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FOREWORD 

G. N. Savin's monograph Stress Distr5bution Around HoZee is a significant 
development of his monograph Concentration of Stress Around Holes which 
appeared in 1951 and was highly valued in its time. This monograph has been 
widely distributed and has been translated into several foreign languages. 

Regardless of the powerful computer technology now available which allows 
numerical solution of many problems, including problems of elasticity theory, 
the development of methods of approximate solution for individual classes of 
problems which would provide solutions in the form of certain relatively simple 
analytic expressions is very important. 

The present monograph prefers the construction of solutions (approximate) 
of different classes of problems of elasticity theory which reduce to simple 
formulas for calculating stress and transfer components. 

As is known, the results on solving problems of the plane theory of 
elasticity using the' methods of complex-variable function theory, regardless of 
their effectiveness, had initially a more theoretical nature, therefore it 
became essential to give these results a form required by engineering practice. 

G. N. Savin's great contribution is that he has filled this gap to a 
considerable degree through his work. The research results cited in the present 
monograph are of interest in the above sense as well as theoretically. The 
author's comparison of theoretical solutions with experimental data available in 
the world literature is especially valuable. 

There is no doubt that G. N. Savin's monograph will be very useful and will 
be warmly received by readers, especially those working in the area of applica- 
tions. 

Academician N. I. Muskhelishvili 

15 July 1966 
Tbilisi 
Mathematical Institute of the Academy of Sciences Georgian SSR 



FROM THE AUTHOR 

The present monograph is a continuation and further expansion of the 
book Concentration of Stress Around HoZes published by the State publishing 
House of Technical-Theoretical Literature in 1951. During the following 15 
years a great deal of attention was devoted to the problem of stress concentra- 
tion around holes: new problems have been posed and effective solutions have 
been obtained both for new classes of problems (nonlinear problems, stresses 
around holes in envelopes and others), as well as for problems which were formu- 
lated ear.lier, in particular, for multiply-connected regions of an isotropic 
and anisotropic media. 

The monograph includes 12 chapters and an appendix; it contains primarily 
the results of research of the author and his students done during the past 15 
years, but it, just as the preceding work, includes the most important and 
interesting results obtained by other authors in this specialization. 

The monograph Concentration of Stress Around HoZes consisted of eight 
chapters. Many problems were solved by the same method, namely, by reduction to 
finding two analytical functions of a complex variable -- the complex potentials 
of G. V. Kolosov and N. I. Muskhelishvili with further application (in most 
cases) of conformal mappings of the outside or inside of an identical circle 
onto the regions under consideration and of Cauchy-type integrals (or Schwartz 
formulas), since single-connected finite or infinite regions were primarily 
investigated. 

In connection with the considerable expansion of the classes of problems 
examined in the present monograph it was not possible to hold to the former 
unification of methods of solving the problems cited. It was necessary to use 
three methods to solve these problems: 

1) the method of complex Kolosov-Muskhelishvili potentials and Cauchy-type 
integrals or Shwartz formulas; this method was used to solve the problems 
examined in Chapters 11, 111, IV (51 and 2), V, VII and VIII; 

2) the method of perturbation of the form of boundaries for an isotropic 
medium (when the problem reduces to solving a non-biharmonic equation) and for 
an anisotropic medium (when the hole is not elliptical); this method was used to 
solve problems which comprised the content of Chapters 111, IV (53), VI, X and 
XI; 

3) the method based on V. Voltaire's principle, for solving of the influ- 
ence of the tensile-elastic properties of material on stress concentration 
around holes (Chapter XII) . 

- Of the 12 chapters of the present monograph, Chapters IV, VI, VII, VIII, 
IX, X, XI and XI1 are completely new (in comparison with the former work), and 
Chapters 11, I11 and V have been essentially redone. 

viii 



The book contains the most important results of research on the concentra- 
tion of stresses around holes and fissures in a form convenient for application 
and allows making conclusions, sometimes without going to great theoretical 
depth. The monograph provides an acquaintance with the methods of solving prob- 
lems of the concentration of stresses around holes, and also with the basic 
literature on this problem. It is designed so that all chapters can be read 
independently. Many research results have not been cited with the completeness 
with which they should be explained. The primary obstacle to this was the 
unreasonable size of the book. We have tried to refer as completely as 
possible to original works, a list of which is given in alphabetic order at the 
end of each chapter. The most interesting results of research which, in our 
opinion, can be applied directly in engineering practice or help to master the 
complex picture of the stressed state around a hole under consideration and to 
establish the influence of some factors (rounding the corners of holes, distance 
between holes, rigidness of a fastening ring and others), are given in the form 
of graphs, tables and so forth. 

A great deal of help in choosing material for the corresponding chapters 
of the present monograph, and critical analysis and verification of the solu- 
tions of their own and those of other authors and compilation of graphs and 
tables were provided by my students -- Doctor of Technical Sciences A. N. Guz', 
G. A.  Van Fo Fy, A. G. Ugodchikov, D. V. Grilitskiy, V. V. Panasyuk, I. A. 
Prusov, N. P. Fleyshman, Yu. A .  Shevlyakov, Ya. S. Podstrigach, Candidates of 
Physical-Mathemat ical Sciences Y a. F. Kayuk, A. A.  Kaminskiy , Yu. I. Koyfman, 
V. D. Kubenko, Yu. N. Nemish, Yu. N. Podil'chuk, I. Yu. Khoma, L. P. Khoroshun, 
I. A.  Tsurpal, for which I express my deep thanks to them. 

I consider it my pleasant duty to express my deep thanks to Doctor of 
Technical Sciences Professor Ye. F. Burmistrov, Doctor of Physical-Mathematical 
Sciences Professor I. I. Vorovich, Doctor of Physical-Mathematical Sciences 
Professor D. D. Ivlev, Corresponding Member of AS UkrSSR Doctor of Technical 
Sciences Professor A. S. Kosmodamianskiy, Doctor of Physical-Mathematical 
Sciences Professor L. A .  Tolokonnikov and Candidate of Physical-Mathematical 
Sciences Docent V. G. Gromov, who expressed a number of critical remarks in 
reading the corresponding chapters, which promoted improving the book to a 
considerable degree. 

A great deal of help was rendered in the huge work associated with preparing 
the manuscript for press by engineers of the Department of Rheology of the 
Institute of Mechanics of the AS UkrSSR I. 0 .  Guberman, Ts. B. Pinskaya, I. Yu. 
Babich, Technicians S. S. Kirichenko, N. A. Chaykun, S. G. Tsegel'n and other 
workers and aspirants of the department. I take the opportunity to express to 
them my deep recognition of the work they have done. 

G. N. Savin 

25 January 1966 
Kiev 
Institute of Mechanics of the AN UkrSSR, 
Department of Rheology 



STRESS Dl STRl BUT1 ON AROUND HOLES 

G. N .  Savin 

CHAPTER I. BASIC EQUATIONS OF THE PLANE PROBLEM OF 
ELASTICITY THEORY 

ABSTRACT. This chapter deals with the principal equations 
of the plane problem of the theory of elasticity in a 
linear formulation, valid both for the isotropic and aniso- 
tropic elastic media. The method is presented for solving 
the principal plane boundary value problems for the simple 
connected domains. Some ways are shown for obtaining the 
mapping functions of the exterior (interior) of a unit 
circle on the exterior of a curvilinear hole whose con- 
tour is an arbitrary smooth curved line. 

51. The Plane Problem of the Linear Elasticity Theory of an Isotropic ~edium' 

The plane problem of the theory of elasticity of an isotropic body, as is - /9* 
known, combines two physically different problems: the plane stressed state 
and the plane deformation. 

The stressed state in any point of an elastic body for the plane problem 
is fully defined by three stresses -- ax, a T which in the absence of 

Y' XY' 
volumetric forces satisfies the two equilibrium equations 

and the compatibility condition 

The problem reduces to the integration of these equations with defined 
boundary conditions. 

Two basic problems are isolated depending upon what is assigned on contour 
L of region S occupied by the body. 

 o or more detail see N. I. Muskhelishvilils monograph [l] (here and below aster- 
isks by a word denote references, and in all other cases --  indices). 
*Numbers in the margin indicate pagination in the foreign text. 



For t h e  f i r s t  bas ic  problem, i . e . ,  when external  forces  Xn and Yn a r e  

given on contour L of region S, of t h e  boundary, condit ions may be wr i t t en  i n  
t h e  form 

ox cos (n, x )  + txy cos (n, y) = X,,, 

r,, cos (n, X) + u, cos (n, g) = Y,. 

Here n i s  the  outward normal t o  contour L. 

For the  second bas ic  problem, i . e . ,  when displacements a r e  assigned on 
contour L of region S, the  boundary condit ions take  on t h e  form 

where g ( s )  and g ( s )  a r e  assigned s h i f t s  of po in t s  of contour L which a r e  
1 2 

given functions of t h e  a r c  s of t h e  contour, taken from an a r b i t r a r y  point .  

In addi t ion  t o  these  two b a s i c  problems the re  a r e  d i f f e r e n t  va r i a t ions  of 
combined-type problems. We s h a l l  encounter below t h e  simplest  of these  prob- 
lems, usual ly  c a l l e d  t h e  t h i r d  problem, namely when s t r e s s  is  placed upon one 
p a r t  of contour L of region S and displacement i s  given on t h e  r e s t  nf t h i s  
contour. 

Equation systems (1.1) and (1.2) can be reduced t o  a s i n g l e  biharmonic 
equation 

by introducing the  s t r e s s  function U(x, y ) ,  which i s  r e l a t e d  t o  t h e  
s t r e s s e s  by t h e  r e l a t i o n s  

d2U dzu - . d'u ax = - ayn ~ y = ~ ~  Zxu - -- dray ' 

I t  can be shown here t h a t  the  contour condit ions f o r  the  function U(x, y ) ,  i n  
the  case of the  f i r s t  basi:: problem, acquire the4orm 



where C and C are two arbitrary real constants, which for the one-connected 1 2 
region, can be assumed to be equal to,zero. 

