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1. Introduction

Generally laminates are constructed so that for every lamina with specific
material properties, thickness, fiber orientation, and location on one side of the
laminate’s geometric midplane, there is a lamina with identical material
properties, thickness, and fiber orientation an equal distance on the other side
of the midplane. Such laminates are referred to as symmetric laminates.
Symmetric laminates are characterized by the fact that the bending—stretching
stiffnesses, commonly denoted by the B, matrix, are zero. If a laminate is
constructed so that symmetry about the midplane is not maintained, even for
one pair of laminae, the laminate is referred to as an unsymmetric laminate.
One or more entries in the B, matrix will be nonzero. Such a laminate will
exhibit bending—stretching coupling under the influence of mechanical loads.
In addition, such a laminate will exhibit rather unusual characteristics under
the influence of thermal loads. This chapter addresses the latter topic. Specifi-
cally the chapter deals with the fact that unsymmetrically laminated resin—
‘matrix composites which are flat at their elevated cure temperature do not
remain flat when their temperature is lowered. This characteristic might be
expected but it is not widely understood nor is it utilized. It is the purpose of
this chapter to present the theory necessary for understanding the deformation
characteristics of unsymmetric laminates as a function of temperature. Particu-
lar attention will be given to the out-of-plane deformations. The theory and
numerical results discussed are limited to unsymmetric cross-ply laminates.
Even with these simple laminates, the basic characteristics of the thermally-
induced deformations can be understood and the effects of geometric and
material properties studied. The work is presented to support the notion that
shape, as well as stiffness and strength, can be tailored for a particular
application of composites. The potential for shape-tailoring is quite important
if it is realized that most structures, particularly aircraft structures, call for
components with simple or compound curvatures. A flat structure is not as
efficient as a shell structure and finds less usage. This chapter begins by
describing in quite general terms the curing procedure for resin-matrix compo-
sites. A brief description of the curing process is necessary in order to illustrate
the problem being addressed and provide insight into the mechanics involved.
Examples of cured unsymmetric laminates are presented. Following that
section the theory is outlined which can be used to predict the deformations of
cross-ply unsymmetric laminates when their temperature is lowered from the
cure temperature. The section after that presents a variety of numerical results
to illustrate the influence of temperature, material properties, and laminate
geometry.
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2. Curing and the out-of-plane shapes of unsymmetric laminates

Flat elevated-temperature cure laminates are usually made by using a hot press
or autoclave. In either case the laminate is made by laying the preimpregnated
material, one layer at a time, on a flat steel plate, commonly called a caul
plate. Release cloth, bleeder plys and other layers are associated with the
fabrication process but for this discussion they are not important. After the
desired number of layers are stacked, one on top of the other, another caul
plate is secured on top of the layers. With this arrangement the precured
laminate is sandwiched between the two steel plates. Often the whole assembly
is vacuum bagged. The curing process then begins by increasing the tempera-
ture and pressure of the sandwiched layers. The elevated temperature and
pressure are maintained for a period of time, according to the material
manufacturer’s specifications, and the resin begins to crosslink. After sufficient
time has elapsed, the resin has fully cured and the temperature is decreased
slowly to room temperature. The pressure is released and the laminate is ready
for removal from the hot press or autoclave. If the laminate is symmetric, the
cooled laminate, when removed from between the caul plates, is flat. Due to
differences in the thermal expansion and elastic properties of the different
laminae there can be significant residual stresses in the laminate. If the residual
stresses are large enough, they can cause cracking. Other than cracks, there is
little evidence of residual effects. On the other hand, if the laminate is
unsymmetric, removal from the caul plates results in very obvious residual
effects. Specifically, if the laminate is unsymmetric, it will not be flat when it is
removed. Depending on the stacking sequence, there can be significant out-of-
plane deformations. Deformations many times the laminate thickness are
possible. Curiously enough, despite the wide range of unsymmetric laminates
possible, the shape of the out-of-plane deformation has been observed to be
either saddle-like or cylindrical. This was discussed by Hyer (1981a). The
principal curvatures of the saddle or cylinder may or may not be aligned with
the edges of the laminae. Fig. 1 shows a (0,/90,), graphite—epoxy laminate at
room temperature. As can be seen, the cooled laminate is cylindrical. When
flat at its elevated cure temperature the laminate in Fig. 1 was approximately
150 mm X 150 mm. The laminate in Fig. 1 has its principal curvatures aligned
with the edges of the laminate. Fig. 2 shows an example of a cylindrical
laminate with the principal curvatures not aligned with the edges of the
originally flat laminate. When flat this laminate was 100 mm X 100 mm. The
laminate in Fig. 2 has a stacking arrangement of (0/60/90,), (not a cross-ply).
Fig. 3 shows a 200 mm X 50 mm (+45,/—45,), laminate. This laminate has
twist curvature in the coordinate system aligned with the edges of the originally
flat laminate.

