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2
Review of Force, Stress, and Strain Tensors

2.1  The Force Vector

Forces can be grouped into two broad categories: surface forces and body forces. 
Surface forces are those that act over a surface (as the name implies), and result 
from direct physical contact between two bodies. In contrast, body forces are 
those that act at a distance, and do not result from direct physical contact 
of one body with another. The force of gravity is the most common type of 
body force. In this chapter we are primarily concerned with surface forces, 
the effects of body forces (such as the weight of a structure) will be ignored.

A force is a three-dimensional (3D) vector. A force is defined by a magni-
tude and a line of action. In SI units, the magnitude of a force is expressed in 
Newtons, abbreviated N, whereas in English units the magnitude of a force is 
expressed in pounds-force, abbreviated lbf. A force vector F  acting at a point 
P and referenced to a right-handed x−y−z coordinate system is shown in 
Figure 2.1. Components of F  acting parallel to the x−y−z coordinate axes, Fx, 
Fy, and Fz, respectively, are also shown in the figure. The algebraic sign of 
each force component is defined in accordance with the algebraically posi-
tive direction of the corresponding coordinate axis. All force components 
shown in Figure 2.1 are algebraically positive, as each component “points” in 
the corresponding positive coordinate direction.

The reader is likely to have encountered several different ways of express-
ing force vectors in a mathematical sense. Three methods will be described 
here. The first is called vector notation, and involves the use of unit vectors. 
Unit vectors parallel to the x-, y-, and z-coordinate axes are typically labeled 
î ,  ĵ , and k̂ , respectively, and by definition have a magnitude equal to unity. 
A force vector F  is written in vector notation as follows:

	 F F i F j F kx y z= + +ˆ ˆ ˆ
	 (2.1)

The magnitude of the force is given by

	 F F F Fx y z= + +2 2 2

	 (2.2)
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42 Structural Analysis of Polymeric Composite Materials

A second method of defining a force vector is through the use of indicial 
notation. In this case, a subscript is used to denote individual components of 
the vectoral quantity:

	 F F F Fx y z= ( , , ) 	

The subscript denotes the coordinate direction of each force component. 
One of the advantages of indicial notation is that it allows a shorthand nota-
tion to be used, as follows:

	 F F i x y zi= =, , ,where   or 	 (2.3)

Note that a range has been explicitly specified for the subscript “i” in 
Equation 2.3. That is, it is explicitly stated that the subscript i may take on 
values of x, y, or z. Usually, however, the range of a subscript(s) is not stated 
explicitly but rather is implied. For example, Equation 2.3 is normally written 
simply as

	 F Fi= 	

where it is understood that the subscript i takes on values of x, y, and z.
The third approach is called matrix notation. In this case, individual 

components of the force vector are listed within braces in the form of a 
column array:
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F
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(2.4)
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Figure 2.1
A force vector F  acting at point P. Force components Fx, Fy, and Fz acting parallel to the x–y–z 
coordinate axes, respectively, are also shown.
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43Review of Force, Stress, and Strain Tensors

Indicial notation is sometimes combined with matrix notation as follows:

	 F Fi= { } 	 (2.5)

2.2  Transformation of a Force Vector

One of the most common requirements in the study of mechanics is the need 
to describe a vector in more than one coordinate system. For example, sup-
pose all components of a force vector Fi are known in one coordinate system 
(the x−y−z coordinate system, say) and it is desired to express this force vec-
tor in a second coordinate system (the x′−y′−z′ coordinate system, say). To 
describe the force vector in the new coordinate system, we must calculate the 
components of the force parallel to the x′, y′, and z′ axes—that is, we must cal-
culate Fx′, Fy′, and Fz′. The process of relating force components in one coordi-
nate system to those in another coordinate system is called transformation of 
the force vector. This terminology is perhaps unfortunate, in the sense that 
the force vector itself is not “transformed” but rather our description of the 
force vector transforms as we change from one coordinate system to another.

It can be shown [1,2] that the force components in the x′−y′−z′ coordinate 
system (Fx′, Fy′, and Fz′) are related to the components in x−y−z coordinate 
system (Fx, Fy, Fz) according to:

	

F c F c F c F

F c F c F c F

F c F

x x x x x y y x z z

y y x x y y y y z z

z z x x

’ ’ ’ ’

’ ’ ’ ’

’ ’

= + +

= + +

= ++ +c F c Fz y y z z z’ ’ 	

(2.6a)

The terms ci′j that appear in Equation 2.6a are called direction cosines, and 
are to equal the cosine of the angle between the axes of the new and original 
coordinate systems. An angle of rotation is defined from the original x−y−z 
coordinate system to the new x′−y′−z′ coordinate system. The algebraic sign of 
the angle of rotation is defined in accordance with the right-hand rule.

Equation 2.6a can be succinctly written using the summation convention 
as follows:

	 F c Fi i j j’ ’= 	 (2.6b)

Alternatively, these three equations can be written using matrix notation as
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(2.6c)
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44 Structural Analysis of Polymeric Composite Materials

Note that although values of individual force components vary as we 
change from one coordinate system to another, the magnitude of the force 
vector (given by Equation 2.2) does not. The magnitude is independent of the 
coordinate system used, and is called an invariant of the force tensor.

Direction cosines relate unit vectors in the “new” and “old” coordinate sys-
tems. For example, a unit vector directed along the x′-axis (i.e., unit vector ˆ ’i ) 
is related to unit vectors in the x−y−z coordinate system as follows:

	
ˆ ’ ˆ ˆ ˆ

’ ’ ’i c i c j c kx x x y x z= + +   	
(2.7)

As ˆ ’i  is a unit vector, then in accordance with Equation 2.2:

	 ( ) ( ) ( )’ ’ ’c c cx x x y x z
2 2 2 1+ + = 	 (2.8)

To this point we have referred to a force as a vector. A force vector can also 
be called a force tensor. The term “tensor” refers to any quantity that trans-
forms in a physically meaningful way from one Cartesian coordinate system 
to another. The rank of a tensor equals the number of subscripts that must be 
used to describe the tensor. A force can be described using a single subscript, 
Fi, and therefore a force is said to be a tensor of rank one, or equivalently, a first-
order tensor. Equation 2.6 is called the transformation law for a first-order tensor.

It is likely that the reader is already familiar with two other tensors: the 
stress tensor, σij, and the strain tensor, εij. The stress and strain tensors will be 
reviewed later in this chapter, but at this point it can be noted that two sub-
scripts are used to describe stress and strain tensors. Hence, stress and strain 
tensors are said to be tensors of rank two, or equivalently, second-order tensors.

Example Problem 2.1

Given: All components of a force vector F are known in a given x−y−z 
coordinate system. It is desired to express this force in a new x″−y″−z″ 
coordinate system, where the x″−y″−z″ system is generated from the 
original x−y−z system by the following two rotations (see Figure 2.2):

•	 A rotation of θ-degrees about the original z-axis (which defines 
an intermediate x′−y′−z′ coordinate system), followed by

•	 A rotation of β-degrees about the x′-axis (which defines the 
final x″−y″−z″ coordinate system)

Problem

	 a.	 Determine the direction cosines ci″ j relating the original x−y−z 
coordinate system to the new x″−y″−z″ coordinate system.

	 b.	 Obtain a general expression for the force vector F in the x″−y″−z″ 
coordinate system.
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45Review of Force, Stress, and Strain Tensors

	 c.	 Calculate numerical values of the force vector F in the x″−y″−z″ 
coordinate system if θ = −20°, β = 60°, and Fx = 1000 N, Fy = 200 N, 
Fz = 600 N.

Solution

	 a.	 One way to determine direction cosines ci″ j is to rotate unit 
vectors. In this approach unit vectors are first rotated from the 
original x−y−z coordinate system to the intermediate x′−y′−z′ 
coordinate system, and then from the x′−y′−z′ system to the 
final x″−y″−z″ coordinate system.

		    Define a unit vector I  that is aligned with the x-axis:

	 I i≡ ( )1 �

		  That is, vector I  is a vector for which Ix = 1, Iy = 0, and Iz = 0. The 
vector I  can be rotated to the intermediate x′−y′−z′ coordinate 
system using Equation 2.6:

+x

+y

+z , +z′

+x′(a)

(b) +x′, +x′′

+y′′

+z′ +z′′

+θ

+θ

+θ

+β

+β

+β

+y′

+y′

Figure 2.2
Generation of the x″–y″–z″ coordinate system from the x–y–z coordinate system. (a) Rotation of 
θ-degrees about the original z-axis (which defines an intermediate x′–y′–z′ coordinate system); 
(b) rotation of β-degrees about the x′-axis (which defines the final x″–y″–z″ coordinate system).
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46 Structural Analysis of Polymeric Composite Materials

	 I c I c I c Ix x x x x y y x z z’ ’ ’ ’= + + 	

	 I c I c I c Iy y x x y y y y z z’ ’ ’ ’= + +

	 I c I c I c Iz z x x z y y z z z’ ’ ’ ’= + +

		  The direction cosines associated with a transformation from 
the x−y−z coordinate system to the intermediate x′−y′−z′ coordi-
nate system can be determined by inspection (see Figure 2.2a), 
and are given by

c x x

c

x x

x y

’

’

cos= =

=

cosine(angle between ’- and -axes)

cosine(

θ

aangle between ’- and -axes)

cosine(

x y

cx z

= ° − =

=

cos( ) sin

’

90 θ θ

aangle between ’- and -axes)

cosine(angle

x z

cy x

= ° =

=

cos( )

’

90 0

  between the ’- and -axes)

cosine(

y x

cy y

= ° + = −

=

cos( ) sin

’

90 θ θ

aangle between the ’- and -axes) cos 

cosine(angle 

y y

cy z

=

=

θ

’ bbetween the ’- and -axes)

cosine(angle b

y z

cz x

= ° =

=

cos( )

’

90 0

eetween the ’- and -axes)

cosine(angle be

z x

cz y

= ° =

=

cos( )

’

90 0

ttween the ’- and -axes)

cosine(angle bet

z y

cz z

= ° =

=

cos( )

’

90 0

wween the ’- and -axes)z z = ° =cos( )0 1

Using these direction cosines:

	

I c I c I c Ix x x x x y y x z z’ ’ ’ ’ (cos )( ) (sin )( ) ( )( ) cos= + + = + + =  θ θ θ1 0 0 0

II c I c I c Iy y x x y y y y z z’ ’ ’ ’ ( sin )( ) (cos )( ) ( )( ) sin= + + = − + + = −θ θ1 0 0 0 θθ

I c I c I c Iz z x x z y y z z z’ ’ ’ ’ ( )( ) ( )( ) ( )( )= + + = + + =0 1 0 0 1 0 0

Therefore, in the x′−y′−z′ coordinate system, the vector I  is written:

	 I i j= −(cos ) sinθ θ� �′ ′+ ( )

Now define two additional unit vectors, one aligned with the 
original y-axis (vector J ) and one aligned with the original 
z-axis (vector K ); that is, let J j= ( )1  � and K k= ( )1  � . Transforming 
these vectors to the x′−y′−z′ coordinate system, again using the 
direction cosines listed above, results in

	 J i j= (sin ) cosθ θ� �′ ′+ ( ) 	
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	 K k= ( ) ’1  �

		  We now rotate vectors I , J  and K  from the intermediate x′−y′−z′ 
coordinate system to the final x″−y″−z″ coordinate system. The 
direction cosines associated with a transformation from the 
x′−y′−z′ coordinate system to the final x″−y″−z″ coordinate sys-
tem are easily determined by inspection (see Figure 2.2b) and 
are given by

	

c c c

c c c

c c

x x x y x z

y x y y y z

z x z

″ ′ ″ ′ ″ ′

″ ′ ″ ′ ″ ′

″ ′ ″

= = =

= = =

=

1 0 0

0

0

cos sinβ β

yy z zc′ ″ ′= − =sin cosβ β 	

		  These direction cosines together with Equation 2.6 can be used 
to rotate the vector I  from the intermediate x′−y′−z′ coordinate 
system to the final x″−y″−z″ coordinate system:

I c I c I c Ix x x x x y y x z z″ ″ ′ ′ ″ ′ ′ ″ ′ ′= + + = + − +( )(cos ) ( )( sin ) ( )( )1 0 0 0θ θ

IIx″ = cos θ

	

I c I c I c Iy y x x y y y y z z″ ″ ′ ′ ″ ′ ′ ″ ′ ′= + + = + − +( )(cos ) (cos )( sin ) (si0 θ β θ nn )( )

cos sin

β

β θ

0

Iy″ = −  

I c I c I c Iz z x x z y y z z z″ ″ ′ ′ ″ ′ ′ ″ ′ ′= + + = + − − +( )(cos ) ( sin )( sin ) (c0 θ β θ oos )( )

sin sin

β

β θ

0

Iz″ =  

		  Therefore, in the final x″−y″−z″ coordinate system, the vector I  
is written:

	 I i j k= + − +(cos ) ( cos sin ) (sin sin )θ β θ β θ� � �″ ″ ″  	 (a)

		  Recall that in the original x−y−z coordinate system I  is simply a 
unit vector aligned with the original x-axis: I i≡ ( )1  �. Therefore, 
result (a) defines the direction cosines associated with the angle 
between the original x-axis and the final x″-, y″-, and z″-axes. 
That is

	

c

c

c

x x

y x

z x

″

″

″

  

  sin

 sin

=

= −

=
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θ

β θ
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	 A similar procedure is used to rotate the unit vectors J  and K  
from the intermediate x′−y′−z′ coordinate system to the final 
x″−y″−z″ coordinate system. These rotations result in

	 J i j k= + + −(sin ) (cos cos ) ( sin )      cos θ β θ β θ� � �″ ″ ″ 	 (b)

	 K i j k= + +( ) (sin ) (cos )0 � � �″ ″ ″β β 	 (c)

	 As vector J  is a unit vector aligned with the original 

y J j-axis, = ( )1 �, result (b) defines the direction cosines associ-
ated with the angle between the original y-axis and the final x″-, 
y″-, and z″-axes:

	

c

c

c

x y

y y

z y

″

″

″

=

=
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sin

 cos

 cos

θ

β θ

β θ

cos

sin

	 Finally, result (c) defines the direction cosines associated with 
the angle between the original z-axis and the final x″-, y″-, and 
z″-axes:

	

c

c

c

x z

y z

z z
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=

=

=

0
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β

βcos

	 Assembling the preceding results, the set of direction cosines 
relating the original x−y−z coordinate system to the final 
x″−y″−z″ coordinate system can be written:
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	 b.	 As direction cosines have been determined, transformation 
of force vector F can be accomplished using any version of 
Equation 2.6. For example, using matrix notation, Equation 2.6c:
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	 c.	 Using the specified numerical values and the results of part (b):
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.