Thus the planar problem of the theory of elasticity reduced to the 
determination of the biharmonic function U(x,  y) which satisfies contour condi- 
tions (I. 4) or (I, 7). 

N. I. Muskhelishvili demonstrated [l] that the solution of the equation 
(1.5) can be written as follows: 

Here Re is the symbol for the real part of the expression contained within the 
brackets; ml(z) and x1(z) are some analytical functions of the complex variable 
z = x + iy. 

Consequently, the solution of the planar problem reduces to the determina- 
tion of two analytic functions ml(z) and $l(z) = dxl/dz which, on conf Our LJ 
satisfy definite conditions. 

The representation of the solution of equation (1.5) in the form (1.8) 
affords the possibility to express the boundary conditions through two functions 
ml(z) and q1(z)' 

For the first basic problem condition (1.7) acquires the form 

8 

= i (X. + iYn) ds + C -- l, +-if, + c m t  on L. 
0 

If, however, the displacements are known, we find the following boundary 
condition on contour L: 

- - 
2p (u + iv) = xq, (2) - 29;  (2) - 9, (2) = 2p (8, -ti& on L* (I. 10) 

where K = (3 - v)/(1 + V) for the plane stressed state and K = 3 - 4v for plane - /11 
deformations; v is Poisson coefficient; E is Young's modulus; p = G . ~ / 2 ( 1  + v) 
is shear modulus. 

We shall further combine the boundary conditions (1.9) and (1.10) and 
write them in the form 

-- - 
%,TI (2) + zcp; (2) + 9, (2) = F (2) on L, (I. 11) 



where 

x, = 1 ,  F = i (X, ,+ iY,) ds + cdnst S 
0 

for the first basic problem; 

(I. 12) 

for the second basic problem. 

If the functions $1(~) and $1(~) are known, the stress components u u 
x '  Y 

and T may be found directly through $l(z) and I)~(Z) according to the Kolosov- 
x Y 

~uskhelishvi lil formulas 
- 

a, + = 2[q; (2) + cp; (41 = 4Recp; (21, 

g - 0, + 2irzy = 2 (2) + $; @)I. (I. 13) 

From equation (1.13) we easily find formulas for maximal tangential stress 
T and principal stresses ul and u2 expressed. through complex potentials max 
+1(~) and 81(z) : 

rmax = I 6; (2) + llJ; (2) 1, 

(I. 14) 

In solving the first basic problem it is sometimes more convenient to use 
a boundary condition obtained from equation (1.9) by differentiating by z E t 
(where t is the value of variable z on contour L of region S): 

@, (t) + O,,(t) - e-*" [to; ( t )  + Y, ( t)]  = F' ( t )  = ( X ,  + i~,)>-'" N + iT. (I .15) 

Here and later in formulas (I .17)- (1.21) ( 2 )  = @i(z), Y1(z) = $;(Z) ; N is /12 - 
projection of stress applied to an arc of the contour onto the direction of the 

' A  complex representation of the solution of the plane problem in the form 
first published by G. V. Kolosov (1909), as is indicated by I. N. Veku and 
N. I. Muskhelishvili [I], was given even earlier (1900) by S. A .  Chapllgin [I]. 
However, these works of S. A .  Chapllgin were published only after his death 
(1950j. 



external  normal i n  r e l a t i on  t o  the  body; T is  project ion of the  same s t r e s s  
on a tangent d i rected t o  the  l e f t ,  i f  looking along the  pos i t ive  di rect ion of 
t he  normal; 0 is  angle between the  normal and ax i s  x. 

I f  t he  region i s  bounded by a c i r c l e  (c i rcu la r  disk,  plane with a round 
opening, round r ing) ,  then 

F'( t )  = N + iT = 4 + i~,,, (1.16) 

where or and -r a r e  the  normal and tangent ia l  s t r e s s  i n  a polar  coordinate re. 
system (e = re ie) ,  respect ively .  

The f i r s t ,  second and combined problems of t he  plane theory of e l a s t i c i t y  
f o r  many regions a r e  solved very simply and e f fec t ive ly  by reducing them t o  the  
Hi lber t  boundary problem o r  t o  the  problem of l i nea r  s t r e s s .  A de ta i l ed  expa- 
s i t i o n  of t h i s  problem may be found i n  N. I .  Muskhelishvili 's monograph [ I ] .  
Here we s h a l l  c i t e  only some of t h e  formulas which w i l l  be needed l a t e r .  

In a polar  coordinate system ( r ,  8) formulas (1.13) take on the  form 

From the' f i r s t  two formulas of (1.17) it follows t h a t  

g - ir rB = @I (z )  + @i;j - e""&( (z)  -+- Y, ( ~ 1 1 .  ( I .  18) 

For a region bounded by a c i r c l e  

(1.19) 

(I. 20) 

2 ~ ( $ +  ig\ = izpl(z) +al(+) --;(i-+) Y ~ ( z )  (I. 21) 

Formulas (1.20) and (1.21) a r e  very convenient f o r  solving many important prob- 
lems of the  plane theory of e l a s t i c i t y .  

Solution of the Basic Boundary Problems fo r  Simply-Connected ( i n f i n i t e )  
Regions. In  t h i s  case the  region of change of complex var iable  z i s  the  outside 
(including the  i n f i n i t e l y  d i s t an t  point )  of a c e r t a i n  su f f i c i en t l y  smooth con- 
tour L, i . e . ,  an i n f i n i t e  plane with a s.ingle hole.  Placing the  or ig in  of t h e  



coordinates  i n  t h e  hole  (outs ide  t h e  region) i t  i s  poss ib le  t o  represent  t h e  /13  - 
funi:tions 4 (z)  and I) (z) i n  t h e  form I 1 

(I .  22) 

Here X and hr a r e  components of t h e  r e s u l t a n t  vec tor  of a l l  ex te rna l  forces  
applied t o  contour L of t h e  hole .  

For t h e  s t r e s s e s  t o  remain bounded throughout region S,  it i s  necessary t o  
s e t  a l l  c o e f f i c i e n t s  a;, and b; f o r  n 2 2 equal t o  zero i n  funct ions +l (z)  and 

( z  I .  22)  . With these  r e s t r i c t i o n s . .  

X +  i? 
%(z)  = - Zn(l+%) In z $- I'z + cp! (z), 

(I. 23) 

Were the  constants  I' = B + i C  and r '  = B 9  + i C v  a r e  defined by t h e  s t r e s s e d  
s t a t e  at i n f i n i t y ,  and $O(z) and q O ( z )  a r e  funct ions  which have expansions of 
the  form 

1 1 

( I .  24) 

w i t h  l a rge  enough I z l  . I f  t h e  contour of t h e  hole  i s  f r e e  of ex te rna l  fo rces ,  
i t  follows t h a t  X = Y = 0 i n  formula ( 1 . 2 3 ) .  

Denoting by N and N t h e  values of t h e  p r i n c i p a l  s t r e s s e s  a t  i n f i n i t y ,  w e  
1 2 

obta in  f o r  cons tants  T = B + i C  and I" = £3' + i C '  t h e  following expressions: 

Here a i s  angle comprised by force  N1 at. i n f i n i t y  with a x i s  Ox. 

(I. 25) 

The s t r e s s e s  a t  i n f i n i t y  



q = 2 B - B ' ,  a T = 2 B + B ' ,  r=-cl. XY (I. 25a) 

The constant C '  is associated with rigid body rotation of the infinitely distant 
part of the plane 'and does not influence stress distribution,' and therefore may 
be set equal to zero. 

Let us now map region S onto the outside (or inside) of a unit circle y /I4 - 
with the help of mapping function z = w(<).  Let us denote the value of vari- 
able < on the unit circle by a. 

By replacing variable z on contour L of region S through w(<) condition 
(1.11) reduces to the form 

@(a) - - 
xfl(o) f q q ' P  ("1 + 'l'(o) = F ( b  on Y* (I. 26) 

where the functions $I (o) and $(o) are equal to Ol [w(o) ] and Ql [w(o) 1 . respec- 
tively. 

After replacing variable z by w(<) formulas (1.13) take on the form 

where 

(I. 27) 

(I. 28) 

and o oJ and T~~ are equal, respectively, to ox, o and r in a moving 
P ' Y XY 

rectangular coordinate system, in which the coordinate origin is located in the 
point under consideration and axis Oy is a tangent to the curve P = const, and 
axis Ox is directed along the outward normal to this curve in the given point. 

In golving specific problems it is sometimes more convenient in the 
practical sense to define the functions a(<) and Y(c ) ,  satisfying on contour y 
the condition 

- 0-* - -- F' (a) 
~ 1 @ ( 4 + @ ( 4 - ~ [ ~ ( 0 ) @ '  (0) 4 - a ' ( ~ ) Y ( u ) l  = -on y, (I. 29) 

Condition (1.29) is obtained from (1.26) by differentiating by 0. 



As was shown in the works of I. N. Kartsivadze [I], Ye. F. Burmistrov [2], 
if the function a(<) is defined, this is enough for a complete solution to the 
problem since the function Y(C) is connected with the function a(<) by the 
formula f 

Substituting formula (1.30) into (I.27), we obtain the following expres- /15 - 
sions for stresses on the contour: 

(I. 31) 

In particular, if the contour is free from external forces, the stresses are 
found by formulas 

uQ=4RecD(u), u,=z,,=O. (I. 32) 

In the case of the second basic problem (an absolutely rigid ring or disk 
is soldered into the hole) 

4 u - e ( )  u = v a  
Q I + V  Q Q' ' Q Q = -  

1rn0(o) .  (I. 33) 

Later we will use mapping both onto the outside and the inside of a unit circle, 
accepting in the first case the mapping function in the form 

 his expression may be obtained from the formula indicated by A.  G. Ugodchikov 
by simple differentiation by 5 :  



and in the second --  in the form 

It is obvlous that after replacing variable z by with the help 
of correlation (I. 34) ,  functions (I. 23) will have the form 

(I. 34) 

(I. 35) 

(I. 36) 

OD OD 

where O o ( c )  " a r c L d  h(~) = bk64 are two holomorphic functions when 
k-0 k c 0  

Substituting functions $(C) and Y (C.) (1.36) into the contour conditions 
(1.26) and comparing coefficients of identical powers of 5 in the right and 
left parts, we obtain a system of algebraic equations. Solving it, we find 
coefficients ak and bk. This approach, however, can be accomplished only in 

the simplest cases. In general, it is extremely cumbersome and inconvenient1. - /16 

N. I. Muskhelishvili [l] showed that, using the Harnak theorem, it is 
possible to replace the contour conditions (I.11), where instead of z the value 
of the mapping function on the circuit z = w(a) (1.35) is introduced, by two 
equivalent functional equations: 

where 

(I. 37) 

-- - 

'~ormulas (1.31)- (I. 33) were obtained by Ye. F. Burmistrov [I]. 



o (a) X - iY - Bm] - (B' - i ~ ' ) %  - -=( (0) 2% (1 + %I 

(I. 38) 

reduced contour conditions for functions b0(z)  and qO(z) and f; - if: is an 

expression conjugate with expression (1.38). 

