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PURPOSE
The purpose of this exercise is to obtain a number of experimental results important for
the characterization of materials.  In particular, the results from the torsion test will be
compared to the results of the engineering tensile test for a particular alloy using the
effective stress-effective strain concept.

EQUIPMENT
• Constant-diameter gage section torsion specimen of 6061-T6 aluminum
• Torsion test machine with grips, troptometer, and force sensor.

PROCEDURE
• Measure the diameter (D=2R) of the gage section for each test specimen to 0.02 mm.
• Install the bottom end of the torsion test specimen in the lower grip of the test machine.

Rotate the lever arm as far to the right as possible.  (Note: unscrew the horizontal
threaded drive rod as much as possible).

• Rotate the top grip as far as possible in the direction necessary to remove the 'slack'
from the reaction cables and install the top end of the torsion test specimen in the top
grip of the test machine.

• Zero the output of the force sensor.
• Use the threaded drive rod to apply torque to the base of the test specimen and record

the applied torque, T, versus angular rotation,θ , at 2° increments until 30° of rotation.
• Remove the horizontal threaded drive rod and find the torque after 90° and 360° of

rotation, being careful not to allow elastic unloading.
• After 360° of rotation, unload and remove the specimen.  Measure the gage length L

(grip to grip length) of the installed specimen to 0.1 mm.

RESULTS

• Plot measured torque, T, versus angular displacement per unit length, ′θ = dθ
dl

.  Using

linear regression, fit the curve to 30° of relative rotation.  (It is assumed that T is
proportional to ′θ  from θ =0° to θ  = 30°).  (Note that θ  must be in radians, i.e. π radians
= 180°).

• Calculate the shear modulus, G, from the linear portion of the T- ′θ  using linear
regression to find dT/d ′θ  from θ =0° to θ  = 30°.  Compare this value of G to the shear

modulus determined from the tensile test results (i.e. G = E
2(1+ ν )

) using ν=0.345 for

aluminum.
• Using the strength coefficient coefficient, K (or H), and the strain hardening exponent, n,

determined from the tensile test for the approximate constitutive relation σ = Kε n = Hε n,
integrate the predicted shear stress, τ ,  versus radial distance, r, to obtain the predicted
torque, T, after 90° and after 360° of rotation.  Compare these values of T to those
measured experimentally.   (Note that θ  must be in radians for the calculations, i.e. π
radians = 180°).  Use the attached "cook book" method to facilitate your work.

• On the same graph, plot shear stress, τ , and engineering shear strain, γ  as functions of
radial distance, r, at 30° of rotation.  Construct similar plots τ  and γ  vesus r for 90° and
360° of rotation.  (Note that θ  must be in radians for the calculations, i.e. π radians =
180°).



LABORATORY REPORT

1.  As a minimum include the following information in the laboratory report.
a.  Raw data (typed in tabular form)
b.  Two values for the shear modulus, G (tension and torsion)

c.  Two values of the torsional yield stress, τo (tension and torsion)
d.  "n" and "K" from the tension test (use these in the calculations)
e.  Total torque as required in the table:

Angle of Rotation ................... 90° 360°
Predicted Torque (          )
Measured Torque (         ) .
% Difference ..........................

f.  Plot of Torque vs. Angular displacement per unit length (T vs. θ ')
g.  One graph each of τ  and γ  as functions of radial distance, r, for θ  = 30°, 90°,
and 360° (2 plots on each graph for a total of 3 graphs)

Radial distance, r

τ

τ γ

r=Rr=0

γ 
S

he
ar

 s
tr

ai
n,

 

S
he

ar
 s

tr
es

s,
 

r
y

=K 
n

=f(    )γ

τ=Gγ τ γ
τ

=r     /Lθ

h.  Discuss comparisons of basic mechanical properties as determined from 
tension and torsion tests. Compare results of these tests for each alloys to 'book' 
values from such sources as the ASM Metals Handbook.  Comment on any 
differences.  Compare the shapes of the stress vs. radial distance curves and the 
magnitudes of the plastic and elastic torques.

2.  Include the following information in the appendix of the laboratory report.  THIS MAY
       NOT BE ALL THAT IS NECESSARY (i.e., don't limit yourself to this list.)

a.  Original data sheets and/or printouts
b.  All supporting calculations.  Include sample calculations if using a spread 
sheet  program.
c.  All "cookbook" calculations from the Torsion Test Solution Path.

* REFERENCES
Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 3.01
E143 Standard Test Methods for Shear Modulus at Room Temperature.

ME354 NOTES on Torsion Testing
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DATA SHEET

NAME______________________________________DATE____________

LABORATORY PARTNER
NAMES____________________________________________

____________________________________________

EQUIPMENT
IDENTIFICATION______________________________________

_______________________________________

Note: Be sure to record units for each quantity.

