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Abstract
This note presents an elementary proof of the familiar
Routh-Hurwitz test. The proof is basically one continu-
ity argument, it does not rely on Sturm chains, Cauchy
index and the principle of the argument and it is fully self
contained. In the same style an extended Routh-Hurwitz
test is derived, which finds the inertia of polynomials.
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1 Introduction
One of the most famous results from stability theory is the
Routh-Hurwitz test (R-H-test) which states that all zeros
of a polynomial p(s) = p0sn + p1sn−1+ · · ·+ pn (pi ∈ R)
lie in the open left-half plane iff a certain set of algebraic
combinations of its coefficients have the same sign. In full:

Theorem 1.1 (Routh-Hurwitz test). A polynomial
p(s) = p0sn + p1sn−1+ · · ·+ pn−1s+ pn, (pi ∈ R, p0 ≠

0), is stable iff all n + 1 elements of the first column of
the Routh table

p0 p2 p4 p6 · · ·

p1 p3 p5 p7 · · ·

r3,1 r3,2 r3,3 · · ·

r4,1 r4,2 r4,3 · · ·
...

...
...

rn+1,1

are nonzero and have the same sign. The Routh table has
n + 1 rows, its first two rows are given by p as shown
above and the other rows are defined successively as

( ri,1 ri,2 · · · ) := ( ri−2,2 ri−2,3 · · · )

−
ri−2,1
ri−1,1

( ri−1,2 ri−1,3 · · · ), (i > 2).

In most cases the first column of the table is well defined
and has no zero elements, even if p is not stable. In this
case p has no imaginary zeros and the number of unstable
zeros of p equals the number of sign changes in the first
column of the table. !

In some unlikely cases—such as when p has imaginary
zeros—the R-H-test fails to come to an end due to a divi-
sion by zero. This is commonly referred to as the singular

case. Routh himself has devised some techniques to cope
with singular cases, leading to an extended Routh-Hurwitz
test (see [1]).
The authoritative reference for the R-H-test and exten-

sions is Gantmacher [1]. In [1] the proof depends on
Cauchy indices and Sturm Chains. In most papers on re-
lated issues, at some stage a Sturm chain, Cauchy index
and a principle of the argument enter the story (see, for
example, [2–4]). In [3, 5] Sturm chains are not required,
however, the proofs in [3, 5] are still rather elaborate, and
in [5] the results are only applicable to stable polynomi-
als. Our presentation has links with [3] and the root locus
arguments of [6].
We derive in this note an easier proof of the R-H-test and

an extended R-H-test, using only a continuity argument.
The R-H-test is proved in Section 2, and in Section 3 we
derive in a similar style an extended R-H-test that may be
used to find the inertia of a polynomial p, that is, the triple
of integers

n−(p), n0(p), n+(p)

denoting the number of stable zeros, n−(p), the number
of zeros on the imaginary axis, n0(p), and the number of
antistable zeros1, n+(p) of p. The results resemble that
of [3] and are not new, but to our knowledge the proofs are
new and are much easier than other known proofs.
We consider only polynomials whose coefficients are

real-valued. The expression p(s) = q(s) usually means
that p(s) = q(s) for all complex s. A polynomial p is odd
if it may be written as p(s) = sk(s2) and p is even if it may
be written as p(s) = h(s2). Given a polynomial p, we use
peven and podd to denote the even and odd polynomials
such that p = peven + podd.

2 The Routh-Hurwitz test
The R-H-test is a result about polynomials, that, for the
sake of computation, is written in terms of operations on
the coefficients of polynomials. In order to understand
the R-H-test we have to re-translate the results in terms of
polynomials.
Let p be a polynomial of degree n. In the same way as

1A zero is stable if it lies in the open left-half plane, and antistable if
it lies in the open right-half plane.
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the first two rows of the Routh table of p

p0 p2 p4 · · ·

p1 p3 p5 · · ·

r3,1 r3,2 · · ·

contain the coefficients of p, also the second and third row
of this table may be seen as containing the coefficients of
a polynomial: Define the polynomial q of degree n− 1 as

q(s) := ( p1sn−1 + p3sn−3 + · · · ) +

( r3,1sn−2 + r3,2sn−4 + · · · ).