In contrast to these examples, Fig. 4 shows the room-temperature shape of a
(0,0/90,5); laminate. The dimensions of the laminate when it is flat are
150 X 150 mm”. From the figure it is obvious the laminate is saddle shaped. The
laminates in Figs. 1-4 were all made from a material which cures at 177°C. It is
important to note that the only difference between the laminate of Fig. 1 and
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FiG. 1. The room-temperature shape of a 150 mm x 150 mm (0,/90,), graphite—epoxy laminate.

the laminate of Fig. 4 is the thickness. It is obvious from these two figures that
the shape observed at room temperature is dependent on the geometry of the
laminate. This is a very important characteristic of unsymmetric laminates.
Another important characteristic of unsymmetric laminates is associated with
the cylindrical shape. For some cylindrical laminates it is possible to force the
cylindrical shape into another cylindrical shape. This is accomplished by a

FiG. 2. The room-temperature shape of a 100 mm x 100 mm (0/60/90,); graphite—epoxy laminate.
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Fic. 3. The room temperature shape of a 200 mm X 50 mm (+45,/—45,), graphite-epoxy
laminate.

snap-through action. For other laminates, the cylindrical shape is unique, i.e.,
cannot be forced into another cylindrical shape. On the other hand, when the
saddle shape appears, it is always unique. No other shape exists. As will be
seen, it can be determined whether the shape is cylindrical or saddle, and
whether the cylindrical shape is unique or whether it is possible for the
unsymmetric laminate to have another cylindrical shape. In addition, it will be
shown that while the laminate may have a cylindrical shape at room-tempera-
ture, it can be saddle shaped at a temperature closer to the cure temperature.

Figs. 1-4 show that there are unique characteristics associated with unsym-
metric laminates. The behavior is not predicted by the method presented in the
standard texts, for example, Jones (1975), AGARWAL and Broutman (1980),
Tsar and HAHN (1980). The method presented in the texts is usually referred to
as classical lamination theory. The key to the behavior of unsymmetric
laminates is the fact that the out-of-plane deflections associated with the shapes

Fi6. 4. The room-temperature shape of a 150 mm X 150 mm (0,,/90,,) - graphite—epoxy laminate.
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are many, many times the thickness of the laminate. Any theory which does
not account for geometrically nonlinear effects due to large deflections is in
error. A theory which accounts for geometrically nonlinear effects and which
explains this unusual behavior of unsymmetric laminates is developed in the
next section.

3. Development of the theory

Fig. 5 depicts schematically the problem being studied. Fig. 5(a) shows a
laminate flat and undeformed at its elevated cure temperature. The figure also
shows the x,-x,-x, reference coordinates system used throughout the analysis.
The origin of the coordinates system is at the geometric center of the volume of
the undeformed laminate. As stated in the introduction the study here will be
limited to cross-ply laminates. This means that in Fig. 5(a) the layers in the
laminate will have the fibers aligned either with the x,-axis or with the x,-axis.
Figs. 5(b)-(d) show the room-temperature shapes discussed in the previous
section. Fig. 5(b) shows a schematic of the saddle configuration. Figs. 5(c) and
5(d) show cylindrical shapes. These two cylindrical shapes can be thought to
represent the two shapes related through snap-through for certain laminates.

X3 X3
X Xa
X X
(a) (b)
X Xs
Xz X,
X X
(c) (d)

FiG. 5. Geometry and nomenclature of the problem: (a) laminate flat at its cure temperature; (b)
laminate saddle shaped at room temperture; (c) laminate cylindrical at room temperature; (d)
another cylindrical shape at room temperature.
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On the other hand, one of the shapes can be thought to represent the unique
cylindrical shape of other laminates. Since the laminates are cross-ply, the
principal curvatures of the saddles or cylinders are aligned with the reference
coordinate system. The laminate of Fig. 3 is cross-ply but not in a reference
system aligned with the rectangular sides of the laminate. Such cases will not
be considered here. The basic issue is to determine what fundamental mechan-
isms need to be included in an analysis of the thermo-mechanical cooling
process so that the transition from the flat state of Fig. 5(a) to the deformed
shape of Figs. 5(b), (c), or (d) can be accurately modeled. Of considerable
importance is the fact that the geometric dimensions of a laminate have an
influence on whether the flat laminate of Fig. 5(a) cools to the saddle shape
given by 5(b) or whether it cools to the cylindrical shape given by Fig. 5(c). In
addition, the snap-through to other cylindrical shape, Fig. 5(d), must be
represented. Mathematically this latter point means multiple solutions to the
governing equations (i.e. two equilibrium shapes at the same temperature).
With multiple solutions the problem cannot be linear. It must be inherently
nonlinear.

Here the theory governing the behavior of unsymmetric laminates will be
developed from an energy viewpoint. The philosophy is simple: The shape (or
shapes) observed for a given laminate at a given temperature is the shape that
minimizes the total potential energy of the laminate. It will be assumed that the
mechanical forces exerted on the laminate during the curing process do no net
work on the laminate as the temperature changes from the cure temperature to
room temperature. Thus the total potential energy to be considered is simply
the strain energy in the cooled laminate.

The strain energy density, including the effects of thermal expansion, is
given by

w=1C,ee, — a,eAT), i,j=1-6. 3.1

Here C‘,i is the stiffness matrix in the x,-x,~x, system. The e; are compo-
nents of Green’s strain tensor in the x,—x,—x; system. The «, are the material’s
linear coefficients of thermal expansion in the x,—x,—x; system. The tempera-
ture change is given by AT, AT positive corresponding to a temperature
increase. Throughout the C,; and a, will be assumed to be independent of
temperature. This is not a restriction on the analysis. Because of the large
out-of-plane deformations associated with the temperature change, Green’s
strain tensor is used, as opposed to the strain tensor of linear elasticity. This
assumption of the form of the strain tensor is the only deviation from classical
lamination theory used in the present theory. It is assumed that Kirchhoff’s
hypothesis is valid and that each lamina is in a state of plane stress. Because of
the latter assumption, the only components in eq. (3.1) that contribute to the
strain energy density are e, e,, and e,. These three strain components are
given by
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82ug
€ =e€ 3777
ax;
o%u?
0 3
€, =6 3 3 > (3.2)
dax;
2.0
e,=eq— X L
6 3 ax,0x,
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ou’ . <8u2)2
e =-——7T T3\ >
boax, ax,
ous oul
0 2 1 3
o2 () |
27 9x, *\ox, (3.3)
(1] 0 0 0
eo=%(%+%+f’_‘g%)_
6 ax, dx, 9x, ox,
The quantities e =1, 2, 6, are the strains at the laminate midplane, ul 1s the
q p 1

displacement of a matenal point in the laminate in the X, direction, u) its
displacement in the x, direction, and uj its displacement in the x, direction.
The products of the strain gradients in eq. (3.3) represent the geometrically
nonlinear effects due to large out-of-plane deformations (u3).