Specimen measurments
D  (    )

L  (     ) 127.61 mm 84.95 mm

J  (     )

Fo
Angle(degrees) Force (      ) Force

0 Couple=T=(Fo) x Dg

2
4 52.32 mm Grip Diameter, Dg

6
8

10
12
14
16
18
20
22
24
26
28
30
90
360
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Torsion Test Solution Path
TORSION TEST

The initial set of calculations has input parameters obtained only from the torsion test.
The results of these calculations will later be compared to results calculated with
information obtained from the tension test.

1. Record the torsion specimen diameter (D=2R) and the length of the gripped 
section of the torsion specimen, L.  Calculate the polar moment of inertia for a solid

rod, J = πD4

32
.

D = mm

L = mm

J = mm4

2. From the measured torque, T, versus angular rotation, θ , data points, plot T 

versus relative angular deflection, ′θ = dθ
dl

  between two cross sections (i.e. 
θ
L

).  

Obtain the "best fit" of the linear portion of the T versus ′θ  data using linear
regression.  (It is assumed that T is proportional to ′θ   from θ =0° to θ  = 30°).
Determine the slope, dT/d ′θ  from θ =0° to θ  = 30°.  (Note that θ  must be in radians
for the calculations, i.e. π radians = 180°).

dT/d ′θ  = (N-mm) / (rad/mm)

3. The shear modulus, G, from the torsion test can now be calculated from the 
relation:

 G =
dT(0−30°)

 d ′θ(0−30°)

1
J

= (N/mm2=MPa)

4. Finally, record the measured torques and calculate ′θ = dθ
dl

 for θ  = 90° and 360°.

(Note that θ  must be in radians for the calculations, i.e. π radians = 180°).

T90° = N-mm

′θ 90° = /mm

T360° = N-mm

′θ 360° = /mm



TENSION TEST

This set of calculations has input parameters obtained only from the tension test.  The
results of these calculations will later be compared to results calculated with information
obtained from the torsion test.

1. Record the uniaxial elastic modulus, E, uniaxial yield stress, σo , the strain 
hardening coefficient, K, and the strain hardening exponent, n, determined from the
tension test.

E = N/mm2

σo  = N/mm2

K = N/mm2

n =

2. Calculate the value of the shear modulus from the results of the tension test:

G = E
2(1+ ν )

 using ν=0.345 for aluminum.

3. Using the effective stress concept, calculate the shear strength indicated by the 
tension test data such that:

σ
_

= 1
2

σx − σy( )2
+ σy − σz( )2

+ σz − σx( )2 + 6 τxy
2 + τyz

2 + τxz
2( )[ ]

1
2

and setting σ = σo  and solving for τxy = τy (yield stress in shear) with all other 
stress equal to zero.

τy  = N/mm2



EVALUATION OF TORSION TEST RESULTS FOR YIELDING

This set of calculations has input parameters obtained only from the torsion and tension
tests.  The results of these calculations are used to evaluate the shear stresses and shear
strains across the radius of the torsion specimen as it yields.

1. Find the radius of the torsion specimen at yielding, ry for θ  = 90°   (Note that θ  must
be in radians for the calculations, i.e. π radians = 180°).

r y =
τy

G
R

γ max

 where γ max = ′θ90°( )R

r y
90° = mm

2. Within the elastic domain, the shear stress is a linear function of radial distance, r, 
such that

τ(r ) =
τy

r y

r

3. The shear stress as a function of radial distance, r, can now be multiplied by 
differential area element, 2π r dr  and a moment arm, r, and integrated to find the 
torque over the elastic domain. (i.e. M = 0∑ ).

Te =
τy

r y

r





o

r y

∫ (r )2π r dr

4. In the plastic domain, only the shear strain remains a linear function of radial 
distance, r.  Therefore, it is advantageous to change the integration variable to γ .  
In order to accomplish this variable change, the shear stress, τ , moment arm, r, 
and differential area of integration, 2π r dr , must be expressed as function of γ .

In the tension test the uniaxial stress, σ, was expressed as a function of uniaxial 
strain, ε , through the strenght coefficient, K (or H), strain hardening exponent, n, 
such that:

σ = Kε n = Hε n

Since the uniaxial stress is identical to the effective stress, and the uniaxial strain 
is identical to the effective strain, the equation relating effective stress to effective 
strain would be exactly the same.

σ = Kε n = Hε n

When the effective stress and effective strain are evaluated for the case of pure 
torsion, the shear stress can be found as a function of the shear strain.



τ(γ ) = 1
3

K
γ
3





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n






Since γ = ′θ r  it is also true that r = γ
′θ





  and, since ′θ  is a constant 

.
Substituting these relations into the basic torsion integral yields:

Te =
τy

r y

r





o

r y

∫ (r )2π r dr for the elastic torque

T p = 1
3

K
γ
3







n





γ
′θ





 2π 

γ
′θ

dγ
′θ

γ y

γ max

∫  for the plastic torque.