Analogous correlations are obtained for the second basic problem. It may 
be shown1 that if z = w(<) is a rational function, it is possible to determine 
the function $O(c) from the first equation of system (I.37), and then from the 

second equation of the system (1.37) -- qO(<). If z = w(<) is an irrational 

function, system (1.37) may be reduced to integral Fredholm equations2. 

Substituting the functions $0(5) and q0(5) found into expression (I.36), 

we obtain the final form of functions $(<) and I)(<) with a given stressed state 
on infinity. Introducing into formulas (1.27) the functions $(<) and $(<) 
(I.36), as well as the mapping function w(<) from expression (1.35) which is 
appropriate for the given form of hole, and isolating on them the real and 
imaginary parts, we find formulas for stress components a a* and T 

P'  
curvilinear orthogonal system of coordinates @, 0 1 ,  corresponding to mapping 
function w(<) (I. 35) . 

In reality, it is relatively seldom necessary to concern ourselves with 
unbounded regions which are weakened by some hole or series of holes. In most 
cases of engineering practice the problem reduces to investigating the concen- 
tration of stresses around holes in a plane of finite dimensions, exceeding the . 
greatest hole dimensions by a small number (3-5) times, i.e., multiply-connected 
finite regions are encountered. An application of these methods to the solu- 
tion of specific problems may be found, for example, in the works of N. F. 
Gurlyev [l, 2 1 ,  M. P. Sheremetlyev [I], N. I. Muskhelishvili [I]. These / 17 - 
methods make it possible to solve any problem completely; however, here it is 
necessary to carry out a very large number of calculations, where the solution 
obtained will still be approximate. Naturally, the question arises, particu- 
larly for finite double-connected regions, with what correlations of the 
dimensions of regions and holes in them may simple solutions for singly- 
connected regions be used with an assigned degree of accuracy of the final 
results. To solve the latter problem the relatively simple approximate solu- 
tion of A. G. Ugodchikov [8] for finite double-connected regions may be used, 
which makes it possible to satisfy an assigned boundary condition on one of the 
contours identically, and on the other -- with some error. We apparently may 

'see N. I. Muskhelishvili [I], 585, pp. 329-333. 
2 ~ e e  N. I. Muskhelishvili [I], 596, pp. 363-386. 



judge the accuracy of the approximate solution found by the magnitude of this 
error1 . 
52.  Mapping Functions 

It follows from 51 that a necessary condition for the effective solution 
of the plane problem is the preliminary construction of functions which 
conformally map the inside or outside of a unit circle onto the regions in 
which we are interested. 

We will examine finite simply-connected and doub ly-connected and infinite 
simply-connected regions which are the outside of some curve. 

Let us accept that the boundaries of our regions are simple piecewise- 
smooth Jordan curves in parametric equations x(t), y(t), for which the interval 
t < t  G t  of change of parameter t may be segmented into a finite number of 1 2 
intervals such that in each of them the functions x(t) and y(t) have continuous 
derivatives xl(t), yl(t), which do not turn simultaneously to zero - -  the tan- 
gent and curve change continuously. 

The question arises whether any region may be conformally mapped onto a 
circle (circular ring). An exhaustive answer is given to this question by the 
Reimann theorem, the formulation of which is cited in the books of E. Gurs [ Z ] ,  
V. I. Smirnov [I], I. I. Privalov [I], and G. M. Goluzin [I]. 

If the boundary (boundaries) of a given simply-connected (doubly-connected) 
region is a smooth curve with a continuously changing tangent, then a conformal 
transformation of a circle (circular ring) onto the assigned simply-connected 
(doubly-connected) region existed and (with defined norming conditions) the /I8 - 
boundary of the circle (circular ring) and boundary of the simply-connected 
(doubly-connected) region flow into one another identically and continuously. 

Thus, if the curve is piecewise-smooth, the conformity of the transforma- 
tion will be disrupted in the corner points. The Reimann theorem establishes 
only the existence of a function z = w(<) which accomplishes conformal mapping, 
but does not indicate how to construct this function for an a priori assigned 
region. In other words, the effective design of a function which performs 
conformal mapping is often a rather complex problem. Even if this function is 
known "exactly," it (except for the simplest cases2) is represented by a complex 
analytic expression which leads in practice to such calculation difficulties 
and inconveniences that it is necessary to avoid exact expressions for the 
function z = w(<) and replace them with more convenient expressions from 

'chapters I1 and 111 will examine problems of the concentration of stress around 
several holes, i.e., problems of the plane theory of elasticity for multiply- 
connected regions of both isotropic as well as anisotropic media; the 
appropriate methods of solving these problems will also be cited there (in 
sufficient amount), therefore we will not pause on these problems here. 
*see example 2 below. 



well-studied functions. Polynomials should be included among the latter first 
of all. 

This circumstance promoted the creation of convenient approximate methods 
of designing mapping functions: analytical1, graphoanalytical -- methods of 
P. V. Melent'yev [I], B. F. Shilov [l] and M. Kikukawa [I-41, experimental- 
analytic2 and numerical 3 .  

In solving specific problems of elasticity theory, use may be made of 
known mapping functions which have a convenient form. 

Example 1. An infinite region with an elliptical hole. From the theory 
of functions of a complex variable it is known that a region S which is the 
outside of an elliptical hole is mapped onto the inside of a unit circle by 
function 

7 (I) '- (; -+ - R.'~ ($ i m i )  ( I .  39) 

where c = ~ e ~ '  is a complex constant influencing only the dimensions and 
position of a hole. The constant Iml < 1 characterizes the eccentricity of the 
ellipse. When m = 0 the ellipse becomes a circle, and with a real c = R(6 = 0) 
and when m = +1 or m = -1 - -  it becomes a straight-line segment of length 4R 
along axis Ox or Oy, respectively. Giving m different values from -1 to +I, 
we may obtain an elliptical hole with any correlation of its axes. By changing 
R we may attain any dimensions of the elliptical opening. Changing 6, we 
rotate (in the positive direction) the major axis of the elliptical hole rela- 
tive to axis x by the same angle. 

With real c, i.e., when 6 = 0, the equation of the contour of the hole has 
the form4 

x =  R ( 1  7 r n ) c ) s 0 ,  y - = - R ( l - r 7 1 ) z i n 8 ,  (I. 40) 

Here, if the half-axes of the ellipse a and b are assigned, denoting by k the - / 19 
ratio of half-axis b of the ellipse lying on axis Oy to half-axis a lying on 
axis Ox, we find 

' s e e  G. Goluzin, L. Kantorovich and others [I] , L. V. Kantorovich and V. I. 
Krylov [Z], V. I. Makhovikov [l, 21 and others. 
*see G. N. Polozhiy [I], 0. V. Tozoni 21, Yu. G. Tolstov [I, 21, A .  G. 
Ugodchikov [ I - 4 1 ,  V. Ye. Shamanskiy [l] , P. F. Fil ' chakov [4] and others. 
3 ~ e e  Yu. V. Blagoveshchenskiy [I, 21, P. F. Fillchakov [l, 6, 71 and others. 
4 In mapping a plane with a hole onto the inside of a unit circle the circuit of 
the boundary of the circle in a counter clockwise direction corresponds to a 
clockwise circuit of the contour of the hole in question because of the 
conformity of the mapping. 



Whence 

1 - k  a-b a f b  m=--- -  R - - - -  
l + k - a + b 8  - 2 .  (I. 41) 

Thus, still another form may be given to mapping function (I. 39)' with a 
real c: 

(I. 42) 

In addition, the following approach may be used: take any function z = w(<), 
which is holomorphic and smooth within a unit circle 4 1 with boundary y, 
and see to what circuit L on plane z will correspond circle y. If it turns out 
here that the circuit of contour L will coincide (in both cases the region is 
to the left) with the direction of the circuit of the unit circle y, the func- 
tion z = w(<) will yield a conformal mapping of region S onto the region of a 
unit circle and back1 . 

For example, the function 

(I. 43) 

yields a mapping of a unit circle onto the outside of a square with rounded 
corners, and the function 

(I. 44) 

is a mapping of a unit circle onto the outside of an equilateral triangle with 
rounded corners. However, these approaches can very seldom be used, and in 
most cases it is necessary to construct a mapping function, using some approxi- 
mate method. The function obtained will provide a mapping of the unit circle 
not onto the assigned region S with boundary L, but onto a region S' with boun- 
dary L', which is close to the assigned. The degree of deviation of contours 
L and L 1  may serve as a criterion for the accuracy of the function constructed. 

'see N. I. Muskhelishvili [I]. 



Using the Kristoffel-Schwartz Integral. To design mapping functions of 
singly-connected regions bounded by polygons use may be made, as is known, of 
the so-called Kristoffel-Schwartz integral1. Using this integral, an approx- 
imate value of the mapping function may be obtained in the form of a poly- 
nomial or in another form which makes it possible to approximate the assigned 
contour with the required accuracy. 

