays must be
paraxial for this equation to be valid. I ‘

-

EXERCISE 1.2-1 '

Image Formatlon by a Spherical Mirror. Show that within the paraxial approximation,
rays originating from a point Py = (yy» zy) are reflected to a point P, = (y,, z5), where 2,
and z, satisfy (1.2-4) and y, = —¥122/2 (Fig. 1.2-7). This means that rays from each
point in the plane z = z, meet at a single corresponding point in the plane z = z,, so that
the mirror acts as an image-forming system with magnification —z,/z,. Negative magnifi-
cation means that the image is inverted. ! ¢ ;

P, =(yy,21) : 2 %

LREARE ReRRRRAAM

Pa=(yy 22

Figure 1.2-7 Image formation by a spherical mirror.

B. Planar Boundaries

The relation between the angles of refraction and incidence, 0, and 6,, at a planar
boundary between two media of refractive indices n, and n, is governed by Snell’s law
(1.1-1). This relation is plotted in Fig. 1.2-8 for two cases: :

s External Refraction (n, < ny). When the ray is incident from the medium of
smaller refractive index, 6, < 8, and the refracted ray bends away from the
boundary.

s Internal Refraction (n, > n,). If the incident ray is in a medium of higher
refractive index, 9, > 6, and the refracted ray bends toward the boundary.

In both cases, when the angles are small (i.e., the rays are paraxial), the relation
between 6, and 6, is approximately linear, 7,8, = 1,05, or 8, = (n,/n,)0,.



SIMPLE OPTICAL COMPONENTS 1
7 Wﬁtten in the form

nyny=15 o
¢

n2

(1.2-4)
“imagifig Equation
(Paraxial Rays)

ected rays must be

-

_

A e A s Y.

External refraction Internal refraction
dal approximation, ; F Figure 1.2-8 Relation between the angles of refraction and incidence.
(¥3, z,), where zZ 9
at rays from each ‘ i
z = z,, 50 that 3
N ey et £ Total Internal Reflection
Tw 5 - For internal refraction (n, > n,), the angle of refraction is greater than the angle of
£ - incidence, 6, > 01, so that as 6, increases, 8, reaches 90° first (see Fig. 1.2-8). This
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3 When 6, > ¢,, Snell’s law (1.1-1) cannot be satisfied and refraction does not occur. The
incident ray is totally reflected as if the surface were a perfect mirror {Fig. 1.2-%a)].
The phenomenon of total internal reflection is the basis of many optical devices and
Systems, such as reflecting prisms [see Fig. 1.2-9(b)] and optical fibers (see Sec. 1.2D).
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boundary. 3 (a) b) fe)
. N . Figure 1.2-9 () Total internal reflection at a planar boundary. (b) The reflecting prism. If
al))’ﬂ the relation £ . M > V2 and ny = 1 (air), then ¢, < 45° since 8, = 45° the ray is totally reflected. (c) Rays are
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Figure 1.2-10 Ray deflection by a prism. The angle of deflection 6, as a function of the angle
of incidence @ for different apex angles a when n = 15. When both a and @ are small
8, = (n = 1)a, which is approximately independent of 8. When a = 45° and 86 = 0°, total
internal reflection occurs, as illustrated in Fig. 1.2-9(b).

Prisms
A prism of apex angle « and refractive index n (Fig. 1.2-10) deflects a ray incident at
an angle 8 by an angle

9,=0-a +5in“1[(n2—sin20)iﬂsina—sinﬂoosa]. (1.2-6)

This may be shown by using Snell’s law twice at the two refracting surfaces of the
prism. When a is very small (thin prism) and 6 is also very small (paraxial approxima-
tion), (1.2-6) is approximated by

0, = (n = 1)a. (1.2-7)

Beamspilitters

The beamsplitter is an optical component that splits the incident light beam into a
reflected beam and a transmitted beam, as illustrated in Fig. 1.2-11. Beamsplitters are
also frequently used to combine two light beams into one [Fig. 1.2-11(c)]. Beamsplitters
are often constructed by depositing a thin semitransparent metallic or dielectric film on
a glass substrate. A thin glass plate or a prism can also serve as a beamsplitter.

