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4. BEAMS: CURVED, COMPOSITE, UNSYMMETRICAL

Discussions of beams in bending are usually limited to beams with at least one

longitudinal plane of symmetry with the load applied in the plane of symmetry or to

symmetrical beams composed of longitudinal elements of similar material or to initially straight

beams with constant cross section and longitudinal elements of the same length.  If any of these

assumptions are violated, the simple equations which describe the beam bending stress and

strain are no longer applicable.  The following sections discuss curved beams, composite

beams and unsymmetrical beams.  

Curved Beams

One of the assumptions of the development of the beam bending relations is that all

longitudinal elements of the bean have the same length, thus restricting the theory to initially

straight beams of constant cross section.  Although considerable deviations from this restriction

can be tolerated in real problems, when the initial curvature of the beams becomes significant,

the linear variations of strain over the cross section is no longer valid, even though the

assumption of plane cross sections remaining plane is valid.   A theory for a beam subjected to

pure bending having a constant cross section and a constant or slowly varying initial radius of

curvature in the plane of bending is developed as follows.  Typical examples of curved

beams  include hooks and chain links.  In these cases the members are not slender but rather

have a sharp curve and their cross sectional dimensions are large compared with their radius of

curvature.

Fig 4.1 Curved beam element with applied moment, M
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Fig 4.1 is the cross section of part of an initially curved beam.  The x-y plane is the plane of

bending and a plane of symmetry.  Assumptions for the analysis are: cross sectional area is

constant; an axis of symmetry is perpendicular to the applied moment; M, the material is

homogeneous, isotropic and linear elastic; plane sections remain plane, and any distortions of

the cross section within its own plane are neglected.   Since a plane section before bending

remains a plane after bending, the longitudinal deformation of any element will be proportional

to the distance of the element from the neutral surface.  

In developing the analysis, three radii, extending from the center of curvature, O’, of the

member are shown in Fig 4.1.  The radii are: r  that references the location of the centroid of the

cross sectional area; R that references the location of the neutral axis; and r references some

arbitrary point of area element dA on the cross section.  Note that the neutral axis lies within the

cross section since the moment M creates compression in the beams top fibers and tension in

its bottom fibers.  By definition, the neutral axis is al line of zero stress and strain.  

If a differential segment is isolated in the beam (see Fig 4.2).  The stress deforms the

material in such a way that the cross section rotates through an angle of δθ /2.  The normal strain

in an arbitrary strip at location r can be determined from the resulting deformation.  This strip has

an original length of Lo=r dθ .  The strip’s total change in length, ∆L R r= −2 2( ) /δθ  .  The normal

strain can be written as:
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To simplify the relation, a constant k is defined as k d= δθ θ/  such that the normal strain can be

rewritten as:
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(4.2)

Fig 4.2 Isolated differential element is a curved beam

Note that Eq 4.2 shows that the normal strain is a nonlinear function of r varying in a

hyperbolic fashion.  This is in contrast to the linear variation of strain in the case of the straight
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beam (i.e., ε
ρ

=
−y

 ).  The nonlinear strain distribution for the curved beam occurs even though

the cross section of the beam remains plane after deformation.  The moment, M, causes the

material to deform elastically and therefore Hooke’s law applies resulting the following relation

for stress:

σ ε= =
−





E Ek
R r

r
(4.3)

Because of the linear relation between stress and strain, the stress relation is also

hyperbolic.  However, with the relation for stress determined, it is possible to determine the

location of the neutral axis and thereby relate the applied moment, M to this resulting stress.

First a relation for the unknown radius of the neutral axis from the center of curvature, R, is

determined.  Then the relation between the stress, σ , and the applied moment, M is

determined.

Force equilibrium equations can applied to obtain the location of R (radius of the neutral

axis).  Specifically, the internal forces caused by the stress distribution acting over the cross

section must be balanced such that the resultant internal force is zero:
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Because Ek and R are constants Eq 4.4 can be rearranged such that:
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Solving Equation 4.5 for R results in:

R =
dA
dA
r

=
A
dA
r

∫
∫ ∫ (4.6)

where R is the location of the neutral axis referenced from the center of curvature, O’, of the

member, A is the cross sectional area of the member and r is the arbitrary position of

Table 4.1 Areas and Integrals for Various Cross Sections
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the area element dA on the cross section and is referenced from the center of curvature, O’, of

the member.  Equation 4.6 can be solved for various cross sections with examples of common

cross sections listed in Table 4.1

Moment equilibrium equations can be applied to relate the applied moment, M, to the

resulting stress, σ .  Specifically, the internal moments caused by the stress distribution acting

over the cross section about the neutral must be balanced such that the resultant internal

moment balances the applied moment:

Recall that since =
dF
dA

then dF =  dA 

if y is the distance from the neutral axis such that y = R - r

then dM = y dF or dM = y  dA

Applying moment equilibrium such that M 0 gives

y  dA 0   or M y  dA

Substituting the derived relations for y and   gives

M = y  dA
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Again realizing that Ek and R are constants, Eq 4.7 can be expanded and grouped such that:
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Note that the third integral term in Eq 4.8, comes from the geometric determination of the

centroid such that r = r dA/A∫ .  Equation 4.8 can now be solved for Ek such that Ek =
M

A(r -R)
.

Substituting this relation for Ek into Eq 4.3 gives:
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Substituting the relations involving y into Eqs 4.9 (y=R-r and r=R-y) along with an term for

“eccentricity” e=r -R gives:

σ =
−

=
M( )
Ar(r -R)

My
Ae(R - y)

R r
(4.10)

which is the so-called curved-beam flexure formula where σ  is the normal stress, M is the

applied moment, y is the distance from the neutral axis (y=R-r), A is the area of the cross

section, e is the “eccentricity” (e=r -R) and R is the radius of the neutral axis (R =
A
dA
r

∫
).  

Note that Eq. 4.10 gives the normal stress in a curved member that is in the direction of

the circumference (a.k.a. circumferential stress) and is nonlinearly distributed across the cross

section (see Fig 4.3).  It is worth noting that due to the curvature of the beam a compressive

radial stress (acting in the direction of r) will also be developed.  Typically the radial stress is

small compared to the circumferential stress and can be neglected, especially if the cross

section of the member is a solid section.  Sometimes, such as the case of thin plates or thin

cross sections (e.g., I-beam), this radial stress can become large relative to the circumferential

stress. If the beam is loaded with forces (instead of pure moments) then additional stresses will

occur on radial planes.   Because the action is elastic, the principle of superposition applies and

the additional normal stresses can be added to the flexural stresses obtained in Eq. 4.10.
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Fig 4.3 Nonlinear stress distribution across cross section is a curved beam

The curved beam flexure formula is usually used when curvature of the member is

pronounced as in the cases of hooks and rings.  A rule of thumb, for rectangular cross sections

for which the ratio of radius of curvature to depth ( r /h) is >5, shows that the curved beam

flexure formula agrees well with experimental, elasticity, and numerical results.  If the flexure

formula used, a difference of 7% from the maximum stress determined from the curved beam

flexure formula can result at r /h=5.  As this ratio increases (i.e., at the beam becomes less

curved and more straight), the difference of the maximum stress calculated from the flexure

formula for the straight beam and the curved beam flexure formula becomes much less.

Fig. 4.4 Crane hook with rectangular cross section
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A common machine element problem involving curved beams is the crane hook shown

in Fig. 4.4.  In this problem, the load, F is 22,240 N, the cross sectional thickness, t=b=19.05

mm and the cross sectional width, h=W= is 101.6 mm.  Since A=bh, dA=bdr and from Eq. 4.6:
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From Figs 4.4a and 4.4b, ri=50.8 mm, ro=152.4 mm, and A=5161.3 mm2.

Substituting the appropriate values into Eq. 4.11 gives R=92.5 mm.  The eccentricity,

e=(101.6-92.5)=9.1 mm.  Since the moment, M is positive such that M = F r  ( r  = radial
distance to the centroid where r  =(ro+ri)/2).

In the case, the axial force, F, superposes an axial stress on the bending stress such

that
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Substituting values of r from ri=50.8 mm to ro=152.4 mm results in the stress distribution

shown in Fig. 4.5 (in psi).  The stresses on the inner and radii are 116.5 MPa and -38.6 MPa,

respectively.  Note that if the flexure stress relations for an initially straight beam are used such

that:
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The maximum and minimum stresses are ±80.4 MPa.  A straight beam assumption thus

underpredicts the maximum tensile stress and overpredicts the maximum compressive stress.

Fig 4.5 Stress distribution across the cross section of a crane hook
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Unsymmetrical Bending

Another of the limitations of the usual development of beam bending equations is that

beams are assumed to have at least one longitudinal plane of symmetry and that the load is

applied in the plane of symmetry.  The beam bending equations can be extended to cover

pure bending (i.e., bent with bending moments only and no transverse forces) of 1) beams

with a plane of symmetry but with the load (couple) applied not in or parallel to the plane of

symmetry or 2) beams with no plane of symmetry.