Let it be required to find a mapping of the outside of unit circle 1 
onto the outside of a polygon, i.e., onto a region including an infinitely 
remote point and bounded by a contour of a form interesting us (rectangle, 
square, triangle). The Kristoffel-Schwartz integral which provides a solution /20 - 
to the problem has in this case the form 

(I .  45) 

where c and d are essentially, generally speaking, complex constants charac- 
terizing the position of the polygon and its dimensions; al, a*, ..., a are n 
so-called constants of the Kristoffell-Schwartz integral -- points of unit 
circle y of plane 5 ,  corresponding to the vertices of polygon A1, A2, . - a ,  An 

- 

on plane z; al, a*, ..., a are real positive constants showing what part of n 
T is comprised by the outside angles of the polygon; t is the,point of the 
region outside of the circle It [ = 1. 

The mapping accomplished by the Kristoffel-Schwartz function (1.45) is 
continuous up to the contour, excepting the angle points al, a2, ..., a where n' 
w' (< )  becomes zero. Consequently, the conformity of t+e mapping in these 
points (corners) is disrupted. Noting that a + a + . . .  + a = n + 2, we 
transform the integrand in formula (1.45): 1 2  n 

(I. 46) 

since 1 a I = 1, It 1 > 1, expanding the integrand in formula (1.46) into a 
n 

series in the region of the infinitely remote point and integrating it, we 
obtain 

( I .  47)  

'see I. I. Privalov [l] , 
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To ob ta in  a mapping of a  simply connected region onto a simply connected 
region it is  necessary and s u f f i c i e n t  t h a t  

(I. 48) 

I t  follows from expression ( 1 . 4 7 )  t h a t  when condit ion (1.48) i s  observed it i s  
poss ib le  t o  construct  a  function w C r )  which provides a conformal mapping (onto 
the  outs ide  of a  u n i t  c i r c l e )  of s c h l i c h t  region S f ,  which i s  a s  c lose  a s  
des i red  t o  assigned region S ( i n f i n i t e  plane with a given opening). 

Example 2. A region with a rec tangular  hole1.  Let region S be a plane 
with a rec tangular  opening, t h e  r a t i o  of the  s i d e s  (AlA4)/(A1A2) = h (Figure 

1 . 1 ) .  Let us take t h e  coordinate o r i g i n  xOy i n  the  cen te r  of the  r ec tang le ,  
i . e . ,  outs ide  region S.  

Points a l ,  a*, a3, a  on the  u n i t  c i r c l e  corresponding t o  the  v e r t i c e s  of /21 4 - 
rec tangle  A 

1 ' A2,  A3 and A may be se lec ted  such t h a t  t h e  assigned r a t i o  of  t h e  4 
s ides  of the  rec tangle  is maintained. Three of  the  four  po in t s ,  f o r  example 
a a  a  on the  u n i t  c i r c l e  may be se lec ted  such t h a t  they a r e  located 1 ,  2' 3 
symmetrically r e l a t i v e  t o  coordinate axes 5011, i . e . ,  such t h a t  po in t s  a l  and a2  

a r e  symmetrical r e l a t i v e  t o  ax i s  05, and po in t s  a  and a3 -- r e l a t i v e  t o  a x i s  2 
Oq. We conclude f u r t h e r ,  because of  t h e  symmetry p r inc ip le ,  t h a t  a4 must be 

symmetrical t o  point  a  r e l a t i v e  t o  a x i s  05 and point  a  r e l a t i v e  t o  a x i s  On. 3 1 

Figure 1.1 .  

I f  we denote by k the  magnitude cha rac te r i z ing  t h e  r a t i o  of t h e  s ides  of 
a rec tangular  hole,  

'The mapping i s  done with the  help of  e l l i p t i c a l  funct ions  ( fo r  example, see  
V .  I .  Smirnov [l] , p.  325) . 



when k < 1/4 the rectangular opening will be located as is shown in Figure 1.1, 
i.e., the longer sides are parallel to axis Ox; when k > 1/4 the long sides 
will be parallel to axis Oy; the value k = 1/4 corresponds to a square opening. 

In the case of a rectangular opening a 1 = = C13 = a4 = 3/2. Substituting 

the values found for al, . . . ,  a and al, ..., a into (1.47) and inverting 4 4 
(using l/C.instead of c), we obtain a function z = w(<) which maps region S, 
i.e., a region with a rectangular opening1 onto the outside of the unit circle: 

2kni - where a = e , a = e  - 2kni 

It is clear that if we take only a finite number of members of the series 
in expression (I.49), we obtain an opening which is not in the form of a 
perfect rectangle, but a rectangle with curvilinear sides and rounded corners. 
Since la1 = 1, it i s  not  d i f f i c u l t  t o  see that the series (1.49) obtained at 
the beginning converges rather rapidly, and we always can select the numbers of 
members of this series so that the required accuracy of deviation of the 
opening contour from a rectangle is satisfied. Here it is possible a priori to 
assign a certain magnitude r and determine the number of members of series 0 
(1.49) which is necessary so that radius r of rounding of the corners of the 
rectangle is less than ro. After this, it follows to check again the degree of 

deviation of the rectangle sides from straight-line, and if it is now necessary 
to increase the number of members of series (I.49), condition r < r will be 
fulfilled. 0 

Assuming in (1.49) a = e in/2 and a = e -irr/2, we obtain a function mapping 
a region with a square hole onto a circle: 

( I .  50) 

'see G. N. Savin [I, 21. 
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in /3  
Assuming i n  (1.49) a  = e , i . e . ,  taking k = 1/6,  we obta in  a function w(<) 
which maps a region with a rec tangular  opening, the  r a t i o  of t h e  s i d e s  of which 
i s  3.2:1, i n  t h e  form 

1 I 1 '  3 3 5 57 
z=. ~ ( j ) = c ( ~ - + ~  H - - C , ~ - ~ ~ ~ - - -  ( I .  51) 

When a = e i10'36n we obtain a mapping function a(<) f o r  a  region with a 
rec tangular  opening, the  r a t i o  of t h e  s ides  of which is  5: 1 ,  i n  t h e  form1 

( I .  52)  

Example 3 .  A region with an opening i n  t h e  form of a  r i g h t  polygon. 
Considerations analogous t o  those c i t e d  f o r  the  case of a  rec tangular  opening 
show t h a t  the  po in t s  of t h e  u n i t  c i r c l e  a l ,  a2 ,  . . . , a on plane < = 5 + iq, n 
corresponding t o  v e r t i c e s  of polygon A 1' ..., A n of plane z = x + i y ,  w i l l  

d iv ide  the  c i r c l e  i n t o  even p a r t s .  Mapping the  c i r c l e  onto a c i r c l e  of t h e  
same rad ius ,  we can consider  t h a t  point  a l  = 1 corresponds t o  the  ver tex  A1; 
then 

( I .  53) 

where n i s  the  number of s i d e s  of t h e  r i g h t  polygon. 

Subs t i tu t ing  ins tead  of  al, ..., a n and al ,  ..., a n t h e i r  values from 

( I .  53) i n t o  ( I .  45), we obta in  (considering t h a t  t h e  cen te r  of g rav i ty  of the  
polygon corresponds t o  t h e  center  of the  u n i t  c i r c l e )  

4n B *zr 1 - 1  - 2(n-Lkni 1 dt 
@ ( < , = c l  ( t - e n  ) " ( t - e n  ) n  . . . (  t - e  " ) n  7.  

1 

Expanding t h e  integrand i n t o  a s e r i e s  i n  t h e  region of t h e  i n f i n i t e l y  remote 
po in t ,  i n t eg ra t ing  it and inver t ing ,  we obta in  a function which conformally 
maps the  unbounded plane with an opening i n  t h e  form of a  r i g h t  polygon onto 
t h e  ins ide  of a  u n i t  c i r c l e 2  

-. - 

'o ther  r a t i o s  of the  s ides  of  a  rec tangle  and trapezoid with a p r i o r i  assigned 
curves i n  the  corner po in t s  of these  f igures  a r e  examined i n  the  works of 
V .  M.  Gurtyanov and 0. S. ~~smodamianskiy  11, 21. 

2 ~ e e  G .  N.  Savin [ I ,  21 . 



( n  - 2) ( 2n  - 2) (3n -- 2 )  (4n - 2 )  gsn-I - ---- 
60n5 (5n - 1) 

I + .. . . ,  n = 3 , 4 , 5  , . . .  
I 

(I. 54) 

To obtain a parametric equation of the opening contour which corresponds /23 - 
to mapping function (I. 49) or (I. 54), it follows to place 5 = peiJ when p = 1 
in these functions and to separate the real and imaginary parts. 

Assuming n = 3 in (1.54) we obtain a mapping function w(<) for a plane 
with an opening in the form of an equilateral triangle: 

( I .  55) 

If we put n = 4 in (I.54), we obtain a mapping function for a plane with a 
square opening (turned by n/4 relative to the square examined in example 2): 

\ 
(I. 56) 

To obtain a mapping function for any position of an opening under examina- 

tioniit follows to put c = ~ e ~ '  in functions (1.49) or (I.54), where R is a 
real constant, and 6 is the angle by which the opening must be turned from its 
initial position. 

Inverting in functions w(5) (1.49) and (I.54), i.e., putting 
= l/cl ( 1 < l 1  2 l), we obtain a mapping onto the outside of the unit circle. 

Use of the Kristoffell-Schwartz integral for the approximate construction 
of mapping functions is, first of all, made difficult by the fact that 
determining the constants of the Kristoffell-Schwartz integral, i.e., points 
al, a2, .,., a of the unit circle which correspond to the vertices of the n 
polygon is associated, except for the simplest cases, with laborious calcula- 
tions'; secondly, when the mapping function is constructed in the form of a 
polynomial z = w (<) for finite single-connected regions, the number of poly- n 
nomial members must be selected large enough to obtain good coincidence of 

lWorks devoted to this question may be found in the collection of G. Goluzin, 
L. Kantorovich et a1 [l], see also G. N. Polozhiy [ I ] ,  P. F. Fillchakov [3] ,  
I. S. Khara [I]. 



assigned boundary L and boundary L1 obtained with a conformal mapping of a 
circle using an approximate function. 

