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The WEK Model 
 The Waddoups, Eisenmann, and Kaminski (WEK) fracture model was developed in 1971 

[2]. These authors attempted to predict composite fracture using Linear Elastic Fracture 

Mechanics (LEFM) methods applied to model fracture in isotropic metals. They suggested that a 

region of intense energy of characteristic length a originating from the edge of a hole in a 

composite specimen can be thought of as a pseudo “crack” (Figure 2.1).  This suggests that an 

analysis based on the stress-intensity factor might be appropriate.  However, since self-similar 

crack growth does not occur in composites, it was implied by Waddoups et al that an energy-

based analysis similar to that proposed by Irwin [3] would hold a greater intellectual appeal.   

 

From standard LEFM for isotropic materials in plane strain conditions the mode I strain energy 

release rate, GI, is related to the mode I stress intensity factor, KI, as follows2: 
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Also in accordance with standard LEFM, the stress intensity factor is: 
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Where ∞
Nσ  is the remotely-applied stress.  The function )/( Raf  is often called the “geometry 

factor”, and accounts for the finite dimensions of a test specimen or structure. Expressions for 
)/( Raf  for various isotropic test specimen geometries are tabulated in many sources, for 

example in Paris and Sih [5].   However, Waddoups et al assumed that the geometry factor 
                                                 
1 A few minor edits have been inserted by M. E. Tuttle 
2 The original paper by Waddoups et al contains an erroneous expression for GI in which an extraneous “π” term 
appeared in their Eq (1).  A related error then appeared in subsequent expressions in the original paper.  These errors 
have been corrected in this summary. 



)/( Raf  for isotropic materials would not be applicable to composite laminates (a very good 

assumption, especially since stacking sequences and consequently stress fields vary from 

laminate to laminate). One of the objectives of their paper was to suggest a method of 
determining  )/( Raf  for composite laminates.  

 

Although Waddoups et al imply that an energy-based analysis is appropriate for use with 

composites, the bulk of their analysis is based on use of the stress intensity factor, Eq (2).   

 

At the moment of fracture the stress intensity factor has reached the critical level, i.e.,  

IcfractureI KK = .  KIc is called the “fracture toughness” or “critical stress intensity factor”.  At 

fracture Eq (2) becomes: 

  )/( RafaK cIc   πσ=  (3) 

where σc represents the remotely-applied stress at fracture 

 
For an unnotched specimen with no hole, 1=)/( Raf .  In this case the remote stress at fracture 

is equals the unnotched fracture strength of the laminate, oσ , and Eq (2) becomes: 

 

   aK oIc πσ=  (4) 

 

Dividing Eq(3) by Eq (4):   
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Waddoups et al used Eq (5) to measure the geometry factor, and hence the fracture toughness KIc 

using Eq (3), for laminates with open holes of varying diameters3.  Diameters less than 0.50 in 

were termed “small” holes, whereas holes with diameters greater than 0.50 in were termed 

“large” holes.  A reasonably consistent KIc was measured for specimens with small holes, and a 

consistent but different value for KIc was measured for specimens with large holes.  Since KIc is 

thought to be a material property, at least for isotropic metals, these results illustrated a 

shortcoming of standard LEFM, when applied to composite laminates.  For composites, KIc is not 

a material property but rather varies with geometry.  

 

                                                 
3 A crticial strain energy release rate can also be calculated using Eq (1), although this calculation was not performed 
by Waddoups et al 



The applications of standard LEFM models to predict composite fracture led to inconsistent 

results, as evidenced by the MEK approach, leading to refined models described in the following. 

 

  

The WN Models 

 J. M. Whitney and R. J. Nuismer proposed two models to predict the fracture strength of 

notched composites [7,8].  The two models are the “Point Stress Criteria” and the “Average 

Stress Criteria” models.  They are based upon a characteristic dimension that is assumed to be a 

material property independent of laminate geometry or stress distribution.  The theory of the 

models assumes that fracture occurs when the stress distribution or average stress reaches the 

unnotched strength at a distance equal to the characteristic dimension away from the edge of the 

discontinuity.  The models were proposed in a effort to explain the hole size effect without 

resorting to the use of LEFM. 