	 Using vector notation, F can now be expressed in the two dif-
ferent coordinate systems as

	 F N i N j N k= + +(10 )  (2 )  ( )00 00 600ˆ ˆ ˆ

or, equivalently

	 F N i N j N k= + + −(873.1 (784.6 ) ( 159.0 )) � � �″ ″ ″

	 Where ˆ, ˆ, ˆi j k   and ˆ , ˆ , ˆi j k″ ″ ″   are unit vectors in the x−y−z and 
x″−y″−z″ coordinate systems, respectively. Force vector F 
drawn in the x−y−z and x″−y″−z″ coordinate systems is shown 
in Figure 2.3a and b, respectively. The two descriptions of F are 
entirely equivalent. A convenient way of (partially) verifying 
this equivalence is to calculate the magnitude of the original 
and transformed force vectors. As the magnitude is an invari-
ant, it is independent of the coordinate system used to describe 
the force vector. Using Equation 2.2, the magnitude of the force 
vector in the x−y−z coordinate system is

F F F F N N N Nx y z= + + = + + =2 2 2 2 2 21000 200 600 1183( ) ( ) ( )

	 The magnitude of the force vector in the x″−y″−z″ coordinate 
system is

	

F F F F N N Nx y z= ( ) + ( ) + ( ) = + + −

=

″ ″ ″
2 2 2 2 2 2871 3 784 6 159 0

1183

( . ) ( . ) ( . )

NN   (agrees)
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2.3 N ormal Forces, Shear Forces, and Free-Body Diagrams

Force F  acting at an angle to a planar surface is shown in Figure 2.4. As force 
is a vector, it can always be decomposed into two force components, a normal 
force component and a shear force component. The line-of-action of the nor-
mal force component is orthogonal to the surface, whereas the line-of-action 
of the shear force component is tangent to the surface.

Internal forces induced within a solid body by externally applied forces can 
be investigated with the aid of free-body diagrams. A simple example is shown in 
Figure 2.5, which shows a straight circular rod with constant diameter subjected 
to two external forces of equal magnitude (R) but opposite direction. The inter-
nal force (FI , say) induced at any cross-section of the rod can be investigated by 
making an imaginary cut along the plane of interest. Suppose an imaginary cut 
is made along plane a–a–a–a, which is perpendicular to the axis of the rod. The 
resulting free-body diagram for the lower half of the rod is shown in Figure 2.5a, 
where a x−y−z coordinate system has been assigned such that the x-axis is parallel 
to the rod axis, as shown. On the basis of this free-body diagram, it is concluded 
that an internal force F R i j kI = + +( ) ( ) ( )0 0� � �  is induced at cross-section a–a. That 

+x
(a)

(b) +x′′

+z′′
+y′′

Fx′′ = 871.3 N

Fz′′ = –159.0 N

Fy′′ = 784.6 N

+y

+z

Fx = 1000 N

Fy = 200 N

Fz = 600 N

F

F

Figure 2.3
Force vector F  drawn in two different coordinate systems. (a) Force vector F  in the original 
x−y−z coordinate system; (b) force vector F  in a new x″−y″−z″ coordinate system.
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is, only a normal force of magnitude R is induced at cross-section a–a–a–a, which 
has been defined to be perpendicular to the axis of the rod.

In contrast, the imaginary cut need not be made perpendicular to the axis 
of the rod. Suppose the imaginary cut is made along plane b–b–b–b, which 
is inclined at an angle of +θ with respect to the axis of the rod. The resulting 

Normal force
component

Planar surface
Shear force
component

F

Figure 2.4
A force F  acting at an angle to a planar surface.

R

R

R +x
+x′

+y′

+y +z,+z′

+θ

+θ
R cos θ

+θ
R cos θ

RR

a

b

a

a

b

b
a

a

b

a
a

a

(a)

(b)

R

R

+x

+y +z

Figure 2.5
The use of free-body diagrams to determine internal forces acting on planes a−a−a−a and b−b−
b−b. (a) Free-body diagram based on plane a−a−a−a, perpendicular to rod axis; (b) free-body 
diagram based on plane b−b−b−b, inclined at angle +θ to the rod axis.
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free-body diagram for the lower half of the rod is shown in Figure 2.5b. 
A  new x′−y′−z′ coordinate system has been assigned so that the x′-axis is 
perpendicular to plane b–b–b–b and the z′-axis is coincident with the z-axis, 
that is, the x′−y′−z′ coordinate system is generated from the x−y−z coordinate 
system by a rotation of +θ about the original z-axis. The internal force FI  can 
be expressed with respect to the x′−y′−z′ coordinate system by transforming 
FI  from the x−y−z coordinate system to the x′−y′−z′ coordinate system.

This coordinate transformation is a special case of the transformation 
considered in Example Problem 2.1. The direction cosines now become (with 
β = 0°):
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Applying Equation 2.6, we have
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In the x′−y′−z′ coordinate system the internal force is F R iI = ′−( cos )θ �
( sin ) ( )R j kθ ′+ ′� �0 . Hence, by defining a coordinate system which is inclined 
to the axis of the rod, we conclude that both a normal force (R cos θ) and a 
shear force (−R sin θ) are induced in the rod.

Although the preceding discussion may seem simplistic, it has been 
included to demonstrate the following:

A specific coordinate system must be specified before a force vector can be 
defined in a mathematical sense. In general, the coordinate system is defined 
by the imaginary cut(s) used to form the free-body diagram.

All components of a force must be specified to fully define the force vector. 
Further, the individual components of a force change as the vector is trans-
formed from one coordinate system to another.

These two observations are valid for all tensors, not just for force vectors. 
In particular, these observations hold in the case of stress and strain tensors, 
which will be reviewed in the following sections.

2.4  Definition of Stress

There are two fundamental types of stress: normal stress and shear stress. Both 
types of stress are defined as a force divided by the area over which it acts.
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53Review of Force, Stress, and Strain Tensors

A general 3D solid body subjected to a system of external forces is shown 
in Figure 2.6a. It is assumed that the body is in static equilibrium, that is, it 
is assumed that the sum of all external forces is zero, ΣFi = 0. These external 
forces induce internal forces acting within the body. In general, the internal 
forces will vary in both magnitude and direction throughout the body. An 
illustration of the variation of internal forces along a single line within an inter-
nal plane is shown in Figure 2.6b. A small area (ΔA) isolated from this plane is 
shown in Figure 2.6c. Area ΔA is assumed to be “infinitesimally small.” That 

F1

F5

(a)

(b)

(c)

F4

F3

F4

F3

F4

F5

F5

Internal forces
along a single line

ΔAN

V

F3

F2

Figure 2.6
A solid 3-D body in equilibrium. (a) A solid 3-D body subject to external forces F F1 5→ ; 
(b) variation of internal forces along an internal line; (c) internal force acting over infinitesimal 
area ΔA.
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54 Structural Analysis of Polymeric Composite Materials

is, the area ΔA is small enough such that the internal forces acting over ΔA can 
be assumed to be of constant magnitude and direction. Therefore, the internal 
forces acting over ΔA can be represented by a force vector which can be decom-
posed into a normal force, N, and a shear force, V, as shown in Figure 2.6c.

Normal stress (usually denoted “σ”), and shear stress (usually denoted “τ”) 
are defined as the force per unit area acting perpendicular and tangent to the 
area ΔA, respectively. That is,

	
σ τ≡ ≡

→ →
lim lim
∆ ∆∆ ∆A A

N
A

V
A0 0 	

(2.9)

Note that by definition the area ΔA shrinks to zero: ΔA → 0. Stresses σ 
and τ are therefore said to exist “at a point.” As internal forces generally 
vary from point-to-point (as shown in Figure 2.6), stresses also vary from 
point-to-point.

Stress has units of force per unit area. In SI units stress is reported in terms 
of “Pascals” (abbreviated “Pa”), where 1 Pa = 1 N/m2. In English units stress 
is reported in terms of pounds-force per square inch (abbreviated “psi”), that 
is, 1 psi = 1 lbf/in.2 Conversion factors between the two systems of measure-
ment are 1 psi = 6895 Pa, or equivalently, 1 Pa = 0.1450 × 10−3 psi. Common 
abbreviations used throughout this chapter are as follows:

1 × 103 Pa = 1 kilo-Pascals = 1 kPa	 1 × 103 psi = 1 kilo-psi = 1 ksi
1 × 106 Pa = 1 Mega-Pascals = 1 MPa	 1 × 106 psi = 1 mega-psi = 1 Msi
1 × 109 Pa = 1 Giga-Pascals = 1 GPa.

2.5  The Stress Tensor

A general 3D solid body subjected to a system of external forces is shown 
in Figure 2.7a. It is assumed that the body is in static equilibrium and that 
body forces are negligible, that is, is it assumed that the sum of all external 
forces is zero, ΣFi = 0 . A free-body diagram of an infinitesimally small cube 
removed from the body is shown in Figure 2.7b. The cube is referenced to 
a x−y−z coordinate system, and the cube edges are aligned with these axes. 
The lengths of the cube edges are denoted dx, dy, and dz. Although (in gen-
eral) internal forces are induced over all six faces of the cube, for clarity the 
forces acting on only three faces have been shown.

The force acting over each cube face can be decomposed into a normal 
force component and two shear force components, as illustrated in Figure 
2.7c. Although each force component could be identified with a single sub-
script (as force is a first-order tensor), for convenience two subscripts have 
been used. The first subscript identifies the face over which the force is dis-
tributed, whereas the second subscript identifies the direction in which the 
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force is oriented. For example, Nxx refers to a normal force component which 
is distributed over the x-face and which is acting parallel to the x-direction. 
Similarly, Vzy refers to a shear force distributed over the z-face which is acting 
parallel to the y-direction.

Three stress components can now be defined for each cube face, in accor-
dance with Equation 2.9. For example, for the three faces of the infinitesimal 
element shown in Figure 2.7:

Stresses acting on the -x-face:

	
σ τ τxx

y z

xx
xy

y z
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Stresses acting on the −y-face:
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Figure 2.7
Free-body diagrams used to define stress induced in a solid body. (a) 3-D solid body in equilib-
rium; (b) infinitesimal cube removed from the solid body (internal forces acting on three faces 
shown); (c) normal force and two shear forces act over each face of the cube; (d) normal stress 
and two shear stresses act over each face of the cube.
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Stresses acting on the +z-face:

	
σ τ τzz

x y
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x y
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As three force components (and therefore three stress components) exist 
on each of the six faces of the cube, it would initially appear that there are 18 
independent force (stress) components. However, it is easily shown that for 
static equilibrium to be maintained (assuming body forces are negligible):

•	 Normal forces acting on opposite faces of the infinitesimal element 
must be of equal magnitude and opposite direction.

•	 Shear forces acting within a plane of the element must be orientated 
either “tip-to-tip” (e.g., forces Vxz and Vzx in Figure 2.7c) or “tail-to-
tail” (e.g., forces Vxy and Vyx), and be of equal magnitude. That is 
|Vxy| = |Vyx|, |Vxz| = |Vzx|, |Vyz| = |Vzy|.

These restrictions reduce the number of independent force (stress) compo-
nents from 18 to 6, as follows:

We must next define the algebraic sign convention we will use to describe 
individual stress components. The components acting on three faces of an 
infinitesimal element are shown in Figure 2.8. We first associate an algebraic 
sign with each face of the infinitesimal element. A cube face is positive if the 
outward unit normal of the face (i.e., the unit normal pointing away from the 
interior of the element) points in a positive coordinate direction; otherwise, 
the face is negative. For example, faces (ABCD) and (ADEG) in Figure 2.8 are 
a positive faces, whereas face (DCFE) is a negative face.

Having identified the positive and negative faces of the element, a stress 
component is positive if

•	 The stress component acts on a positive face and points in a positive 
coordinate direction, or if

•	 The stress component acts on a negative face and points in a negative 
coordinate direction.

If neither of these conditions are met, then the stress component is neg-
ative. This convention can be used to confirm that all stress components 

Independent Force 
Component(s)

Corresponding 
Stress Component(s)

Nxx σxx

Nyy σyy

Nzz σzz

Vxy (=Vyx) τxy(= τyx)
Vxz (=Vzx) τxz(= τzx)
Vyz (=Vzy) τyz(= τzy)
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shown in Figure 2.8 are algebraically positive. For example, to determine the 
algebraic sign of the normal stress σxx which acts on face ABCD in Figure 
2.8, note that (a) face ABCD is positive, and (b) the normal stress σxx which 
acts on this face points in the positive x-direction. Therefore, σxx is positive. 
As a second example, the shear stress τyz which acts on cube face DCFE is 
positive because (a) face DCFE is a negative face, and (b) τyz points in the 
negative z-direction.

The preceding discussion shows that the state of stress at a point is defined by 
six components of stress: three normal stress components and three shear stress 
components. The state of stress is written using matrix notation as follows:
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(2.10)

To express the state of stress using indicial notation we must first make the 
following change in notation:
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Figure 2.8
An infinitesimal stress element (all stress components shown in a positive sense).
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With this change the matrix on the left side of the equality sign in Equation 
2.10 becomes:

	

σ τ τ
τ σ τ
τ τ σ
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σ σ σ
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Which can be succinctly written using indicial notation as

	 σij i j x y z, , , ,=   or 	 (2.11)

In Section 2.1 it was noted that a force vector is a first-order tensor, as only 
one subscript is required to describe a force tensor, Fi. From Equation 2.11 is 
it clear that stress is a second-order tensor (or equivalently, a tensor of rank two), 
as two subscripts are required to describe a state of stress.

Example Problem 2.2

Given: The stress element referenced to a x−y−z coordinate system and 
subject to the stress components shown in Figure 2.9.
Determine: Label all stress components, including algebraic sign.

Solution

The magnitude and algebraic sign of each stress component is deter-
mined using the sign convention defined above. The procedure will 
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Figure 2.9
Stress components acting on an infinitesimal element (all stresses in MPa).
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be illustrated using the stress components acting on face DCFE. 
First, note that face DCFE is a negative face, as an outward unit nor-
mal for this face points in the negative y-direction. The normal stress 
which acts on face DCFE has a magnitude of 50 MPa, and points in 
the positive y-direction. Hence, this stress component is negative and 
is labeled σyy = −50 MPa. One of the shear stress components acting 
on face DCFE has a magnitude of 75 MPa, and points in the positive 
x-direction. Hence, this stress component is also negative and is labeled 
τyx = −75 MPa (or equivalently, τxy = −75 MPa). Finally, the second shear 
force component acting on face DCFE has a magnitude of 50 MPa, and 
points in the positive z-direction. Hence, this component is labeled 
τyz = −50 MPa (or equivalently, τzy = −50 MPa).

Following this process for all faces of the element, the state of stress 
represented by the element shown in Figure 2.9 can be written:
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2.6  Transformation of the Stress Tensor

In Section 2.5 the stress tensor was defined using a free-body diagram of an 
infinitesimal element removed from a 3D body in static equilibrium. This 
concept is again illustrated in Figure 2.10a, which shows the stress element 
referenced to an x−y−z coordinate system.

Now, the infinitesimal element need not be removed in the orientation 
shown in Figure 2.10a. An infinitesimal element removed from precisely the 
same point within the body but at a different orientation is shown in Figure 
2.10b. This stress element is referenced to a new x′−y′−z′ coordinate system. 
The state of stress at the point of interest is dictated by the external loads 
applied to the body, and is independent of the coordinate system used to 
describe it. Hence, the stress tensor referenced to the x′−y′−z′ coordinate sys-
tem is equivalent to the stress tensor referenced to the x−y−z coordinate sys-
tem, although the direction and magnitude of individual stress components 
will differ.