To improve the convergence of the process V. I. Makhovikov [l, 21 proposes 
constructing an approximate function in the form of a sum consisting of a 
finite irrational part (the main part of the Kristoffell-Schwartz integral) and 
a rapidly converging series. From the viewpoint of conformal mapping this 
provides a good result, although the form of the function is less convenient 
for solving the problems of elasticity theory. For example, a function which 
performs conformal mapping of a circle onto a region bounded by a square may be 
obtained here in the form 

The corresponding boundary L1 is shown in Figure I.2a. 

If simple series expansion is used, with eleven members of the series, 
i.e., when members are considered up to r4l inclusive 

( I .  58) 

boundary L1 takes on a form shown in Figure I.2b. 

Using Other Methods. It becomes necessary in connection with solving 
applied problems to construct approximate expressions of mapping functions for 
a priori assigned regions. 

A. G. Ugodchikov [l, 21 proposed a method of - /24 (7) constructing mapping functions in the form of poly- 

- t-tj nomials for a priori assigned single-connected and double-connected. regions in which the correspondence 
I of the boundary points of the mapped regions was 
a - -- b. determined (in null approximation) with the help of 

electromodeling, and the methodology of P. V. 
Figure 1.2 Melent'yev [l, -21 and B. F. Shilov [I] was used for 

calculating the coefficients and constructing 
sequential~approximations. This method was later 

extended to infinite single-connected regions ' . 
It should be noted that P. V. Melentlyevls method [l] of calculating 

coefficients Ck of polynomial z = un(<), based on formulas of trigonometric 

'see A .  G. Ugodchikov, I. I. Serebrennikov [I] , A.  G. Ugodchikov, A .  Ya . Kry- 
lov [ I ] .  
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interpolation of the real (or imaginary) part of function z/C, is such that 
polynomial z = un(c) does not coincide with the assigned value of the mapping 

function even at the points of interpolation. 

The work of P. F. Fil'chakov [4 ]  proposed a new method of constructing 
mapping functions for singly-connected3egions in which it was proposed to 
find the initial data graphically or with the help of electromodeling, and the 
trigonometric interpolation method was used for calculating the coefficients 
of polynomial z = un(<), which insured coincidence of the polynomial and the 

assigned values of the mapping function in the points of interpolation. The 
process of constructing sequential approximations using gradual doubling of 
the number of points and alternation of even and uneven points is described in 
P. F. Fil'chakov's article [ S ] .  

A. G. Ugodchikovls works [S, 61 proposed a method according to which the 
constructed polynomial z = un(<) also coincides with the assigned values of the 

mapping function in the points of interpolation; clarification of the initial 
data is done by sequential approximation by alternating the initial and 
intermediate points. This method, which was extended by A.  G. Ugodchikov to 
finite double-connected regions as well as to infinite and semi-infinite 
single-connected regions is based upon the formulas of Lagrange interpolation 
polynomials, which allowed obtaining simple enough expressions for coefficients 
C of interpolation polynomial z = un(<). k 

In subsequent works of P. F. Fillchakov [6, 71 the trigonometric interpo- 
lation method was used to obtain for single-connected regions formulas of 
calculating coefficients Ck which coincide with the formulas which were 

obtained earlier by A.  G. Ugodchikov [S, 61. 

Since these methods are described in detail with many examples in the 
above works and monographs of A. G. Ugodchikov [7] and P. F. Fil'chakov [ 6 ] ,  
we will not cite them in detail here; however, we note that these methods make 
it possible, using computers, to construct mapping functions with an a priori / 25  - 
assigned accuracy of coincidence of assigned boundary L and boundary L', 
corresponding to the constructed polynomial z = wn(<). 

53 .  Bas ic  Equations of the Linear Theory of Elasticity of an Anisotropic Medium 

An elastic medium is called anisotropic if its elastic properties at a 
particular point are different in different directions. For an elastic 
characterization of an isotropic medium, as is known, only two elastic con- 
stants are needed, for example, constants X and LI, or two modulos E and G, and 
others, at the same time, there must be 21 of these constants in the general 
case for an anisotropic medium. From here it is clear that the basic system of 
equations of the theory of elasticity of an anisotropic medium will differ from 
the same system of equations for an isotropic medium only in those equations 
which establish the connection between deformations and stresses, i.e., the 
difference of the systems of equations will consist of the generalized Hookels 
law. 



We shall write out the basic equations of the statics of an elastic body, 
since they will be needed later1. 

Equilibrium equations 

( I .  59) 

where X ,  Y and Z are projections on the coordinate axis of volumetric source 
reduced to a unit of volume. 

Contour conditions 

X, = a, cos (n,  x )  + txg cos (n,.t/) -t rx, cos (n, z), 

Y, = r,, cos (n, X )  + ou cos (n, y )  + t,, cos (n, z), 

2, = r,, cos (n, X )  + lyZ cos (n, y )  + a, cos (n, 2). 

( I .  6 0 )  

Compatibility conditions 

azex aze azyx, 
- + . L = -  
dy2 dx2 dxdy ' ax 

Generalized Hookefs law 

'A  detailed derivation of these equations may be found in any course of elasti- 
city theory (for example, see N. I. Muskhelishvili [I], P. F. Papkovich [l], 
A .  Lyav [I], S. G. Lekhnitskiy [l, 21. 



a, = A3,eX + . . . . . - . . . . . . .  4- A36yZy, 

z, = Allex f . . . . . . . . . . . . .  + A46yxY, 

z,, = Asre, f . . . . . . . .  + AssyIv. 

.rXy = As~e, + . . . . . . . .  + &yxy 

. . .  A i k  = A M  (i. k = 1, 2 . .  6) 

. . . . . . . . . . . . .  yyz = C410, + + C,6Tx',, -- 

Yzx = ~ 5 1 0 ,  + . . . . . . . . . . . . .  f C5flxyr 

. . . . . . . . . . . . .  YxP.= C61ux + f carxu 

~ i k  = C R ~  (i, k = 1, 2, . . . ,  6), 

(I. 6 2 )  

( I .  63) 

.... .... i . e . ,  the  s t r e s s  ox, o r and deformation E ~ ,  E yXY components 
Y' XY Y' 

i n  a given point  of t h e  body a r e  l i n e a r  one-to-one funct ions .  

The magnitudes Aik = %i (21 i n  number) i n  equations (1.62) '  a s  well a s  

C - i k  - 'ki i n  (1.63) a r e  ca l l ed  the  e l a s t i c  constants  of mater ia l  i n  the  sense 

t h a t  the  e l a s t i c  p roper t i e s  of a given body a r e  f u l l y  charac ter ized  by these  
magnitudes and t h e  values of these  constants  do not depend upon t h e  s t r e s sed  o r  
deformed s t a t e  of  a given e l a s t i c  body. 

If the  e l a s t i c  constants  Aik a r e  functions of the  point  coordinates of an 

e l a s t i c  body, t h i s  body i s  c a l l e d  heterogeneous i n  the  sense of e l a s t i c  proper- 
t i e s .  I f  Aik constants  do not depend upon t h e  point  coordinates of t h e  e l a s t i c  

body a r e  constant values f o r  a f ixed system of coordinate axes, t h e  body / 27 - 
is  c a l l e d  homogeneous. 

The Generalized Plane Stressed State. Let us assume t h a t  we have a t h i n  
an i so t rop ic  p l a t e  2h i n  thickness.  We take  the  mean plane of the  sheet  f o r  
plane xOy; l e t  the  ex te rna l  forces  Xn and Yn be applied t o  the  s i d e  surface  of 

the  sheet  s o  t h a t  t h e  r e s u l t a n t  of these  forces i n  terms of height  2h l i e s  
i n  plane xOy. The remaining faces  of the  sheet  - -  t he  "uppern z = +h and t n e  



"lower" z = -h w i l l  be considered f r e e  of  external  forces ,  i . e .  a T - 
= T  = O w h e n z = + h .  z Y Z  

xz 

Let us suppose t h a t  t h e  thickness of the  sheet  2h i s  extremely small;  then, 
with a l a rge  degree of approximation, we assume a = r = r = 0 everywhere 

z yz xz 
within the  sheet .  Instead of the  r e a l  stress components ox, o and T we 
w i l l  consider t h e i r  mean values by height :  Y XY ' 

Let us  mult iply the  f i r s t  two equil ibrium equations (1.59) by 1/2h dz and 
i n t e g r a t e  by sheet  height  from -h t o  +h: 

( I .  64) 

Now l e t  us tu rn  t o  Hookefs law (1.63) and look a t  t h e  mean values of t h e  
deformation components by height .  We mult iply t h e  f i r s t ,  second and s i x t h  
equation of (1.63) by 1/2h dz and add them according t o  sheet  he ight :  

( I .  65) 

I t  i s  c l e a r  t h a t  the  mean values of t h e  deformation components E;, E* and y* 
w i l l  be functions of only x and y. Y x Y 

Let us apply t h e  same averaging operat ion t o  t h e  f i f t h  compat ib i l i ty  equa- 
t i o n  (I .61),  i . e . ,  mult iply it by 1/2h dz and i n t e g r a t e  from -h t o  +h: 

( I .  66) 

Thus, equations (1.64)-(1.66) a r e  the  basic equations f o r  t h e  general ized 
plane s t r e s sed  s t a t e .  

Plane Deformation. Plane Deformation Conditions. Let us assume t h a t  - - 128 
external  forces  a r e  applied t o  t h e  s i d e  surface  of an an i so t rop ic  body of cy l in -  
d r i c a l  o r  pr ismat ic  form ( f i n i t e  o r  i n f i n i t e  cyl inder)  which s a t i s f y  the  follow- 
ing condit ions:  



1) t h e  ex t e rna l  f o r c e s  ( s t r e s s e s )  a r e  perpendicular  t o  t h e  elements (o r ,  
i n  o t h e r  words, t o  t h e  ax i s  of t h i s  body); 

2) t h e  e x t e r n a l  f o r c e s  a r e  cons tan t  a long each element (but ,  gene ra l ly  
speaking, change when moving from one element t o  ano the r ) .  

