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General Gibbs Minimization as an Approach to Equilibrium

Most of us have used the equilibrium constant approach to find equilibrium compositions for
simple systems.  This requires you to hypothesize equilibrium reactions.  While the approach can
be done by hand calculations, it has never been successfully generalized to large systems.  During
the late 1960's, researchers at NASA developed a general Gibbs minimization approach for finding
the equilibrium composition of arbitrarily large systems without the need to write equilibrium
reactions.  The algorithm is so successful that it has been adopted as the basis for most equilibrium
codes developed since.

While the equilibrium constant approach is well documented in almost every thermodynamics text,
the generalized Gibbs approach appears almost nowhere.  The NASA documentation (Gordon and
McBride, 1994) contains a complete but terse development which is fine if you already understand
the approach, but not very useful as a learning tool.  The goal of the writeup that follows is to take
the reader in some detail from thermodynamic first principles through to the method of application
of application of the Gibbs minimization approach.

1.0  General Theory

The general idea behind thermochemical equilibrium is that all spontaneous reactions occur in the
direction that increases the overall entropy of the universe (meaning both the system under
consideration and the surroundings that represent the rest of the universe).  When the composition
of the system arrives at a point where the total entropy for the system plus surroundings reaches a
maximum, it becomes "stuck" since movement in any direction in composition space involves an
entropy decrease, and thus cannot spontaneously occur without violating the second law.  Thus,
the equilibrium state we seek is this end state, which is reached by all spontaneously reacting
systems if given enough time.

There are several kinds of equilibrium problems.  A few of the more important ones are the
following:

• The system can be a box that is fixed in volume and is adiabatic.  In this case, as the
reactions progress, both the temperature and pressure within the box will change.  Thus,
both the final temperature and the pressure are unknowns and these are provided by the
solution.  This system is an idealization of what occurs in a calorimetry bomb.

• The system can be fixed in volume, but be in contact with an environment at a known
temperature.  As the reaction progresses, any energy released by the reaction will be carried
away as heat to keep the box at the same temperature.  The pressure will change in
response to the change in the total number of moles as the reaction progresses.  Thus, the
final temperature is known, but the final pressure is provided as part of the solution.

• The system can be adiabatic, but is allowed to expand or contract as the reaction progresses
to keep the pressure constant (e.g., an adiabatic piston/cylinder system).  In this case, the
final pressure is known but the final temperature is part of the solution.  Many common
combustion systems most closely approach this model, e.g., Bunsen burners, combustion
in boilers, gas turbine combustors.  In these systems the combustion is approximately
adiabatic and the pressure is constant (here the specific volume of the gas expands to
accommodate the increase in temperature and any changes in mole numbers).

• The system is a box that is in contact with an environment at a known temperature and the
volume expands or contracts to keep the pressure constant.  Here, both the final
temperature and pressure are known, and the box undergoes both a heat and work
interaction with the surroundings while the reaction progresses.  This case is important
when you know both the final temperature and pressure of a process and you are looking
for the corresponding equilibrium composition.  An example might be the composition at
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the tail pipe of a car, where you have measured the exhaust temperature and you know the
pressure is atmospheric.

We will focus on the latter case.  The approach for the others is similar.

The starting point is the increase in entropy principle, which says:

Sgen = ∆ssystem + ∆ssurroundings        (1)

For any spontaneous process, Sgen≥0.  Since the environment is assumed to be at a constant
temperature, ∆ssurroundings=q/T, where T is the temperature of the surroundings and q is the heat
flow into the surroundings (if you have forgotten why this is true, remember, this is the formal
definition of s).  This means that for any spontaneous process:

0 ≤ ∆ssystem + qsurroundings/Tsurroundings (2)

or in differential form: 0 ≤ dssystem + δqsurroundings/Tsurroundings

The differential first law for our box is:

δq - δw = du (3)

For a reversible process, the work term is Pdv.  From equation 2, q can be expressed as δqsystem≤
Tdssystem (note that we have changed our reference point for q from the surroundings to the system,
which involves a change of sign for q). Substituting these into the first law gives: Tds-Pdv ≥ du,
or