Considering the plane stress state of the laminae and expandmg eq. (3.1),
the strain energy density becomes

=1 2 4 2 1 r 2
w=3C e+ Cpe e, +2Ce,+ 31Cpe;

—(Cpa,+ C,a,)e,AT — (C,a, + Cja,)e,AT . 54)

The C’'-s are the reduced stiffnesses in the x,—x,—-x, system. For cross-ply
laminates C,,, C,,, and a4 are zero.
Considering the entire laminate, the total potential energy is given by

Ly2 Lyl2 K2

W= f f f w dx, dx, dx, 3.5)

xy=—Ly12 xg==Ly/2 x4=—hi2

The limits on the above volume integral reflect the fact that at the elevated
cure temperature the flat laminate has length L, in the x, direction, L, in the x,
direction and is of thickness % (in the x, direction). Recall that the origin of the
coordinate system is located at the geometric center of the laminate.
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To find the minimum value of total potential energy, egs. (3.2) and (3.3) can
be substituted into eq. (3.4) and those results substituted into eq. (3.5). Since
the coordmate x, appears explicitly, integration with respect to x, will combine
with the C to yield components of the extensional, coupling, and bending
stiffnesses (A,I, j» and D;) of the laminate. In addition, mtegratlon with
respect to x3 results in effective thermal inplane forces, N| and N;, and
moments, M| and M;. These effective thermal loads are given by

hi2

NT=AT f (Cyyay + Cppa,) dx, (3.6a)
-hi2
hi2

N3 =AT f_m (Cia, + Cpyay) dx;, (3.6b)
hi2

M]=AT f (C;ya, + Croa,)x, dx, (3.6¢)
—-hl/2
hi2

M) = AT f (C1pa, + Coay)x, dx, . (3.6d)

~hi12
The expression for the total potential energy, W, will then be of the form

L2 Ly/2

W= f f w(A,, B;, D, N{, N3, M{, M7,
x;=—L/2 x3==L,y/2

3.7)
(1} 0 0
U, Uy, Uy, X1, x,) dx, dx, .

Seeking the stationary values of W with respect to variations in u%, u3, and u3
leads to the differential equations and boundary conditions which govern the
shape of the laminate at a given temperature. The equations will be nonlinear
partial differential equations for u{, uJ, and 43 as functions of x, and x,. These
equations have not been derived. Except for selected cases it is felt that only
approximate numerical solutions to the equations, e.g. finite-difference, finite-
element, are possible. In addition, the first variation only provides information
regarding equilibrium shapes. The equilibrium shapes may or may not exist in
the laboratory. Since the problem is nonlinear, and since experimental obser-
vations indicated multiple shapes and a snap-through phenomenon, stability
must be addressed. Obtaining solutions to the stability equations coupled with
obtaining solutions to the equilibrium equations leads to a problem of signific-
-ant proportions. The obtaining of numbers and conducting parameter studies
becomes computer-intensive. Therefore, the approach here will be to seek
approximate solutions in the sense of Ritz, starting with the energy expression
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of eq. (3.7), and minimizing the expression in the context of simple assumed
displacement fields. These displacement fields will be valid for the laminate as
a whole.

From Figs. 1-4 it is clear an assumed out-of-plane displacement of the form

u3(x,, X;) = §(axt + bx3) , (3.8)

with @ and b being unknown and to-be-determined constants, represents the
possible shapes observed. With this functional form for u3, a = —b represents
the saddle shape of Fig. 5(b), a >0, b =0 represents the cylindrical shape of
Fig. 5(c) and a = 0, b <0 represents the cylinder of Fig. 5(d). Functional forms
to assume for u’(x,,x,) and uj(x,, x,) are not so obvious from Figs. 1-4.
However, Fig. 6 provides some insight into the choice of functional form for
these other two displacement fields. Fig. 6 shows a cross-section in the x,—x;
plane of a deformed laminate. It is not important whether the cross-section is

X3

RADIUS = p

curled laminate at

room temperature l.— U?

flat laminate at A X;

cure temperature

Fic. 6. Kinematics of a flat laminate deforming due to a temperature change.

associated with a cylinder or whether it is associated with a saddle. Shown in
the figure is the cross-section when the laminate is flat and the cross-section
when the laminate is at a lower temperature and curled out-of-plane. From the
figure it is clear point A moves a significant amount in the negative x, direction
due to the out-of-plane deformation. Specifically, point A moves an amount

W=psing-x,, 3.9

x, being where point A was at the elevated cure temperature and p and 6
geometric parameters indicated on Fig. 6. For small angular openings,
03

sin0=0—§!—. (3.10)
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If the inplane (arc-wise) strains are assumed small, the arc length from 0 to A is
po, or

po = xl (3.11)
Finally, from eq. (3.8),
1/p=a, (3.12)
a being from eq. (3.8). Therefore, combining egs. (3.9)-(3.12),
u)=—1a’x}. (3.13)
Thermal effects, do however, contribute to the arc length 0A (Fig. 6) of the
deformed laminate. As with classical lamination theory, it is assumed that the
effect of thermal expansion (or contraction) in the x, direction is linear in x,
and it superposes on the displacement due to curling, i.e.
ul=cx, - La’c}, (3.14)