Let us  use t h e  ax i s  of t h i s  cy l inde r  a s  a x i s  O z ,  and any c ros s  s e c t i o n  of 
it as p l ane  xOy. 

I f  t h e  body were i s o t r o p i c ,  t h e s e  condi t ions  would be s u f f i c i e n t  f o r  t h e  
deformation t o  be p lane .  In t h e  case  of  an a n i s o t r o p i c  e l a s t i c  body, a s  
fo l lows  from t h e  genera l ized  Hooke's law ( I .63) ,  s t r e s s e s  a a r and a 

x '  y J  xy Z 

can cause t h e  appearance of deformations y and yyz,  i . e . ,  dis;ortion of 
X Z  

t h e  c ross  s e c t i o n s .  l For t h e  deformation t o  be  p i a m  i n  t h i s  case  t h e  e l a s t i -  
c i t y  c o e f f i c i e n t s  c  must s a t i s f y  c e r t a i n  cond i t i ons .  The l a t t e r ,  f o r  t h e  i k  
general  case  of a  heterogeneous a n i s o t r o p i c  body, were f i r s t  obtained by 
S. G .  Mikhlin [ l ]  : 

(I. 67) 

An e s p e c i a l l y  simple case  occurs  when 

A46 = A14 = A24 -- A34 = Alj = AZ5 = A35 z= Ax = 0. ( I .  68) 

-- - -- 

' I f  t h e  a n i s o t r o p i c  body i s  homogeneous, i .  e . ,  c  = const  f o r  a l l  p o i n t s  of  i k  
t h i s  body, then ,  a s  S. G .  Lekhnitskiy [3] showed, t h e  problem i n  t h e  genera l  
case  (with 21 e l a s t i c  cons t an t s )  may be reduced t o  plane i n  t h e  sense  t h a t  t h e  
S t r e s s  components ax, a a=, T Y' 

r r and deformations E ~ ,  E ~ ,  E=,  ..., xy' yz X Z  

Yx z w i l l  be  func t ions  only of  coord ina tes  x, y .  Actua l ly ,  i n  t h e  genera l  case  

of an iso t ropy ,  i . e . ,  f o r  a  homogeneous body with 21 e l a s t i c  cons t an t s  under 
t h e  inf luence  of  ex t e rna l  forces  s u b j e c t  t o  t h e  f i r s t  and second condi t ions  
t h e  deformation w i l l  no t  be p lane  and ' the  c ros s  s e c t i o n s  w i l l  be  d i s t o r t e d ,  
bu t  t h e s e  d i s t o r t i o n s  because of t h e  homogeneity of  t h e  body and constancy of  
t h e  e x t e r n a l  load along t h e  elements of t h e  cy l inde r  w i l l  be i d e n t i c a l  
f o r  a l l  s e c t i o n s .  



Equations CI.68) mean t h a t  t h e  c ros s  s e c t i o n s  of a cy l inde r ,  i . e . ,  p lane  
xOy and i ts  p a r a l l e l s  a r e  e l a s t i c  symmetry p lanes .  

Thus, deformation of  an a n i s o t r o p i c  body w i l l  be  p lane  i f  i t s  c ros s  
s e c t i o n s  (of c y l i n d r i c a l  form) a r e  e l a s t i c  symmetry p l anes .  

Let us  assume t h a t  t h e  p lane  deformation condi t ions  a r e  s a t i s f i e d .  Let /29 
us t a k e  any c ros s  s e c t i o n  which i s  s u f f i c i e n t l y  d i s t a n t  from t h e  ends of  t h e  
cy l inde r  f o r  p lane  xOy. I f  t h e  deformation i s  p lane ,  t hen  w = 0,  and- compon- 
e n t s  u and v w i l l  be  func t ions  of  only x and y .  I t  fol lows t h a t  c Z  = 0 ,  

- 
Yxz - Y Z Y  

= 0. 

Since  c - c2 # 0, Hookef s law ( I .  6 3 )  may be represented  i n  t h e  form 
44% 45 

( I .  69) 

f o r  T = T = 0 a t  a l l  p o i n t s  of t h e  body. 
yz xz 

Determining a from t h e  t h i r d  equat ion of  (1.69) and s u b s t i t u t i n g  it i n  
z 

t h e  remaining equat ions of ( I .  69) , we ob ta in  

where 

( I .  70) 

The f i r s t  two equi l ibr ium equat ions of (1.59) i n  t h i s  case w i l l  have t h e  
form 



( I .  72) 

and the third equation of (1.59) becomes Z = 0, and, consequently, with plane 
deformation parallel to plane Oxy, the volumetric force component on axis Oz 
should become zero. 

The five compatibility equations (1.61) are likewise satisfied and a 
single equation remains. 

ate, ate azyxu -+A=- (I. 73) 
ayz  ax' dxay ' 

Thus, equations (1.701, (1.72) and (1.73) will be basic for plane deforma- - /30 
tion (remembering that any cross section of our anisotropic body must be an 
elastic symmetry plane). Comparing them with the appropriate equations for the 
generalized plane deformed state we see that they are the same in form, but 
instead of the mean values of the stress and deformation components in the 
first case (the generalized plane deformed state) we find the exact values of 
these magnitudes in the second case (plane deformation). A greater difference 
between them is the fact that whereas in the first case the elasticconstants cik 

enter directly into (I.65), in the second case the magnitudes aik determined 

according to the c given from formula (1.71) enter into (1.70). 
ik 

The Stress Function. Complex Representation of the General Solution of the 
Plane Problem. Let us write out the basic equations of the plane problem: 

(I. 74) 

(I. 75) 

(I. 76) 

We remember that in the case of the generalized plane deformed state the 
mean values of the stress and deformation components will enter into all of 
equations (1.74)-(I.76), and aik must be set equal to cik in equations (1.75). 

The solution to the plane problem is considerably simplified in the case 
of the absence of volumetric forces. In static problems gravitational forces 
are usually the volumetric forces. In most problems they can be simply 



disregarded1, but they may be very easily eliminated in the general case, just 
as for an isotropic medium2. For this it is necessary to find any partial 
solution of the basic equation system (I. 74) - (I, 76) . 

Let us assume that axis Oy is directed vertically upwards; then X = 0, 
Y = -pg, where g is acceleration of gravity and P is density, which we, 
consider constant, and equations (I. 74) rake the form 

Obviously, these equations are satisfied if 

ax=rx ,=Oand  a,=egy. 

From equations (I. 75) and (I .78) we have 

(I. 77) 

(I. 78) 

(I. 79) 

It is easy to see that the values of cX, E and y (1.79) satisfy equation 
(I. 76). Y x Y 

From the first two equations of (1.79) we have 

Substituting the values found for u and v into the last equation of (I.79), 
we obtain 

'1f the dimensions of the body are small and the applied external forces 
considerably exceed the weight of the body, then the mass forces X and Y (with 
a great degree of accuracy) may obviously be disregarded, since they have 
practically no influence on the stressed state. 
2 ~ e e  N. I. Muskhelishvili [I]. 



The l a t t e r  equat ion may be s a t i s f i e d ,  assuming, f o r  example, 

1 1 f2 (4 = - f a12egx2: f l  (y) - a,,egy2 

Thus, f o r  displacements  

1 
= a12egxy + 5 a26~g~2*  

Since  t h e  b a s i c  equat ions system (1.74)-(1.76) i s  l i n e a r ,  then ,  s e t t i n g  

= u O + o l  u = u O + o l  T = T O  + T I  a n d a l s o u = u O + u l , v = v O +  
X X x ' y  Y Y '  XY XY XY' 

+ v l ,  we f i n d  t h a t  u;, a;, T ; ~ ,  U '  and v '  w i l l  b e  t h e  s o l u t i o n  of t h e  b a s i c  

equat ions system (1.74) --(I. 76j i n  t h e  absence of  mass fo rces .  o0 u!, r 0  x ' XY ' 
u O ,  vO denote ,  r e s p e c t i v e l y ,  t h e  s t r e s s  ( I .  78) and displacement ( I .  80) 
components, i . e . ,  a p a r t i a l  s o l u t i o n  of  b a s i c  equat ions system ( I .  74)- 
( I .  76) . 

Thus, from now on we w i l l  assume t h a t  mass fo rces  do not  e n t e r  i n t o  t h e  
b a s i c  equat ions ( I .  74) - ( I .  76) of  t h e  p lane  problem. 

J u s t  as i n  t h e  case  of  an i s o t r o p i c  medium, t h e  equi l ibr ium equat ions - / 32 
( I .  77) may be s a t i s f i e d  i f  t h e  A i r y  func t ion  is  introduced:  

( I .  81) 

S u b s t i t u t i n g  i n  (1.75) i n s t ead  of ox, o and T t h e i r  va lues  expressed 
Y XY 

through t h e  s t r e s s  func t ion  U(xy), from equat ion ( I . 7 6 ) ,  we ob ta in  t h e  b a s i c  
equat ion  o f  t h e  p lane  problem of  e l a s t i c i t y  theory  f i r s t  found by S.  G. 
Lekhnitskiy IS], which should be s a t i s f i e d  by t h e  s t r e s s  func t ion  U(x, y)  : 

aw aw aw aru ~ Y I  - + ( 2 4 2  + a,) ax2dy" - 2a,,&p + = O. ( I .  82) 
a22 - b 2 6  a ~ s d y  

Equation ( 1 . 8 2 )  i s  a g e n e r a l i z a t i o n  of  t h e  known biharmonic equat ion (1 .5) .  

I t  should be noted aga in  t h a t  i n  t h e  case  of  t h e  genera l ized  p lane  deformed 
s t a t e  t h e  c o e f f i c i e n t s  of  equat ion (1.82) aik = c i n  t h e  case  of  p lane  i k ;  
deformation t h e  e l a s t i c  cons t an t s  aik a r e  determined according t o  formulas 
(1.71) .  