The process of relating stress components in one coordinate system to 
those in another is called transformation of the stress tensor. This terminol-
ogy is perhaps unfortunate, in the sense that the state of stress itself is not 
“transformed” but rather our description of the state of stress transforms as 
we change from one coordinate system to another.
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It can be shown [1,2] that the stress components in the new x′−y′−z′ 
coordinate system (σi′ j′) are related to the components in the original x−y−z 
coordinate system (σij) according to

	 σ σi j i k j l klc c i j k l x y z’ ’ ’ ’ , , , , ,= =  where  	 (2.12a)

Or, equivalently (using matrix notation):

	 [ ] [ ][ ][ ]’ ’ ’ ’σ σi j i j ij i j
Tc c=

F1
F2

+x
σxx

σyyσzz

σx′x′

σy′y′

σz′z′

τx′z′

τxy
τy′x′

τy′z′τz′y′

τz′x′

τxy

τzx

τzy

τxz
τyx

τyz

+y

+z

F3

F4

(a)

(b)

F1
F2

+x′

+z′

+y′

F3

F4

F5

F5

Figure 2.10
Infinitesimal elements removed from the same point within a 3D solid but in two different ori-
entations. (a) Infinitesimal element referenced to the x−y−z coordinate system; (b) infinitesimal 
element referenced to the x′−y′−z′ coordinate system.
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where [ci′ j]T is the transpose of the direction cosine array. Writing in full 
matrix form:
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(2.12b)

As discussed in Section 2.2, the terms ci′ j which appear in Equation 2.12a,b 
are direction cosines and equal the cosine of the angle between the axes of 
the x−y−z and x′−y′−z′ coordinate systems. Recall that the algebraic sign of 
an angle of rotation is defined in accordance with the right-hand rule, and 
that angles are defined from the x−y−z coordinate system to x′−y′−z′ coordi-
nate system. Equation 2.12a,b is called the transformation law for a second-
order tensor.

If an analysis is being performed with the aid of a digital computer, which 
nowadays is almost always the case, then matrix notation (Equation 2.12b) 
will most likely be used to transform a stress tensor from one coordinate sys-
tem to another. Conversely, if a stress transformation is to be accomplished 
using hand calculations, then indicial notation (Equation 2.12a) may be the 
preferred choice. To apply Equation 2.12a, the stress component of interest is 
specified by selecting the appropriate values for subscripts i′ and j′, and then 
the terms on the right side of the equality are summed over the entire range 
of the remaining two subscripts, k and l. For example, suppose we wish write 
the relationship between σx′ z′ and the stress components in the x−y−z coor-
dinate system in expanded form. We first specify that i′ = x′ and j′ = z′, and 
Equation 2.12a becomes:

	 σ σx z x k z l klc c k l x y’ ’ ’ ’ , , ,= =  where z

We then sum all terms on the right side of the equality formed by cycling 
through the entire range of k and l. In expanded form, we have

	

σ σ σ σx z x x z x xx x x z y xy x x z z xzc c c c c c’ ’ ’ ’ ’ ’ ’ ’= + +      

           ++ + +

+

c c c c c c

c

x y z x yx x y z y yy x y z z yz

x

’ ’ ’ ’ ’ ’

’

      

           

σ σ σ

zz z x zx x z z y zy x z z z zzc c c c c      ’ ’ ’ ’ ’σ σ σ+ + 	 (2.13)
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Equations 2.12a and 2.12b show that the value of any individual stress com-
ponent σi′j′ varies as the stress tensor is transformed from one coordinate 
system to another. However, it can be shown [1,2] that there are features of 
the total stress tensor that do not vary when the tensor is transformed from 
one coordinate system to another. These features are called the stress invari-
ants. For a second-order tensor three independent stress invariants exist, and 
are defined as follows:

	 First stress invariant = =Θ σii � (2.14a)

	
Second stress invariant = = −Φ 1

2
( )σ σ σ σii jj ij ij

	
(2.14b)

 
Third stress invariant = = − +Ψ 1

6
3 2(σ σ σ σ σ σ σ σ σii jj kk ii jk jk ij jk kii )

	
(2.14c)

Alternatively, by expanding these equations over the range i,j,k = x,y,z and 
simplifying, the stress invariants can be written:

	 First stress invariant = = + +Θ σ σ σxx yy zz 	 (2.15a)

	
Second stress invariant = = + + − + +Φ σ σ σ σ σ σ σ σxx yy xx zz yy zz xy xz( 2 2 σσyz

2 )
	

(2.15b)

	

Thirdstress invariant  = = − − −

+

Ψ σ σ σ σ σ σ σ σ σxx yy zz xx yz yy xz zz xy
2 2 2

22σ σ σxy xz yz 	(2.15c)

The three stress invariants are conceptually similar to the magnitude of a 
force tensor. That is, the value of the three stress invariants is independent 
of the coordinate used to describe the stress tensor, just as the magnitude of 
a force vector is independent of the coordinate system used to describe the 
force. This invariance will be illustrated in the following Example Problem.

Example Problem 2.3

Given: A state of stress referenced to a x−y−z coordinate is known to be
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It is desired to express this state of stress in an x″−y″−z″ coordinate sys-
tem, generated by the following two sequential rotations:

	 i.	 Rotation of θ = 20° about the original z-axis (which defines an 
intermediate x′−y′−z′ coordinate system), followed by

	 ii.	 Rotation of β = 35° about the x′-axis (which defines the final 
x″−y″−z″ coordinate system)

Problem

	 a.	 Rotate the stress tensor to the x″−y″−z″ coordinate system.
	 b.	 Calculate the first, second, and third invariants of the stress 

tensor using (i) elements of the stress tensor referenced to the 
x−y−z coordinate system, σij, and (ii) elements of the stress ten-
sor referenced to the x″−y″−z″ coordinate system, σi″ j″.

Solution

	 a.	 General expressions for direction cosines relating the x−y−z and 
x″−y″−z″coordinate systems were determined as a part of Example 
Problem 2.1. The direction cosines were found to be

	

c

c

c

c

c

c

x x

x y

x z

y x

y y

y z

″

″

″

″

″
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=
=

=
= −

=
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β θ

β θ

sin 

0

 sin

 cos

==

=
= −

=

sin

sin

sin

cos

β

β θ
β θ

β

c

c

c

z x

z y

z z

″

″

″

 sin

 cos

 

	 As in this problem θ = 20° and β = 35°, the numerical values of 
the direction cosines are

	

c

c

c

c

x x

x y

x z

y x

″

″

″

″

= ° =
= ° =

=
= −

cos( ) .

sin( ) .

cos(

20 0 9397

20 0 3420

0

3

 

55 20 0 2802

35 20 0 7698

° ° = −

= ° ° =

=

)sin( ) .

cos( )cos( ) .

sin(

 

c

c
y y

y z

″

″ 335 0 5736

35 20 0 1962

35

° =

= ° ° =
= − °

) .

sin( )sin( ) .

sin( )cos(

c

c
z x

z y

″

″ 220 0 5390

35 0 8192

° = −

= ° =

) .

cos( ) .cz z″
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	 Each component of the transformed stress tensor is now found 
through application of either Equation 2.12a or 2.12b. For exam-
ple, if indicial notation is used stress component σx″ z″ can be 
found using Equation 2.13:

	

σ σ σ σx z x x z x xx x x z y xy x x z z xzc c c c c c″ ″ ″ ″ ″ ″ ″ ″= + +      

           ++ + +

+

       

            

c c c c c c

c

x y z x yx x y z y yy x y z z yz″ ″ ″ ″ ″ ″σ σ σ

xx z z x zx x z z y zy x z z z zzc c c c c″ ″ ″ ″ ″ ″      σ σ σ+ +

	
σx z″ ″ = + − −

+

( . )( . ( ( . )( . (

(

0 9397 0 1962 50 0 9397 0 5390 10

0

) ksi) ) ksi)

.. )( . (

( . ( . ( ( . )(

9397 0 8192 15

0 3420 0 1962 10 0 3420

) ksi)

 ) ) ksi)+ − + −−

+

+

0 5390 25

0 3420 0 8192 30

0 0 1962 15

. (

( . )( . (

( ( . (

) ksi)

) ksi)

 ) ) ksii) ksi ksi+ − + −( )( . )( ) ( )( . )( )0 0 5390 30 0 0 8192 5

	 σx z″ ″ = 28 95. ksi

	 Alternatively, if matrix notation is used, then Equation 2.12b 
becomes:

			 
σ σ σ
σ σ σ
σ σ σ

x x x y x z

y x y y y z

z x z y z z

″ ″ ″ ″ ″ ″

″ ″ ″ ″ ″ ″

″ ″ ″ ″ ″ ″

















=
0.99397 0 3420 0
0 2802 0 7698 0 5736
0 1962 0 5390 0 8192

.
. . .
. . .

−
−

















−
−

−

















×
−

50 10 15
10 25 30
15 30 5

0 9397 0 2802 0 1962
0 342
. . .
. 00 0 7698 0 5390
0 0 5736 0 8192

. .

. .
−

















	 Completing the matrix multiplication indicated, there results:

	

σ σ σ
σ σ σ
σ σ σ

x x x y x z

y x y y y z

z x z y z z

″ ″ ″ ″ ″ ″

″ ″ ″ ″ ″ ″

″ ″ ″ ″ ″ ″

















=
40.. . .
. . .
. . .

(
65 1 113 28 95

1 113 43 08 10 60
28 95 10 60 13 72

−
− −
















kksi)

	 Notice that the value of σx″ z″ determined through matrix multi-
plication is identical to that obtained using indicial notation, as 
previously described. The stress element is shown in the origi-
nal and final coordinate systems in Figure 2.11.

	 b.	 The first, second, and third stress invariants will now be 
calculated using components of both σij and σi″j″. It is expected 
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that identical values will be obtained, as the stress invariants 
are independent of coordinate system.

	 First Stress Invariant:
	 x−y−z coordinate system:

	

Θ

Θ

Θ

= = + +

= + −( )°

= °

σ σ σ σii xx yy zz

5 25 5 ksi

7 ksi

0

0

	 x″−y″−z″ coordinate system:

	

Θ

Θ

Θ

= = + +

= + −

=

σ σ σ σi i x x y y z z″ ″ ″ ″ ″ ″ ″ ″

( . . . )40 65 43 08 13 72

70ksi

	 As expected, the first stress invariant is independent of coordi-
nate system.

	 Second Stress Invariant:
	 x−y−z coordinate system:

	
Φ = −( ) = + + − + +( )1

2
2 2 2σ σ σ σ σ σ σ σ σ σ σ σ σii jj ij ij xx yy xx zz yy zz xy xz yz

+x

+y

+z

253030155

10

1015

50(a) (b)

40.65

1.113

10.60

+y′′

+x′′

+z′′

13.72 28.95

1.113

43.08

10.60

28.95

Figure 2.11
Stress tensor of Example Problem 2.3, referenced to two different coordinate systems (magni-
tude of all stress components in ksi). (a) Referenced to x−y−z coordinate system; (b) referenced 
to x″−y″−z″ coordinate system.
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Φ = + − + −{ − − + + }( )( ) ( )( ) ( )( ) [( ) ( ) ( ) ] ( )50 25 50 5 25 5 10 15 302 2 2 2ksi

	 Φ = −350 2( )ksi

	 x″−y″−z″ coordinate system:

	
Φ = −( )1

2
σ σ σ σi i j j i j i j″ ″ ″ ″ ″ ″ ″ ″

	
Φ = + + − + +( )σ σ σ σ σ σ σ σ σx x y y x x z z y y z z x y x z y z″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″

2 2 2

	

Φ = + − + −{
−

( . )( . ) ( . )( . ) ( . )( . )

[( . )

40 65 43 08 40 65 13 72 43 08 13 72

1 113 22 2 2 228 95 10 60+ + − }( . ) ( . ) ] ( )ksi

	 Φ = −350 2( )ksi

	 As expected, the second stress invariant is independent of coor-
dinate system.

Third Stress Invariant:

	 x−y−z coordinate system:

	
Ψ = − +( )1

6
3 2σ σ σ σ σ σ σ σ σii jj kk ii jk jk ij jk ki

	 Ψ = − − − +σ σ σ σ σ σ σ σ σ σ σ σxx yy zz xx yz yy xz zz xy xy xz yz
2 2 2 2

	
Ψ = − − − − − − + −[( )( )( ) ( )( ) ( )( ) ( )( ) ( )( )(50 25 5 50 30 25 15 5 10 2 10 152 2 2 330 3)]( )ksi

	 Ψ = −65375 3( )ksi

	 x″−y″−z″ coordinate system:

	
Ψ = − +( )1

6
3 2σ σ σ σ σ σ σ σ σi i j j k k i i j k j k i j j k k i″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″

	 Ψ = − − − +σ σ σ σ σ σ σ σ σ σx x y y z z x x y z y y x z z z x y x″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″
2 2 2 2 yy x z y z″ ″ ″ ″ ″σ σ
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Ψ = − − − −[( . )( . )( . ) ( . )( . ) ( . )( . )40 65 43 08 13 72 40 65 10 60 43 08 28 952 2

−− − + −( . )( . ) ( . )( . )( . )]( )13 72 1 113 2 1 113 28 95 10 602 3ksi

	 Ψ = −65375 3( )ksi

	 As expected, the third stress invariant is independent of coor-
dinate system.

2.7  Principal Stresses

It is always possible to rotate the stress tensor to a special coordinate sys-
tem in which no shear stresses exist. This coordinate system is called the 
principal stress coordinate system, and the normal stresses that exist in this 
coordinate system are called principal stresses. Principal stresses can be 
used to predict failure of isotropic materials. Therefore, knowledge of the 
principal stresses and orientation of the principal stress coordinate sys-
tem is of vital importance during design and analysis of isotropic metal 
structures.

This is not the case for anisotropic composite materials. Failure of compos-
ite material is not governed by principal stresses. Principal stresses are only 
of occasional interest to the composite engineer and are reviewed here only 
in the interests of completeness.

Principal stresses are usually denoted as σ1, σ2, and σ3. However, in the 
study of composites, the labels “1”, “2”, and “3” are used to label a special 
coordinate system called the principal material coordinate system. Therefore, 
in this chapter the axes associated with the principal stress coordinate sys-
tem will be labeled the “p1”, “p2”, and “p3” axes, and the principal stresses will 
be denoted as σp1, σp2, and σp3.

