## ME500/AA535 Advanced Composite Structural Analysis

## A brief review of Chapters 1-7

(particularly Chapter 4-7)

#### Hooke's Law for an Anisotropic Material (neglecting thermal or moisture effects)

$$\varepsilon_{ij} = S_{ijkl}\sigma_{kl}, \quad i, j, k, l = x, y, z$$
(or)
$$\sigma_{ij} = C_{ijkl}\varepsilon_{kl}, \quad i, j, k, l = x, y, z$$

where:

 $\sigma_{ij}, \varepsilon_{ij} = 2$ nd order stress and strain tensors, respectively  $S_{ijkl} = 4$ th order compliance matrix  $C_{ijkl} = 4$ th order stiffness matrix

Would like to write Hooke's law using 2-D arrays, but cannot because of 4<sup>th</sup> order compliance and stiffness tensors
In the absence of body forces, stress and strain tensors are symmetric...allows use of "contracted notation"

| $\varepsilon_{xx} \to \varepsilon_1$          | $\sigma_{xx} \rightarrow \sigma_1$               |
|-----------------------------------------------|--------------------------------------------------|
| $\varepsilon_{yy} \rightarrow \varepsilon_2$  | $\sigma_{yy} \rightarrow \sigma_2$               |
| $\mathcal{E}_{ZZ} \to \mathcal{E}_{3}$        | $\sigma_{zz}  ightarrow \sigma_3$                |
| $\gamma_{yz} = \gamma_{zy} \to \varepsilon_4$ | $\sigma_{yz} = \sigma_{zy} \rightarrow \sigma_4$ |
| $\gamma_{xz} = \gamma_{zx} \to \varepsilon_5$ | $\sigma_{xz} = \sigma_{zx} \rightarrow \sigma_5$ |
| $\gamma_{xy} = \gamma_{yx} \to \varepsilon_6$ | $\sigma_{xy} = \sigma_{yx} \rightarrow \sigma_6$ |

#### Hooke's Law for an Anisotropic Material (neglecting thermal or moisture effects)

$$\varepsilon_i = S_{ij}\sigma_j, \quad i, j = 1...6$$
(or)
$$\sigma_i = C_{ij}\varepsilon_j, \quad i, j = 1...6$$

where:

 $\sigma_i$ ,  $\mathcal{E}_i$  = (disguised) 2nd order stress and strain tensors, respectively  $S_{ij}$  = (disguised) 4th order compliance matrix  $C_{ij}$  = (disguised) 4th order stiffness matrix

$$\varepsilon_i = S_{ij}\sigma_j, \quad i, j = 1...6$$

| $\left[ \mathcal{E}_{1} \right]$     | $\int S_{11}$          | <i>S</i> <sub>12</sub> | <i>S</i> <sub>13</sub> | <i>S</i> <sub>14</sub> | <i>S</i> <sub>15</sub> | $S_{16}$        | $[\sigma_1]$              |
|--------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------|---------------------------|
| $ \mathcal{E}_2 $                    | <i>S</i> <sub>21</sub> | <i>S</i> <sub>22</sub> | <i>S</i> <sub>23</sub> | <i>S</i> <sub>24</sub> | S <sub>25</sub>        | S <sub>26</sub> | $ \sigma_2 $              |
| $\left  \varepsilon_{3} \right _{-}$ | <i>S</i> <sub>31</sub> | <i>S</i> <sub>32</sub> | S <sub>33</sub>        | S <sub>34</sub>        | S <sub>35</sub>        | S <sub>36</sub> | $\sigma_3$                |
| $\mathcal{E}_4$                      | <i>S</i> <sub>41</sub> | $S_{42}$               | <i>S</i> <sub>43</sub> | $S_{44}$               | $S_{45}$               | S <sub>46</sub> | $\sigma_4$                |
| $\mathcal{E}_5$                      | <i>S</i> <sub>51</sub> | <i>S</i> <sub>52</sub> | <i>S</i> <sub>53</sub> | $S_{54}$               | S <sub>55</sub>        | S <sub>56</sub> | $\sigma_5$                |
| $\left[ \mathcal{E}_{6} \right]$     | $\lfloor S_{61}$       | $S_{62}$               | S <sub>63</sub>        | $S_{64}$               | $S_{65}$               | $S_{66}$        | $\left[\sigma_{6}\right]$ |

$$\begin{cases} \boldsymbol{\varepsilon}_{xx} \\ \boldsymbol{\varepsilon}_{yy} \\ \boldsymbol{\varepsilon}_{zz} \\ \boldsymbol{\gamma}_{yz} \\ \boldsymbol{\gamma}_{xz} \\ \boldsymbol{\gamma}_{xy} \end{cases} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} \\ S_{41} & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\ S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & S_{56} \\ S_{61} & S_{62} & S_{63} & S_{64} & S_{65} & S_{66} \end{bmatrix} \begin{bmatrix} \boldsymbol{\sigma}_{xx} \\ \boldsymbol{\sigma}_{yy} \\ \boldsymbol{\sigma}_{zz} \\ \boldsymbol{\tau}_{xz} \\ \boldsymbol{\tau}_{xy} \end{bmatrix}$$

$$\sigma_i = C_{ij}\varepsilon_j, \quad i, j = 1...6$$

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{bmatrix}$$

$$\sigma_i = C_{ij} \varepsilon_j, \quad i, j = 1...6$$

| $\left[\sigma_{xx}\right]$ |   | $C_{11}$               | <i>C</i> <sub>12</sub> | <i>C</i> <sub>13</sub> | <i>C</i> <sub>14</sub> | <i>C</i> <sub>15</sub> | $C_{16}$               | $\left[ \boldsymbol{\varepsilon}_{xx} \right]$ |
|----------------------------|---|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------------------------------|
| $\sigma_{yy}$              |   | <i>C</i> <sub>21</sub> | <i>C</i> <sub>22</sub> | <i>C</i> <sub>23</sub> | <i>C</i> <sub>24</sub> | <i>C</i> <sub>25</sub> | <i>C</i> <sub>26</sub> | $\boldsymbol{\varepsilon}_{yy}$                |
| $\sigma_{xy}$              | _ | <i>C</i> <sub>31</sub> | <i>C</i> <sub>32</sub> | <i>C</i> <sub>33</sub> | <i>C</i> <sub>34</sub> | <i>C</i> <sub>35</sub> | <i>C</i> <sub>36</sub> | $\mathcal{E}_{ZZ}$                             |
| $ ight)	au_{yz}$           | _ | $C_{41}$               | $C_{42}$               | <i>C</i> <sub>43</sub> | $C_{44}$               | $C_{45}$               | <i>C</i> <sub>46</sub> | $\gamma_{yz}$                                  |
| $	au_{_{XZ}}$              |   | $C_{51}$               | $C_{52}$               | <i>C</i> <sub>53</sub> | <i>C</i> <sub>54</sub> | <i>C</i> <sub>55</sub> | <i>C</i> <sub>56</sub> | $\gamma_{xz}$                                  |
| $\left[ \tau_{xy} \right]$ |   | $C_{61}$               | $C_{62}$               | <i>C</i> <sub>63</sub> | $C_{64}$               | <i>C</i> <sub>65</sub> | $C_{66}$               | $\left[ \gamma_{xy} \right]$                   |