Fig 4.6 depicts a beam of unsymmetrical cross section loaded with a couple, M, in a

plane making an angle, α , with the xy plane, where the origin of coordinates is at the centroid of

the cross section.  The neutral axis, which passes through the centroid for linearly elastic action
makes an unknown angle, β , with the z axis.  The beam is straight and of uniform cress section

and a plane cross section is assumed to remain plane after bending.  Note that the following

development is restricted to elastic action.

Since the orientation of the neutral axis is unknown, the usual flexural stress distribution
function (i.e., σ ε σ= =E c y c yc c( / ) ( / ) ) cannot be expressed in terms of one variable.  

Fig 4.6 Beam undergoing unsymmetrical bending

However, since the plane section remains plane, the stress variation can be written as:
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σ = +k y k z1 2 (4.14)

The resisting moments with respect to the z and y axes can be written as
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where I   Iy zand  are the moment of inertia of the cross sectional area with respect to the z and y

axes, respectively, and Iyz  is the product of inertia with respect to these two axes.  It will be

convenient to let the y and z axes be principal axes, Y and Z; then Iyz  is zero.  Equating the

applied moment to the resisting moment and solving for k  and k1 2  gives:
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Substituting the expressions for k given in Eq. 4.16 into Eq. 4.14 gives the elastic flexure

formula for unsymmetrical bending.

σ
α α

= Y +  Z          
M Mcos sin

I IZ Y

(4.17)

Since σ  is zero at the neutral axis, the orientation of the neutral axis is found by setting

Eq. 4.17 equal to zero, for which

cos sinα α
I IZ Y

Y = - Z          (4.18)

or

Y = -tan Z          α
I
I

Z

Y

(4.19)

where Y is the equation of the neutral axis in the YZ plane.  The slope of the line is the dY/dZ
and since dY/dZ= tanβ , the orientation of the neutral axis is given by the expression

tan = - tan           β α
I
I

Z

Y

(4.20)

The negative sign indicates that the angles, α  and β  are in adjacent quadrants.

Note that the neutral axis is not perpendicular to the plane of loading unless 1) the angle,

α , is zero, in which case the plane of loading is (or is parallel to) a principal angle, or 2) the two

principal moments of inertia are equal.  This reduces to the special kind of symmetry where all

centroidal moments of inertia are equal (e.g., square, rectangle, etc.)
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Composite Beams

The method of "fibre" stress calculation for basic beam bending is sufficiently general to

cover symmetrical beams composed of longitudinal elements (layers) of different materials.

However, for many real beams of two materials (often referred to as reinforced beams) a

method can be developed to allow the use of the elastic flexure formula, thus reducing the

computational labor involved.  Of course, the method is applicable to the elastic region only.

The assumption of plane sections remaining plane is still valid, provided that the

different materials are securely bonded together so as to give the necessary resistance to

longitudinal shearing stresses.  Therefore, the usual linear transverse distribution of longitudinal

strains is valid.

The beam shown in Fig. 4.7 is composed of a central portion of material A and two

outer layers of material B.  The beam will serve as the model for the development of the stress

distribution.  The section is assumed to be symmetrical with respect to the xy and xz planes

and the moment is applied in the xy plane.  As long as neither material is subjected to stresses

greater than the proportional limit stress, then Hooke's law applies and the strain relation is:

ε εb a=  b
a

       (4.21)

which, in terms of stress, becomes
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After rearranging, Eq. 4.22 becomes the relation for the stress distribution:
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From this relation, it is evident that the junction between the two materials where

distances a and b are equal, there is an abrupt change in the stress determined by the ratio,

n
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 , of the two elastic moduli (see Fig. 4.7).  Using Eq. 4.23, the normal force on a

differential end area of element B is given by the expression:
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where t is the thickness (width) of the beam at a distance b from the neutral surface.  The first

term in parentheses represents the linear stress distribution in a homogeneous material A.  The

second term in the parentheses may be interpreted  as the extended width  of the beam from
y=cA to y=cB if material B were replaced by material A, thus resulting in an equivalent or

transformed cross section for a beam of homogeneous material.  The transformed section is

obtained by replacing either material by an equivalent amount of the other material as

determined by the ratio, n, of their elastic moduli.  The method is not limited to two materials:

however the use of more than two materials in a beam might be unusual.  

Fig 4.7 Composite beam with two different materials