Principal stresses may be related to stress components in an x−y−z coor-
dinate system using the free-body diagram shown in Figure 2.12. It is 
assumed that plane ABC is one of the three principal planes (i.e., n = 1, 2, 
or 3), and therefore no shear stress exists on this plane. The line-of-action 
of principal stress σpn defines one axis of the principal stress coordinate 
system. The direction cosines between this principal axis and the x-, y-, 
and z-axes are cpnx, cpny, and cpnz, respectively. The surface area of triangle 
ABC is denoted AABC. The normal force acting over triangle ABC therefore 
equals (σpn)(AABC). The components of this normal force acting in the x-, y-, 
and z-directions equal (cpnx)(σpn)(AABC), (cpny)(σpn)(AABC) and (cpnz)(σpn)(AABC), 
respectively.
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The area of the other triangular faces are given by

Area of triangle ABD = (cpnx)(AABC)
Area of triangle ACD = (cpny)(AABC)
Area of triangle BCD = (cpnz)(AABC).

Summing forces in the x-direction and equating to zero, we obtain

	 c A c A c A c Apnx pn ABC xx pnx ABC xy pny ABC xz pnz ABCσ σ τ τ− − − = 0

which can be reduced and simplified to

	 ( )σ σ τ τpn xx pnx xy pny xz pnzc c c− − − = 0 	 (2.16a)

Similarly, summing forces in the y- and z-directions results in

	 − + − − =τ σ σ τxy pnx pn yy pny yz pnzc c c( ) 0 	 (2.16b)

	 − − + − =τ τ σ σxz pnx yz pny pn zz pnzc c c( ) 0 	 (2.16c)

Equation 2.16 represent three linear homogeneous equations which must 
be satisfied simultaneously. As direction cosines cpnx, cpny, and cpnz must also 
satisfy Equation 2.8, and therefore cannot all equal zero, the solution can be 
obtained by requiring that the determinant of the coefficients of cpnx, cpny, and 
cpnz equal zero:

	

( )
( )

( )

σ σ τ τ
τ σ σ τ
τ τ σ σ

pn xx xy xz

xy pn yy yz

xz yz pn zz

− − −
− − −
− − −

= 0

+x

+y

+z

C

D
B

A

σzz

σyy

σxx

τzx

τyx

τyz
τxz

τxy

τzy
σpn

Figure 2.12
Free-body diagram used to relate strress components in the x−y−z coordinate system to a prin-
cipal stress.
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Equating the determinant to zero results in the following cubic equation:

	 σ σ σpn pn pn
3 2 0− + − =Θ Φ Ψ 	 (2.17)

where Θ, Φ, and Ψ are the first, second, and third stress invariants, respec-
tively, and have been previously listed as Equations 2.14 and 2.15. The 
three roots of this cubic equation represent the three principal stresses 
and may be found by application of the standard approach [3]. By con-
vention, the principal stresses are numbered such that σp1 is the algebra-
ically greatest principal stress, whereas σp3 is the algebraically least. That 
is, σp1 > σp2 > σp3.

Once the principal stresses are determined the three sets of direction 
cosines (which define the principal coordinate directions) are found by sub-
stituting the three principal stresses given by Equation 2.17 into Equation 
2.16 in turn. As only two of Equation 2.16 are independent, Equation 2.8 is 
used as a third independent equation involving the three unknown con-
stants, cpnx, cpny}, and cpnz.

The process of finding principal stresses and direction cosines will be 
demonstrated in the following Example Problem.

Example Problem 2.4

Given: A state of stress referenced to an x−y−z coordinate is known to be:

	

σ σ σ
σ σ σ
σ σ σ

xx xy xz

yx yy yz

zx zy zz

















=
−

−
−

50 10 15
10 25 30
15 30 5
















( )ksi

Problem

Find (a) the principal stresses and (b) the direction cosines that define the 
principal stress coordinate system.

Solution

This is the same stress tensor considered in Example Problem 2.3. As a 
part of that problem the first, second, and third stress invariants were 
found to be

	 Θ = 7 ksi0

	 Φ = −350 2( )ksi

	 Ψ = −65375 3( )ksi
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	 a.	 Determining the Principal Stresses: In accordance with Equation 
2.17, the three principal stresses are the roots of the following 
cubic equation:

	 σ σ σ3 270 350 65375 0− − + =

	 The three roots of this equation represent the three principal 
stresses, and are given by

	 σ σ σp p p1 2 354 21 43 51 27 72= = = −. . .ksi, ksi, and ksi

	 b.	 Determining the Direction Cosines: The first two of Equations 2.16 
and 2.8 are used to form three independent equations in three 
unknowns. We have

	 ( )σ σ τ τpn xx pnx xy pny xz pnzc c c− − − = 0

	 − + − − =τ σ σ τxy pnx pn yy pny yz pnzc c c( ) 0

	 ( ) ( ) ( )c c cpnx pny pnz
2 2 2 1+ + =

	 Direction cosines for σp1: The three independent equations 
become:

	 ( . )54 21 50 10 15 01 1 1− + − =c c cp x p y p z

	 10 54 21 25 30 01 1 1c c cp x p y p z+ − − =( . )

	 ( ) ( ) ( )c c cp x p y p z1
2

1
2

1
2 1+ + =

	 Solving simultaneously, we obtain:

	 cp x1 0 9726= − .

	 cp y1 0 1666= .

	 cp z1 0 1620= − .

	 Direction cosines for σp2: The three independent equations become:

	 ( . )43 51 50 10 15 02 2 2− + − =c c cp x p y p z

	 10 43 51 25 30 02 2 2c c cp x p y p z+ − − =( . )

	 ( ) ( ) ( )c c cp x p y p z2
2

2
2

2
2 1+ + =
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	 Solving simultaneously, we obtain

	 cp x2 0 05466= − .

	 cp y2 0 8416= − .

	 cp z2 0 5738= − .

	 Direction cosines for σp3: The three independent equations become:

	 ( . )− − + − =27 72 50 10 15 03 3 3c c cp x p y p z

	 10 27 72 25 30 03 3 3c c cp x p y p z+ − − − =( . )

	 ( ) ( ) ( )c c cp x p y p z3
2

3
2

3
2 1+ + =

	 Solving simultaneously, we obtain:

	 cp x3 0 8276= − .

	 cp y3 0 2259= .

	 cp z3 0 5138= .

2.8  Plane Stress

A stress tensor is always defined by six components of stress: three normal 
stress components and three shear stress components. However, in practice 
a state of stress is often encountered in which the magnitudes of three stress 
components in one coordinate direction are known to be zero a priori. For 
example, suppose σzz = τxz = τyz = 0, as shown in Figure 2.13a. As the three 
remaining nonzero stress components (σxx, σyy, and τxy), all lie within the x–y 
plane, such a condition is called a state of plane stress. Plane stress condi-
tions occur most often because of the geometry of the structure of interest. 
Specifically, the plane stress condition usually exists in relatively thin, plate-
like structures. Examples include the web of an I-beam, the body panel of 
an automobile, or the skin of an airplane fuselage. In these instances the 
stresses induced normal to the plane of the structure are very small com-
pared with those induced within the plane of the structure. Hence, the small 
out-of-plane stresses are assumed to be zero, and attention is focused on the 
relatively high stress components acting within the plane of the structure.
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As laminated composites are often used in the form of thin plates or shells, 
the plane stress assumption is widely applicable in composite structures and 
will be used throughout most of the analyses discussed in this book. As the 
out-of-plane stresses are negligibly small, for convenience an infinitesimal 
stress element subjected to plane stress will usually be drawn as a square 
rather than a cube, as shown in Figure 2.13b.

Results discussed in earlier sections for general 3D state of stress will now 
be specialized for the plane stress condition. It will be assumed that the 
nonzero stresses lie in the x–y plane (i.e., σzz = τxz = τyz = 0). This allows the 
remaining components of stress to be written in the form of a column array, 
rather than a 3×3 array:

	

σ τ
τ σ

σ
σ
τ

xx xy

xy yy

xx

yy

xy

0
0

0 0 0

















→
















+x

+x

+y

σxx

σxx

σyy

σxx

σyy

σyy

τxy

τxy

τxy

τyx

+z

(a)

(b)

+y

Figure 2.13
Stress elements subjected to a state of plane stress. (a) 3-D stress element subjected to a plane 
stress state (all stress components shown in a positive sense); (b) plane stress element drawn 
as a square rather than a cube (positive z-axis out of the plane of the figure; all stress compo-
nents shown in a positive sense).
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Note that when a plane stress state is described, stress appears to be a 
first-order tensor, as (apparently) only three components of stress (σxx, 
σyy,  and τxy) need be specified to describe the state of stress. This is, of 
course, not the case. Stress is a second-order tensor in all instances, and 
six components of stress must always be specified to define a state of stress. 
When we invoke the plane stress assumption, we have simply assumed a 
priori that the magnitude of three stress components (σzz, τxz, and τyz) are 
zero.

Recall that either Equation 2.12a or Equation 2.12b governs the transfor-
mation of a stress tensor from one coordinate system to another. Equation 
2.12b is repeated here for convenience:

 	

σ σ σ
σ σ σ
σ σ σ

x x x y x z

y x y y y z

z x z y z z

xc′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

















=
′′ ′ ′

′ ′ ′

′ ′ ′

x x y x z

y x y y y z

z x z y z z

xx xy xz

yx

c c
c c c
c c c

















σ σ σ
σ σyyy yz

zx zy zz

x x y x z x

x y y y z y

x z y z

c c c
c c c
c c

σ
σ σ σ

















×
′ ′ ′

′ ′ ′

′ ′ ccz z′















 	

(2.12b) (repeated)

When transformation of a plane stress tensor is considered, it will be 
assumed that the x′−y′−z′ coordinate system is generated from the x−y−z sys-
tem by a rotation θ about the z-axis. That is, the z- and z′-axes are coincident, 
as shown in Figure 2.14. In this case, the direction cosines are

	

c

c

c

c

x x

x y

x z

y x

′

′

′

′

=

= ° − =

= ° =

=

cos( )

cos( ) sin( )

cos( )

cos(

θ

θ θ90

90 0

900

90 0

90 0

° + = −

=

= ° =

= ° =

θ θ

θ

) sin( )

cos( )

cos( )

cos( )

c

c

c

c

y y

y z

z x

z

′

′

′

′yy

z zc

= ° =

= ° =

cos( )

cos( )

90 0

0 1′

If we now (a) substitute these direction cosines into Equation 2.12b, 
(b)  label the shear stresses using the symbol using “τ” rather “σ,” 
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and  (c)  note that σzz = τxz = τyz = 0 by assumption, then Equation 2.12b 
becomes:

	

σ τ τ
τ σ τ
τ τ σ

x x x y x z

y x y y y z

z x z y z z

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

















=
coss sin
sin cos

θ θ
θ θ

σ τ
τ σ

0
0

0 0 1

0
0

0 0 0
−

































xx xy

yx yy

××
−















cos sin
sin cos

θ θ
θ θ

0
0

0 0 1

+x

+x

+y

+y

(a)

(b)

σxx

τxy

τxy

σyy

σxx

σyy

σy′y′

+x′

+y′

σx′x′

σx′x′

+θ

+θ
σy′y′

τx′y′

τx′y′

Figure 2.14
Transformation of a plane stress element from one coordinate system to another. (a) Plane 
stress element referenced to the x−y−z coordinate system; (b) plane stress element referenced 
to the x′−y′−z′ coordinate system, oriented θ-degrees counter-clockwise from the x−y−z coor-
dinate system.
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Completing the matrix multiplication indicated results in:

σ τ τ
τ σ τ
τ τ σ

x x x y x z

y x y y y z

z x z y z z

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

















=
coss sin cos sin cos sin cos sin (cos2 2 2θσ θσ θ θτ θ θσ θ θσxx yy xy xx yy+ + − + + 22 2

2 2

0θ θ τ
θ θσ θ θσ θ θ τ

−
− + + −

sin )
cos sin cos sin (cos sin ) sin

xy

xx yy xy
22 2 2 0

0 0 0
θσ θσ θ θτxx yy xy+ −

















cos cos sin

	
(2.18)

As would be expected, the out-of-plane stresses are zero: σz′z′ = τx′z′ =τy′z′ =0. 
The remaining stress components are

  

σ θ σ θ σ θ θ τ

σ θ σ

x x xx yy xy

y y

’ ’

’ ’

cos ( ) sin ( ) cos( )sin( )

sin ( )

= + +

=

2 2

2

2

xxx yy xy

x y xx

+ −

= − +

cos ( ) cos( )sin( )

cos( )sin( ) cos(’ ’

2 2θ σ θ θ τ

τ θ θ σ θθ θ σ θ θ τ)sin( ) [cos ( ) sin ( )]yy xy+ −2 2

	

(2.19)

Equation 2.19 can be written using matrix notation as

  

σ
σ
τ

θ θ θ θx x

y y

x y

’ ’

’ ’

’ ’

cos ( ) sin ( ) cos( )sin( )
sin (

















=

2 2

2

2
θθ θ θ θ

θ θ θ θ θ
) cos ( ) cos( )sin( )

cos( )sin( ) cos( )sin( ) cos ( ) s

2

2

2−
− − iin ( )2 θ

σ
σ
τ

































xx

yy

xy 	

(2.20)

It should be kept in mind that these results are valid only for a state of plane 
stress. More precisely, Equations 2.19 and 2.20 represent stress transforma-
tions within the x–y plane, and are only valid if the z-axis is a principal stress axis.

The 3×3 array that appears in Equation 2.20 is called the transformation 
matrix, and is abbreviated as [T]:

	

[ ]
cos ( ) sin ( ) cos( )sin( )
sin ( ) cos ( ) cos( )sin(T = −

2 2

2 2

2
2

θ θ θ θ
θ θ θ θ))

cos( )sin( ) cos( )sin( ) cos ( ) sin ( )− −















θ θ θ θ θ θ2 2

	

(2.21)

The stress invariants (given by Equation 2.14 or 2.15) are considerably sim-
plified in the case of plane stress. Since by definition σzz = τxz = τyz = 0, the 
stress invariants become:

K13483_C002.indd   75 9/13/2012   11:04:49 AM



76 Structural Analysis of Polymeric Composite Materials

	 First stress invariant = Θ = σxx + σyy

	 Second stress invariant    = = −Φ σ σ τxx yy xy
2

	 (2.22)

	 Third stress invariant = Ψ = 0

The principal stresses equal the roots of the cubic equation previously 
listed as Equation 2.17. In the case of plane stress, this cubic equation becomes 
(since Ψ = 0):

	 σ σ σ3 2 0− + =Θ Φ 	 (2.23)

Obviously, one root of Equation 2.23 is σ = 0. This root corresponds to σzz, 
and for present purposes will be labeled σp3 even though it may not be the 
algebraically least principal stress. Thus, in the case of plane stress the z-axis 
is a principal stress direction, and σzz = σp3 = 0 is one of the three principal 
stresses. As the three principal stress directions are orthogonal, this implies 
that the remaining two principal stress directions must lie within the x−y 
plane.

Removing the known root from Equation 2.23, we have the following qua-
dratic equation:

	 σ σ2 0− + =Θ Φ 	 (2.24)

The two roots of this quadratic equation are found using the standard 
approach [3], and are given by

	
σ σp p1 2

1
2

42, = ± −



Θ Θ Φ

	
(2.25)

Substituting Equation 2.22 into 2.25 and simplifying, there results:

	
σ σ

σ σ σ σ
τp p

xx yy xx yy
xy1 2 2 2

2
2, =

+
±

−





+
	

(2.26)

The angle θp between the x-axis and either the p1 or p2 axis is given by

	
θ

τ
σ σp

xy

xx yy
=

−






1
2

2
arctan

	
(2.27)
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Example Problem 2.5

Given: The plane stress element shown in Figure 2.15a.