¢ being an unknown constant.
Similar considerations in the x,—x; plane lead to

uy=dx,— tb’x;, (3.15)
d being a constant and b being from eq. (3.8). The quantities a, b, ¢ and d will

be determined as part of the minimization process.
Using eqs. (3.8), (3.14), and (3.15) in eq. (3.3) leads to

el=c, (3.16a)
e =d, (3.16b)
e =abx,x,/2. (3.16¢)

For geometrically linear deformations of cross-ply laminates due to a tempera-
ture change, there are no midplane shearing strains, eg. It can be reasoned that
this is true for the lar%e deformation geometrically nonlinear case. Eq. (3.16)
contradicts this, i.e. e, #0 in eq. (3.16), and so «} and uj of egs. (3.14) and
(3.15) must be modified to yield e? = 0. The final forms for #° and uJ that do
this are

0 _ 1.2.3 ] 2
u, =cx;— ga’x, — sabx,x;,
(3.17)
0_ 12,3 | 2
u,=dx, — gb’x, — jabx,xi .
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Eq. (3.17) along with eq. (3.8) form the assumed displacement fields for
unsymmetric laminates deformed due to a temperature change relative to their
cure temperature. These equations can be substituted into egs. (3.2)-(3.4) and
these in turn into eq. (3.5) and integration with respect to x, and x, performed
in eq. (3.5). This substitution leads to an expression for W of the form

W=W(A,, B,, D, NT,N1,M{,M;,L,,L,,a,b,c,d). (3.18)

ij*
Stationary values of W are then sought relative to variations in a, b, ¢ and d.
The integration with respect to x, and x, in eq. (3.5) is rather involved and
results in a lengthy expression for W. However, the first variation of W with
respect to a, b, ¢, and d results in an expression of the form

SW=f8a+£,58b+f,5c+f,5d, (3.19)

ij? i

where
f=f(A;, B, D;,N|,Ny,M{, M3, L,,L,,a,b,c,d), i=1,4.
For equilibrium
fi=0, i=1,4. (3.20)

Eqgs. (3.20) constitute four algebraic equations for a, b, ¢, and d. The
equations are nonlinear in a and b and linear in ¢ and d. The equations are

fi@a, b, c,d)=—C,chb + C,ab®> +2C,ab — B,,c
+ D,,a— C,ch +2Csab” — Cydb
+ D,,b — C,db + Cgab® + C,b*
+(L2/48)NTb + MT + (L3/48)N;b=0, (3.21a)

fy(a, b,c,d)y=—C,ac+ C,a’b + Cy,a* — Cjac+ 2Ca’b+ D,,a
- C,da — C,da + Cya’b +2C,ab — B,,d
+ D,,b + (L2/48)NTa + (L}/48)Nja+ M; =0, (3.21b)

fi(a,b,c,d)=A,c— Ciab—B,,a+ A,d— Caab—N{ =0, (3.2lc)

fi(a, b, c,d)=A ,c — Caab— By,b+ A,yd— C,ab—N; =0.  (3.21d)

In these equations

C,=A, L3348, C,=A,L3/1280,

C,= B, L}148, C,=A,L/48,
C,=A,L’L%I2304, C,=A,,L}/48, (3.22)
C,=A,,L%/48, C,=A,,L1/1280,

C,= B,,L*/48.
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It should be mentioned that when L, = L, =0, the constants C, — C, are
zero and egs. (3.21) reduce to classical lamination theory, i.e., the geometrical-
ly linear case. Apparently, with the approach being used here, a laminate with
zero sidelength is synonomus with classical lamination theory.

To obtain numerical results, eqs. (3.21) must be solved numerically. This can
be done one of several ways. The four nonlinear algebraic equations can be
solved using, for example, a Newton-type algorithm. Alternatively, it is
possible to use the last two equations of eq. (3.21) and solve explicitly for ¢ and
d in terms of a and b. These expressions for ¢ and d can be substituted into the
first two equations to obtain two nonlinear equations for a and b. These two
can be solved for by a and b by a Newton algorithm. As a final alternative,
these two equations can be combined into a single equation for either a or b.
Hamamoro and HYEr (1985) used this approach. The alternative single equa-
tion for a is

(S*U,))a’ + (8*V,)a* + (25U, Uy)a* + (STV, + 28U,V,)a’

+(SV2-TU,+ U,Uda+ (U, - TUV,) =0, (3.23a)
with
Ta+V,
=- 2 23
Sa* + U, (3.23b)

Egs. (3.23) use the following definitions:

oo Anli+ Aul]

2880 ’
T=D. + _ApBiuBy
2 2 ?
' (AnAzz_ AIZ)
A,,B?
U=D,, - #‘1, ,
: . (AnAzz— Afz)
2 3.24
U = D _ A]lBZZ ( )
’ * (AnAzz—Afz) ,
V.=M"- Bn(AzzNT_ AIZN;)
1 : (AnAzz - Afz) ’
V.=MT - Bzz(AnNI_ AIZNT)
2 2

(Aquz - Afz)

With nonlinear algebraic equations, either egs. (3.21) or egs. (3.23), multi-
ple roots and hence multiple configurations at a given AT can be expected.
This correlates with the ability to predict multiple cylindrical shapes, as
discussed in Section 2.
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Given a specific laminate with a specific temperature change from cure, i.e.,
given A, B, D, L, L,, NT, NI, M], M7, the out-of-plane deformations
can be determined by solving for a and b. The inplane deformations ¢ and d
can also be determined, although here they are not of as much interest. As
alluded to earlier, solutions to eqs. (3.21) are equilibrium solutions. At a given
temperature one or more solutions may correspond to unstable equilibrium.
Therefore the second variation of W must be examined for each solution. First,
however, it is instructive to present numerical results regarding equilibrium
shapes for specific laminates. The stability issues can thus be put into the
context of specific shapes for specific laminates.