A

(a) (b) fc)

Figure 1.2-11 Beamsplitters and combiners: (a) partially reflective mirror; (b) thin glass plate;
(c) beam combiner.
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 C. Spherical Boundaries and Lenses

. We now examine the refraction of rays from a spherical boundary of radius R between

two media of refractive indices #n, and n,. By convention, R is positive for a convex
boundary and negative for a concave boundary. By using Snell’s law, and considering

E - only paraxial rays making small angles with the axis of the system so that tan 8 = 0, the
- following properties may be shown to hold:

® A ray making an angle §; with the z axis and meeting the boundary at a point of
height y [see Fig. 1.2-12(a)] refracts and changes direction so that the refracted
ray makes an angle 6, with the z axis,

R (1.2-8)

= All paraxial rays originating from a point P; = ( Y1, 2y) in the z = z; plane meet
at a point P, = (y,, z,) in the z = z, plane, where

—_—— = = .2-
zy Zy R (1:28)
and
z, ,
Y2 = ~—y,. (1.2-10)
Z1

The z = z, and z = z, planes are said to be conjugate planes. Every point in the
first plane has a corresponding point (image) in the second with magnification

(a)

Py ={yy: 23}

2={y2, z2)

z

L]

b
Figure 1.2-12 Refraction at a convex spherical boundary (R > 0).
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—2z,/z,. Again, negative magnification means that the image is inverted. By
convention P, is measured in a coordinate system pointing to the left and P, ina
coordinate system pointing to the right (e.g., if P, lies to the left of the boundary,
then z, would be negative).

The similarities between these properties and those of the spherical mirror are
evident. It is important to remember that the image formation properties described
above are approximate. They hold only for paraxial rays. Rays of large angles do not,
obey these paraxial laws; the deviation results in image distortion called aberration.

s S e o e
EXERCISE 1.2-2

Image Formation. Derive (1.2-8). Prove that paraxial rays originating from P, pass
through P, when (1.2-9) and (1.2-10) are satisfied.

EXERCISE 1.2-3

Aberration-Free Imaging Surface. Determine the equation of a convex aspherical
(nonspherical) surface between media of refractive indices n, and 7, such that all rays (not
necessarily paraxial) from an axial point P, at a distance z; to the left of the surface are
imaged onto an axial point P, at a distance z, to the right of the surface [Fig. 1.2-12(a)].
Hint: In accordance with Fermat's principle the optical path lengths between the two
points must be equal for all paths.

e ———————

Lenses
A spherical lens is bounded by two spherical surfaces. It is, therefore, defined
completely by the radii R, and R, of its two surfaces, its thickness A, and the
refractive index n of the material (Fig. 1.2-13). A glass lens in air can be regarded as a
combination of two spherical boundaries, air-to-glass and glass-to-air.

A ray crossing the first surface at height y and angle 6, with the z axis [Fig.
1.2-14(a)] is traced by applying (1.2-8) at the first surface to obtain the inclination angle
6 of the refracted ray, which we extend until it meets the second surface. We then use
(1.2-8) once more with @ replacing 8, to obtain the inclination angle 8, of the ray after
refraction from the second surface. The results are in general complicated. When the
lens is thin, however, it can be assumed that the incident ray emerges from the lens at

A biconvex spherical lens.

Figure 1.2-13
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Figure 1.2-14 (a) Ray bending by a thin lens. (b) Image formation by a thin lens.

about the same height y at which it enters. Under this assumption, the following
relations follow:

& The angles of the refracted and incident rays are related by

y
0,=6;, — =, 1.2-11
2=0- % ( ) |
where f, called the focal length, is given by
1 {1 1
—=(n-1) i (1.2-12)
f 1 2 Focal Length of a
Thin Spherical Lens

= All rays originating from a point P, = (y,;, z;) meet at a point P, = (y,, z,) [Fig.
1.2-14(d)), where )

1 1 1
—_+ — = (1.2-13)
E1c e Zoneyc imaging Equation
and
22
Yy =-— et (1.2-14)
1 Magpnification :

This means that each point in the z = z; plane is imaged onto a corresponding
point in the z = z, plane with the magnification factor —Zz,/,.-The focal length f of a
lens therefore completely determines its effect on paraxial rays.