Problem

	 a.	 Rotate the stress element to a new coordinate system oriented 
15° clockwise from the x-axis, and redraw the stress element 
with all stress components properly oriented.

+x

+y

70 MPa

50 MPa

(a)

(b)

(c)

15 MPa 15 MPa

50 MPa

70 MPa

91.3 MPa

99.6 MPa

14.6 MPa

99.6 MPa
+y

14.6 MPa +p1

+p2

31°

29.6 MPa

6.32 MPa

6.32 MPa

29.6 MPa

91.3 MPa

+y

+y′

+x′

15°

Figure 2.15
Plane stress elements associated with Example Problem 2.5. (a) Plane stress element in the 
x-y coordinate system; (b) plane stress element in the x′-y′ coordinate system; (c) plane stress 
element in the principal stress coordinate system.
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	 b.	 Determine the principal stresses and principal stress coordi-
nate system, and redraw the stress element with the principal 
stress components properly oriented.

Solution

	 a.	 The following components of stress are implied by the stress ele-
ment shown (note that the shear stress is algebraically negative, 
in accordance with the sign convention discussed in Section 2.5):

	

σ

σ

τ

xx

yy

xy

=

=

= −

70

15

50

MPa

MPa

MPa
	

		  The stress element is to be rotated clockwise. That is, the +x′-axis 
is rotated away from the +y-axis. Applying the right-hand rule 
it is clear that this is a negative rotation:

	 θ = − °15

		  Equation 2.20 becomes:

σ
σ
τ

x x

y y

x y

’ ’

’ ’

’ ’

cos ( ) sin ( ) cos( )si















=
− ° − ° − °2 215 15 2 15 nn( )

sin ( ) cos ( ) cos( )sin( )
cos( )

− °
− ° − ° − − ° − °

− − °

15
15 15 2 15 15

15

2 2

ssin( ) cos( )sin( ) cos ( ) sin ( )− ° − ° − ° − ° − − °
















15 15 15 15 152 2 

×
−

















70
15
50

σ
σ
τ

x x

y y

x y

’ ’

’ ’

’ ’

. . .

. .

















=
−0 9330 0 0670 0 5000

0 0670 0 9330 0..
. . .

.
5000

0 2500 0 2500 0 8660

70
15
50

91 3

−















 −

















= −66 32
29 6
.
.−
















MPa

		  The rotated stress element is shown in Figure 2.15b.

	 b.	 The principal stresses are found through application of 
Equation 2.26:

	
σ σp p1 2

2
270 15

2
70 15

2
50 42 5 57 1, ( ) . .= + ± −





+ − = ±    MPa
	

	 σp1 99 6= . MPa 	

	 σp2 14 6= − . MPa	
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		  The orientation of the principal stress coordinate system is 
given by Equation 2.27:

	
θp = −

−






= − °1
2

2 50
70 15

31arctan
( )

		  Since θp is negative, the +p1-axis is oriented 31° clockwise from 
the x-axis. The stress element is shown in the principal stress 
coordinate system in Figure 2.15c.

2.9  Definition of Strain

All materials deform to some extent when subjected to external forces and/or 
environmental changes. In essence, the state of strain is a measure of the mag-
nitude and orientation of the deformations induced by these effects. As in 
the case of stress, there are two types of strain: normal strain and shear strain.

The two types of strain can be visualized using the strain element shown 
in Figure 2.16. Imagine that a perfect square has been drawn on a flat sur-
face of interest. Initially, angle ∠ABC is exactly π/2 radians (i.e., initially 
∠ABC = 90°), and sides AB and BC are of exactly equal lengths. Now suppose 
that some mechanism(s) causes the surface to deform. The mechanism(s) 
which cause the surface to deform need not be defined at this point, but 
might be external loading (i.e., stresses), a change in temperature, and/or (in 
the case of polymeric-based materials such as composites) the adsorption or 
desorption of water molecules. In any event, as the surface is deformed the 
initially square element drawn on the surface is deformed as well. As shown 
in Figure 2.16, point A moves to point A′, and point C moves to point C′. It is 

Original
element

+x

+y C B

A

C′′

A′′A′

C′

Deformed
element

Figure 2.16
2-D element used to illustrate normal and shear strains (deformations are shown greatly 
exaggerated for clarity).
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assumed that the element remains a parallelogram, that is, it is assumed that 
sides A′B and C′B remain straight lines after deformation. This assumption 
is valid if the element is infinitesimally small. In the present context “infinitesi-
mally small” implies that lengths AB and CB are small enough such that the 
deformed element may be treated as a parallelogram.

Normal strain εxx is defined as the change in length of AB divided by the 
original length of AB:

	
εxx

AB
AB

= ∆
	

(2.28)

The change in length AB is given by

	 ∆AB A B AB  = ′ −( )

From the figure it can be seen that the projection of length A′B in the 
x-direction, that is length A″B, is given by

	 A B A B A BA” ’ cos( ’ )= ∠ 	 (2.29)

If we now assume that ∠A′BA is “small” then we can invoke the small angle 
approximation,* which states that if ∠A′BA is expressed in radians and is less 
than about 0.1745 radians (about 10°), then:

	 sin( ) tan( ) cos( )∠ ′ ≈ ∠ ′ ∠ ′ ≈ ∠ ′ ∠ ′ ≈A BA A BA A BA A BA A BA 1

Based on the small angle approximation Equation 2.29 implies that 
A″B ≈ A′B, and therefore that the change in length of AB is approximately 
given by

	 ∆AB A B AB A A≈ ′′ − = ′′( )  

Equation 2.28 can now be written:

	
εxx

A A
AB

= ′′
	

(2.30)

In an entirely analogous manner, normal strain εyy is defined as the change 
in length of CB divided by the original length of CB:

*	 The reader is encouraged to personally verify the “small angle approximation.” For exam-
ple, use a calculator to demonstrate that an angle of 5 degs equals 0.08727 radians, and that 
sin(0.08727 rad) = 0.08716, tan(0.08727 rad) = 0.08749 and cos(0.08727 rad) = 0.99619. Therefore, 
in this example the small angle approximation results in a maximum error of less than 1%.
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εyy

CB
CB

= ∆
	

Based on the small angle approximation, the change in length of CB is 
approximately given by

	 ∆CB C B CB C C  = ′ − ≈ ′′( ) 	

and therefore

	
εyy

C C
CB

= ′′
	

(2.31)

As before, the approximation for change in length CB is valid if angle 
∠C″BC is small.

Recall that the original element shown in Figure 2.16 was assumed to be 
perfectly square, and in particular that angle ∠ABC is exactly π/2 radians 
(i.e., initially ∠ABC = 90°). Engineering shear strain is defined as the change in 
angle ∠ABC, expressed in radians:

	 γ xy ABC A BA C BC= ∠ = ∠ + ∠∆( ) ’ ’ 	 (2.32)

The subscripts associated with a shear strain (e.g., subscripts “xy” in 
Equation 2.32) indicate that the shear strain represents the change in angle 
defined by line segments originally aligned with the x- and y-axes.

As discussed in the following sections, it is very convenient to describe a 
state of strain as a second-order tensor. To do so, we must use a slightly dif-
ferent definition of shear strain. Specifically, tensoral shear strain is defined as

	
ε γxy xy= 1

2 	
(2.33)

As engineering shear strain has been defined as the total change in angle 
∠ABC, tensoral shear strain is simply half this change in angle. The use of 
tensoral shear strain is convenient because it greatly simplifies the transfor-
mation of a state of strain from one coordinate system to another. However, 
the use of engineering shear strain is far more common in practice. In this 
chapter, tensoral shear strain will be used during initial mathematical 
manipulations of the strain tensor, but all final results will be converted to 
relations involving engineering shear strain.

Although strains are unit-less quantities, normal strains are usually 
reported in units of (length/length), and shear strains are usually reported 
in units of radians. The values of a strain is independent of the system of 
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units used, for example, 1 (meter/meter) = 1 (inch/inch). Common abbrevia-
tions used throughout this chapter are as follows:

	

1 10 1 1 1

1 10

6× = = =

×

−

−

 meter/meter  micrometer/meter  m/m  in/inµ µ

66 1 1 radians  microradians rad= = µ

We must next define the algebraic sign convention used to describe indi-
vidual strain components. The sign convention for normal strains is very 
straightforward and intuitive: a positive (or “tensile”) normal strain is asso-
ciated with an increase in length, while a negative (or “compressive”) normal 
strain is associated with a decrease in length.

To define the algebraic sign of a shear strain, we first identify the algebraic 
sign of each face of the infinitesimal strain element (the algebraic sign of 
face was defined in Section 2.5). An algebraically positive shear strain corre-
sponds to a decrease in the angle between two positive faces, or equivalently, 
to a decrease in the angle between two negative faces.

The above sign conventions can be used to confirm that all strains shown 
in Figure 2.16 are algebraically positive.

Example Problem 2.6

Given: The following two sets of strain components:
Set 1:

	

ε µ

ε µ

γ µ

xx

yy

xy

=

= −

=

1000

500

1500

m/m

m/m

rad

Set 2:

	

ε µ

ε µ

γ µ

xx

yy

xy

=

= −

= −

1000

500

1500

m/m

m/m

rad

Determine: Prepare sketches (not to scale) of the deformed strain ele-
ments represented by the two sets of strain components.

Solution

The required sketches are shown in Figure 2.17. Note that the only dif-
ference between the two sets of strain components is that in set 1 γxy is 
algebraically positive, whereas in set 2 γxy is algebraically negative.
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2.10  The Strain Tensor

A general 3D solid body is shown in Figure 2.18a. An infinitesimally small 
cube isolated from an interior region of the body is shown in Figure 2.18b. 
The cube is referenced to an x−y−z coordinate system, and the cube edges are 
aligned with these axes.

Now assume that the body is subjected to some mechanism(s) which cause 
the body to deform. The mechanism(s) which causes this deformation need not 
be defined at this point, but might be external loading (i.e., stresses), a change 
in temperature, the adsorption or desorption of water molecules (in the case 
of polymeric-based materials such as composites), or any combination thereof.

As the entire body is deformed, the internal infinitesimal cube is deformed 
into a parallelepiped, as shown in Figure 2.18c. It can be shown [1,2] that the state 
of strain experienced by the cube can represented as a symmetric second-order 
tensor, involving six components of strain: three normal strains (εxx, εyy, εzz) and 
three tensoral shear strains (εxy, εxz, εyz). These six strain components are defined 
in the same manner as those discussed in the preceding section. Normal strains 
εxx, εyy, and εzz represent the change in length in the x-, y-, and z-directions, 
respectively. Tensoral shear strains εxy, εxz, and εyz represent the change in angle 
between cube edges initially aligned with the (x-, y-), (x-, z-), and (y-, z-) axes, 
respectively. Using matrix notation the strain tensor may be written as

	

ε ε ε
ε ε ε
ε ε ε

ε ε ε
ε ε ε
ε

xx xy xz

yx yy yz

zx zy zz

xx xy xz

xy yy yz

x

















=

zz yz zzε ε

















	

(2.34)

Original element
(a perfect square)

(a) (b)

Original element
(a perfect square)

Deformed
element

Deformed strain element implied by:
εxx = 1000 μm/m
εyy = –500 μm/m
γxy = 1500 μrad

εxx = 1000 μm/m
εyy = –500 μm/m
γxy = –1500 μrad

Deformed strain element implied by:

Deformed
element

+x+x

+y +y

Figure 2.17
Strain elements associated with Example Problem 2.6 (not to scale).
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Alternatively, the strain tensor can be succinctly written using indicial 
notation as

	 εij i j x y z, , , ,   or = 	 (2.35)

Note that if engineering shear strain is used, then Equation 2.34 becomes

	

ε ε ε
ε ε ε
ε ε ε

ε γ γ
γ

xx xy xz

xy yy yz

xz yz zz

xx xy xz

x

















=
( / ) ( / )

(
2 2

yy yy yz

xz yz zz

/ ) ( / )
( / ) ( / )

2 2
2 2

ε γ
γ γ ε

















	

If engineering shear strain is used, the strain tensor cannot be written using 
indicial notation (as in Equation 2.35), due to the 1/2 factor that appears in all 
off-diagonal positions.

In Section 2.1 it was noted that a force vector is a first-order tensor, as only 
one subscript is required to describe a force tensor, Fi. The fact that strain is 
a second-order tensor is evident from Equation 2.35, as two subscripts are 
necessary to describe a state of strain.

+y

(a) (b)

(c)

+x

+z

+x

+y

+z

Figure 2.18
Infinitesimal element used to illustrate the strain tensor. (a) General 3-D solid body; (b) infini-
tesimal cube removed from the body, prior to deformation; (c) infinitesimal cube removed from 
the body, after deformation.
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2.11  Transformation of the Strain Tensor

As both stress and strain are second-order tensors, transformation of the 
strain tensor from one coordinate system to another is analogous to trans-
formation of the stress tensor, as discussed in Section 2.6. For example, it 
can be shown [1,2] that the strain components in the x′−y′−z′ coordinate 
system (εi′j′) are related to the components in x−y−z coordinate system (εij) 
according to

	 ε ε′ ′ ′ ′= =i j i k j l klc c  where k l x y z, , , 	 (2.36a)

Alternatively, using matrix notation the strain tensor transforms accord-
ing to

	 [ ] [ ][ ][ ]ε ε′ ′ ′ ′=i j i j ij i j
Tc c 	

which expands as follows:

	

ε ε ε
ε ε ε
ε ε ε

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′















=
x x x y x z

y x y y y z

z x z y z z

cxx x x y x z

y x y y y z

z x z y z z

xx xy xz

yx

c c

c c c

c c c

′ ′

′ ′ ′

′ ′ ′

















ε ε ε
ε εyyy yz

zx zy zz

x x y x z x

x y y y z y

x z y z

c c c

c c c

c c c

ε
ε ε ε

















′ ′ ′

′ ′ ′

′ ′ ′′















z z 	

(2.36b)

The terms ci′j which appear in Equation 2.36a,b are direction cosines and 
equal the cosine of the angle between the axes of the x′−y′−z′ and x−y−z coor-
dinate systems.