4. Numerical results

Numerical results for a specific laminate will illustrate clearly the important
features of the relationship between laminate shape and the dimensions of the
laminate, and between laminate shape and its temperature relative to cure.
Recall in Section 2 that the only difference between the laminate in Fig. 1 and
the laminate in Fig. 4 was the size of the laminate. This is the motivation for
examining the influence of laminate size on its shape. On the other hand,
raising and lowering the temperature of a laminate, relative to cure, is easily
done and in fact is the method used by various investigators to determine the
curing temperature of a laminate, PAGANo and HaHN (1977), HERAKOVICH et
al. (1980). In addition, such an approach has been used to determine the
influence of moisture and temperature of fiber-reinforced composite material,
CrossMAN et al. (1978), Hyer and Hagaman (1979).

Fig. 7 illustrates the relationship between the size of a laminate and the
shape of that laminate at room temperature (20°C). The results are from
HamamaTo and Hyer (1985). The laminate considered is square, L, = L, = L,
and the length of the side is on the horizontal axis. The values of a and b are
the vertical axes of the two portions of the figure. The laminate is a (0,/90,)
laminate. Each lamina has the following properties

E, =115GPa; E,=8GPa; v,=0.28,
a,=-0106x10 °C; a,=25.6%x10"%°C,

lamina thickness =0.175 mm ; cure temperature = 121°C .

For purposes of discussion, laminates made from laminae with these material
properties will be referred to as type A laminates. The properties are repre-
sentative of AS4/1908, a Hercules product, fabricated to 50% volume fraction
fibers.

Immediately obvious from the figure are two factors. First, there is a
symmetry to the solutions for the relation between a and b and sidelength.
Second, there is the existence of three possible room-temperature equilibrium
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Fic. 7. Sidelength—curvature relation for square (0,/90,), type A laminates at room temperature.

solutions if the laminate has a sidelength greater than some critical length.
From the figure the critical length is 90 mm. For L =0 there is only one
solution. The solution is b = —a. This corresponds to a saddle shape. This, in
fact, is the predicted shape if geometric nonlinearities are ignored in the
analysis of shape prediction. This solution is denoted by point A on the figure.
As the sidelength of the laminate increases from zero, say to 50 mm, the
solutions are still single valued and the shape is still predicted to be a saddle.
However, the saddle is one that is shallower than the linear prediction. As the
sidelength increases even more, the saddle shape is still predicted to exist but it
becomes even shallower. At some critical length the solution bifurcates. The
bifurcation is denoted as point B on the figure. For sidelengths larger than this
critical value, three equilibrium configurations are predicted to exist, each
represented by a different solution branch on the figure. The branches are
denoted as BC, BD and BE. Branch BD represents a continuation of the
saddle shape. The other two solution branches represent a significant departure
from a saddle shape. Ignoring for the moment the transition region near
bifurcation (75 mm < L <150 mm), branch BC represents a laminate with a
large positive curvature in the x, direction and little or no curvature in the x,
direction. By contrast, branch BE represents a laminate with little or no
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curvature in the x, direction and a large negative curvature in the x, direction.
The shapes associated with these latter two branches can be considered
cylindrical in nature and correspond with figs. 5(c) and 5(d). This variation in
shape with laminate size corresponds well with the discussion in Section 2. For
this 8 layer laminate, sidelengths greater than 90 mm will cause the laminate to
cool to more than one equilibrium configuration. Obviously not all shapes
occur simultaneously and some may correspond to unstable equilibrium con-
figurations and will never be observed. This will be addressed later.

While the predictions of the dependence of laminate shape on size is
interesting, the equations predict other interesting characteristics. Figs. 8-10
illustrate the dependence of type A laminate shape on temperature. In these
figures the temperature—curvature relations of three laminates are shown, Fig.
8 illustrates the characterlstlcs of a 125 x 125 mm’ laminate, Fig. 9 the charac-
teristics of a 300 X 300 mm? and Fig. 10 the characteristics of a 50 X 50 mm’
laminate. As before, there are two portions to each figure. Curvatures are on
the vertical axes while the temperature of the laminate is on the horizontal
axis. Room temperature (20°C) on the left end of the axis and the curing
temperature (121°C) on the right end. The character of the shape can be traced
with either increasing temperature of decreasing temperature. Only the latter
situation will be discussed here.
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Referring to Fig. 8, for the 125 X 125 mm? laminate at the cure temperature,
point A’, the curvatures are zero. As the temperature decreases, curvatures
develop. The curvatures are small but then are equal and opposite and so the
laminate is saddle shaped. At roughly 77°C, point B’, the solution bifurcates.
The equilibrium solutions can follow one of three paths. These paths are
denoted as B'C’, B'D’, and B'E'. If the laminate follows path B'C’, the
curvature in the x, direction continues to increase while the curvature in the x,
direction decreases. Alternatively, if the laminate follows path B'E’, the
curvature in the x, direction decreases while the curvature in the x, direction
increases, in magnitude. As a third possibility, if the laminate follows path
B'D’ as it cools, then it will remain saddle-shaped, the saddle becoming deeper
and deeper as the temperature is lowered.