As indicated earlier, Py and P, are measured in coordinate systems pointing to the
left and right, respectively, and the radii of curvatures R, and R, are positive for
convex surfaces and negative for concave surfaces, For the biconvex lens shown in Fig.
1.2-13, R, is positive and R, is negative, so that the two terms of (1.2-12) add and
provide a positive f. ;
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i f a0 :

I A
Figure 1.2-15 Nonparaxial rays do not meet at the paraxial focus. The dashed envelope of the
refracted rays is called the caustic curve.

EXERCISE 1.2-4

Proof of the Thin Lens Formulas. Using (1.2-8), prove (1.2-11), (1.2-12), and (1.2-13).
—

It is emphasized once more that the foregoing relations hold only for paraxial rays.

The deviations of nonparaxial rays from these relations result m aberrations, as
illustrated in Fig. 1.2-15.

D. Light Guides

Light may be guided from one location to another by use of a set of lenses or mirrors,

as illustrated schematically in Fig. 1.2-16. Since refractive elements (such as lenses) are -

usually partially reflective and since mirrors are partially absorptive, the cumulative loss
of optical power will be significant when the number of guiding elements is large.
Components in which these effects are minimized can be fabricated (e.g., antu'eﬁecnon
coated lenses), but the system is generally cumbersome and costly.

Y

L

Y
Y
\

{b)

{c)

‘Figure 1.2-16  Guiding light: (a) lenses; (b) mirrors; (c) total internal reflection.
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Cladding
n2

Figure 1.2-17 The optical fiber. Light rays are guided by multiple total internal reflections,

An ideal mechanism for guiding light is that of total internal reflection at the
boundary between two media of different refractive indices. Rays are reflected repeat-
edly without undergoing refraction. Glass fibers of high chemical purity are used to
guide light for tens of kilometers with relatively low loss of optical power.

An optical fiber is a light conduit made of two concentric glass (or plastic) cylinders
(Fig. 1.2-17). The inner, called the core, has a refractive index n,, and the outer, called
the cladding, has a slightly smaller refractive index, n, < n,. Light rays traveling in the
core are totally reflected from the cladding if their angle of incidence is greater than
the critical angle, § > 6, = sin™!(n,/n,). The rays making an angle § = 90° — § with
the optical axis are therefore confined in the fiber core if § < 6., where 6, = 90° —
0, = cos"(nz/nl). Optical fibers are used in optical communication systems (see
Chaps. 8 and 22). Some important properties of optical fibers are derived in Exercise
1.2-5.

Trapping of Light in Media of High Refractive Index

It is often difficult for light originating inside a medium of large refractive index to be
extracted into air, especially if the surfaces of the medium are parallel. This occurs
sincé certain rays undergo multiple total internal reflections without ever refracting

* into air. The principle is illustrated in Exercise 1.2-6.

—

EXERCISE 1.2-5

Numerical Aperture and Angle of Acceptance of an Optical Fiber. An optical fiber is
illuminated. by light from a source (e.g., a light-emitting diode, LED). The refractive
indices of the core and cladding of the fiber are n; and n,, respectively, and the refractive
index of air is 1 (Fig. 1.2-18). Show that the angle 8, of the cone of rays accepted by the

Cladding n2

nz

Figure 1.2-18 Acceptance angle of an optical fiber.
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fiber (transmitted through the fiber without undergoing refraction at the cladding) is given
by ,

NA = sin 6, = (n? — n3)"/%. : (1.2-15) «
{ Numerical Aperture
of an Optical Fiber

The parameter NA = sin 8, is known as the numerical aperture of the fiber. Calculate the
pumerical aperture and acceptance angle for a silica glass fiber with n; = 1.475 and
nz = 1.460.