As was the case for the stress tensor, there are certain features of the strain 
tensor that do not vary when the tensor is transformed from one coordinate 
system to another. These features are called the strain invariants. Three inde-
pendent strain invariants exist, and are defined as follows:

	 First strain invariant  = =Θε εii 	 (2.37a)

	
Second strain invariant = Φε ε ε ε ε= −1

2
( )ii jj ij ij

	
(2.37b)

	
Third strain invariant = Ψε ε ε ε ε ε ε ε ε= − +1

6
3 2( ii jj kk ii jk jk ij jkk kiε )

	
(2.37c)
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Alternatively, by expanding these equations over the range i,j,k = x,y,z and 
simplifying, the strain invariants can be written as

	 First strain invariant =  Θε ε ε ε= + +xx yy zz 	 (2.38a)

	
Second strain invariant = Φε ε ε ε ε ε ε ε ε= + + − +xx yy xx zz yy zz xy x( 2

zz yz
2 2+ ε )

	
(2.38b)

	 Third strain invariant  = = − − −Ψε ε ε ε ε ε ε ε ε εxx yy zz xx yz yy xz zz x
2 2

yy xy xz yz
2 2+ ε ε ε 	

(2.38c)

Example Problem 2.7

Given: A state of strain referenced to an x−y−z coordinate is known to be

	

ε ε ε
ε ε ε
ε ε ε

µ µ µxx xy xz

yx yy yz

zx zy zz

















=
1000 500 250m/m rad raad

rad m/m rad
rad rad m/m

500 1500 750
250 750 2000

µ µ µ
µ µ µ

















It is desired to express this state of strain in a x″−y″−z″ coordinate system, 
generated by

	 i.	 Rotation of θ = 20° about the original z-axis (which defines an 
intermediate x′−y′−z′ coordinate system), followed by

	 ii.	 Rotation of β = 35° about the x′-axis (which defines the final 
x″−y″−z″ coordinate system)

(this coordinate transformation has been previously considered in 
Example Problem 2.1, and is shown in Figure 2.2).

Problem

	 a.	 Rotate the strain tensor to the x″−y″−z″ coordinate system.
	 b.	 Calculate the first, second, and third invariants of the 

strain  tensor using (i) elements of the strain tensor 
referenced  to the x−y−z coordinate system, εij, and (ii) ele-
ments of the strain tensor referenced to the x″−y″−z″ coordi-
nate system, εi″ j″.

Solution

	 a.	 General expressions for direction cosines relating the x−y−z 
and x″−y″−z″ coordinate systems were determined as a part 
of Example Problem 2.1. Furthermore, numerical values for 
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the particular rotation θ = 20° and β = 35° were determined in 
Example Problem 2.3 and found to be:

	

c

c

c

c

x x

x y

x z

y x

″

″

″

″

= ° =

= ° =

=

= −

cos( ) .

sin( ) .

cos(

20 0 9397

20 0 3420

0

3

 

55 20 0 2802

35 20 0 7698

° ° = −

= ° ° =

=

)sin( ) .

cos( )cos( ) .

sin(

 

c

c

y y

y z

″

″ 335 0 5736

35 20 0 1962

35

° =

= ° ° =

= − °

) .

sin( )sin( ) .

sin( )cos(

c

c

z x

z y

″

″ 220 0 5390

35 0 8192

° = −

= ° =

) .

cos( ) .cz z″

	 Each component of the transformed strain tensor can now be 
found through application of Equation 2.36a or Equation 2.36b. 
For example, setting i′ = x″, j′ = x″ and expanding Equation 
2.36a, strain component εx″ x″ is given by

	

ε ε ε ε′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= + +x x x x x x xx x x x y xy x x x z xzc c c c c c      

                  

 

+ + +′′ ′′ ′′ ′′ ′′ ′′c c c c c cx y x x yx x y x y yy x y x z yzε ε ε

                 + + +′′ ′′ ′′ ′′ ′′ ′′c c c c c cx z x x zx x z x y zy x z x z zε ε ε zz

	

ε ′′ ′′ = + +x x ( . )( . ( ( . )( . ( ( .0 9397 0 9397 1000 0 9397 0 3420 500 0 93) ) ) ) 997 0 250

0 3420 0 9397 500 0 3420 0 3

)( (

( . ( . ( ( . )( .

) )

           ) ) )+ + 4420 1500 0 3420 0 750

0 0 9397 250

) ) ) )

           ) ) )

( ( . )( (

( ( . ( (

+

+ + 00 0 3420 750 0 0 2000)( . )( ) ( )( )( )+

	 ε µx x″ ″ = 1380 m/m

	 Alternatively, if matrix notation is used, then Equation 2.36b 
becomes

	

ε ε ε
ε ε ε
ε ε ε

x x x y x z

y x y y y z

z x z y z z

″ ″ ″ ″ ″ ″

″ ″ ″ ″ ″ ″

″ ″ ″ ″ ″ ″

















=
0.99397 0 3420 0
0 2802 0 7698 0 5736
0 1962 0 5390 0 8192

.
. . .
. . .

−
−

































×
−

1000 500 250
500 1500 750
250 750 2000

0 9397 0 2802 0. . ..
. . .

. .

1962
0 3420 0 7698 0 5390

0 0 5736 0 8192
−
















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	 Completing the matrix multiplication indicated, there results:

ε ε ε
ε ε ε
ε ε ε

x x x y x z

y x y y y z

z x z y z z

″ ″ ″ ″ ″ ″

″ ″ ″ ″ ″ ″

″ ″ ″ ″ ″ ″

















=
13880 727 91
727 1991 625
91 625 112

µ µ µ
µ µ µ

µ µ

m/m rad rad
rad m/m rad
rad rad 99 µm/m

















	 Notice that the value of εx″ x″ determined through matrix multi-
plication is identical to that obtained using indicial notation, as 
expected.

	 b.	 The first, second, and third strain invariants will now be calcu-
lated using components of both εij and εi″ j″. It is expected that 
identical values will be obtained, as the strain invariants are 
independent of coordinate system.

First Strain Invariant

	 x−y−z coordinate system:

	 Θε ε ε ε ε = = + +ii xx yy zz

	 Θε µ= + +( )1000 1500 2000 m/m

	 Θε µ= =4500 m/m 0.004500 m/m

	 x″−y″−z″ coordinate system:

	

Θ

Θ

Θ

ε

ε

ε

ε ε ε ε

µ

µ

= = + +

= + +

=

i i x x y y z z″ ″ ″ ″ ″ ″ ″ ″

( )1380 1991 1129

4500

m/m

m//m m/m= 0 004500. 	

	 As expected, the first strain invariant is independent of coordi-
nate system.

Second Strain Invariant

	 x−y−z coordinate system:

Φε ε ε ε ε ε ε ε ε ε ε ε ε ε= −( ) = + + − + +( )1
2

2 2 2
ii jj ij ij xx yy xx zz yy zz xy xz yz

Φε = + +{
− + +

( )( ) ( )( ) ( )( )

[( ) ( )

1000 1500 1000 2000 1500 2000

500 2502 2 (( ) ] ( )750 2 2} µm/m

	 Φ = × = × −5 625 10 5 625 106 2 6 2. ( ) . ) m/m  (m/mµ
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	 x″−y″−z″ coordinate system:

	
Φε ε ε ε ε= −( )′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′

1
2

i i j j i j i j
	

	
Φε ε ε ε ε ε ε ε ε= + + − +′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′x x y y x x z z y y z z x x

2
′′′ ′′ ′′ ′′+( )x z y z

2 2ε
	

	

Φε = + +{
− + +

( )( ) ( )( ) ( )( )

[( ) ( ) (

1380 1991 1380 1129 1991 1129

727 912 2 6625 2 2) ] ( )} µm/m
	

	 Φε µ= × = × −5 625 10 5 625 106 2 6 2. ( ) . ( ) m/m m/m 	

	 As expected, the second strain invariant is independent of coor-
dinate system.

Third Strain Invariant

x−y−z coordinate system:

	
Ψε ε ε ε ε ε ε ε ε ε= − +( )1

6
3 2ii jj kk ii jk jk ij jk ki

	 Ψε ε ε ε ε ε ε ε ε ε ε ε ε= − − − +xx yy zz xx yz yy xz zz xy xy xz yz
2 2 2 2

	

Ψε = − − −[( )( )( ) ( )( ) ( )( ) ( )(1000 1500 2000 1000 750 1500 250 2000 502 2 00

2 500 250 750

2

3

)

( )( )( )] ( )+ µm/m

	 Ψ = × = × −2 031 10 2 031 109 3 9 3. ( ) . ( ) m/m m/mµ

	 x″−y″−z″ coordinate system:

	
Ψε ε ε ε ε ε ε ε ε ε= − +( )1

6
3 2i i j j k k i i j k j k i j j k k i″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″

	 Ψε ε ε ε ε ε ε ε ε ε ε= − − − +x x y y z z x x y z y y x z z z x y x″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″ ″
2 2 2 2 ″″ ″ ″ ″ ″ ″y x z y zε ε

	

Ψε = − − −[( )( )( ) ( )( ) ( )( ) ( )(1380 1991 1129 1380 625 1991 91 1129 7272 2 ))

( )( )( )] ( )

2

32 727 91 625+ µm/m

	 Ψ = × = × −2 031 10 2 031 109 3 9 3. ( ) . ( )µm/m m/m

	 As expected, the third stress invariant is independent of coor-
dinate system.
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2.12  Principal Strains

It is always possible to rotate the strain tensor to a special coordinate system 
in which no shear strains exist. This coordinate system is called the principal 
strain coordinate system, and the normal strains that exist in this coordinate 
system are called principal strains. Calculation of principal strains (and prin-
cipal stresses) is important during the study of traditional isotropic materials 
and structures because principal strains or stresses can be used to predict 
failure of isotropic materials. This is not the case for anisotropic composite 
materials. Failure of composite material is not governed by principal strains 
or stresses. Principal strains are only of occasional interest to the composite 
engineer and are reviewed here only in the interests of completeness.

Principal strains are usually denoted ε1, ε2, and ε3. However, in the study 
of composites the labels “1”, “2”, and “3” are used to refer to the principal 
material coordinate system rather than the directions of principal strain. 
Therefore, in this chapter the axes associated with the principal strain coor-
dinate system will be labeled the “p1”, “p2”, and “p3” axes, and the principal 
strains will be denoted εp1, εp2 and εp3.

As both stress and strain are second-order tensors, the principal strains 
can be found using an approach analogous to that used to find principal 
stresses. Specifically, it can be shown [1,2] that the principal strains must sat-
isfy the following three simultaneous equations:

	 ( )ε ε ε εpn xx pnx xy pny xz pnzc c c− − − = 0 	 (2.39a)

	 − + − − =ε ε ε εxy pnx pn yy pny yz pnzc c c( ) 0 	 (2.39b)

	 − − + − =ε ε ε εxz pnx yz pny pn zz pnzc c c( ) 0 	 (2.39c)

As direction cosines cpnx, cpny, and cpnz must also satisfy Equation 2.8, and 
therefore cannot all equal zero, the solution can be obtained by requiring 
that the determinant of the coefficients of cpnx, cpny, and cpnz equal zero:

	

( )
( )

( )

ε ε ε ε
ε ε ε ε
ε ε ε ε

pn xx xy xz

xy pn yy yz

xz yz pn zz

− − −
− − −
− − −

= 0

Equating the determinant to zero results in the following cubic equation:

	 ε ε εε ε εpn pn pn
3 2 0− + − =Θ Φ Ψ 	 (2.40)

where Θε, Φε, and Ψε are the first, second, and third strain invariants, respec-
tively, and have been previously listed as Equations 2.37 and 2.38. The three 
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roots of the cubic equation represent the three principal strains and may be 
found by application of the standard approach [3]. By convention, the princi-
pal stresses are numbered such that εp1 is the algebraically greatest principal 
stress, whereas εp3 is the algebraically least. That is, εp1 > εp2 > εp3.

Once the principal strains are determined, the three sets of direction 
cosines (which define the principal coordinate directions) are found by sub-
stituting the three principal strains given by Equation 2.40 into Equation 2.39 
in turn. As only two of Equation 2.39 are independent, Equation 2.8 is used 
as a third independent equation involving the three unknown constants, cpnx, 
cpny,  and cpnz.

The process of finding principal strains and direction cosines will be dem-
onstrated in the following Example Problem.

Example Problem 2.8

Given: A state of strain referenced to an x−y−z coordinate is known to be

	

ε ε ε
ε ε ε
ε ε ε

µ µ µxx xy xz

yx yy yz

zx zy zz

















=
1000 500 250m/m rad raad

rad m/m rad
rad rad m/m

500 1500 750
250 750 2000

µ µ µ
µ µ µ

















	

Problem

Find (a) the principal strains and (b) the direction cosines that define the 
principal strain coordinate system.

Solution

This is the same strain tensor considered in Example Problem 2.7. As a 
part of that problem, the first, second, and third strain invariants were 
found to be

	 Θε = 0 004500. m/m

	 Φ = × −5 625 10 6 2. ( )m/m

	 Ψ = × −2 031 10 9 3. ( )m/m

	 a.	 Determining the Principal Strains: In accordance with Equation 
2.40, the three principal strains are the roots of the following 
cubic equation:

	 ε ε εpn pn pn
3 2 6 90 004500 5 625 10 2 031 10 0− + × − × =− −( . ) ( . ) ( . )

	 The three roots of this equation represent the three principal 
strains, and are given by

ε µ ε µ ε µp p p1 2 32689 1160 651= = =m/m, m/m and m/m,
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	 b.	 Determining the Direction Cosines:  The first two of Equations 2.39 
and 2.8 will be used to form three independent equations in 
three unknowns. We have

	 ( )ε ε ε εpn xx pnx xy pny xz pnzc c c− − − = 0

	 − + − − =ε ε ε εxy pnx pn yy pny yz pnzc c c( ) 0

	 ( ) ( ) ( )c c cpnx pny pnz
2 2 2 1+ + =

	 Direction cosines for εp1: The three independent equations become

	 ( )2689 1000 500 250 01 1 1− − − =c c cp x p y p z

	 − + − − =500 2689 1500 750 01 1 1c c cp x p y p z( )

	 ( ) ( ) ( )c c cp x p y p z1
2

1
2

1
2 1+ + =

	 Solving simultaneously, we obtain

	 cp x1 0 2872= .

	 cp y1 0 5945= .

	 cp z1 0 7511= .

	 Direction cosines for εp2: The three independent equations become

	 ( )1160 1000 500 250 02 2 2− − − =c c cp x p y p z

	 − + − − =500 1160 1500 750 02 2 2c c cp x p y p z( )

	 ( ) ( ) ( )c c cp x p y p z2
2

2
2

2
2 1+ + =

	 Solving simultaneously, we obtain

	 cp x2 0 5960= .

	 cp y2 0 5035= .

	 cp z2 0 6256= − .
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	 Direction cosines for εp3: The three independent equations become

	 ( )651 1000 500 250 03 3 3− − − =c c cp x p y p z

	 − + − − =500 651 1500 750 03 3 3c c cp x p y p z( )

	 ( ) ( ) ( )c c cp x p y p z3
2

3
2

3
2 1+ + =

	 Solving simultaneously, we obtain

	 cp x3 0 7481= − .

	 cp y3 0 6286= .

	 cp z3 0 2128= − .

2.13 � Strains within a Plane Perpendicular to a Principal 
Strain Direction

It has been seen that a strain tensor is defined by six components of strain: 
three normal strain components and three shear strain components. 
However, in practice there are circumstances in which it is known a priori 
that both shear strain components in one direction are zero: εxz = εyz = 0, say 
(or equivalently, γxz = γyz = 0). This implies that the z-axis is a principal strain axis. 
In these instances, we are primarily interested in the strains induced within 
the x−y plane, εxx, εyy, εxy. Two different circumstances are encountered in 
which it is known a priori that the z-axis is a principal strain axis.