Note that the limits of integration are γ y =
τy

G
 and γ max = ′θ R .   (Note that θ  must 

be in radians for the calculations, i.e. π radians = 180°).

The total torque, T, is found as the sum of the elastic and plastic torques such that:

T = Te +T p   This torque value is then compared to the value measured in the 
torsion test.

For θ  = 90°, calculated torques are:

Te = N-mm

Tp = N-mm

T = N-mm

For θ  = 90°, measured torque is:

T90° = N-mm



5. Steps 1 to 4 are repeated for θ  = 360° (Note that θ  must be in radians for the 
calculations, i.e. π radians = 180°).

For θ  = 360°, calculated torques are:

Te = N-mm

Tp = N-mm

T = N-mm

For θ  = 360°, measured torque is:

T360°°= N-mm

6. Finally, plot τ  and γ  as functions of r after θ  = 30° for relative rotations of θ  = 90° 
and θ  = 360°.  (Note that θ  must be in radians for the calculations, i.e. π radians = 
180°).
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NOTES on Torsion Testing

STRESSES IN THE ELASTIC RANGE

In the elastic range, stresses in the shaft will remain less than the proportional limit and
less than the elastic limit as well.  For this case Hooke’s law will apply and there will be no
permanent deformation.  Hooke’s Law for shear stress is as follows:

τ = Gγ
G = Modulus of rigidity (shear modulus)
τ = Shear Stress
γ = Shear Strain

τ

r

τmax

R

Figure 1. Distribution of Stress in the Elastic Range.

The elementary forces exerted on any cross section of the shaft must be equal to the
magnitude T of the torque exerted on the shaft:

r τdA( ) = T  where  dA = 2π r dr
o

R

∫

γ = r
R

γ max

Gγ = r
R

Gγ max

τ = r
R

τmax



T = r τdA = τmax

R
r 2dA∫∫

r 2dA∫ = J = 1
2

πR4

T =
τmax

R
J

τ max = TR
J

τ = Tr
J

The last two equations are known as the elastic torsion formulas.

ANGLE OF TWIST IN THE ELASTIC RANGE

For this section the entire shaft will again be assumed to be in the elastic range.
Therefore Hooke’s Law applies.

γmax

L

T
θ

φ

Figure 2. Demonstration of the Angle of Stress and the Shearing Strain.

γ max = R
L

γ max =
τ max

G
=

TR
JG

ø = TL
JG

ø



The angle of twist, Ø, is expressed in radians.  The angle of twist is proportional to the
torque T applied to the shaft.  The above equation provides a convenient method for
determining the modulus of rigidity, G.  Torques of increasing magnitude T are applied to
the specimen, and the corresponding values of the angle of twist in a length L of the
specimen are recorded.  As long as the yield stress of the material is not exceeded, the
points obtained by plotting Ø against T will fall on a straight line.  The slope of the line
represents the quantity JG/L from which the modulus of rigidity, G, may be computed.

T, N-mm

ø,rad

Slope=JG/L

PLASTIC DEFORMATIONS IN CIRCULAR SHAFTS

If the yield strength is exceeded in some portion of the shaft the relations discussed in the
earlier sections cease to be valid.  The purpose of this section is to develop a more
general method for determining the distribution of stresses in the solid circular shaft, and
for computing the torque required to produce a given force.

τmax

rO

τ

R

Figure 3. Stress Distribution in a Shaft for Plastic Deformation.

As the torque increases, τmax  eventually reaches the shearing yield stress, τy,  of the
material.  Solving for the corresponding value of T, we obtain the value of Ty at the onset
of yield:

TY = J
R

τY

Ty is referred to as the maximum elastic torque, since it is the greatest torque for which
deformation remains fully elastic.  Recalling that, for a solid circular shaft, J/R=1/2 (πR3)
we have:



TY = 1
2

πR 3τY

The τY  can be found using the data from the tension test and the idea of effective stress.
Using the Distoritonal Energy (von Mises) criterion and the yield stress from the tensile
test laboratory τY  can be determined.

σ
_

= 1
2

σx − σy( )2
+ σy − σz( )2

+ σz − σx( )2 + 6 τxy
2 + τyz

2 + τxz
2( )[ ]

1
2

σ
_

= 1
2

6τxy
2[ ]

1
2 = 3τxy

σ
_

= σ0 = yield stress from tension test

τxy = τY = σ
__

3
= 0.577 σ

_

.  

γ y =
τy

G
,measured G  from the elastic part of the torsion test.

r y =
γ y

dθ
dl

,  where dθ
dl =

π
2

L
 (at 90° ) and 

2π
L

 (at 360° ) for this lab.

The total torque is a function of the torque in the elastic range and the torque in the plastic
range.

Ttotal = Telastic +T plastic

T total = rτ r( )
0

r y

∫ 2πrdr + rτ r( )
r y

R

∫ 2πrdr

for the elastic range
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