The temperature—curvature characteristics of the 300 mm x 300 mm lami-
nate, Fig. 9, are similar to the temperature—curvature characteristics of the
125 mm X 125 mm laminate. For this larger laminate, however, the differences
in the shapes represented by the different solutions branches are more distinct
than they are for the 125 X 125 mm? laminate. As the temperature is lowered
from the stress-free temperature, equal and opposite curvatures develop.
However, at less than 10°C below the stress-free temperature, the solutions
bifurcate. If as the temperature is further reduced and the laminate follows
path B'C’, then the x,-direction curvature continues to increase while the
x,-direction curvature virtually disappears. This corresponds to the cylindrical
shape of Fig. 5(c). Alternatively, if the cooling path follows path B'E’, then the
x,-direction curvature increases in magnitude and the x,-direction curvature
disappears. This corresponds to the cylindrical shape of Fig. 5(d). Path B'D’
represents a laminate with equal and opposite curvatures, a saddle. For the
125 X 125 mm? laminate, the shapes represented by branches B’C' and B'E’
are not quite cylindrical. The tendency is there but the effect is not as
pronounced as it is with the 300 x 300 mm? laminate.

The small laminate, Fig. 10, shows a strikingly different temperature-
curvature relation. For this laminate there is only one shape, a saddle, as the
laminate cools from the cure temperature to room temperature. No bifurcation
behavior occurs. In fact, the temperature—curvature relation is almost linear.

It should be mentioned that based on the description of the curing process
earlier, the cooldown from cure occurs while the laminate is constrained
between the caul plates. Therefore, the behavior shown in Figs. 8-10 does not
occur. However, if after the laminate is removed from the caul plates it is
heated to the cure temperature again and then cooled, the scenarios described
in Figs. 8-10 are applicable.

With the numerical results for the (0,/90,), laminate in hand, it is interest-
ing to examine limiting value of a and b for large and small laminates. For a
(0,/90,); laminate A,, = A,,, D, = D,,, B, = —B,,. From egs. (3.6), N; =
NT, and M = — M. As a result, from egs. (3.24), U, = U, and V, = -V,. Eq.
(3.23) provides the limiting information. For small laminates L,—0 and
L,—0 and S of eq. (3.24) is zero. Eq. (3.23) gives
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(U _(Q9x»- 0L)e, — &,)AT
- ( h Q% +140,,0,, + 0}, - 16sz) (4.12)
and
b=-a. (4.1b)

For large laminates L, —® and L,—®, The first two terms in eq. (3.23)
dominate and so

a= —_lﬁ = (% (91,95 — Q?z)(a, — a,)AT )(Q,, + 0, — 2Q|2)
Vl h Q?x + 14Q1|Q22 + Qiz - 16Q?2 Qll + le
(4.2a)

and
b=0. (4.2b)

The first bracketed term in eq. (4.2a) is the linear solution of eq. (4.1a) and the
second bracketed term is slightly larger than unity for any material. Therefore,
the large-laminate limit for the nonzero curvature is asymptotic to a value
slightly larger than the linear prediction. The other curvature for the large
laminate is zero.

At this point it is tempting to examine the effects of other parameters, such
as laminate material properties, laminate thickness, or laminate stacking
sequence, on the predicted shape or shapes. However, the information presen-
ted in the previous figures is not really complete until the stability of the
predicted shapes is examined. This will be done and then the effects of the
other parameters on the shapes and the stability of the shapes will then be
examined.

5. Stability considerations

For any particular solution to the four algebraic equations, eqgs. (3.21), to
correspond to stable equilibrium, the total potential energy must be a
minimum for the particular solution. If the total potential energy is not a
minimum, the equilibrium condition is not stable and that particular equilib-
rium configuration will not be physically realized. For this discretized system
the stability of the equilibrium configurations for the laminate is determined by
examining the following determinant of partial derivatives of the four functions
fi»i=1,4, given in eqgs. (3.21):
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Simitses (1976) discusses this. A particular equilibrium configuration of a
laminate with specific material properties, stacking sequence, and sidelength,
and at a specific temperature is stable if and only if the matrix is positive
definite. (For the cases studied here, the determinant of the matrix was not
zero.) If the matrix is not positive definite, then the equilibrium configuration is
not stable. Each point on each branch of the previous figures must be checked.

Using this scheme it was found that for the (0,/90,) laminates in Figs. 7-10,
any equilibrium configuration corresponding to a saddle shape is unstable if
cylindrical equilibrium configurations can exist under the same conditions. If
the saddle shape is the only shape that is predicted to exist, then it is stable. All
cylindrical configurations in the figures are stable. Therefore, in Fig. 7, all the
saddle configurations of branch AB are stable and will be observed at
room-temperature. On the other hand, none of the saddle configurations on
Branch BD are stable. For laminates with sidelengths greater than 90 mm, a
saddle configuration will never be observed. Either of the two cylindrical
configurations will be observed. On Figs. 8 and 9, as the flat laminate is cooled
from the curing temperature alone path A'B’, a stable saddle configuration will
develop. As the laminate is cooled below the bifurcation point, point B’, the
saddle will cease to exist because it is unstable. The laminate will deform into
either the cylinder represented by path B'C’, or the cylinder represented by
path B'E'". By contrast, when the smaller laminate is cooled, Fig. 10, it deforms
into a stable saddle and remains that way for all temperatures below the cure
temperature.

From the information presented in the analysis it is not possible to determine
which of the two cylindrical configurations of Figs. 7, 8, and 9 will be observed.
Since both cylindrical configurations are stable, they correspond to total
potential energy minimums. These are local minimums in the sense that they
were determined by examining variations of the configurations, i.e., variational
displacements are by definition small. Therefore either configuration is likely.
In reality, small imperfections in the laminate or small variations from a
spatially uniform temperature will cause the laminate to favor one cylindrical
configuration or the other.