In the first case, all three out-of-plane strain components in the z-direction are 
known a priori to equal zero. That is, it is known a priori that εzz = εxz = εyz = 0. 
Not only is the z-axis a principal strain axis in this case, but in addition the 
principal strain equals zero: εzz = εp3 = 0. As the three remaining nonzero 
strain components (εxx, εyy, and εxy) all lie within the x–y plane, it is natu-
ral to call this condition a state of plane strain. Plane strain conditions occur 
most often because of the geometry of the structure of interest. Specifically, 
the plane strain condition usually exists in internal regions of very long (or 
very thick) structures. Examples include solid shafts or long dams. In these 
instances the strains induced along the long axis of the structure are often 
negligibly small compared with those induced within the transverse plane 
of the structure.

The second case in which the out-of-plane z-axis may be a principal axis is 
when a structure is subjected to a state of plane stress. As has been discussed 
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in Section 2.8, the state of plane stress occurs most often in thin, plate-like 
structures. In this case, the z-axis is a principal strain axis, and εzz is again 
one of the principal strains. However, in this second case the out of plane 
normal strain does not, in general, equal zero: εzz ≠ 0.

It is emphasized that a state of plane stress usually, but not always, causes 
a state of strain in which the z-axis is a principal strain axis. This point will 
be further discussed in Chapter 4. It will be seen that it is possible for a 
material to exhibit a coupling between in-plane stresses and out-of-plane 
shear strains. That is, in some cases stresses acting within the x–y plane (σxx, 
σyy, and/or τxy) can cause out-of-plane shear strains (εxz and/or εyz). In these 
instances, the out-of-plane z-axis is not a principal strain axis, even though 
the out-of-plane stresses all equal zero.

In any event, for present purposes assume that it is known a priori 
that the out-of-plane z-axis is a principal strain axis, and we are primarily 
interested in the strains induced within the x–y plane, εxx, εyy, and εxy. We 
will write these strains in the form of a column array, rather than a 3×3 
array:

	
ε ε
ε ε

ε

ε γ
γ ε

ε

xx xy

xy yy

zz

xx xy

xy yy

zz

0
0

0 0

2 0
2 0

0 0

















=  
( / )

( / )
















→
















=











       

ε
ε
ε

ε
ε

γ

xx

yy

xy

xx

yy

xy/2


� (2.41)

Note that εzz does not appear in the column array. This is not of concern in 
the case of plane strain, as in this case εzz = 0. However, in the case of plane 
stress it is important to remember that (in general) εzz ≠ 0. Although in fol-
lowing chapters we will be primarily interested in strains induced within 
the x–y plane, the reader is advised to remember that an out-of-plane strain 
εzz is also induced by a state of plane stress.

The transformation of a general 3D strain tensor has already been dis-
cussed in Section 2.11. The relations presented there will now be simplified 
for the case of transformation of strains within a plane.

Recall that either Equation 2.36a or Equation2.36b governs the transforma-
tion of a strain tensor from one coordinate system to another. Equation 2.36b 
is repeated here for convenience:

ε ε ε
ε ε ε
ε ε ε

x x x y x z

y x y y y z

z x z y z z

xc’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’

















=
’’ ’ ’

’ ’ ’

’ ’ ’

x x y x z

y x y y y z

z x z y z z

xx xy xz

yx

c c

c c c

c c c

















ε ε ε
ε εyyy yz

zx zy zz

x x y x z x

x y y y z y

x z y z

c c c

c c c

c c c

ε
ε ε ε

















’ ’ ’

’ ’ ’

’ ’ zz z’

















	
(2.36b) (repeated)
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Assuming that the x′−y′−z′ coordinate system is generated from the x−y−z 
system by a rotation θ about the z-axis, the direction cosines are

	

c

c

c

c

x x

x y

x z

y x

’

’

’

’

cos( )

cos( ) sin( )

cos( )

cos(

=

= ° − =

= ° =

=

θ

θ θ90

90 0

900

90 0

90 0

° + = −

=

= ° =

= ° =

θ θ

θ

) sin( )

cos( )

cos( )

cos( )

’

’

’

’

c

c

c

c

y y

y z

z x

z yy

z zc

= ° =

= ° =

cos( )

cos( )’

90 0

0 1 	

Substituting these direction cosines into Equation 2.36b and noting that by 
assumption εxz = εyz = 0, we have

	

ε ε ε
ε ε ε
ε ε ε

x x x y x z

y x y y y z

z x z y z z

’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’

co















=
ss sin

sin cos
θ θ
θ θ

ε ε
ε ε

ε

0
0

0 0 1

0
0

0 0
−






























xx xy

yx yy

zz




−















cos sin
sin cos

θ θ
θ θ

0
0

0 0 1

Completing the matrix multiplication indicated results in:

ε ε ε
ε ε ε
ε ε ε

x x x y x z

y x y y y z

z x z y z z

’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’

co

















=

ss sin cos sin

cos sin cos sin (cos

2 2 2θε θε θ θε

θ θε θ θε
xx yy xy

xx yy

+ +

− + + 22 2

2 2

0

θ θ ε

θ θε θ θε θ θ ε

−









− + + −

sin )

cos sin cos sin (cos sin )

xy

xx yy xxy

xx yy xy

zz

0

2 0

0

2 2sin cos cos sinθε θε θ θε
ε

+ −









As would be expected εx′z′ = εy′z′ = 0. The remaining strain components are:
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ε θ ε θ ε θ θ ε

ε θ ε

x x xx yy xy

y y

′ ′

′ ′

= + +

=

cos ( ) sin ( ) cos( )sin( )

sin ( )

2 2

2

2

xxx yy xy

x y xx

+ −

= − +

cos ( ) cos( )sin( )

cos( )sin( ) cos(

2 2θ ε θ θ ε

ε θ θ ε′ ′ θθ θ ε θ θ ε

ε ε

)sin( ) [cos ( ) sin ( )]yy xy

z z zz

+ +

=

2 2

′ ′ 	

(2.42)

Tensoral shear strains were used in Equation 2.36a,b so that rotation of the 
strain tensor could be accomplished using the normal transformation law 
for a second-order tensor. As engineering shear strains are commonly used 
in practice, we will convert our final results, Equation 2.42, to ones which 
involve engineering shear strain (γxy). Recall from Section 2.9 that εxy = (1\2)
γxy. Hence, to convert Equation 2.42, simply replace εxy with (1\2)γxy every-
where, resulting in:

	

ε θ ε θ ε θ θ γ

ε θ ε

x x xx yy xy

y y x

′ ′

′ ′

= + +

=

cos ( ) sin ( ) cos( )sin( )

sin ( )

2 2

2
xx yy xy

x y
xx

+ −

= − +

cos ( ) cos( )sin( )

cos( )sin( ) cos(

2

2

θ ε θ θ γ

γ
θ θ ε θ′ ′ ))sin( ) [cos ( ) sin ( )]θ ε θ θ

γ

ε ε

yy
xy

z z zz

+ +

=

2 2

2

′ ′

	(2.43)

Equation 2.43 relates the components of strain in two different coordinate 
systems within a single plane, and will be used extensively throughout the 
remainder of this chapter. It is important to remember that these equations 
are only valid if the out-of-plane z-axis is a principal strain axis.

The first three of Equation 2.43 can be written using matrix notation as

  

ε
ε
γ

θ θ θ θx x

y y

x y

’ ’

’ ’

’ ’

cos ( ) sin ( ) cos( )sin( )

2

22 2
























= ssin ( ) cos ( ) cos( )sin( )
cos( )sin( ) cos( )sin( ) cos

2 2

2

2θ θ θ θ
θ θ θ θ

−
− (( ) sin ( )θ θ

ε
ε
γ−









































2

2

xx

yy

xy

	

(2.44)

Compare Equation 2.44 with Equation 2.20. In particular, note that 
the  transformation matrix, [T], which was previously encountered 
during  the discussion of plane stress in Section 2.8, also appears in 
Equation 2.44.
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The strain invariants (given by Equation 2.37 or 2.38) are considerably 
simplified when the out-of-plane z-axis is a principal axis. As by definition 
ε γ ε γxz xz yz yz= = = =/ /2 2 0, the strain invariants become:

	

First strain invariant =  

Second strain invari

Θε ε ε ε= + +xx yy zz

aant

Third strain invariant

= = + + −

=

Φ

Ψ

ε ε ε ε ε ε ε
γ

xx yy xx zz yy zz
xy
2

4

εε ε ε ε ε
γ

= −xx yy zz zz
xy
4

4

	 (2.45)

The principal strains equal the roots of the cubic equation previously listed 
as Equation 2.40. Substituting Equation 2.45 into Equation 2.40, there results:

	

ε ε ε ε ε ε ε ε ε ε ε
γ

εp xx yy zz pn xx yy xx zz yy zz
xy

pnn
3 2

2

4
− + + + + + −





( )

−− −




 =ε ε ε ε

γ
xx yy zz zz

xy
2

4
0 	 (2.46)

One root of Equation 2.23 is εpn = εzz. For present purposes, this root will be 
labeled εp3 even though it may not be the algebraically least principal strain. 
In the case of plane strain εp3 = εzz = 0.

Removing the known root from Equation 2.46, we have the following qua-
dratic equation:

	
ε ε ε ε ε ε

γ
pn xx yy pn xx yy

xy2
2

4
0− + + −





 =( )

The two roots of this quadratic equation (i.e., the two remaining principal 
strains, εp1 and εp2) may be found by application of the standard approach [3], 
and are given by

	
ε ε

ε ε ε ε γ
p p

xx yy xx yy xy
1 2

2 2

2 2 2
, =

+
±

−





+










	

(2.47)

The angle θ εp between the x-axis and either the p1 or p2 axis is given by

	
θ

γ
ε εεp

xy

xx yy
=

−










1
2
arctan

	
(2.48)
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Example Problem 2.9

Given: A state of plane strain is known to consist of:

	

ε µ

ε µ

γ µ

xx

yy

xy

=

= −

= −

500

1000

2500

m/m

m/m

rad

Problem

	 a.	 Prepare a rough sketch (not to scale) of the deformed strain 
element in the x–y coordinate system.

	 b.	 Determine the strain components which correspond to an x′−y′ 
coordinate system, oriented 25° CCW from the x–y coordi-
nate system, and prepare a rough sketch (not to scale) of the 
deformed strain element in the x′−y′ coordinate system.

	 c.	 Determine the principal strain components that exist within 
the x–y plane, and prepare a rough sketch (not to scale) of the 
deformed strain element in the principal strain coordinate 
system.

Solution

	 a.	 A sketch showing the deformed strain element (not to scale) in 
the x–y coordinate system is shown in Figure 2.19a. Note that
•	 The length of the element side parallel to the x-axis has increa

sed (corresponding to the tensile strain εxx = 500 μm/m).
•	 The length of the element side parallel to the y-axis has 

decreased (corresponding to the compressive strain 
εyy = −1000 μm/m).

•	 The angle defined by x–y axes has increased (correspond-
ing to the negative shear strain γxy = −2500 μrad).

	 b.	 Since the x′-axis is oriented 25° CCW from the x-axis, in accor-
dance with the right-hand rule the angle of rotation is positive, 
that is, θ = +25°. Substituting this angle and the given strain 
components in Equation 2.44:

ε
ε
γ

′ ′

′ ′

′ ′

























=
° ° °x x

y y

x y

2

25 25 2 252 2cos ( ) sin ( ) cos( )ssin( )
sin ( ) cos ( ) cos( )sin( )

cos( )sin(

25
25 25 2 25 25

25

2 2

°
° ° − ° °

− ° 225 25 25 25 25

500
100

2 2° ° ° ° − °

















× −

) cos( )sin( ) cos ( ) sin ( )

00
2500
2

−
























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		  Completing the matrix multiplication indicated results in

	

ε
ε
γ

µ
µ

µ

x x

y y

x y

’ ’

’ ’

’ ’

2

725

1378

























=
−

−






m/m
225 m/m

rad










		  A sketch showing the deformed strain element (not to scale) in 
the x′−y′ coordinate system is shown in Figure 2.19b. Note that
•	 The length of the element side parallel to the x′-axis has 

decreased  (corresponding to the compressive strain 
εx′x′ = −725 μm/m).

+x(a)

(b)

(c)

+x

+y

+x′

+y′

+x

+y

25°

29.5°

29.5°

+p1
+p2

25°

+y

Strain element in the x–y
coordinate system:

Strain element in the x′–y′
coordinate system:

Strain element in the
principal strain coordinate
system:

εxx= 500 μm/m
εyy = –1000 μm/m
γxy = –2500 μrad

εxx = –725 μm/m

εp1 = 1208 μm/m
εp2 = –1708 μm/m

εyy = 225 μm/m
γxy = –1378 μrad

Figure 2.19
Strain elements associated with Example Problem 2.9 (all deformations shown greatly exag-
gerated for clarity).
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•	 The length of the element side parallel to the y′-axis has 
increased (corresponding to the tensile strain εy′y′ = 225 
μm/m).

•	 The angle defined by the x′–y′ axes has increased (corre-
sponding to the negative shear strain γx′y′ = −2756 μrad).

	 c.	 The principal strains are found through application of Equation 
2.47:

	
ε εp p1 2

2 2500 1000
2

500 1000
2

2500
2

,
( )= − ± +





+ −





	 ε µp1 1208= m/m

	 ε µp2 1708= − m/m

	 The orientation of the principal strain coordinate system is 
given by Equation 2.48:

	
θ εp = −

+






= − °1
2

2500
500 1000

29 5arctan .

	 A sketch showing the deformed strain element (not to scale) in 
the principal strain coordinate system is shown in Figure 2.19c. 
Note that

•	 The length of the element side parallel to the p1-axis has 
increased (corresponding to the tensile principal strain 
εp1 = 1208 μm/m).

•	 The length of the element side parallel to the p2-axis has 
decreased (corresponding to the compressive principal 
strain εp2 = −1708 μm/m).

•	 The angle defined by the principal strain axes has remained 
precisely π/2 radians (i.e., 90°), as in the principal strain coor-
dinate system the shear strain is zero.

2.14 R elating Strains to Displacement Fields

Most analyses considered in later chapters begin with consideration of the 
displacement fields induced in the structure of interest. That is, mathemati-
cal expressions that describe the displacements induced at all points within 
a structure by external loading and/or environmental changes will be 
assumed or otherwise specified. Strains induced in the structure will then 
be inferred from these displacement fields.
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In the most general case three displacement fields are involved. Specifically, 
displacements in the x-, y-, and z-directions, typically denoted as the u-, v-, 
and w-displacement fields, respectively. In general, all three displacement 
fields are functions of x, y, and z:

Displacements in the x-direction: u = u(x,y,z)
Displacements in the y-direction: v = v(x,y,z)
Displacements in the z-direction: w = w(x,y,z).