0 ≥ du+Pdv-Tds    (4)

Note that this equation holds for any of the four types of equilibrium systems noted above.  The
definition of Gibbs free energy is:

g≡u+Pv-Ts (5)

Taking the derivative, we get:

dg=du+Pdv+vdP-Tds-sdT (6)

We are following an equilibrium process that occurs at constant pressure and temperature (case 4
from above).  In this case, dP=dT=0, so the equation becomes:

dg=du+Pdv-Tds    (7)

Comparing this to equation 4, we see that for a spontaneous chemical reaction at constant T and P,
the change in Gibbs energy must be negative (i.e., a positive change violates the second law):

0 ≥ dg       (8)

This means that spontaneous reaction will occur at a fixed temperature and pressure until the Gibbs
free energy reaches a minimum point in composition space, and then it will become "stuck".  This
will be the equilibrium point.
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The Gibbs free energy is a function of pressure, temperature, and composition (i.e., the moles of
the various components that are present, e.g., H2O, CO2, etc.).  This functionality can be formally
written as:

g=g(T,P,N1,N2,...NNS)        (9)

Here, Nj is the number of moles of species j in the box, and the index NS is the total number of
species in the system.  Taking the total derivative of g gives:
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Here the summation is over all the species present.  Since T and P are fixed, these terms drop out.
This leaves our equilibrium condition as:

dg dNj
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Here µj is the chemical potential, which is defined as:
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The chemical potential can be thought of as the change of Gibbs free energy of a mixture caused by
the addition of a differential amount of species j when the T, P, and other mole numbers are held
constant.  For ideal gases, this is the Gibbs free energy of the individual species since they do not
interact in a mixture:

gj = uj+Pvj-Tsj = hj - Tsj      (13)

Now we can expand h in terms of enthalpy of formation and also expand s to express the pressure
correction for ideal gases:
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Here, hf j,

0  is the enthalpy of formation at 298 K, hj is the enthalpy at the target temperature, hj,0 is

the enthalpy at 298 K, sj

0 is the 1 atm entropy at the target temperature, R is the gas constant, Pj is
the partial pressure of the component, and P0 is 1 atm (all of these are simple look-up values from
standard thermodynamics tables).  It is usually customary to separate out the properties that depend
just on temperature, so:
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Next, we define:
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g h h h Tsj f j j j j
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We also split up the pressure term as follows:
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Here, P is the system pressure and N is the total number of moles in the system.  This leads us to
an operational equation for calculating gj:
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(18)

If you know T and P, you can get g*, and the only unknowns are the mole numbers of species j
and the total number of moles in the system.  Substituting this into equation 11 gives us the
operational equation for the minimization:
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This is the point of departure for the equilibrium constant approach.  In that approach, an
equilibrium reaction is hypothesized, and this is used to reduce all the dNj to one variable, which is
then divided into the zero.  The resulting equation contains (within the gj terms) the variables Nj
and N.  Using algebraic manipulation and atom balances, the Nj and N terms are reduced to a
single variable, which is solved (this approach is detailed in most standard thermodynamics texts,
e.g., Çengal and Boles (1998), and is not discussed further here).  This approach is essentially
impossible to execute for complex systems, so we move to the general Gibbs minimization
approach which is the basis for all the equilibrium codes.

2.0  Solution via Lagrange Multipliers

It is key to recognize that the Nj in equation 19 are not independent variables.  They are constrained
such that the number of moles of each element in the system must remain constant (i.e., if you start
with 4 moles of oxygen atoms, this must stay constant as the reaction progresses).  These
constraint equations are best developed by example. Assume a system starts with 1 mole CO2 and
2 moles H2O (for a total of 4 moles of O-atom going in).  We assume the equilibrium mixture
contains CO2, H2O, OH and O2.  The constraint equation for oxygen atoms is an expression of the
fact that there must be 4 moles of O-atom in the products:

4  =  2NCO2 + NH2O + NOH + 2NO2    (20)

One approach to such constrained optimization problems is the method of Lagrange (or
undetermined) multipliers.  (A simple application of the approach is to constrain a cylinder to
contain a certain volume, and find the length and diameter dimensions that minimize the total
external surface area.)