With all the components available to determine the shapes of unsymmetric
laminates and to determine whether or not the shapes will ever be observed,
the effects of material properties, stacking sequence, and other variables are
now examined.
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6. Other numerical results

6.1. Effect of material properties

The effect of material properties on the shape response can be examined by
considering laminates fabricated from lamina with the following material
properties:

E,=181GPa; E,=103GPa; »,=0.8,
a,=-0.106X10"%°C; a,=25.8x10"%°C,

lamina thickness = 0.100 mm ; cure temperature = 177°C .

Compared with the first material examined, this material has a higher cure
temperature and is stiffer in both the fiber direction and perpendicular to the
fibers. It is expected that this will influence the temperature—curvature and
curvature—sidelength relations. Laminates made from lamina with these ma-
terial properties will be referred to as type B laminates. The properties are
representative of a material with T300 fibers and 5208 resin, with 60% volume
fraction fibers, Hyer (1981b).

Fig. 11 illustrates the sidelength—curvature relation at room-temperature for
a (0,/90,), laminate fabricated from this second material. Only the x,-
direction curvature is shown. The x,-direction curve has the mirror image
symmetry of Fig. 7. Compared to Fig. 7, the analogous figure for type A
material, there are not many differences. The main differences are the
magnitude of the large-laminate curvature, and the length corresponding to the
bifurcation point. Compared with the type A material, the magnitude of the
curvature, for a given sidelength, is slightly larger. On the other hand, the
bifurcation sidelength is slightly smaller. A stability analysis indicates identical
stability characteristics.
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6.2. Effect of laminate thickness

Fig. 12 illustrates the shape characteristics of a (0,/90,), laminate. The
material considered is type B, Hyer (1981b). Except for thickness, the
laminate of Fig. 11 and the laminate of Fig. 12 are identical. To determine the
effect of laminate thickness, this figure can be compared directly with Fig. 11.
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Fic. 12. Sidelength—curvature relation for square (0,/90,), type B laminates at room temperature.

Two differences between the cases are immediately obvious. First the
magnitude of the curvatures differ by a factor of two, the thinner laminate
having larger curvatures. A 150 mm X 150 mm (0,/90,), laminate, for exam-
ple, has twice the out-of-plane deflection as a 150 mm X 150 mm* (0,/90,),
laminate. The second difference is the location of the bifurcation point.
Bifurcation of the solutions for the (0,/90,), laminate occurs when the
sidelength reaches 36 mm. The thicker laminate can be twice as large before
the saddle-shape configuration disappears and the laminate becomes cylindri-
cal. If the governing equations are nondimensionalized, it can be shown that
the laminates of the family (0,/90,),, n=1,2,. .., the transition from saddle
to cylinder occurs at the value of L/h of 72.

6.3. Effect of laminate aspect ratio

So far the laminates discussed have all been square. The sidelength in the x,
direction has been the same as the sidelength in the x, direction. Figs. 13-16
show the effect of two other aspect ratios on laminate shape, Hyer (1981c).
Here aspect ratio will be defined as the sidelength in the x, direction divided by
the sidelength in the x, direction, L,/L,. Because of the symmetry of the a and
b variation with sidelength, only the variation of a with sidelength is illustrated.
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In addition, the sidelength in the x, direction, L,, is used as the length
variable.
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Fig. 13 shows the relationship between the curvature in the x, direction and
L, for a rectangular (0,/90,), type B laminate with an aspect ratio of 0.25.
Qualitatively the characteristics are similar to previous cases presented. There
is a length range for which the solution is single-valued and a length range for
which there are three solutions. Roughly, multiple solutions occur when L, is
greater than 36 mm. All solution branches except the saddle branch BD
represent stable equilibrium configurations. Except for the region around the
bifurcation point, the sidelength—curvature relation for this laminate is very
similar to the relation for a square (0,/90,), laminate (Fig. 12).
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Markedly different behavior is observed if the aspect ratio is changed so that
the laminate is four times longer in the x, direction than in the x, direction.
Fig. 14 shows the behavior of such a laminate. The figure indicates that the
length range of single-valued solutions is much less for this laminate. Multiple
solutions occur when L, exceeds 9 mm. The saddle configuration represented
by branch BD is unstable and the curvature for large laminates, i.e., L, >
25 mm, is the same as for square laminates or for laminates with an aspect ratio
of 0.25.

Figs. 15 and 16 show the sidelength—curvature relation for the thicker
(0,/90,), type B laminates with aspect ratios of 0.25 and 4, respectively. Fig.
11 illustrated the behavior of square laminates of this thickness. By comparing
Figs. 11, 15 and 16 it is clear that the square laminate and the laminate with an
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aspect ratio of 0.25 behave similarly. However, the laminate with an aspect
ratio of 4 has larger sidelength range over which the multiple solutions occur.

From the results illustrated, it appears that for rectangular laminates, the
location of the bifurcation point depends on the length of the longer side. In all
cases shown, for the type B laminates, when the length of the longer side
divided by the laminate’s total thickness exceeds 72, multiple solutions occur-
red. Similar studies have not been conducted for the type A laminate but
similar behavior is expected. The numerical value of the critical length-to-
thickness ratio, however, is expected to be material-dependent.