I f  t h e  a n i s o t r o p i c  m a t e r i a l  has  t h r e e  p lanes  of e l a s t i c  symmetry, equat ion  
(1.82) i s  s i m p l i f i e d ,  f o r  i n  t h i s  case  c = c 

36 16 = '26 = 0,  and consequent ly,  

a = a = 0 (see  ( I .  7 1 ) ) )  and equat ion (1.82) t akes  t h e  form 
16 26 

a*u d4u ~u 
a, + (201, + a,) & q F  + a, ,  = 0. ( I .  83) 

The common i n t e g r a l  o f  equat ion (1.82) depends upon t h e  r o o t s  of t h e  
c h a r a c t e r i s t i c  equat ion 

alls4 - 2a,,s3 + (2a,, + a,,) s2 - 2a,, 4- a, = 0 ( I .  84) 

and i n  t h e  case  of  unequal1 r o o t s  it has t h e  form 

(I .  85) 
U (x, y) = FI (X + S I Y )  f F2 (X + ~ d )  f F3 ( x  + S ~ Y )  + F 4  ( X  -+ s4y). 

On t h e  b a s i s  of energy cons ide ra t ions ,  S. G .  Lekhnitskiy [5 ]  proved t h a t  
equat ion (1.84) cannot have r e a l  r o o t s .  

Let us  denote t h e  r o o t s  of equat ion (1.84) by s s s and s (consider-  
ing  them unequal) .  Let 

1' 2' 3 4 

where al, a*, 81, B2 a r e  r e a l  cons t an t s ,  and it is always p o s s i b l e  t h a t  

B1 > 0, B 2  > 0.  

We s h a l l  cons ider  below t h a t  

Since U(x, y) is a r e a l  func t ion  from x,  y,  denot ing 

( I .  86) 

' I n  t h e  case  of d i v i s i b l e  r o o t s  of  equat ion (1.84) equat ion (1.82) i s  t r a n s -  
formed i n t o  a genera l ized  biharmonic equat ion,  t h e  s o l u t i o n  method of which i s  
provided by S. G .  Mikhlin [ I ] ,  by r ep lac ing  t h e  independent v a r i a b l e .  However, 
a s  w i l l  be  apparent  below, t h e  case  of  equal  r o o t s  i s  very e a s i l y  obta ined  from 
t h e  general  case  f o r  a l l  p a r t i a l  problems, which we w i l l  examine. Therefore,  
we w i l l  not  examine s e p a r a t e l y  t h e  case  of  equal  r o o t s  o f  equat ion (1.84) .  



(I. 87) 

we represent  t h e  common i n t e g r a l  (1.85) i n  t h e  form 

- --- 
U (x ,  y) = FI (21) f F ,  (22) + FI (21) + F2 (22)s ( I .  88) 

where F (z ) and F (z ) a r e  two a n a l y t i c a l 1  funct ions  of  t h e i r  arguments; 
1 1  2 2 .m and F- a r e  funct ions  which a r e  conjugate r e spec t ive ly  t o  functions 2 2 

F1 (zl) and F* (z2) 

We denote: 

( I .  89) 

Then, obviously, 

iThis follows d i r e c t l y  from t h e  f a c t  t h a t  2Re[Fl(zl)] = U1(C1, 5 )  s a t i s f i e s  t h e  
equation 

where C1 = x + aly ,  n1 = B1y. 

The same i s  t r u e  of t h e  function 2Re[F2(z2)] = U2(S1, ql)which s a t i s f i e s  
the '  equation 

where 



I f  we s u b s t i t u t e  s t r e s s  function U(x, y) from (1.88) i n t o  (1.81) and take  
i n t o  considerat ion d e f i n i t i o n  ( I .  89), we obtain general expressions f o r  t h e  
s t r e s s  components through t h e  two a n a l y t i c a l  functions $(z ) and $(z ) :  

1 2 

(I.  90) 

where Re i s  the  symbol'for t h e  r e a l  p a r t  of t h e  adjacent expression: 

s and sZ a r e  roo t s  of equation (1.84) 
1 

Subs t i tu t ing  the  values of ax, o and T from (1.90) i n t o  equations 
Y x Y / 34 - 

(1.70) and in tegra t ing  them, we obta in  general expressions f o r  the  displacement 
components: 

u (x ,  y) = 2Re IP,P (2,) + p2$ (z2)l- Yd + 
v (x ,  y) = 2Re [qlq (2,) + q2$ (z,)I + hx + Bo* ( I .  91) 

where, f o r  brevi ty ,  we define t h e  following: 

( I .  92) 

and yo, aO, f10 a r e  a r b i t r a r y  r e a l  constants .  

The addi t ional  terms yoy + a. and yox + i n  (1.91) descr ibe  body d i s -  
0 

placement and may be discarded when considering e l a s t i c  equilibrium. 
Equations ( I  .90) and ( I  -91) were first obtained by Lekhnitskly [S] . 

St resses  and displacements i n  po la r  -coordinates : 



a, = 2Re [(sin 0 - s1 cos 8)= cp' (2,) + (sin 8 - s, cos 8)2 9' (z&. 

uo = 2Re [(cos 0 + s1 sin 8)2 cp' (2,) + (cos 8 + s, sin 0)2 9' (41, 
trS = 2Re [(sin 0 - s, cos 8) (cos 8 4 sl sin 8) cp' (zd + i I 

+ (sin 8 - s, cos 8) (cos 8 + s2 sin 8) 9' (z&, 
q + 0, = Zrie [( 1 + s3 cpf (2,) + (1 + 4) 9' ( ~ ~ 1 1 ;  I 

(I. 93) 

v, = 2Re I(P~ cos 0 -F qsin 0) 'P (11) + (pa cos 8 + q2 sin 8) (z,)], 
(I. 94) 

v, = 24e [(ql cos 0 - P, s;n 0) 8 (2 , )  -I- (q2 COS 0 - p2 sin 8) + (z2)]. 

Contour Condl t Ions for Funct Ions $(z  ) and $ ( z  ) . In addition to the 1 2 
basic equation (1.82) the stress function U(x, y) should, depending upon the 
conditions of the problems, satisfy definite conditions on the contour of the 
region under consideration. Let us look at these conditions for each basic 
problem separately. 

The first basic problem. Projections of external forces Xn, Yn applied on 

the coordinate axis xOy are given on contour L of region S (n is positive 
normal1). 

The contour conditions in this case, as is known, have the form 

Xn = a, cos (n, x) + t,, cos (n, y), 

Yn = TXy COS (n, X) 3- 0, cos (n, 9). 

Taking into consideration the fact that 

dy cos (n, X) = - , ds 
dx cos (n, y) = - - ds ' 

and expressing the stress components u u and -r by stress function U(x, y) 
(I. 81), we obtain x'  Y x Y 

daU dy d W  dx y,= -- .---.-= 
dxdy cis dxa ds 

 h he positive normal to the contour, as usual, will be considered the normal to 
contour L directed to the right when circuiting the region in a positive direc- 
tion. The positive direction of circuiting a region is the direction with 
which the region remains to the left. 



( I .  95) 

where C and C2 a r e  a r b i t r a r y  r e a l  constants;  s i s  an a r c  measured from an 
1 

a r b i t r a r y  point  of contour L of region S. 

Subs t i tu t ing  function U(x, y) from (1.88) i n t o  t h e  l e f t  p a r t s  of equations 
(I.  95) and r e c a l l i n g  d e f i n i t i o n s  ( I .  89) , we obtain f i n a l  expressions of t h e  
contour conditions f o r  functions $(zl) and +(z2) : 

The second b a s i c  problem. Displacement components u(x ,  y) and v(x ,  y) a r e  
given on contour L of region S. The contour condit ions f o r  functions $ 1 ~ ~ )  

and $(z ) a r e  obtained d i r e c t l y  from equations ( I .  90) : 2 

where g l (s )  and g (s )  a r e  displacement components given as functions of a r c  s 
2 

of contour L on contour L measured from an a r b i t r a r y  point .  

The t h i r d  b a s i c  (combined1) problem. On one p a r t  ~ ( l )  of contour L of 
region S a r e  given displacement components u and v, and on t h e  remaining p a r t  - / 3 6  

L ( ~ )  of contour L = L(') + L(*) -- pro jec t ions  of ex te rna l  forces Xn and Yn 

on t h e  coordinate axis .  Obviously, i n  t h i s  problem t h e  contour condit ions f o r  
functions ( (z l )  and $(z ) on ~ ( 1 )  w i l l  be ( I .97) ,  and on L(*) -- (1.96). 

2 

Thus, t h e  so lu t ion  of t h e  b a s i c  problems reduces t o  determining functions 
((2 ) and $(z2)  according t o  contour conditions (1.96) and (1.97). 

1 

l0f  no l e s s  i n t e r e s t  a r e  o ther  combined problems, p a r t i c u l a r l y ,  when on contour 

L o r  on a c e r t a i n  por t ion  of i t  L(~) is given one of the  s t r e s s  components and 
one of t h e  displacement vector  components u = u 2 i v .  This i s  the  so-ca l led  
mixed problem of t h e  "contact" type; some of them w i l l  be examined i n  
Chapters I11 and I V .  



Expressions fo r  the  Resultant Vector and Resultant Moment. Later  we w i l l  
need expressions f o r  t h e  r e s u l t a n t  moment and r e s u l t a n t  vector  of the  forces  
acting: on p r o f i l e  AB from the  s i d e  o f  t h e  p o s i t i v e  normal. 

To obta in  a formula f o r  the  r e s u l t a n t  vector ,  l e t  us look a t  formula (I .95), 

The main r e s u l t a n t  vector  of forces applied t o  element ds.  