## Principal Material Coordinate System



- Defined by the symmetry associated with fiber orientation
  - Usually labeled the 1-2-3 coordinate system
  - No "unusual" coupling in PMCS
  - Elastic & failure properties measured in the 1-2-3 coordinate system:

 $E_{11}, E_{22}, E_{33}, v_{12}, v_{13}, v_{23}, G_{12}, G_{13}, G_{23}$  $\sigma_{11}^{fT}, \sigma_{11}^{fC}, \sigma_{22}^{fT}, \sigma_{22}^{fC}, \sigma_{33}^{fT}, \sigma_{33}^{fC}, \tau_{12}^{f}, \tau_{13}^{f}, \tau_{23}^{f}$ 

### Hooke's Law In Principal Material Coordinate System

• Since no "unusual" couplings, all of the following compliances equal zero in the principal material coordinate system:

$$S_{14} = S_{41}, S_{15} = S_{51}, S_{16} = S_{61}$$
  

$$S_{24} = S_{42}, S_{25} = S_{52}, S_{26} = S_{62}$$
  

$$S_{34} = S_{43}, S_{35} = S_{53}, S_{36} = S_{63}$$
  

$$S_{45} = S_{54}, S_{46} = S_{64}, S_{56} = S_{65}$$

## Hooke's Law In Principal Material Coordinate System

• Since no "unusual" couplings, in the principal material coordinate system:

$$\begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{cases} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & 0 & 0 & 0 \\ S_{12} & S_{22} & S_{23} & 0 & 0 & 0 \\ S_{13} & S_{23} & S_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & S_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & S_{66} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \end{bmatrix}$$

## Hooke's Law In Principal Material Coordinate System

• Similarly:



Called "Orthotropic" if  $E_{33} \neq E_{22}$ :



### **Orthotropic Materials**

| $\left[ \boldsymbol{\varepsilon}_{11} \right]$                                                     |     | <i>S</i> <sub>11</sub>                                                 | <i>S</i> <sub>12</sub>                                | <i>S</i> <sub>13</sub>                                | 0                                                       | 0                            | 0                     | $\left[\sigma_{11}\right]$                                                                                               |
|----------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------|
| $\varepsilon_{22}$                                                                                 |     | <i>S</i> <sub>12</sub>                                                 | <i>S</i> <sub>22</sub>                                | <i>S</i> <sub>23</sub>                                | 0                                                       | 0                            | 0                     | $\sigma_{22}$                                                                                                            |
| $\mathcal{E}_{33}$                                                                                 |     | <i>S</i> <sub>13</sub>                                                 | <i>S</i> <sub>23</sub>                                | <i>S</i> <sub>33</sub>                                | 0                                                       | 0                            | 0                     | $\sigma_{33}$                                                                                                            |
| $\gamma_{23}$                                                                                      |     | 0                                                                      | 0                                                     | 0                                                     | $S_{44}$                                                | 0                            | 0                     | $\tau_{23}$                                                                                                              |
| $\gamma_{13}$                                                                                      |     | 0                                                                      | 0                                                     | 0                                                     | 0                                                       | S <sub>55</sub>              | 0                     | $\tau_{13}$                                                                                                              |
| $\left[\gamma_{12}\right]$                                                                         |     | 0                                                                      | 0                                                     | 0                                                     | 0                                                       | 0                            | $S_{66}$              | $\left[ \tau_{12} \right]$                                                                                               |
|                                                                                                    |     |                                                                        |                                                       |                                                       |                                                         |                              |                       |                                                                                                                          |
| $(\sigma_{11})$                                                                                    |     | $\begin{bmatrix} C_{11} \end{bmatrix}$                                 | <i>C</i> <sub>12</sub>                                | <i>C</i> <sub>13</sub>                                | 0                                                       | 0                            | 0                     | $\left \left(\varepsilon_{11}\right)\right $                                                                             |
| $egin{pmatrix} \sigma_{11} \ \sigma_{22} \end{bmatrix}$                                            |     | $\begin{bmatrix} C_{11} \\ C_{12} \end{bmatrix}$                       | C <sub>12</sub><br>C <sub>22</sub>                    | C <sub>13</sub><br>C <sub>23</sub>                    | 0<br>0                                                  | 0<br>0                       | 0 - 0                 | $\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \end{bmatrix}$                                                     |
| $egin{bmatrix} \sigma_{11} \ \sigma_{22} \ \sigma_{33} \end{bmatrix}$                              |     | $\begin{bmatrix} C_{11} \\ C_{12} \\ C_{13} \end{bmatrix}$             | C <sub>12</sub><br>C <sub>22</sub><br>C <sub>23</sub> | C <sub>13</sub><br>C <sub>23</sub><br>C <sub>33</sub> | 0<br>0<br>0                                             | 0<br>0<br>0                  | 0<br>0<br>0           | $\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \end{bmatrix}$                                 |
| $\left\{egin{array}{c} \sigma_{11} \ \sigma_{22} \ \sigma_{33} \ \tau_{23} \end{array} ight angle$ | > = | $\begin{bmatrix} C_{11} \\ C_{12} \\ C_{13} \\ 0 \end{bmatrix}$        | $C_{12} \\ C_{22} \\ C_{23} \\ 0$                     | $C_{13} \\ C_{23} \\ C_{33} \\ 0$                     | $0 \\ 0 \\ 0 \\ C_{44}$                                 | 0<br>0<br>0<br>0             | 0<br>0<br>0<br>0      | $ \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{23} \end{bmatrix} $                |
| $egin{pmatrix} \sigma_{11} \ \sigma_{22} \ \sigma_{33} \ \tau_{23} \ 	au_{13} \ \end{bmatrix}$     | > = | $ \begin{bmatrix} C_{11} \\ C_{12} \\ C_{13} \\ 0 \\ 0 \end{bmatrix} $ | $C_{12} \\ C_{22} \\ C_{23} \\ 0 \\ 0$                | $C_{13}$<br>$C_{23}$<br>$C_{33}$<br>0<br>0            | $egin{array}{c} 0 \\ 0 \\ 0 \\ C_{44} \\ 0 \end{array}$ | $0 \\ 0 \\ 0 \\ 0 \\ C_{55}$ | 0<br>0<br>0<br>0<br>0 | $ \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{23} \\ \gamma_{13} \end{bmatrix} $ |