 The theory explaining the hole size effect is based upon the difference in the stress 

distribution ahead of the hole for different sized holes.  The normal stress, σy, along the x -axis 

for an isotropic plate of infinite size containing a circular hole is given by [8]: 
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where   σ
∞

 is the uniform tensile stress applied parallel to the y -axis at infinity.  Plotting the 

normalized stress as a function of the distance ahead of the hole reveals that, while the stress 

concentration at the hole edge is 3 for both hole sizes, it is much more localized for the smaller 

hole, Figure 2.2.  It can then be argued that the plate containing the larger hole will have a lower 

residual strength.  This is because there is a larger volume of material subjected to a higher stress 

and the probability of having a larger flaw in the highly stressed region is greater, thus resulting 

in a lower strength.  Also, the plate with the smaller hole has a greater capability for 

redistributing the stress, leading to a higher strength. 



 The first model is the “Point Stress” model.  This model assumes that failure occurs when 

the stress, σy, over some distance,   do , away from the discontinuity is equal to or greater than the 

strength of the unnotched laminate [7]: 
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This criterion is represented schematically in Figure 2.3. 

 The normal stress, σy, along the x-axis in front of the hole for an infinite orthotropic plate 

containing a circular hole of radius R subjected to a uniform stress,   σ
∞

, can be approximated by 

[10]: 
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where   K T
∞

 is the orthotropic stress concentration factor for a circular hole in an infinite plate as 

expressed by [11]: 
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where Aij are the orthotropic in-plane stiffnesses of the laminate as determined from lamination 

theory [12].  Applying the point stress criteria, Equation 14, with Equation 15 yields the notched 

to unnotched strength ratio: 
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where  
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Examining the limits of Equation 17 reveals that for very large holes,   ξ1 →1, the classical stress 

concentration factor,   σN
∞ σo = 1 KT

∞
, is obtained.  Also, for vanishing holes (R  →0),   ξ1 →0, and , 

  σN
∞ σo = 1, as expected. 



 The second model is the “Average Stress” model.  This model assumes that failure occurs 

when the average stress, σy, over some distance,   ao , equals the unnotched laminate strength [7]: 
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This criterion is represented schematically in Figure 2.4.  Applying this criterion, Equation 19, 

with Equation 15 yields the notched to unnotched strength ratio: 
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where 
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The Mar-Lin Model 

 It has been widely accepted that the applicability of LEFM to composites is not 

appropriate.  This is because the fracture toughness of a composite generally increases with the 

crack length and asymptotically approaches a constant value.  In linear elastic fracture mechanics 

for monolithic brittle materials, the failure stress is related to the crack length by 

    
σN

∞ = K IC
πL( )−1 2

 (32) 

the exponent -1/2 is the mathematical stress singularity at the crack tip.  A direct application of 

equation (32) to composite materials has been found to be inadequate.  The KIc value, which is 

supposed to be a material constant, generally increases with the crack length and asymptotically 

approaches a constant value.  To account for this Mar and Lin [14] proposed an equation for the 

fracture of composite materials, but with a stress singularity corresponding to that for a 

bimaterial interface: 

    σN
∞ = Hc 2L( )−m

 (33) 

where Hc is the composite fracture toughness having units of stress x (length)m and is the 

property of the laminate material and lay-up.  The exponent, m, is related to the stress singularity 

at the crack tip of the bimaterial interface.  The order of singularity is dependent upon the ratio of 



the shear moduli of the matrix and the fiber,   µ1 µ2 , and the Poisson's ratio,   υ1 and   υ2 

[15,16,17].  The order of singularity can be predicted from   m = 1− λ , where   λ  is calculated from 

the characteristic equation: 
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where   υ1 and   υ2 are the Poisson's ratio of the matrix and fiber materials, respectively. 

 It is important to note that the Mar-Lin model assumes that it is the length not, the shape 

of discontinuity that is the controlling parameter on fracture.  Thus, there is no distinction made 

between laminates with circular holes and laminates with cracks since both types of defects are 

merely a geometric discontinuity at the microscopic level. 
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  Figure 2.1  WEK Fracture Model [2] 
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Figure 2.2  Normal Stress Distribution for a Circular Hole 

in an Infinite Isotropic Plate.[7] 
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Figure 2.3  WN Point Stress Criteria for a Laminate Containing a Circular Hole.[7] 
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Figure 2.4  WN Average Stress Criteria for a Laminate Containing a Circular Hole.[7] 

 

 

 

 

 

 

 

 



 

 

2

4

6

8

0.00 0.02 0.04 0.06 0.08 0.10
L

(X-L), IN

  σ
y

K
I
,

IN
(

)−1

  
σy =

σoX

X 2 − L2

  
σy =

K I

2π X − L( )
= σo

L

2 X − L( )

 

 

 

 
Figure 2.5  Normal Stress Distribution for a Center Crack  

in an Infinite Anisotropic Plate.[7] 
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