EXERCISE 1.2-6
Light Trapped In a Light-Emitting Diode

(a) Assume that light is generated in all directions inside a material of refractive index n
cut in the shape of a parallelepiped (Fig. 1.2-19). The material is surrounded by air
with refractive index 1. This process occurs in light-emitting diodes (see Chap. 16).
What is the angle of the cone of light rays (inside the material) that will emerge from
each face? What happens to the other rays? What is the numerical value of this angle
for GaAs (n = 3.6)?

Figure 1.2-19 Trapping of light in a paral-
lelepiped of high refractive index.

(b) Assume that when light is generated isotropically the amount of optical power
associated with the rays in a given cone is proportional to the solid angle of the cone.
Show that the ratio of the optical power that is extracted from the material to the total
- generated optical power is 3[1 ~ (1 — l/hz)lﬂ], provided that n > y2. What is the
numerical value of this ratio for GaAs?

1.3 GRADED-INDEX OPTICS

A graded-index (GRIN) material has a refractive index that varies with position in
accordance with a continuous function n(r). These materials are often fabricated by
adding impurities (dopants) of controlled concentrations. In a GRIN medium the
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'.'optical rays follow curved trajectories, instead of straight lines. By appropriate choice
of n(r), a GRIN plate can have the same effect on light rays as a conventional optical
. omponent, such as a prism or a lens,

The Ray Equation

:”!‘b'determine the trajectories of light rays in an inhomogeneous medium with refractive
" Index n(r), we use Fermat’s principle,

T i —

a/jn(r)ds =0,

where ds is a differential length along the ray trajectory between 4 and B. If the
* trajectory is described by the functions x(s), y(s), and z(s), where s is the length of
the trajectory (Fig. 1.3-1), then using the calculus of variations it can be shown' that
- x(s), y(s), and z(s) must satisfy three partial differential equations,

RS o R - IAETRINA E T 1l ey iy

d( dx on d{ dy on
@)% (%)

d{( dz on s
TR - R SE

- By defining the vector r(s), whose components are x(s), y(s), and z(s), (1.3-1) may be
_written in the compact vector form

d( fdr) v (1 3,2)
—— n—-—-— == n’ et I
s\ ds Ray Equation

o Figure 1.3-1 The ray trajectory is described
- il parametrically by three functions x(s), y(s), and
; ‘ z z(s), or by two functions x(2) and y(2).

e A
" "This derivation is beyond the scope of this book; see, e.g., R. Weinstock, Calculus of Variation, Dover,
. New York, 1974,

—‘“_
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: Figure 1.3-2 Trajectory of a paraxial ray in a graded-index medium.

where Vn, the gradient of n, is a vector with Cartesian components an/ox, on/dy, and
on/dz. Equation (1.3-2) is known as the ray equation. ;

One approach to solving the ray equation is to describe the trajectory by two
functions x(z) and y(2), write ds = dz[1 + (dx/dz)* + (dy /dz)?1'/2, and substitute in
(1.3-2) to obtain two partial differential equations for x(z) and y(z). The algebra is
generally not trivial, but it simplifies considerably when the paraxial approximation is
used. j 3 : :

The Paraxial Ray Equation ~ ; g ,
In the paraxial approximation, the trajectory is almost parallel to the z axis, so that
ds = dz (Fig. 1.3-2). The ray equations (1.3-1) then simplify to -

G o d (e : da
dz(ndz) ax’ dz("dz)"“s;'_ . S,' it ]
% Ray Equations E

Given n = n(x, y, z), these two partial differential equations may be solved for the
trajectory x(z) and y(z). : e ‘ :

In the limiting case of a homogeneous medium for which n is independent of x, y,
z, (1.3-3) gives d2x/d?z = 0 and d%y /d?z = 0, from which it follows that x and y are
linear functions of z, so that the trajectories are straight lines. More interesting cases -
will be examined subsequently. ‘

B. Graded-Index Optical Components

'Graded-Index Slab ; ,
Consider a slab of material whose refractive index n = n(y) is uniform in the x and 2z ,
directions but varies continuously in the y direction (Fig. 1.3-3). The trajectories of . 1

,yh‘

dn
n(y)+§_; Ay

y+AaY S
n(y) %

4 " Refractive index

Figure 1.3-3 Refraction in & graded-index slab.
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; .inﬁxial rays in the y-z plane are described by the paraxial ray equation
E

d{( dy dn
EZ_(nEZ—) =3 Ey‘, (13-4)
ﬁomwhich
d*’y  1dn
? L ;5. (1.3'5)

{Gi\ren n(y) and the initial conditions (y and dy/dz at z = 0), (1.3-5) can be solved for
~ the function y(z), which describes the ray trajectories.