We start by generalizing the constraint condition as:
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Here, bi is the number of moles of element i in the system, and ai,j is number of atoms of element i
in one molecule of species j (e.g., there are 2 atoms of O in one molecule of CO2, so ai,j=2).  There
will be one of these equations for each element in the system (i=1,2,…NE), where NE is the total
number of elements in the system).  If we generalize these equations as functions:

0 1 2= ϕ i NSN N N( , ,... )     (22)

Here we have one constraint equation for each element.  We can take the total derivative of this:
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Now we make a linear combination of equation 23 (one for each element) with the differential dg
from equation 10 (with the P and T derivatives already set to 0):
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The λi’s can be anything, and we define them such that all the bracketed terms simultaneously go
to zero (but we do not yet have any way of calculating their values yet):
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According to the discussion following equation 12, the "g" differential is just gj.  The terms
involving the constraint equations are obtained by differentiating equation 21:

λ ∂ϕ
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Substituting into equation 25 yields:
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This gives a system of “j” equations (equation 27), one for each species.  We also have "i"
constraint equations, one for each element:

0
1

= −
=

∑a N bi j

j

NS

j i, (21)



6

Finally, we have the condition that the total number of moles in the system must equal the sum of
the individual mole numbers:

0
1
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=

∑N Nj

j

NS

          (28)

Equations 21, 27, and 28 form a system of NS+NE+1 equations.  Note that gj is defined by
equation 18 and it contains the unknowns Nj and N.  Thus the unknowns are the Nj (there are NS
of these), the λ i (there are NE of these), and N.  Thus, the number of unknowns match the number
of equations and we have a closed algebraic system.  Note that it is not necessary to hypothesize
any equilibrium reactions; all you need to do is specify the species you expect to appear in your
system and you can find the equilibrium solution.

3.0  Numerical Solution

The approach used by the code is to solve equations 21, 27, and 28 via a Newton Raphson method
for non-linear equations.  The method is outlined by Press et al. (1986).  This involves some art in
addition to the mathematics.

We search for the zeros of a function f:

0=f(x1,x2,…xN) = f(X) (29)

To do this we first expand f as a Taylor series:
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Next, you neglect the higher-order terms.  We are looking for the point where f(X)=0, so you
want to choose your corrections (δxi) such f(X+δX)à0.  Setting the left side of equation 30 to
zero, you obtain:
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The idea is that you have a system of f equations (N in number) and equation 31 then expands into
a matrix whose solution yields the correction values (δxi).  These are then applied to the original
estimates:

xnew = xold + δx       (32)

The process is repeated until you converge.  Now we enter into the art part of the problem.  First,
we take equation 27 and expand to open up the gj term:
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Next, we divide by RT to non-dimensionalize the equation:
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To apply equation 31 in as linear a way as possible, we choose non-linear correction variables.
These are ∆lnNj, ∆lnN, and πi=-(λ i/RT).1  This makes the derivatives in equation 31 become:
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Substituting these into equation 31 yields:2
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There will be one of these equations for each species (j=1,2,…NS).  Next we go after equation 21.
Here we rewrite the equation in terms of lnNj:
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The derivative from equation 31 becomes:
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Substituting into equation 31 yields:

a N N b a Ni j j j
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(39)

We will have one of these equations for each element (i=1,2,…NE).  Finally, we turn to equation
28.  Again, we convert this to a log variable:

                                                
1 The question is why do we not use ∆πi?  This is a very subtle point that is more art than science.  It is argued
(Gordon and McBride, 1994) that the iterations are uninfluenced by starting each new iteration with the Lagrange
multipliers set equal to zero.  Thus, πi=∆πi for each iteration.  This will influence the form of equation 36.
2 Note that the right side of equation 36 would normally contain the summation of ai,jπi, but since πi=0 at the start
of each iteration, these terms drop out (see footnote 1).
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Taking the derivatives in equation 31 yields:
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So substituting these equations into equation 31 yields:
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There will be one of these equations.  Equations 36, 39, and 41 can be collected together into a
matrix format.  This is illustrated by an example in which the system contains 5 species and 3
elements:

1 0 0 0 0 -a11 -a21 -a31 -1 ∆lnN1 -g1/RT
0 1 0 0 0 -a12 -a22 -a32 -1 ∆lnN2 -g2/RT
0 0 1 0 0 -a13 -a23 -a33 -1 ∆lnN3 -g3/RT
0 0 0 1 0 -a14 -a24 -a34 -1 ∆lnN4      = -g4/RT
0 0 0 0 1 -a15 -a25 -a35 -1 ∆lnN5 -g5/RT
a11N1 a12N2 a13N3 a14N4 a15N5 0 0 0 0 π1 b1°
a21N1 a22N2 a23N3 a24N4 a25N5 0 0 0 0 π2 b2°
a31N1 a32N2 a33N3 a34N4 a35N5 0 0 0 0 π3 b3°
N1 N2 N3 N4 N5 0 0 0 -N ∆lnN N°

Here:

b b a Ni i i j
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∑
So the approach is to make reasonable initial guesses for Nj, calculate the gj's from equation 18
(knowing P and T), solve the matrix for the correction factors, and use the correction factors to get
the revised values of Nj.  The process is repeated with, as mentioned in the footnotes, πi reset to
zero for each iteration.

4.0  A Slick Numerical Trick

The difficulty here is that practical calculations for hydrocarbon air systems can involve the order
of 70 species and 4 elements, resulting in a 75x75 matrix.  The sparseness of the upper left corner
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of the matrix suggests that substitution may result in a smaller number of more complex equations
to solve (also, as the systems grow, this sparse region becomes most of the matrix).  With the
following substitution, we can reduce this monster matrix to one that is NE+1 in size.

We start by solving equation 36 for ∆lnNj:

∆ ∆ln ln ,N N a
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This is substituted into equation 39 in place of the ∆lnNj term:
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We recognize that the i that appears in the first and last summation terms, and the bi relates to the
equation itself, while the i in the middle summation term is actually summed.  Calling the
unsummed i (the equation index) as k, and rearranging gives:
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There will be k=1,2,…,NE of these equations.  We also make the same substitution of equation 42
into equation 41:
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Rearranging this to put the correction variables on the left side yields:
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There will be one of these equations.  Equations 44 and 46 can be cast into a matrix form as shown
above, although now the matrix will be (NE+1)x(NE+1) in size and the solution vector will be:
(π1, π2,…, πNE, ∆lnN).

The solution procedure is as follows.  First, you make an initial guess for Nj and N.  (The solution
procedure is very robust, and the standard crude initial guesses are N=0.1, and Nj=0.1/NS.  (NNS
is usually set a little off from the others in value to prevent a zero divide problem in the first
iteration.  From this convergence is almost always quickly achieved.)  You use these, along with
the known T and P to calculate gj from equations 16 and 18.  You solve the matrix represented by
equations 44 and 46 to get the correction vector, (π1, π2,…, πNE, ∆lnN).  Next, you use the values
from the correction vector to calculate ∆lnNj using equation 42.  Then you correct each of the
variables:

lnNj,new = lnNj,old + e∆lnNj   (47a)

lnNnew = lnNold + e∆lnN (47b)
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You iterate until you locate the equilibrium point.  The factor "e" is a self-adjusting underrelaxation
parameter (it varies between 0 and 1).  If e=1, the solution may numerically diverge for poor initial
guesses, so e is calculated via an empirical procedure outlined in Gordon and McBride (1994) that
is based on the existing N and Nj.  In practice, e is much less than 1 at the start of a calculation and
it reaches 1 as the problem approaches convergence.

The value e is calculated as follows:

Assign a parameter SIZE=-ln10-8.  Then define a parameter:

e
N N j

1

2

5
=

max( ln , ln )∆ ∆
(48)

For those species where ln(Nj/N)≤-SIZE, and ∆lnNj≥0, find a second parameter:

e

N

N
N N

j

j

2

9 2103404
=

− −

−
min

ln .

ln ln∆ ∆
  (49)

Finally:

e=min(1, e1, e2) (50)
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