Called "Transversely Isotropic" if  $E_{33} = E_{22}$ 



### **Transversely Isotropic Materials**

| $\left[ \varepsilon_{11} \right]$ |     | $\int S_{11}$          | <i>S</i> <sub>12</sub> | <i>S</i> <sub>12</sub> | 0                  | 0               | 0          | $\sigma_{11}$              |
|-----------------------------------|-----|------------------------|------------------------|------------------------|--------------------|-----------------|------------|----------------------------|
| $\varepsilon_{22}$                |     | <i>S</i> <sub>12</sub> | <i>S</i> <sub>22</sub> | <i>S</i> <sub>23</sub> | 0                  | 0               | 0          | $\sigma_{22}$              |
| $\mathcal{E}_{33}$                | L   | <i>S</i> <sub>12</sub> | <i>S</i> <sub>23</sub> | <i>S</i> <sub>22</sub> | 0                  | 0               | 0          | $\sigma_{33}$              |
| $\gamma_{23}$                     | ~ — | 0                      | 0                      | 0                      | $2(S_{22}-S_{23})$ | 0               | 0          | $\tau_{23}$                |
| $\gamma_{13}$                     |     | 0                      | 0                      | 0                      | 0                  | S <sub>66</sub> | 0          | $\tau_{13}$                |
| $\left(\gamma_{12}\right)$        |     | 0                      | 0                      | 0                      | 0                  | 0               | $S_{66}$ _ | $\left( \tau_{12} \right)$ |

| $\left[\sigma_{11}\right]$ |   | $C_{11}$ | <i>C</i> <sub>12</sub> | <i>C</i> <sub>12</sub> | 0                     | 0                      | 0 ]      | $\left( \mathcal{E}_{11} \right)$ |
|----------------------------|---|----------|------------------------|------------------------|-----------------------|------------------------|----------|-----------------------------------|
| $\sigma_{22}$              |   | $C_{12}$ | <i>C</i> <sub>22</sub> | <i>C</i> <sub>23</sub> | 0                     | 0                      | 0        | $\varepsilon_{22}$                |
| $\sigma_{33}$              | _ | $C_{12}$ | <i>C</i> <sub>23</sub> | <i>C</i> <sub>22</sub> | 0                     | 0                      | 0        | $\varepsilon_{33}$                |
| $\tau_{23}$                | _ | 0        | 0                      | 0                      | $(C_{22} - C_{23})/2$ | 0                      | 0        | $\gamma_{23}$                     |
| $\tau_{13}$                |   | 0        | 0                      | 0                      | 0                     | <i>C</i> <sub>66</sub> | 0        | <i>Y</i> <sub>13</sub>            |
| $\left( \tau_{12} \right)$ |   | 0        | 0                      | 0                      | 0                     | 0                      | $C_{66}$ | $\left[\gamma_{12}\right]$        |



• For thin, plate-like structures it is usually appropriate to assume all out-of-plane stresses are negligibly small (i.e., assume  $\sigma_{33} = \tau_{13} = \tau_{23} = 0$ )

• For plane stress conditions:





• Hooke's law can be "reduced" to:

$$\begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{cases} = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{12} & S_{22} & 0 \\ 0 & 0 & S_{66} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \tau_{12} \end{bmatrix} \\ \varepsilon_{33} = S_{13}\sigma_{11} + S_{23}\sigma_{22} \end{cases}$$



$$[S] = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{12} & S_{22} & 0 \\ 0 & 0 & S_{66} \end{bmatrix} = \text{the "reduced compliance matrix"}$$

• Inverting:

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \tau_{12} \end{cases} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{cases}$$



$$[Q] = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} = \text{the "reduced stiffness matrix"}$$

Strains Caused by Stress and/or Changes in Temperature and/or Moisture Content

• Three-dimensional stress-states (orthotropic mat'ls):



### ...Inverting

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \end{cases} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} - \Delta T \alpha_{11} - \Delta M \beta_{11} \\ \varepsilon_{22} - \Delta T \alpha_{22} - \Delta M \beta_{22} \\ \varepsilon_{33} - \Delta T \alpha_{33} - \Delta M \beta_{33} \\ \gamma_{23} \\ \gamma_{12} \end{bmatrix}$$

Strains Caused by Stress and/or Changes in Temperature and/or Moisture Content

• Reducing to plane stress conditions:

$$\begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{cases} = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{12} & S_{22} & 0 \\ 0 & 0 & S_{66} \end{bmatrix} \begin{cases} \sigma_{11} \\ \sigma_{22} \\ \tau_{12} \end{cases} + \Delta T \begin{cases} \alpha_{11} \\ \alpha_{22} \\ 0 \end{cases} + \Delta M \begin{cases} \beta_{11} \\ \beta_{22} \\ 0 \end{cases} \end{cases}$$
$$\varepsilon_{33} = S_{13}\sigma_{11} + S_{23}\sigma_{22} + \Delta T\alpha_{33} + \Delta M\beta_{33}$$

Strains Caused by Stress and/or Changes in Temperature and/or Moisture Content

• Inverting:

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \tau_{12} \end{cases} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{cases} \varepsilon_{11} - \Delta T \alpha_{11} - \Delta M \beta_{11} \\ \varepsilon_{22} - \Delta T \alpha_{22} - \Delta M \beta_{22} \\ \gamma_{12} \end{cases}$$





$$\begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{cases} = \begin{bmatrix} \overline{S}_{11} & \overline{S}_{12} & \overline{S}_{16} \\ \overline{S}_{12} & \overline{S}_{22} & \overline{S}_{26} \\ \overline{S}_{16} & \overline{S}_{26} & \overline{S}_{66} \end{bmatrix} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{12} \end{bmatrix} + \Delta T \begin{cases} \alpha_{xx} \\ \alpha_{yy} \\ \alpha_{xy} \end{cases} + \Delta M \begin{cases} \beta_{xx} \\ \beta_{yy} \\ \beta_{xy} \end{cases}$$
$$\varepsilon_{33} = \varepsilon_{zz} = S_{13}\sigma_{11} + S_{23}\sigma_{22} + \Delta T\alpha_{33} + \Delta M\beta_{33}$$
$$[\overline{S}_{ij}] = \text{Transformed, reduced compliance matrix}$$

$$\overline{S}_{11} = S_{11} \cos^4 \theta + (2S_{12} + S_{66}) \cos^2 \theta \sin^2 \theta + S_{22} \sin^4 \theta$$

$$\overline{S}_{12} = \overline{S}_{21} = S_{12} (\cos^4 \theta + \sin^4 \theta) + (S_{11} + S_{22} - S_{66}) \cos^2 \theta \sin^2 \theta$$

$$\overline{S}_{16} = \overline{S}_{61} = (2S_{11} - 2S_{12} - S_{66}) \cos^3 \theta \sin \theta - (2S_{22} - 2S_{12} - S_{66}) \cos \theta \sin^3 \theta$$

$$\overline{S}_{22} = S_{11} \sin^4 \theta + (2S_{12} + S_{66}) \cos^2 \theta \sin^2 \theta + S_{22} \cos^4 \theta$$

$$\overline{S}_{26} = \overline{S}_{62} = (2S_{11} - 2S_{12} - S_{66}) \cos \theta \sin^3 \theta - (2S_{22} - 2S_{12} - S_{66}) \cos^3 \theta \sin \theta$$

$$\overline{S}_{66} = 2(2S_{11} + 2S_{22} - 4S_{12} - S_{66}) \cos^2 \theta \sin^2 \theta + S_{66} (\cos^4 \theta + \sin^4 \theta)$$

$$\alpha_{xx} = \alpha_{11} \cos^2(\theta) + \alpha_{22} \sin^2(\theta)$$
$$\alpha_{yy} = \alpha_{11} \sin^2(\theta) + \alpha_{22} \cos^2(\theta)$$
$$\alpha_{xy} = 2\cos(\theta)\sin(\theta)(\alpha_{11} - \alpha_{22})$$

$$\beta_{xx} = \beta_{11} \cos^2(\theta) + \beta_{22} \sin^2(\theta)$$
$$\beta_{yy} = \beta_{11} \sin^2(\theta) + \beta_{22} \cos^2(\theta)$$
$$\beta_{xy} = 2\cos(\theta)\sin(\theta)(\beta_{11} - \beta_{22})$$

UNIVERSITY OF WASHINGTON COLLEGE OF ENGINEERING

#### Mechanical Engineering

...Inverting



$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{cases} = \begin{bmatrix} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{cases} \varepsilon_{xx} - \Delta T \alpha_{xx} - \Delta M \beta_{xx} \\ \varepsilon_{yy} - \Delta T \alpha_{yy} - \Delta M \beta_{yy} \\ \gamma_{xy} - \Delta T \alpha_{xy} - \Delta M \beta_{xy} \end{cases}$$

 $\left[\overline{Q}_{ij}\right]$  = Transformed, reduced stiffness matrix

#### ...Where

$$\begin{aligned} \overline{Q}_{11} &= Q_{11}\cos^4\theta + 2(Q_{12} + 2Q_{66})\cos^2\theta\sin^2\theta + Q_{22}\sin^4\theta \\ \overline{Q}_{12} &= \overline{Q}_{21} = Q_{12}(\cos^4\theta + \sin^4\theta) + (Q_{11} + Q_{22} - 4Q_{66})\cos^2\theta\sin^2\theta \\ \overline{Q}_{16} &= \overline{Q}_{61} = (Q_{11} - Q_{12} - 2Q_{66})\cos^3\theta\sin\theta - (Q_{22} - Q_{12} - 2Q_{66})\cos\theta\sin^3\theta \\ \overline{Q}_{22} &= Q_{11}\sin^4\theta + 2(Q_{12} + 2Q_{66})\cos^2\theta\sin^2\theta + Q_{22}\cos^4\theta \\ \overline{Q}_{26} &= \overline{Q}_{62} = (Q_{11} - Q_{12} - 2Q_{66})\cos\theta\sin^3\theta - (Q_{22} - Q_{12} - 2Q_{66})\cos^3\theta\sin\theta \\ \overline{Q}_{66} &= (Q_{11} + Q_{22} - 2Q_{12} - 2Q_{66})\cos^2\theta\sin^2\theta + Q_{66}(\cos^4\theta + \sin^4\theta) \end{aligned}$$

# An Observation Regarding Stress Distributions assuming linear-elastic conditions with no body forces

• For *isotropic* materials/structures, stress distributions are independent of elastic material properties:

## An Observation Regarding Stress Distributions assuming linear-elastic conditions with no body forces

- For <u>isotropic</u> materials/structures, stress distributions are independent of elastic material properties:
  - Can be seen from the theory of elasticity:

$$\sigma_{xx} = \frac{\partial^2 \phi}{\partial y^2}$$
  $\sigma_{yy} = \frac{\partial^2 \phi}{\partial x^2}$   $\tau_{xy} = -\frac{\partial^2 \phi}{\partial x \partial y}$ 

where:

 $\phi = \phi(x, y) =$  Airy stress function, which satisfies the biharmonic equation :

$$\frac{\partial^4 \phi}{\partial x^4} + 2 \frac{\partial^4 \phi}{\partial x^2 \partial y^2} + \frac{\partial^4 \phi}{\partial y^4} = 0$$

## An Observation Regarding Stress Distributions assuming linear-elastic conditions with no body forces

- For <u>isotropic</u> materials/structures, stress distributions are independent of elastic material properties:
  - Can be seen from the theory of elasticity:

$$\sigma_{xx} = \frac{\partial^2 \phi}{\partial y^2}$$
  $\sigma_{yy} = \frac{\partial^2 \phi}{\partial x^2}$   $\tau_{xy} = -\frac{\partial^2 \phi}{\partial x \partial y}$ 

where:

 $\phi = \phi(x, y) =$  Airy stress function, which satisfies the biharmonic equation :

$$\frac{\partial^4 \phi}{\partial x^4} + 2 \frac{\partial^4 \phi}{\partial x^2 \partial y^2} + \frac{\partial^4 \phi}{\partial y^4} = 0$$

(...unlike stresses, strains <u>are</u> a function of elastic material properties)

## An Observation Regarding Stress Distributions assuming linear-elastic conditions with no body forces

 For <u>isotropic</u> materials/structures, stress distributions are independent of elastic properties:

## An Observation Regarding Stress Distributions

assuming linear-elastic conditions with no body forces

For *isotropic* materials/structures, stress distributions are independent of elastic properties:

•The stress concentration factor for a circular hole in any large (i.e., "infinite") isotropic plate is always:



# An Observation Regarding Stress Distributions assuming linear-elastic conditions with no body forces

- For *isotropic* materials/structures, stress distributions are independent of elastic properties:
  - •The stress concentration factor for a circular hole in any large (i.e., "infinite") isotropic plate is always: 3.0


## An Observation Regarding Stress Distributions assuming linear-elastic conditions with no body forces

- For <u>isotropic</u> materials/structures, stress distributions are independent of elastic properties:
  - •The stress concentration factor for a circular hole in any large (i.e., "infinite") isotropic plate is always: 3.0



(...unlike stresses, strains are a function of elastic material properties)

# An Observation Regarding Stress Distributions assuming linear-elastic conditions with no body forces

• In contrast, for anisotropic materials/structures, stress distributions are <u>not</u> independent of elastic material properties

# An Observation Regarding Stress Distributions assuming linear-elastic conditions with no body forces

- In contrast, for anisotropic materials/structures, stress distributions are <u>not</u> independent of elastic material properties
  - For example, the stress concentration factor for a circular hole in an anisotropic plate varies widely...using typical properties for graphite-epoxy:

# An Observation Regarding Stress Distributions assuming linear-elastic conditions with no body forces

- In contrast, for anisotropic materials/structures, stress distributions are <u>not</u> independent of elastic material properties
  - For example, the stress concentration factor for a circular hole in an anisotropic plate varies widely...using typical properties for graphite-epoxy:

•SCF for circular hole in large [0°] panel: ~ 6-8



# An Observation Regarding Stress Distributions assuming linear-elastic conditions with no body forces

- In contrast, for anisotropic materials/structures, stress distributions are <u>not</u> independent of elastic material properties
  - For example, the stress concentration factor for a circular hole in an anisotropic plate varies widely...using typical properties for graphite-epoxy:

•SCF for circular hole in large [0°] panel: ~ 6-8 •SCF for circular hole in large [90°] panel: ~ 1.5 - 2.5

## Macroscopic Failure Theories

 Dozens of failure theories have been proposed...none are universally accepted

•Hinton, M.J., Kaddour, A.S., and Soden, P.D., *Failure Criteria in Fibre Reinforced Polymer Composites: The World-Wide failure Exercise*, Elsevier, ISBN 0-08-044475-X (2004)

•Three common failure criterion described in textbook:

- •Maximum stress failure criterion
- •Tsai-Hill failure criterion
- •Tsai-Wu failure criterion

Macroscopic Failure Theories Maximum Stress Failure Criterion (plane stress form)

• Failure does not occur if:

Mechanical Engineering





Macroscopic Failure Theories Tsai-Hill Failure Criterion (plane stress form)

• Failure does not occur if:

Mechanical Engineering



#### Macroscopic Failure Theories Tsai-Wu Failure Criterion (plane stress form)

• Failure does not occur if:

Mechanical Engineering

$$X_{1}\sigma_{11} + X_{2}\sigma_{22} + X_{11}\sigma_{11}^{2} + X_{22}\sigma_{22}^{2} + X_{66}\tau_{12}^{2} + 2X_{12}\sigma_{11}\sigma_{22} < 1$$



#### Macroscopic Failure Theories: Comparisons Off-axis Gr/Ep specimen subject to uniaxial stress



Macroscopic Failure Theories: Comparisons Off-axis Gr/Ep specimen subjected to pure shear stress



### Multi-ply, Multi-directional Composite Laminates



#### **Defining Ply Interface Positions**



#### **Describing Stacking Sequences**



#### **Describing Stacking Sequences**





### **Kirchhoff Hypothesis**

*"a straight line which is initially perpendicular to the midplane of a thin plate remains straight and perpendicular to the midplane after deformation"* 

• Ultimately allows us to calculate the strain at any through-thickness position z:

$$\begin{cases} \boldsymbol{\varepsilon}_{xx} \\ \boldsymbol{\varepsilon}_{yy} \\ \boldsymbol{\gamma}_{xy} \end{cases} = \begin{cases} \boldsymbol{\varepsilon}_{xx}^{o} \\ \boldsymbol{\varepsilon}_{yy}^{o} \\ \boldsymbol{\gamma}_{xy}^{o} \end{cases} + z \begin{cases} \boldsymbol{\kappa}_{xx} \\ \boldsymbol{\kappa}_{yy} \\ \boldsymbol{\kappa}_{xy} \end{cases}$$

where :

 $\varepsilon_{xx}^{o}, \varepsilon_{yy}^{o}, \gamma_{xy}^{o} = \text{midplane strains}$  $\kappa_{xx}, \kappa_{yy}, \kappa_{xy} = \text{midplane curvatures}$ 



### **Ply Strains**

• Strains at ply interfaces are usually of greatest interest:



## **Ply Stresses**

• Ply stresses can be calculated using Hooke's law:



## **Ply Stresses**

• Ply stresses can be calculated using Hooke's law:





- Loads considered are restricted to those that lead to plane stress conditions...two types:
  - Stress resultants,  $N_{xx}$ ,  $N_{yy}$ , and  $N_{xy}$ ....units = force/length





- Loads considered are restricted to those that lead to plane stress conditions...two types:
  - Moment resultants,  $M_{xx}$ ,  $M_{yy}$ , and  $M_{xy}$ ....units = force-length/length



• It can be shown:

$$N_{xx} = \int_{-t/2}^{t/2} \sigma_{xx} \, dz$$

• Hooke's law:

$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{cases} = \begin{bmatrix} \overline{\underline{Q}}_{11} & \overline{\underline{Q}}_{12} & \overline{\underline{Q}}_{16} \\ \overline{\underline{Q}}_{12} & \overline{\underline{Q}}_{22} & \overline{\underline{Q}}_{26} \\ \overline{\underline{Q}}_{16} & \overline{\underline{Q}}_{26} & \overline{\underline{Q}}_{66} \end{bmatrix} \begin{cases} \varepsilon_{xx} - \Delta T \alpha_{xx} - \Delta M \beta_{xx} \\ \varepsilon_{yy} - \Delta T \alpha_{yy} - \Delta M \beta_{yy} \\ \gamma_{xy} - \Delta T \alpha_{xy} - \Delta M \beta_{xy} \end{cases}$$

• Substituting for  $\sigma_{xx}$  and integrating in piece-wise fashion:

$$N_{xx} = A_{11}\varepsilon_{xx}^{o} + A_{12}\varepsilon_{yy}^{o} + A_{16}\gamma_{xy}^{o} + B_{11}\kappa_{xx} + B_{12}\kappa_{yy} + B_{16}\kappa_{xy} - N_{xx}^{T} - N_{xx}^{M}$$

#### • Where:

$$A_{11} = \{ \overline{Q}_{11} \}_{1} [z_{1} - z_{0}] + (\overline{Q}_{11})_{2} [z_{2} - z_{1}] + (\overline{Q}_{11})_{3} [z_{3} - z_{2}] + \dots + (\overline{Q}_{11})_{n} [z_{n} - z_{n-1}] \}$$

$$A_{12} = \{ \overline{Q}_{12} \}_{1} [z_{1} - z_{0}] + (\overline{Q}_{12})_{2} [z_{2} - z_{1}] + (\overline{Q}_{12})_{3} [z_{3} - z_{2}] + \dots + (\overline{Q}_{12})_{n} [z_{n} - z_{n-1}] \}$$

$$A_{16} = \{ \overline{Q}_{16} \}_{1} [z_{1} - z_{0}] + (\overline{Q}_{16})_{2} [z_{2} - z_{1}] + (\overline{Q}_{16})_{3} [z_{3} - z_{2}] + \dots + (\overline{Q}_{16})_{n} [z_{n} - z_{n-1}] \}$$

$$B_{11} = \frac{1}{2} \left\{ \overline{Q}_{11} \right\}_{1} [z_{1}^{2} - z_{0}^{2}] + \left(\overline{Q}_{11} \right)_{2} [z_{2}^{2} - z_{1}^{2}] + \left(\overline{Q}_{11} \right)_{3} [z_{3}^{2} - z_{2}^{2}] + \dots + \left(\overline{Q}_{11} \right)_{n} [z_{n}^{2} - z_{n-1}^{2}] \right\}$$

$$B_{12} = \frac{1}{2} \left\{ \overline{Q}_{12} \right\}_{1} [z_{1}^{2} - z_{0}^{2}] + \left(\overline{Q}_{12} \right)_{2} [z_{2}^{2} - z_{1}^{2}] + \left(\overline{Q}_{12} \right)_{3} [z_{3}^{2} - z_{2}^{2}] + \dots + \left(\overline{Q}_{12} \right)_{n} [z_{n}^{2} - z_{n-1}^{2}] \right\}$$

$$B_{16} = \frac{1}{2} \left\{ \overline{Q}_{16} \right\}_{1} [z_{1}^{2} - z_{0}^{2}] + \left(\overline{Q}_{16} \right)_{2} [z_{2}^{2} - z_{1}^{2}] + \left(\overline{Q}_{16} \right)_{3} [z_{3}^{2} - z_{2}^{2}] + \dots + \left(\overline{Q}_{16} \right)_{n} [z_{n}^{2} - z_{n-1}^{2}] \right\}$$

$$N_{xx}^{T} \equiv \Delta T \sum_{k=1}^{n} \left\{ \overline{Q}_{11} \alpha_{xx} + \overline{Q}_{12} \alpha_{yy} + \overline{Q}_{16} \alpha_{xy} \right\}_{k} \left[ z_{k} - z_{k-1} \right] \right\}$$
$$N_{xx}^{M} \equiv \Delta M \sum_{k=1}^{n} \left\{ \overline{Q}_{11} \beta_{xx} + \overline{Q}_{12} \beta_{yy} + \overline{Q}_{16} \beta_{xy} \right\}_{k} \left[ z_{k} - z_{k-1} \right] \right\}$$

• It can be shown:

$$M_{xx} = \int_{-t/2}^{t/2} \sigma_{xx} z dz$$

• Hooke's law:

$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{cases} = \begin{bmatrix} \overline{\underline{Q}}_{11} & \overline{\underline{Q}}_{12} & \overline{\underline{Q}}_{16} \\ \overline{\underline{Q}}_{12} & \overline{\underline{Q}}_{22} & \overline{\underline{Q}}_{26} \\ \overline{\underline{Q}}_{16} & \overline{\underline{Q}}_{26} & \overline{\underline{Q}}_{66} \end{bmatrix} \begin{cases} \varepsilon_{xx} - \Delta T \alpha_{xx} - \Delta M \beta_{xx} \\ \varepsilon_{yy} - \Delta T \alpha_{yy} - \Delta M \beta_{yy} \\ \gamma_{xy} - \Delta T \alpha_{xy} - \Delta M \beta_{xy} \end{cases}$$

• Substituting for  $\sigma_{xx}$  and integrating in piece-wise fashion:

 $M_{xx} = B_{11}\varepsilon_{xx}^{o} + B_{12}\varepsilon_{yy}^{o} + B_{16}\gamma_{xy}^{o} + D_{11}\kappa_{xx} + D_{12}\kappa_{yy} + D_{16}\kappa_{xy} - M_{xx}^{T} - M_{xx}^{M}$ 