- Derivation of the Paraxlal Ray Equatlon In a Graded-Index Slab

" Using Snell’s Law

- Equation (1.3-5) may also be derived by the direct use of Snell’s law (Fig. 1.3-3). Let
* #(y) = dy/dz be the angle that the ray makes with the z-axis at the position (y, z).
. After traveling through a layer of width Ay the ray changes its angle to 8(y + Ay).
- The two angles are related by Snell’s law,

n(y)cos8(y) =n(y + Ay)cos8(y + Ay)
dnA dOA .
=[n(y)+3 y][cosl?(y)—g ysin0(y)|,

| Where we have applied the expansion f(y + Ay) = f(y) + (df/dy) Ay to the function
- J(y) = cos 6(y). In the limit Ay — 0, we obtain the differential equation

i todo 1.3
5 nandy. (1.3-6)

or paraxial rays 6 is very small so that tan @ = 8. Substituting 8 = dy/dz in (1.3-6),
\we obtain (1.3-5). '

 EXAMPLE 1.3-1. Slab with Parabolic Index Profile. An important particular distri-
. bution for the graded refractive index is

n*(y) = nj(1 - a%y?). (1.3-7)

~ This is a symmetric function of y that has its maximum value at y = 0 (Fig. 1.3-4). A glass
* slab with this profile is known by the trade name SELFOC. Usually, a is chosen to be
sufficiently small so that a’y? < 1 for all y of interest. Under this condition, n(y) =

nill — a?y?'% = (1 — La?y?); ie., n(y) is a parabolic distribution. Also, because

E————t
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Figure 1.3-4 Trajectory of a ray in a GRIN slab of parabolic index profile (SELFOC).

n(y) — ng < ng, the fractional change of the refractive index is very small. Taking the
derivative of (1.3-7), the right-hand side of (1.3-5) is (1/n) dn /dy = —(nO/n)zazy = —aly,
so that (1.3-5) becomes

(1.38)

The solutions of this equation are harmonic functions with period 27 /a. Assuming an
initial position y(0) = y, and an initial slope dy/dz = 68y at z =0,

8
y(z) = ygcos az + -“E sin az, (1.39)

from which the slope of the trajectory is

0(z) = ;yz— = —yga sin az + 8, cos az. (1.3-10)

The ray oscillates about the center of the slab with a period 27 /a known as the pitch, as
illustrated in Fig. 1.3-4.

The maximum excursion of the ray is Yme = [¥§ + (8p/a)?]'/? and the maximum
angle is Oye = &Ymex- The validity of this approximate analysis is ensured if 8, < 1. If
2¥max 15 smaller than the width of the slab, the ray remains confined and the slab serves as
a light guide. Figure 1.3-5 shows the trajectories of a number of rays transmitted through a
SELFOC slab. Note that all rays have the same pitch. This GRIN slab may be used as a
lens, as demonstrated in Exercise 1.3-1.

ol
i

Figure 1.3-5 Trajectories of rays in a SELFOC slab.
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" EXERCISE 1.3-1

The GRIN Siab as a Lens. Show that a SELFOC slab of length d < 7/2a and
. refractive index given by (1.3-7) acts as a cylindrical lens (a lens with focusing power in the
" y=z plane) of focal length

1

f= npa sin ad (15113

a S_hgw that the principal point (defined in Fig. 1.3-6) lies at a distance from the slab edge
. AH= (1/nga)tan(ad/2). Sketch the ray trajectories in the special cases d = 7/a and
. 7/2a. :

le : ) ) J
o

ngre 136 The SELFOC slab used as a lens; F is the focal point and H is the
principal point. , '