Using the definition of the third row, we may rewrite this
as

q(s) = p1sn−1 + (p2 −
p0
p1
p3)sn−2 + p3sn−3 · · ·

= p(s) −
p0
p1

(p1sn + p3sn−2 + · · · ).

The Routh table of q is precisely that of p minus its first
row. Hence the first column of the Routh table of p has no
sign changes iff the Routh table of q has no sign changes
and p0 and p1 have the same sign. The degree of q is less
than that of p, and because the R-H-test is certainly correct
for polynomials of degree one, we have by induction that
the R-H-test is nothing but:

Theorem 2.1 (R-H-test). A nonconstant polynomial
p(s) = p0sn + p1sn−1 + · · · + pn, (pi ∈ R, p0 ≠ 0) is
stable iff p1 is nonzero, p0 and p1 have the same sign,
and the polynomial of degree n− 1

q(s) := p(s) −
p0
p1

(p1sn + p3sn−2 + p5sn−4 + · · · )

is stable.
Furthermore, in most cases p1 is nonzero even if p is

not stable. In this case the inertia of p equals that of q
with one extra stable (antistable) zero if p0 and p1 have
the same (different) sign. In fact, p and q have the same
imaginary zeros, counting multiplicities. !

Proof. Assume p1 is nonzero. Define the nth degree poly-
nomial qη depending η ∈ R as

qη(s) := p(s) − η(p1sn + p3sn−2 + · · · )

=

{

p(s) − η s podd(s) if n is even,
p(s) − η s peven(s) if n is odd.

For η = 0 we have qη = p and for η equal to

η∗ := p0/p1

we have qη = qη∗ = q. A remarkable property of the fam-
ily of polynomials {qη} is that they all have the same imag-
inary zeros, counting multiplicities. So, in particular, p
and q have the same imaginary zeros.
(Proof: Suppose n is even and write qη as the sum of an

even and odd polynomial:

qη = [peven − η s podd]+ podd.

A jω is a zero of qη of at least multiplicity k iff it is a zero
of at least multiplicity k of both its odd and even part. This
is because on the imaginary axis the even part takes only
real values and the odd part only imaginary values. From
the above expression for qη it is clear that this is the case
iff jω is a zero of at least multiplicity k of both podd and
peven. This is independent of η, and, hence, the proof is
complete when n is even. The same arguments work for
the case that n is odd, in which case the even and odd part
of qη are as in qη = peven + [podd − η s peven].)
Therefore, by a continuity argument, as η varies no

zero of qη can cross the imaginary axis. The only way
the inertia of qη can change as a function of η is when
at a certain point qη drops degree. The only value of
η for which qη(s) = (p0 − ηp1)sn + · · · drops degree is
η = η∗ = p0/p1. As η approaches η∗ from the origin—so
the inertia of qη equals that of p = q0—one and only one
zero of

qη(s) = (p0 − ηp1)sn + p1sn−1 + · · ·

approaches −p1/(p0 − ηp1) which goes to infinity, and
the other n− 1 zeros approach the zeros of qη∗ = q. (Re-
member that the imaginary zeros of qη are fixed, so the
only zeros that wander around are the non-imaginaryones,
and they do not reach the imaginary axis.) The zero that
goes to infinity is stable iff p0− ηp1 and p1 have the same
sign, that is, iff p0 and p1 have the same sign.

We silently assumed in the proof that p1 is nonzero if
p is stable. This is a well known fact and follows directly
from an expansion of p(s) =

∏n
i=1(s− λi).