#### UNIVERSITY OF WASHINGTON COLLEGE OF ENGINEERING

#### Mechanical Engineering

#### Laminate Loading

#### • Where:

$$B_{11} = \frac{1}{2} \left\{ \overline{Q}_{11} \right\}_{1} [z_{1}^{2} - z_{0}^{2}] + \left(\overline{Q}_{11} \right)_{2} [z_{2}^{2} - z_{1}^{2}] + \left(\overline{Q}_{11} \right)_{3} [z_{3}^{2} - z_{2}^{2}] + \dots + \left(\overline{Q}_{11} \right)_{n} [z_{n}^{2} - z_{n-1}^{2}] \right\}$$

$$B_{12} = \frac{1}{2} \left\{ \overline{Q}_{12} \right\}_{1} [z_{1}^{2} - z_{0}^{2}] + \left(\overline{Q}_{12} \right)_{2} [z_{2}^{2} - z_{1}^{2}] + \left(\overline{Q}_{12} \right)_{3} [z_{3}^{2} - z_{2}^{2}] + \dots + \left(\overline{Q}_{12} \right)_{n} [z_{n}^{2} - z_{n-1}^{2}] \right\}$$

$$B_{16} = \frac{1}{2} \left\{ \overline{Q}_{16} \right\}_{1} [z_{1}^{2} - z_{0}^{2}] + \left(\overline{Q}_{16} \right)_{2} [z_{2}^{2} - z_{1}^{2}] + \left(\overline{Q}_{16} \right)_{3} [z_{3}^{2} - z_{2}^{2}] + \dots + \left(\overline{Q}_{16} \right)_{n} [z_{n}^{2} - z_{n-1}^{2}] \right\}$$

$$D_{11} = \frac{1}{3} \left\{ \overline{Q}_{11} \right\}_{1} [z_{1}^{3} - z_{0}^{3}] + (\overline{Q}_{11})_{2} [z_{2}^{3} - z_{1}^{3}] + (\overline{Q}_{11})_{3} [z_{3}^{3} - z_{2}^{3}] + \dots + (\overline{Q}_{11})_{n} [z_{n}^{3} - z_{n-1}^{3}] \right\}$$

$$D_{12} = \frac{1}{3} \left\{ \overline{Q}_{12} \right\}_{1} [z_{1}^{3} - z_{0}^{3}] + (\overline{Q}_{12})_{2} [z_{2}^{3} - z_{1}^{3}] + (\overline{Q}_{12})_{3} [z_{3}^{3} - z_{2}^{3}] + \dots + (\overline{Q}_{12})_{n} [z_{n}^{3} - z_{n-1}^{3}] \right\}$$

$$D_{16} = \frac{1}{3} \left\{ \overline{Q}_{16} \right\}_{1} [z_{1}^{3} - z_{0}^{3}] + (\overline{Q}_{16})_{2} [z_{2}^{3} - z_{1}^{3}] + (\overline{Q}_{16})_{3} [z_{3}^{3} - z_{2}^{3}] + \dots + (\overline{Q}_{16})_{n} [z_{n}^{3} - z_{n-1}^{3}] \right\}$$

$$M_{xx}^{T} = \frac{\Delta T}{2} \sum_{k=1}^{n} \left\{ \overline{Q}_{11} \alpha_{xx} + \overline{Q}_{12} \alpha_{yy} + \overline{Q}_{16} \alpha_{xy} \right\}_{k} \left[ z_{k}^{2} - z_{k-1}^{2} \right] \right\}$$
$$M_{xx}^{M} = \frac{\Delta M}{2} \sum_{k=1}^{n} \left\{ \overline{Q}_{11} \beta_{xx} + \overline{Q}_{12} \beta_{yy} + \overline{Q}_{16} \beta_{xy} \right\}_{k} \left[ z_{k}^{2} - z_{k-1}^{2} \right] \right\}$$

• Process repeated for all stress and moment resultants, finally resulting in:

| $\left(N_{xx}\right)$ | }= | $A_{11}$               | $A_{12}$               | $A_{16}$               | <i>B</i> <sub>11</sub> | <i>B</i> <sub>12</sub> | $B_{16}$               | $\left[ \varepsilon_{xx}^{o} \right]$              | $\left[ \begin{array}{c} N_{xx}^T \\ \end{array} \right]$ | $N_{xx}^M$       |   |
|-----------------------|----|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------|-----------------------------------------------------------|------------------|---|
| N <sub>yy</sub>       |    | <i>A</i> <sub>12</sub> | A <sub>22</sub>        | $A_{26}$               | <i>B</i> <sub>12</sub> | <i>B</i> <sub>22</sub> | <i>B</i> <sub>26</sub> | $\left  \boldsymbol{\varepsilon}_{yy}^{o} \right $ | $N_{yy}^T$                                                | $N_{yy}^M$       |   |
| $ N_{xy} $            |    | $A_{16}$               | $A_{26}$               | A <sub>66</sub>        | <i>B</i> <sub>16</sub> | <i>B</i> <sub>26</sub> | <i>B</i> <sub>66</sub> | $\left  \gamma^{o}_{xy} \right _{-}$               | $\int N_{xy}^T$                                           | $N_{xy}^M$       |   |
| $M_{xx}$              |    | <i>B</i> <sub>11</sub> | <i>B</i> <sub>12</sub> | <i>B</i> <sub>16</sub> | <i>D</i> <sub>11</sub> | <i>D</i> <sub>12</sub> | <i>D</i> <sub>16</sub> | $\mathcal{K}_{XX}$                                 | $M_{xx}^{T}$                                              | $M_{xx}^{M}$     | ſ |
| $M_{yy}$              |    | <i>B</i> <sub>12</sub> | <i>B</i> <sub>22</sub> | <i>B</i> <sub>26</sub> | <i>D</i> <sub>12</sub> | <i>D</i> <sub>22</sub> | <i>D</i> <sub>26</sub> | Kyy                                                | $M_{yy}^{T}$                                              | $M \frac{M}{yy}$ |   |
| $\left[M_{xy}\right]$ |    | <i>B</i> <sub>16</sub> | <i>B</i> <sub>26</sub> | <i>B</i> <sub>66</sub> | <i>D</i> <sub>16</sub> | <i>D</i> <sub>26</sub> | $D_{66}$               | $\left[ \kappa_{xy} \right]$                       | $M_{xy}^{T}$                                              | $M_{xy}^{M}$     |   |