6.4. Effect of stacking sequence

It is interesting to consider other stacking arrangements and study their shapes,
Hyer (1982). Here the discussion will be limited to square laminates. If just
four-layer cross-ply laminates are considered, there are only four unique
stacking arrangements. All other arrangements can be obtained from the four
by a simple rotation of the laminate in its plane or by turning the laminate
upside down. The four unique arrangements are: the (0/0/90/90), previously
discussed in Fig. 12; (0/90/0/90),; (0/0/0/90),; and (0/90/0/0),. The
equilibrium configurations of these latter three laminates now will be discussed.
For the discussion material properties of a type B laminate will be used.

Fig. 17 shows the sidelength—curvature relation for the (0/90/0/90), lami-
nate. The equilibrium configurations of this laminate are quite similar to the
configurations of the (0,/90,), of Fig. 12. However, some interesting differ-
ences can be observed. First, the out-of-plane deflections of the (0/90/0/90)
laminate are not as large as the deflections of the (0,/90,), case. This is
because the asymmetry in the laminate material properties for the (0/90/0/
90), is not as severe as the asymmetry in the (0,/90,), case. Second, and
directly related to the degree of asymmetry, this laminate will exhibit saddle-
shape equilibrium configurations for sidelengths up to 87 mm. This is opposed
to the 37 mm sidelength limit for the (0,/90,), laminate. The level of asymmet-
ry in the material properties of the laminate is reflected in the magnitude of the
terms in the B, matrix and the magnitude of the effective thermal moments.

Figs. 18 and 19 show the sidelength—curvature relation for a (0/0/0/90), and
a (0/0/90/0), laminate, respectively. These relationships are unlike any discus-
sed so far. The most striking difference between the relationship for these
laminates and the relationship for the other laminates discussed is the lack of a
coalescence of the solution branches. Whereas the branching of solutions from
a common point is referred to as bifurcation behavior, the disjoint behavior of
the sidelength—curvature relationship for these laminates is referred to as limit
point behavior. For unsymmetric laminates bifurcation behavior is generally
associated with perfect or mathematically ideal conditions. Limit point be-
havior is associated with a lack of ideal conditions. The lack of idealism is
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Fic. 17. Sidelength—curvature relation for (0/90/0/90), type B laminates at room temperature.

reflected in the A, B and D matrices as well as in the effective thermal loads.
For the ideal situation, A,,= A,,, B,,=—B,,, Dy =Dy, NT=Nj;, and
M]=-M T. If one or more of these equalities is violated, bifurcation behavior
will not occur.

Referring to Fig. 18, for a (0/0/0/90), laminate of zero sidelength, i.e., the
solution when geometric nonlinearities are ignored, the room-temperature
shape is predicted to be a saddle. However, the saddle is not a perfect saddle,
rather, the curvature in the x, direction is much smaller than the curvature in
the x, direction. As the sidelength increases from zero, the smaller of the two
curvatures begins to decrease rapidly. At a sidelength of 100 mm, the minor
curvature has disappeared and the laminate is cylindrical, all the curvature
being in the x, direction. As the sidelength increases to about 200 mm, multiple
equilibrium configurations occur. One solution branch is the continuation of
cylindrical branch AE. The other solution branches represent different equilib-
rium configurations. (Note that on the figure the curvatures in the x, direction
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have been multiplied by 50 before plotting them.) At 400 mm, for example,
branch BC represents a cylindrical configuration with no curvature in the x,
direction. The curvature in the x, direction is roughly equal to the linear
solution prediction. Branch BD represents a saddle configuration. Both curva-
tures are small but they are of opposite sign. It would be impossible, however,
to detect the curvature in the x, direction for this particular case. Which of the
three equilibrium will actually be observed is determined by examining
stability.

A stability analysis predicts interesting results. Branch AE corresponds to
stable equilibrium configurations. Branch BC also represents stable shapes.
Branch BD corresponds to unstable configurations. Unlike the other laminates
discussed, the existence of a unique and stable cylindrical shape is predicted. A
100 mm X 100 mm laminate, for example, will have a cylindrical shape and it
cannot be forced into another cylindrical shape. Larger laminates, say
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600 mm X 600 mm, can be made to have either of two cylindrical shapes. One
of the shapes has the same curvature characteristics a 100 mm X 100 mm
laminate would, i.e., branch AE. The other cylindrical shape would corres-
pond to branch BC. The saddle configuration would never be observed for a
600 mm % 600 mm laminate.

The sidelength—curvature characteristics of a (0/0/90/0) type B laminate,
Fig. 19, are much like those of the (0/0/0/90) , laminate. Limit point behavior,
instead of bifurcation behavior, is predicted. Compared to a (0/0/0/90) 1
laminate, the curvatures are smaller and the laminate can be made larger
before multivalues solutions occur. Again, this can be attributed to the less
severe degree of asymmetry for the (0/0/90/0); can as compared to the
(0/0/0/90), case. This is clear if one considers that a (0/0/0/0), has no
asymmetry. If the lamina furthest from the laminate’s geometric midplane is
given a 90° orientation, the asymmetry in laminate material properties and
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thermal loads is greater than if the lamina closest to the geometric midplane is
given a 90° orientation.

It should be noted that in the region of the sidelength—curvature relation
where the smaller curvature is rapidly disappearing, the nonzero curvature
(branch AE in the b portion of each figure) has a slight perturbation. The
nonzero curvature decreases in magnitude very slightly as the length increases
and then the curvature increases in magnitude again. This behavior would
probably not be detected in an actual laminate.

7. Closure

This chapter has discussed an interesting phenomenon in the mechanics of
composite materials. It has not been widely discussed before but the results
explain behavior often observed in composite laminates. Though only simple
laminates were considered, the same basic predictions are expected to occur
for more complicated laminates.
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