‘Graded-index Fibers
graded-index fiber is a glass cylinder with a refractive index n that varies as a

nction of the radial distance from its axis. In the paraxial approximation, the ray

ectories are governed by the paraxial ray equations (1.3-3), Consider, for example,
¢ distribution ~

n? = nf[1 - a*(x? +y2)]. (1.3-12)

‘Substituting (1.3-12) into (1.3-3) and assuming that a®(x? + y2) < 1 for all x and y of
“Interest, we obtain

d*x d%y .
7‘? ~ _azx’ 7‘2—)2’ = —azy. (1.3‘13)

x and y are therefore harmonic functiéns of z with period 27 /a. The initial

‘positions (x,, yo) and angles (6, = dx/dz and 0,0 = dy/dz) at z = 0 determine the

‘amplitudes and phases of these harmonic functions. Because of the circular symmetry,
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'l

{a)

L s

Figure 1.3-7 (2) Meridional and (b) helical rays in a graded-index fiber with parabolic index
profile.

-t —

there is no loss of generality in choosing x, = 0. The solution of (1.3-13) is then

@
x(z) = —;—O sin az
(1.3-14)

RN 381 a3 38 s s

eyO o
y(z) = —sinaz + ygcos az.
a

i on 0, i.e., the incident ray lies in a meridional plane (a plane passing through
the axis of the cylmder in this case the y-z plane), the ray continues to lie in that
plane following a sinusoidal trajectory similar to that in the GRIN slab [Flg 1.3-7(a)}.

On the other hand, if 6,5 = 0, and 6,y = ay,, then

x(2) = ygsinaz

(1.3-15)
y(z) =ygcosaz,

so that the ray follows a helical trajcctory lying on the surface of a cylinder of radius y,
[Fig. 1.3-7(b)]. In both cases the ray remains confined within the fiber, so that the fiber
serves as a light guide. Other helical patterns are generated with different incident
rays.

Graded-index fibers and their use in op'ucal communications are discussed in Chaps.
8 and 22.

, :
EXERCISE 1.3-2
Numerical Aperture of the Graded-Index Fiber. Consider a graded-index fiber with

the index profile in (1.3-12) and radius a. A ray is incident from air into the fiber at its
center, making an angle 6, with the fiber axis (see Fig. 1.3-8). Show, in the paraxial
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Figure 1.3-8 Acceptance angle of a graded-index optical fiber.

appinximation, that the numerical aperture is

NA =sin 6, = nyaa, (1.3-16)
Numerical Aperture
(Graded-Index Fiber)

where @, is the maximum angle 6 for which the ray trajectory is confined within the fiber.
¢ onpare this to the numerical aperture of a step-index fiber such as the one discussed in
Isercise 1.2-5. To make the comparison fair, take the refractive indices of the core and
+Inlding of the step-index fiber to be 7, = n, and ny = ny(1 — a?a®/2 = n (1 - La2g?),

\

‘C. The Eikonal Equation

I'he aay trajectories are often characterized by the surfaces to which they are normal.
1 5(r) be a scalar function such that its equilevel surfaces, S(r) = constant, are

«nwwhere normal to the rays (Fig. 1.3-9). If S() is known, the ray trajectories can
1 hily b constructed since the normal to the equilevel surfaces at a position r is in the
dinchion of the gradient vector VS(r). The function S(r), called the eikenal, is akin to
the pevential function V(r) in electrostatics; the role of the optical rays is played by the
s of clectric field E = - V),

tv sutisfy Fermat’s principle (which is the main postulate of ray optics) the eikonal

Sy must satisfy a partial differential equation known as the eikonal equation,

88\* [8S\* (482
(—) + (— + (-——) =n?, (1.3-17)
ax dy az

Figure 1.3-9 Ray trajectories are normal to the surfaces of constant
“n - constant S(r).
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: S(r)= cohétant ;
Figure 1.3-10 Rays and surfaces of constant S(r) in a homogeneous medium.