3 Extensions
In this section we extend the R-H-test so that it can handle
every polynomial, revealing its inertia. The results in this
section are practically a copy of [3].
It is convenient from this point on to call two polyno-

mials equivalent if they have the same inertia (notation:
p
in
≃ q). A polynomial p0sn + p1sn−1 + · · · + pn with

p0 ≠ 0 is regular if p1 ≠ 0 and singular if p1 = 0.
The crucial step in the proof of Theorem 2.1 is to iden-

tify a family of polynomials equivalent to p and then to
pick from this family a degenerate one that is essentially
of lower degree. This works as long as p is regular. If p is
not regular it makes sense to switch to another equivalent
polynomial that is regular and then continue the usual pro-
cedure with that polynomial. We show in this section that
this can easily be done if p is not even or odd. The case
that p is even or odd is dealt with separately. Both cases
use the following rather general set of equivalent polyno-
mials:

Lemma 3.1 ( [3]). Let a polynomial p = podd + peven be
given.

1. If α is an even polynomial with α( jω) > 0 for all
ω ∈ R, and deg(αpodd) < deg peven, then

p
in
≃ peven + α podd.
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2. If α is an even polynomial with α( jω) > 0 for all
ω ∈ R, and deg(αpeven) < deg podd, then

p
in
≃ α peven + podd.

!

Proof. (This is practically the same as what we did in the
proof of Theorem 2.1.) We proof Item 1; Item 2 is essen-
tially equivalent.
Given α, define qλ as qλ = peven+ ((1− λ) + λα)podd.

Then q0 = p and q1 = peven + αpodd. For all λ, qλ has
the same degree as p, so the proof is complete if we can
show that as λ varies in the closed interval [0, 1] no zero
of qλ can cross the imaginary axis. This we do by showing
that the imaginary zeros of qλ (counting multiplicities) are
independent of λ ∈ [0, 1].
Fix a λ ∈ [0, 1] and suppose jω is a zero of qλ of at least

multiplicity k. Then it is also zero of at least multiplicity k
of peven and [(1− λ) + λα]podd because on the imaginary
axis peven takes only real values and [(1− λ) + λα]podd
takes only imaginary values. We know that on the imagi-
nary axis [(1− λ) + λα] is positive, nonzero for every λ
in [0, 1], hence, jω is a zero of qλ of at least multiplicity
k iff it is a zero of at least multiplicity k of both peven and
podd. This is independent of λ.

Case I: When singular p is not odd or even. Assume
first that the degree n of singular polynomial p is even.
Singularity of p implies that the odd part podd has degree
n− 1− 2k for some k > 0. Then by Lemma 3.1 the poly-
nomial

r(s) := peven(s) + (1+ (−s2)k)podd(s)
= p(s) + (−s2)k podd(s)
= p0sn ± p1+2ksn−1 + · · ·

is equivalent to p because α(s) := 1+ (−s2)k is real and
strictly positive on the imaginary axis. The polynomial r
is regular and we may therefore proceed with the degree
reduction step with this r.
Similarly, if p is singular and has odd degree, then

p is equivalent to the regular polynomial r(s) := (1 +

(−s2)k)peven(s) + podd(s), where k is defined through
deg peven + 2k = deg podd − 1.

Case II: When p is even or odd. The regularization as
described above fails only if p is even or odd. An even
or odd polynomial p has as many stable zeros as it has
antistable zeros because p(s) =: skh(s2) = ±p(−s). This
symmetry implies that the inertia of an even or odd polyno-
mial is completely determined by its degree and its number
of, say, antistable zeros. As an introduction to the follow-
ing lemma we assume p is even and we define rϵ depend-
ing on ϵ > 0 as

rϵ(s) = p(s+ ϵ).

This amounts to a shift of the zeros to the left. If ϵ > 0 is
small enough we have that rϵ is regular and that

n+(p) = n+(rϵ).