• Inverting:

$$\begin{cases} \boldsymbol{\varepsilon}_{xx}^{o} \\ \boldsymbol{\varepsilon}_{yy}^{o} \\ \boldsymbol{\gamma}_{xy}^{o} \\ \boldsymbol{\kappa}_{xx} \\ \boldsymbol{\kappa}_{yy} \\ \boldsymbol{\kappa}_{xy} \end{cases} = \begin{bmatrix} a_{11} & a_{12} & a_{16} & b_{11} & b_{12} & b_{16} \\ a_{12} & a_{22} & a_{26} & b_{21} & b_{22} & b_{26} \\ a_{16} & a_{26} & a_{66} & b_{61} & b_{62} & b_{66} \\ b_{11} & b_{21} & b_{61} & d_{11} & d_{12} & d_{16} \\ b_{12} & b_{22} & b_{62} & d_{12} & d_{22} & d_{26} \\ b_{16} & b_{26} & b_{66} & d_{16} & d_{26} & d_{66} \end{bmatrix} \begin{bmatrix} N_{xx} + N_{xx}^{T} + N_{xx}^{M} \\ N_{yy} + N_{yy}^{T} + N_{yy}^{M} \\ N_{xy} + N_{xy}^{T} + N_{xy}^{M} \\ M_{xx} + M_{xx}^{T} + M_{xx}^{M} \\ M_{yy} + M_{yy}^{T} + M_{yy}^{M} \\ M_{xy} + M_{xy}^{T} + M_{xy}^{M} \\ \end{bmatrix}$$

## Simplifications Due to Stacking Sequence

- Various terms within the [*ABD*] and [*abd*] matrices are always zero for certain stacking sequences (see Section 6.7)
- The most important simplification occurs for *symmetric* laminates...in this case:

$$\begin{bmatrix} N_{xx} \\ N_{yy} \\ N_{xy} \\ M_{xx} \\ M_{yy} \\ M_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} & 0 & 0 & 0 \\ A_{12} & A_{22} & A_{26} & 0 & 0 & 0 \\ A_{16} & A_{26} & A_{66} & 0 & 0 & 0 \\ 0 & 0 & 0 & D_{11} & D_{12} & D_{16} \\ 0 & 0 & 0 & D_{12} & D_{22} & D_{26} \\ 0 & 0 & 0 & D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx}^{o} \\ \varepsilon_{yy}^{o} \\ \varepsilon_{yy}^{o} \\ \varepsilon_{yy}^{o} \\ \varepsilon_{xy}^{o} \\ \kappa_{xy} \\ \kappa_{xy} \\ \kappa_{xy} \end{bmatrix} = \begin{bmatrix} N_{xx}^{T} \\ N_{xy}^{M} \\ N_{xy}^{M} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

## Simplifications Due to Stacking Sequence

- Various terms within the [*ABD*] and [*abd*] matrices are always zero for certain stacking sequences (see Section 6.7)
- The most important simplification occurs for symmetric laminates...in this case:

$$\begin{bmatrix} \boldsymbol{\varepsilon}_{xx}^{o} \\ \boldsymbol{\varepsilon}_{yy}^{o} \\ \boldsymbol{\gamma}_{xy}^{o} \\ \boldsymbol{\kappa}_{xx} \\ \boldsymbol{\kappa}_{yy} \\ \boldsymbol{\kappa}_{xy} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{16} & 0 & 0 & 0 \\ a_{12} & a_{22} & a_{26} & 0 & 0 & 0 \\ a_{16} & a_{26} & a_{66} & 0 & 0 & 0 \\ 0 & 0 & 0 & d_{11} & d_{12} & d_{16} \\ 0 & 0 & 0 & d_{12} & d_{22} & d_{26} \\ 0 & 0 & 0 & d_{16} & d_{26} & d_{66} \end{bmatrix} \begin{bmatrix} N_{xx} + N_{xx}^{T} + N_{xx}^{M} \\ N_{yy} + N_{yy}^{T} + N_{yy}^{M} \\ N_{xy} + N_{xy}^{T} + N_{xy}^{M} \\ M_{xx} \\ M_{yy} \\ M_{xy} \end{bmatrix}$$

#### **Effective Laminate Properties**

- Effective elastic properties of a laminate can be determined using elements of the  $[a_{ij}]$  an  $[d_{ij}]$  matrices
- Extensional (in-plane):

$$\overline{E}_{xx}^{ex} = \frac{1}{ta_{11}} \qquad \overline{v}_{xy}^{ex} = \frac{-a_{12}}{a_{11}} \qquad \overline{\eta}_{xx,xy}^{ex} = \frac{a_{16}}{a_{11}}$$
$$\overline{E}_{yy}^{ex} = \frac{1}{ta_{22}} \qquad \overline{v}_{yx}^{ex} = \frac{-a_{12}}{a_{22}} \qquad \overline{\eta}_{yy,xy}^{ex} = \frac{a_{26}}{a_{22}}$$
$$\overline{G}_{xy} = \frac{1}{ta_{66}} \qquad \overline{\eta}_{xy,xx}^{ex} = \frac{a_{16}}{a_{66}} \qquad \overline{\eta}_{xy,yy}^{ex} = \frac{a_{26}}{a_{66}}$$

### **Effective Laminate Properties**

- Effective elastic properties of a laminate can be determined using elements of the  $[a_{ij}]$  an  $[d_{ij}]$  matrices
- Flexural (bending):

$$\overline{E}_{xx}^{fl} = \frac{12}{t^3 d_{11}} \qquad \overline{\nu}_{xy}^{fl} = \frac{-d_{12}}{d_{11}} \qquad \overline{\eta}_{xx,xy}^{fl} = \frac{d_{16}}{d_{11}}$$
$$\overline{E}_{yy}^{fl} = \frac{12}{t^3 d_{22}} \qquad \overline{\nu}_{yx}^{fl} = \frac{-d_{12}}{d_{22}} \qquad \overline{\eta}_{yy,xy}^{fl} = \frac{d_{26}}{d_{22}}$$



## Program CLT

• Most of the topics included in this review are implemented in the program CLT (<u>Classical Lamination Theory</u>)

#### Laminate Damage Progression and Failure



## 3-D Stress-State Exists Near a Free-edge and Complicate Failure Predictions (see Section 6.13)



#### 3-D Stress-State Exists Near a Free-edge and Complicate Failure Predictions *(see Section 6.13)*

(Typical results for a [45/-45]<sub>s</sub> laminate subject to uniaxial loading)



#### First-ply Failure Loads and/or First-ply Failure Envelopes can be Predicted Using Program LAMFAIL


Mechanical Engineering

## Environmental Effects Dramatically Effect Predicted First-ply Failure Loads



## Last-Ply Failure Loads Can be Predicted Using the Ply-Discount Scheme (Program LAMFAIL)



Predicted stress-strain curve for a  $[0/30/60]_{s}$  laminate