which is usually written in the vector form

IVSI® = n?, - (1318)
_Eikonal Equation

where |VS|? = VS - VS. The proof of the eikonal equation from Fermat’s principle isa
mathematical exercise that lies beyond the scope of this book.? Fermat’s principle (and
the ray equation) can also be shown to follow from the eikonal equation. Therefore,
either the eikonal equation or Fermat’s principle may be regarded as the principal
postulate of ray optics. . s 20

Integrating the eikonal equation (1.3-18) along a ray trajectory between two points
A and B gives ; ET0 R

S(rg) - S(ra) = [ :;vsias ) B ds = optical path length between A and B.

This means that the difference S(rp) — S(r,) represents the optical path length
between A and B. In the electrostatics analogy, the optical path length plays the role
of the potential difference. ‘ : ; ~
~ To determine the ray trajectories in an inhomogeneous medium of refractive index
" n(r), we can either solve the ray equation (1.3-2), as we have done earlier, or solve the
eikonal equation for S(r), from which we calculate the gradient VS. , j
If the medium is homogeneous, ie.. n(r) is constant, the magnitude of VS is -
constant, so that the wavefront normals (rays) must be straight lines. The surfaces
S(r) = constant may be parallel planes or concentric spheres, as illustrated in Fig. -
1.3-10. ' : : : ' ‘

1.4 MATRIX OPTICS

Matrix optics is a technique for tracing paraxial rays. The rays are assumed to travel
~ only within a single plane, so that the formalism is applicable to systems with planar
geometry and to meridional rays in circularly symmetric systems.

A ray is described by its position and its angle with respect to the optical axis. These
variables are altered as the ray travels through the system. In the paraxial approxima-
tion, the position and angle at the input and output planes of an optical system are

tSee, c.g., M. Born and E. Wolf, Principles of Optics, Pergamon Press, New York, 6th ed. 1980.
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Optical axis

Figure 1.4-1 A ray is characterized by its coordinate y and its angle 4.
lated by two linear algebraic equations. As a result, the optical system is described by
A 2 X 2 matrix called the ray-transfer matrix.
~ The convenience of using matrix methods lies in the fact that the ray-transfer matrix
Of a cascade of optical components (or systems) is a product of the ray-transfer

i trices of the individual components (or systems). Matrix optics therefore provides a

formal mechanism for describing complex optical systems in the paraxial approxima-

won,

‘A. The Ray-Transfer Matrix

Consider a circularly symmetric optical system formed by a succession of refracting and
reflecting surfaces all centered about the same axis (optical axis). The z axis lies along
" the optical axis and points in the general direction in which the rays travel. Consider
" Fays in a plane containing the optical axis, say the y~z plane. We proceed to trace a ray
_ s it travels through the system, i.e., as it crosses the transverse planes at different axial
- distances. A ray crossing the transverse plane at z is completely characterized by the
* coordinate y of its crossing point and the angle @ (Fig. 1.4-1).

An optical system is a set of optical components placed between two transverse

 planes at z, and z,, referred to as the input and output planes, respectively. The
. system is characterized completely by its effect on an incoming ray of arbitrary position
- and direction (y,, 6,). It steers the ray so that it has new position and direction (y,,0,)
- at the output plane (Fig. 1.4-2).

Output
plane

el

¥, 82

_. Optical

£2

Input __ / | Output
(y1.6) Optical systom (v2.82)

-

- Flgure 1.4-2 A ray enters an optical system at position y,; and angle 6, and leaves at position
~ ¥z and angle 6,.
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In the paraxial approximation, when all angles are sufficiently small so that sin 8 = @,
the relation between (y,, 6,) and (y,, l) is linear and can generally be written in the
form-

v, = Ay, + B8, o (1.4-1)
8, = Cy, + Db,, A (149)

where A, B, C and D are real numbers. Equations (1.4-1) and (1 4-2) may-be
convemently written in matrix form as

Y2 A B Y1
;| ~ |C Dff{e.[
The matrix M whose elements are A, B,C, D, characterizes the optical system

completely since it permits (y,, 02) to be determmed for any (y,, 8,). It is known as the
y-transfer matrix.