However, if the out-of-plane z-axis is a principal strain axis, then u and 
v are (at most) functions of x and y only, while w is (at most) a function of z 
only. In this case:

Displacements in the x-direction: u = u(x,y)
Displacements in the y-direction: v = v(x,y)
Displacements in the z-direction: w = w(z).

A detailed derivation of the relationship between displacements and 
strains is beyond the scope of this review, and the interested reader is 
referred to References 1, 2 for details. It can be shown that the relationship 
between displacement fields and the strain tensor depends upon the magni-
tude of derivatives of displacement fields (also called displacement gradients). 
If displacement gradients are arbitrarily large then the associated level of 
strain is said to be “finite,” and each component of the strain tensor is related 
nonlinearly to displacement gradients as follows:

	
εxx

u
x

u
x

v
x

w
x

= ∂
∂

+ ∂
∂







+ ∂
∂







+ ∂
∂



















1
2

2 2 2

	

εyy
v
y

u
y

v
y

w
y

= ∂
∂

+ ∂
∂









 + ∂

∂








 + ∂

∂






















1
2

2 2 2

	
εzz

w
z

u
z

v
z

w
z

= ∂
∂

+ ∂
∂







+ ∂
∂







+ ∂
∂



















1
2

2 2 2

	
γxy

u
y

v
x

u
x

u
y

v
x

v
y

w= ∂
∂

+ ∂
∂

+ ∂
∂







∂
∂









 + ∂

∂






∂
∂









 + ∂

∂∂




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∂
∂











x
w
y
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γxz

u
z

w
x

u
x

u
z
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x

v
z
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∂
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
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
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


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∂


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∂
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
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∂∂


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


∂
∂



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w
z

	
γyz

w
y

v
z

u
y

u
z

v
y

v
z
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∂
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∂

+ ∂
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


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




∂
∂





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∂











∂
∂


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








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∂









y

w
y

The expressions listed above define what is known as Green’s strain tensor 
(also known as the Lagrangian strain tensor).

In most cases encountered in practice, however, displacement gradients 
are very small, and consequently the products of displacement gradients 
are negligibly small and can be discarded. For example, it can usually be 
assumed that

	

∂
∂





 ≈ ∂

∂




 ≈

∂
∂





 ≈ ∂

∂






∂
∂







u
x

v
x

w
x

u
x

u
y

2 2

2

0 0

0  ≈ 0, etc

When displacement gradients are very small the level of strain is said to be 
“infinitesimal,” and each component of the strain tensor is linearly related to 
displacement gradients as follows:

	
εxx

u
x

= ∂
∂ 	

(2.49a)

	
εyy

v
y

= ∂
∂ 	

(2.49b)

	
εzz

w
z

= ∂
∂ 	

(2.49c)

	
γxy

v
x

u
y

= ∂
∂

+ ∂
∂ 	

(2.49d)

	
γxz

w
x

u
z

= ∂
∂

+ ∂
∂ 	

(2.49e)

	
γyz

w
y

v
z

= ∂
∂

+ ∂
∂ 	

(2.49f)
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For most analyses considered in later chapters we will assume that strains 
are infinitesimal and are related to displacement fields in accordance with 
Equation 2.49. The one exception occurs in Chapter 11, where it will be nec-
essary to include nonlinear terms in the strain–displacement relationships.

At stated above, most analyses begin with consideration of the displace-
ment fields induced in a structure of interest. Strains fields implied by these 
displacements are then calculated in accordance with Equation 2.49. This 
process insures that strain fields are consistent with displacements. Consider 
the opposite approach. Specifically, suppose that mathematical expressions 
for strain fields are assumed, perhaps on the basis of engineering judgment. In 
this case, it is possible that the assumed strain fields correspond to physically 
unrealistic displacement fields. For example, displacement fields inferred 
from assumed strain fields may imply that the solid body has voids and/or 
overlapping regions, a physically unrealistic circumstance. A system of six 
equations known as the compatibility conditions can be developed that guar-
antee that assumed expressions for the six components of strain do, in fact, 
correspond to physically reasonable displacement fields u(x,y,z), v(x,y,z), and 
w(x,y,z). To develop the compatibility conditions, differentiate Equation 2.49d 
twice, once with respect to x and once with respect to y. We obtain

	

∂
∂ ∂

= ∂
∂ ∂

+ ∂
∂ ∂

2 3

2

3

2

γxy
x y

u
x y

v
x y

From Equations 2.49a,b is easily seen that

	

∂
∂

= ∂
∂ ∂

∂
∂

= ∂
∂ ∂

2

2

3

2

2

2

3

2

ε εxx yy

y
u

x y x
v

x y

Combining these results, we see that assumed expressions for the strain 
components εxx, εyy, and γxy correspond to physically reasonable displacement 
fields (i.e., “are compatible”) only if they satisfy:

	

∂
∂ ∂

= ∂
∂

+
∂
∂

2 2

2

2

2

γ ε εxy xx yy

x y y x 	
(2.50a)

Equation 2.50a is the first compatibility condition. Following a similar pro-
cedure using Equations 2.49e and 2.49f, we obtain

	

∂
∂ ∂

=
∂
∂

+ ∂
∂

2 2

2

2

2

γ ε εyz yy zz

y z z y 	
(2.50b)

	

∂
∂ ∂

= ∂
∂

+ ∂
∂

2 2

2

2

2

γ ε εxz xx zz

x z z x 	
(2.50c)
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These are the second and third compatibility conditions. Next, the fol-
lowing expressions are obtained using Equations 2.49a through 2.49f), 
respectively:

	

∂
∂ ∂ ∂

= ∂
∂ ∂

3 2u
x y z y z

xxε
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∂ ∂ ∂
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∂ ∂
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∂ ∂
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∂ ∂
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∂ ∂

=
∂
∂
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2

3

2

2

2

w
x y

v
x z x

yzγ

Combining these four expressions, we find that assumed expressions for 
strain components εxx, γxy, γxz, and γyz are compatible if

	
2

2∂
∂ ∂

= ∂
∂

∂
∂

+ ∂
∂

−
∂











ε γ γ γxx xy xz yz

y z x z y x
	

(2.50d)

This is the fourth compatibility condition. The final two compatibility con-
ditions are developed using a similar process, and are given by
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∂ ∂

= ∂
∂
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∂
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+
∂




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
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ε γ γ γyy yz xz xy
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(2.50e)
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∂ ∂

= ∂
∂

∂
∂

+ ∂
∂

−
∂











ε γ γ γzz yz xz xy

x y z x y z
	

(2.50f)

2.15  Computer Programs 3DROTATE and 2DROTATE

A review of force, stress, and strain tensors has been presented in this 
chapter. These concepts will be applied routinely in later chapters, as 
we develop a macromechanics-based analysis of structural composite 
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materials and structures. It will be seen that transformation of stress and 
strain tensors is of particular importance. Indeed, nearly all analyses of 
composite materials and structures presented herein require multiple 
transformations of stress and strain tensors from one coordinate system 
to another.

Two computer programs, 3DROTATE and 2DROTATE, that can be used 
to perform transformations of force, stress, or strain tensors can be down-
loaded at no cost from the following website:

http://depts.washington.edu/amtas/computer.html

Program 3DROTATE performs the calculations necessary to transform 
a force, stress, or strain tensor from the x–y–z coordinate system to the 
x″′−y″′−z″′ coordinate system, where the x″′−y″′−z″′ coordinate system is gen-
erated from the x–y–z coordinate system by (up to) three successive rota-
tions. Derivation of the direction cosines that relate these two coordinate 
systems is left as a student exercise (see Homework Problem 2.2). Program 
3DROTATE also calculates the angles between the x–y–z and x″′−y″′−z″′ 
coordinate axes, invariants of the force, stress, or strain tensors, and princi-
pal stresses and strains. All of the numerical results discussed in Example 
Problems 2.1, 2.3, and 2.7 can be obtained through the use of program 
3DROTATE.

The second program, 2DROTATE, can be used to rotate stresses within a 
plane (as discussed in Section 2.8) and/or strains within a plane (as discussed 
in Section 2.13). It is important to remember that these transformations are 
only valid if the out-of-plane direction is a principal stress or principal strain 
axis. For the most part, thin plate-like composite structures will be consid-
ered in this book. Therefore, it can usually be assumed that the direction 
normal to the surface of the composite is a direction of principal stress or 
strain. Hence, most of the stress or strain transformations considered in this 
chapter involve rotations within a plane. Most of the numerical results dis-
cussed in Example Problems 2.5 and 2.9 can be obtained through the use of 
program 2DROTATE.

Homework Problems

In the following problem statements the phrase “solve by hand” means 
that numerical solutions should be obtained using a pencil, paper, and 
nonprogrammable calculator. Solutions obtained by hand will then be 
compared with numerical results returned by appropriate computer pro-
grams. This process will insure understanding of the mathematical pro-
cesses involved.

	 2.1.	� Solve part (c) of Example Problem 2.1 by hand, based on the rota-
tion angles listed below. In each case calculate that the magnitude 
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of the transformed force vector. Confirm your calculations using 
program 3DROTATE.

	 2.2.	�Consider an x″′−y″′−z″′ coordinate system, which is generated from 
an x−y−z coordinate system by the following three rotations:

	 a.	 A rotation of θ-degrees about the original z-axis, which defines 
an intermediate x′−y′−z′ coordinate system (see Figure 2.2a).

	 b.	 A rotation of β-degrees about the x′-axis, which defines an inter-
mediate x″−y″−z″ coordinate system (see Figure 2.2b).

	 c.	 A rotation of ψ-degrees about the y″-axis, which defines the 
final x″′−y″′−z″′ coordinate system.

		  Show that the x″′−y″′−z″′ and x−y−z coordinate systems are related 
by the following direction cosines:

	

c c c

c c c

c c c

x x x y x z

y x y y y z

z x z y z z

’’’ ’’’ ’’’

’’’ ’’’ ’’’

’’’ ’’’ ’’’

















=
− + −cos cos sin sin sin cos sin sin cos sin cψ θ ψ β θ ψ θ ψ β θ ψ sin oos

cos sin cos cos sin
sin cos cos sin sin sin

β
β θ β θ β

ψ θ ψ β θ
−

+
      

   ψψ θ ψ β θ ψ βsin cos sin cos cos cos−















    	

	 2.3.	The force vector discussed in Example Problem 2.1 is given by

	 F i j k= + +1000 200 600ˆ ˆ ˆ

		  Using Equation 2.6c, express F in a new coordinate system defined 
by three successive rotations, as listed below, using the direction 
cosines listed in Problem 2.2. In each case compare the magnitude 
of the transformed force vector to the magnitudes calculated in 

(a) θ = 60° β = −45°
(b) θ = 60° β = 45°
(c) θ = −60° β = −45°
(d) θ = −60° β = 45°
(e) θ = −45° β = 60°
(f) θ = −45° β = −60°
(g) θ = 45° β = 60°
(h) θ = 45° β = −60°
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Example Problem 2.1. Solve these problems by hand, and then con-
firm your calculations using program 3DROTATE.

	 2.4.	� Solve Example Problem 2.3 by hand, except use the following rota-
tion angles:

		  Confirm your calculations using program 3DROTATE.
	 2.5.	�Use Equation 2.12a to obtain an expression (in expanded form) for 

the following stress component (in each case the expanded expres-
sion will be similar to Equation 2.13):

		  a. σx′x′
		  b. σx′y′
		  c. σy′y′
		  d. σy′z′
		  e. σz′z′

	 2.6.	�Use program 3DROTATE to determine the stress invariants for 
the stress tensor listed below, and compare to those determined in 
Example Problem 2.3. (Note: this stress tensor is similar to the one 
considered in Example Problem 2.3, except that the algebraic sign 
of all three normal stresses has been reversed.):

	

σ σ σ
σ σ σ
σ σ σ

xx xy xz

yx yy yz

zx zy zz

















=
− −
− −
50 10 15
10 25 30
15 30 55
















( )ksi

	 2.7.	� Use program 3DROTATE to determine the stress invariants for the 
stress tensor listed below, and compare with those determined in 
Example Problem 2.3. (Note: this stress tensor is similar to the one 

(a) θ = 60° β = −45° ψ = 25°
(b) θ = 60° β = −45° ψ = −25°
(c) θ = 60° β = −45° ψ = 25°
(d) θ = 60° β = 45° ψ = 25°
(e) θ = −60° β = −45° ψ = 25°

(a) θ = 20° β = −35°
(b) θ = −20° β = 35°
(c) θ = −20° β = −35°

K13483_C002.indd   107 9/13/2012   11:05:26 AM



108 Structural Analysis of Polymeric Composite Materials

considered in Example Problem 2.3, except that the algebraic sign 
of all three shear stresses has been reversed.):

	

σ σ σ
σ σ σ
σ σ σ

xx xy xz

yx yy yz

zx zy zz

















=
−
−

− −

50 10 15
10 25 30
15 30 −−















5
( )ksi

	 2.8.	�Use program 3DROTATE to determine the stress invariants for the 
stress tensor listed below, and compare with those determined in 
Example Problem 2.3. (Note: this stress tensor is similar to the one 
considered in Example Problem 2.3, except that the algebraic sign 
of all stress components has been reversed.):

	

σ σ σ
σ σ σ
σ σ σ

xx xy xz

yx yy yz

zx zy zz

















=
− −

− −
− −

50 10 15
10 25 30
15 330 5
















( )ksi

	 2.9.	� Use program 3DROTATE to determine the strain invariants for the 
strain tensor listed below, and compare with those determined in 
Example Problem 2.7. (Note: this strain tensor is similar to the one 
considered in Example Problem 2.7, except that the algebraic sign 
of all shear strain components has been reversed.):

ε ε ε
ε ε ε
ε ε ε

µ µxx xy xz

yx yy yz

zx zy zz

















=
− −1000 500 250m/m rad µµ

µ µ µ
µ µ µ

rad
rad m/m rad
rad rad m/m

− −
− −









500 1500 750
250 750 2000









	 2.10.	� Use program 3DROTATE to determine the strain invariants for 
the strain tensor listed below, and compare with those determined 
in Example Problem 2.7. (Note: this strain tensor is similar to the 
one considered in Example Problem 2.7, except that the algebraic 
sign of all normal strain components has been reversed.):

ε ε ε
ε ε ε
ε ε ε

µ µ µxx xy xz

yx yy yz

zx zy zz

















=
−1000 500 250m/m rad rrad

rad m/m rad
rad rad m/m

500 1500 750
250 750 2000

µ µ µ
µ µ µ

−
−

















	 2.11.	� Use program 3DROTATE to determine the strain invariants for 
the strain tensor listed below, and compare with those determined 
in Example Problem 2.7. (Note: this strain tensor is similar to the 
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one considered in Example Problem 2.7, except that the algebraic 
sign of all strain components has been reversed.):

ε ε ε
ε ε ε
ε ε ε

µ µxx xy xz

yx yy yz

zx zy zz

















=
− − −1000 500 25m/m rad 00

500 1500 750
250 750 2000

µ
µ µ µ
µ µ µ

rad
rad m/m rad
rad rad m/m

− − −
− − −
















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