Therefore by checking the inertia of rϵ for sufficiently
small ϵ > 0 we have in principle a means to perform the
degree reduction step while keeping track of the inertia of
p. The following shows we need not know how small ϵ
must be if all imaginary zeros of p are simple (remember
that p is assumed even):

rϵ = (p+
ϵ2

2!
p′′ + · · · )

︸ ︷︷ ︸

even

+ ϵ (p′ +
ϵ2

3!
p′′′ + · · · )

︸ ︷︷ ︸

odd

in
≃ (p+

ϵ2

2!
p′′ + · · · ) + (p′ +

ϵ2

3!
p′′′ + · · · )

(by Lemma 3.1).

The last expression converges to p+ p′ when ϵ goes to
zero. So if p+ p′ does not have zeros on the imaginary
axis we get that for small enough ϵ > 0, rϵ

in
≃ p+ p′. If

p has multiple zeros on the imaginary axis a similar result
holds:

Lemma 3.2 (Case II, [3]). Suppose p is odd or
even and that its degree is n. Then r := p + p′

is regular and n+(r) = n+(p). That is, the inertia
{n−(p), n0(p), n+(p)} of p is equal to

{n+(r), n− 2n+(r), n+(r) }.

!

Proof. Let p be even or odd. Regularity of p+ p′ is triv-
ial. We examine the inertia of r := p+ p′. By Lemma 3.1
the inertia of p+ p′ equals that of qϵ := p+ ϵp′ for every
ϵ > 0. We may therefore as well examine the inertia of
qϵ for an arbitrary small positive ϵ, and, hence, we need
only worry about the root locus of the imaginary zeros of
qϵ around ϵ = 0.
If jω is a zero of q0 = p of multiplicity k, then it is

a zero of qϵ ≠ p of multiplicity k − 1. Therefore as ϵ
increases from 0, only one zero of qϵ moves (continuously
as function of ϵ) away from jω. A Taylor series expansion
of qϵ around s = jω is

qϵ( jω + δ) = ϵ
δk−1

(k− 1)!
pk( jω) +

δk

k!
pk( jω) +

ϵ
δk

k!
pk+1( jω) + higher order terms

=
δk−1

k!
pk( jω) ×

[ϵk+ δ + ϵδ
pk+1( jω)

pk( jω)
+ h.o.t.].

Solving qϵ( jω + δ) = 0 for δ shows—apart from the ob-
vious k − 1 fixed zeros δ = 0—that the remaining zero
δ is approximately −kϵ for small ϵ. This means that the
remaining zero moves into the open left-half plane as ϵ
increases from zero. Hence n+(p) = n+(qϵ) = n+(p +

p′).

This completes the second singular case, and in com-
bination with Case I we may now formulate an extended
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Routh-Hurwitz-test. We do this in the form of a Matlab
macro. The validity of this extended test is easily checked
by translating the operations on the coefficients as demon-
strated in this macro in terms of the polynomial manipu-
lations derived earlier. The macro is meant to be easy to
read, it is not very sophisticated.

function inertia=erh(p)
% Finds the inertia of p=[p_0 p_1 .. ]
ind=find(abs(p) > 1e-11);
p(1:ind(1)-1)=[];
degree=max(size(p))-1;
inert=[0 0 0];
wehavehadcase2=0;
for n=degree:-1:1 % Reduce the degree to 1

k=find(abs(p(2:2:n+1)) > 1e-11);
if k == [] % Case-2: Differentiate.

p(2:2:n+1)=p(1:2:n) .* (n:-2:1);
wehavehadcase2=1;

elseif k(1)>1 % Case-1: Add polynomial.
ind=0:2:(n+1-2*k(1));
f=(-1)ˆk(1);
p(ind+2)=p(ind+2)-f*p(ind+2*k(1));

end
eta=p(1)/p(2);
if wehavehadcase2

inert=inert+[(eta<0) 0 (eta<0)];
else inert=inert+[(eta>0) 0 (eta<0)];
end
p(1:2:n)=p(1:2:n)-eta*p(2:2:n+1);
p(1)=[]; % Reduce degree to n-1

end
inertia=inert+[0 degree-sum(inert) 0];
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