ﬂ
EXERCISE 1.4-1 ‘

Speclal Forms of the Ray-Transfer Matrix. Consider the following situations in which :
one of the four elements of the ray-transfer matnx vanishes:

{a) Show that if A = 0, all rays that enter the system at the same ansle leave at the same
position, so that parallel rays in the input-are focused to a smgle point at the output.

(b) What are the special featurw of each of the systems for which B=0, C =0, or
D=0? :

B. Matrices of Simple Optical Components
Free-Space Propagatlon |

Since rays travel in free space along straight lines, a ray traversing a distance d is

altered in accordance with y, =y, + 6,d and 8, = 0,. The ray-transfer matrix is
therefore ,

| e
= 1 d : :
| M [ e ]  (149)
p——a—
Refraction at a Planar Boundary

At a planar boundary between two media of refractive indices n, and n,, the ray angle
changes in accordance with Snell’s law n, sin 6,=n, sin @,. In the paraxial approxima-
tion, 7,8, = n,8,. The position of the ray is not altered, y; = y,. Thc ray-transfer
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" Retraction at a Spherical Boundary

- The relation between 6, and 0, for paraxial ra
- between two media is provided in (1.2-
ray-transfer matrix is

(4 | 1 0
M=[0 ] (1.4-4)

ys refracted at a spherical boundary
8). The ray height is not altered, y, = ¥;. The

nR ny

1 0 i
M=1{ (n-ny m (1.45) ;

Convex, R >0; concave, R <0

* Transmission Through a Thin Lens
- The relation between 0, and 8, for paraxial rays

transmitted through a thin lens of
- focal length £ is given in (1.2-11). Since the hei

ght remains unchanged ( Y2=y)),

M- [_1% f} (1.46)

Convex, f >0; concave, f <0

. Reflection from a Planar Mirror

" Upon refiection from a planar mirror, the ray position is not altered, Y2 = y,. Adopting
the convention that the z axis points in the general direction of trave] of the rays, ie.,
“toward the mirror for the incident ra

ys and away from it for the reflected rays, we
conclude that ¢, = 6, The ray-transfer matrix is therefore the identity matrix

— Y4

M= [(1) ?] (1.4-7)

)

on from a Spherical Mirror

Using (1.2-1), and the convention that the z axis follows the general direction of the
" rays as they reflect from mirrors, we similarly obtain
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Note the similarity between the ray-transfer matrices of a spherical mirror (1.4-8) and a
 thin lens (1.4-6). A mirror with radius of curvature R bends rays in a manner that is
identical to that of a thin lens with focal length f = —R/2.

C. Matrices of Cascaded Optical Components

A cascade of optical components whose ray-transfer matrices are M, M,,... .My is
equivalent to a single optical component of ray-transfer matrix

My = M= My MM (1.4-9)

‘Note the order of matrix multiplication: The matrix of the system that is crossed by the
rays first is placed to the right, so that it operates on the column matrix of the incident
ray first. :

EXERCISE 1.4-2

A Set of Parallel Transparent Plates. Consider a set of N parallel planar transparent
plates of refractive indices 7, n3,...,ny and thicknesses d;,d,,...,dy, placed in air
{n = 1) normal to the z axis. Show that the ray-transfer matrix is S

ny ’iz ny

dy d2 dy

Note that the order of placing the plates does not affect the overall ray-transfer matrix.
What is the ray-transfer matrix of an inhomogeneous transparent plate of thickness ¢y and
refractive index n(z)? : ‘

EXERCISE 1.4-3

A Gap Followed by a Thin Lens. Show that the ray-transfer matrix of a distance d of
free space followed by a lens of focal length f is oy

f

"'——"% | 2l (1.4-11)
, ‘ 2

sl

EXERCISE 1.4-4

Imagling with a Thin Lens. Derive an expression for the ray-transfer matrix of a system
comprised of free space/thin lens/free space, as shown in Fig. 1.4-3. Show that if the