Denoting t h e  r e s u l t a n t  force  vector  applied t o  contour AB by X + iY, we 
ob t a i n  

B where [ . . . IA denotes t h e  increment of t h e  expressions enclosed by the  bracket  . . w au when moving along a r c  AB from A t o  B .  However, t h e  expression z + i -  
according t o  (I. 95) and (I. 96) may be given i n  t h e  form dr 

Introducing t h i s  expression i n t o  equation ( I .98) ,  w e  obtain the  f i n a l  expression 
f o r  the  r e s u l t a n t  vector :  

(X, 4- iY,) ds = 
A 

(I. 99) 

Let us now der ive  t h e  formula f o r  t h e  r e s u l t a n t  moment M of these  forces / 37 - 
applied t o  element ds of  contour L r e l a t i v e t o  the  coordinate o r i g i n :  

Instead of Xn and Yn l e t  us s u b s t i t u t e  t h e i r  values from (1.95): 

( I .  100) 



I n t e g r a t i n g  t h e  l a t t e r  equat ion by p a r t s ,  we o b t a i n  

Since 

which can be proved by d i r e c t  checking and t ak ing  i n t o  cons idera t ion  t h e  
f a c t  t h a t  

we f i n a l l y  ob ta in :  

M = 2Re [F, (2,) i. F , ( Z ~ ) ] ;  - Re 12 ( ( 1  - is,) B (q) 4- 
- -  - - ( I .  101) 

B + (1  - isl) cp (2,) + (1  - is,) ( 2 3  t ( 1  --is,) 9 (zz)}], .  

I n .  a  s ingly-connected reg ion  ( func t ions  $(z l )  and $(z2) i n  t h e  case  of  a  

multiply-connected reg ion  w i l l  be examined below) t h e  func t ions  $ ( z l ) ,  + ( z 2 ) ,  

F (z ) and F (z ) a r e  s i n g l e  valved. I f  po in t  A coinc ides  withlpoint  B ,  i . e . ,  1 1  2 2 
t h e  p r o f i l e  AB i s  a  c losed  contour ,  t h e  va lue  of a l l  f unc t ions  en t e r ing  i n t o  
formulas (1.99) and (I. 101) a t  p o i n t s  A and B w i l l  co inc ide ,  and we ob ta in  

X = Y = M = O  (I. 102) 

This  is  t h e  condi t ion  t h a t  t h e  se t  of a l l  e x t e r n a l  forces  appl ied  t o  t h e  
closed contour a r e  s t a t i c a l l y  equiva len t  t o  zero. 

Degree o f  Deflni teness of Functions $ ( z , )  and $ ( z , ) .  The func t ions  O(zl) 

and +(z2)  ( I . 89 ) ,  through which t h e  components of both s t r e s s e s  ox, o and r 
Y XY 



(1.90) a s  wel l  a s  displacements u(x,  y)  and v (x ,  y) (1.91) were introduced as 
t h e  s o l u t i o n  of b a s i c  equat ion (1.82).  

On t h e  o t h e r  hand, t h e  s o l u t i o n  of t h e  b a s i c  problems of  e l a s t i c i t y  - /38 
theory  was reduced t o  contour  problems, i . e . ,  t o  problems of  determining t h e  
two a n a l y t i c a l  func t ions  $ (z  ) and +(z2)  according t o  given values of  c e r -  

1 
t a i n  combinations (1.96) and (1.97) of t h e s e  func t ions  on a  contour  of  t h e  
reg ion  under cons ide ra t ion .  

The ques t ion  a r i s e s  whether t h e s e  func t ions  a r e  uniquely determined. Are 
t h e r e  any fuac t ions  $*(zl) and $*(z2) which a r e  i d e n t i c a l l y  no t  equal  t o  zero,  

t h e  a d d i t i o n  of which t o  func t ions  +(z l )  and $(z2)  does not  change t h e  s t r e s s e d  

s t a t e  of  t h e  body? What i s  t h e  most genera l  form of  func t ions  9*(zl)  and 

$*(z2)? What o t h e r  condi t ions  must be imposed on func t ions  9(z1) and $(I  ) so  2  
t h a t  they  w i l l  be  uniquely def ined?  

On t h e  b a s i s  of t h e  way i n  which t h e  func t ions  ( ( z l )  and $(z2) were i n t r o -  

duced we know t h a t  t h e r e  i s  a c e r t a i n  a r b i t r a r i n e s s  i n  t h e i r  se lec t ion ; fur ther -  
more, t h e  e l a s t i c  equi l ibr ium of a  body de f inedby  t h e s e  func t ions  is  t h e  same. 
However, it i s  more n a t u r a l  i n  e s t a b l i s h i n g  t h e  d e f i n i t e n e s s  of t h e  func t ions  
$(z l )  and +(z2)  t o  fol low a  d i f f e r e n t  pa th  -- t o  e s t a b l i s h  t h e  form of  func t ions  

$(z l )  and $(z2)  which s a t i s f y  contour  condi t ions  (1.96) i n  t h e  case  where 

contour L of reg ion  S is f r e e  of e x t e r n a l  fo rces .  According t o  t h e  unique- 
ness  theorem i n  t h i s  case  t h e  body w i l l  be  i n  t h e  unstressed s t a t e ,  i . e . ,  a t  
a l l  p o i n t s  of  t h e  body 

Thus, i n  contour condi t ions  (1.96) we s e t  Xn - - *n 
= 0 and determine t h e  

form of func t ions  $ (z l )  and $(z2) which s a t i s f y  t h e  equat ions  

where C and C a r e  two r e a l  cons t an t s .  
1 2  

We t ake  from both p a r t s  of (1.103) t h e  ope ra to r  

(I .  103) 

 his i s  apparent  from t h e  f a c t  t h a t  A 1 ~ e { ~ l ( z l ) )  0 and A ~ R ~ ( F ~ ( z ~ ) ]  = 0 ( see  

foo tno te  t o  formula (1 .88) ) .  



Taking i n t o  cons idera t ion  t h e  f a c t  t h a t  

we obta in  

- 

( I .  104) 

The determinant of system (1.104) i s  d i f f e r e n t  from zero ( s ince  B1 # 0 and /39 
> 0 and B 2  

- 
= 0 and, fur thermore,  we agreed t o  s e l e c t  them s o  t h a t  B 2 1 ' 01 

and 

Consequently, 

( I .  105) 

Now we t ake  t h e  opera tor  

from both equat ions of (1.103) and, proceeding analogously,  we o b t a i n  

9" (22) = 0. ( I .  106) 

I t  fol lows from (1.105) and (1.106) t h a t  func t ions  (zl)  and (z2) may be 
only of t h e  form 

cP (21) = + BI, , $ ( ~ 2 )  = A z ~ z  + Bz, ( I .  107) 



where A1 = A' + i A " ;  A = A'  + i A " -  B1 = Bi + iB';; B2 = B; + i B "  a r e  a r b i t r a r y  
1 1 2  2 2' 2 

complex constants .  

However, functions +(z  ) and Ji(z ) ( I .  107) must s a t i s f y  equation system 
1 2 

(1.103) o r  (according t o  t h e  uniqueness theorem), exact ly  the  same, equations 
( I .  90) : 

qf (21) + cpl(z,) + lJf (22) + 9' (2,) = 0, 
-- 

+P' (21) + s t ( ~ ~  (21) -t- $9' (tZ) + $*'= 0, 
-- -- ( I .  108) 

SIT' (21) + SIT' (2,) + s&' ( 2 3  + sa$' (22) = 0. 

Subs t i tu t ing  t h e  values of functions +(zl) and $(z2) from ( I .  107) i n t o  equation 

system ( I .  108), we obta in  

A; + A ; = O ,  

a,A; + a2A; - p1A; - P2A; = 0, 

(a; - 83 A; - 2a,p,A; $-(a: - B,9 A; -- 2a2P2A; = 0. 
( I .  109) 

I t  follows from system ( I .  109) t h a t  one of t h e  four  constants  A;, A;', A;, 

A" remains undefined and may be given a r b i t r a r i l y .  Let us take  A'! as  t h i s  
2 1 

undefined value and express a l l  the  o thers  i n  terms of i t .  Solving equation 
system (I .109),  we obta in :  

28182 (a1 - a?) I A;=-  A;, I ( I .  110) 
h(a:-B:-(r22+ P:)-2a$2(al --a21 i 

Consequent ly  , 

where a and B denote t h e  expressions enclosed i n  t h e  brackets .  



As will be apparent later, for many materials s = iB1; s 1 2 = iB2, i.e., 

al = a2 = 0, then (zl) = A ,  i.e., a = 1, and (z2) = -in@ / B  *A"  i.e., 1 2 1' 
B = -Bl/B2. 

Thus, the functions $(zl) and $(z2) (1.107) will have the form 

9 (zl) = iAFaz, + B,, \C. (2,) = iA;@z2 4 B2. (I. 111) 

The constants B1 = Bf + iB'; and B2 = B1 + iB" remain arbitrary. 1 2 2 

Thus, in the case of the first basic problem the functions $(zl) and $(z ) 2 
contain five arbitrary real constants --  A;, Bi, By, Bi and By, to which may 
be assigned any desired value. l 

If the coordinate origin is within the region under consideration, these 
constants may be given as follows: 

where Im is the symbol of the imaginary part of the adjacent expression. 

Let us now see how many undefined constants remain in functions $(z ) and 1 
$(z2) (1.111) for the second basic problem. In this case contour condi- 

tions (1.97) are assigned exactly. consequently, of thefive values A!, 

Bi, By, B' and B" we may arbitrarily fix only three, and the remaining are 2 2 
determined from the contour conditions (1.97) themselves. Considering that the 
coordinate origin is within the region, these constants may be written thus: 

(I. 113) 

It is obvious that conditions (1.112) or (1.113) exclude arbitrariness in 
selecting the functions $(z ) and JI(z2). 1 

'It should be considered that if the constants C1 and C2 in contour conditions 

(1.96) are assigned in any manner, one of the constants B1 or B2 cannot be as- 
signed, for B1 and B are associated by correlations B + 5 + B2 + E2 = C1 and 2 - - 1 

+ T H + s B + s2B2 = C2, as follows from the same contour condition SIBl 1 2 2 
(I. 103). 



T h e  Form of Functions $ ( z , )  and $(z2) i n  the  Case of a Mu1 t iply-Connected - /41 

Region. A f i n i t e  multiply-connected region.  Let us assume t h a t  e l a s t i c  aniso-  
t r o p i c  mater ia l  occupies not  a l l  of  a  p!ane, but ,  as  shown i n  Figure 1 .3 ,  
only the  por t ion  o f  it which is  shaded (a  sheet  with various ho les ) .  In t h i s  
case region S,  occupied by t h e  body, i s  multiply-connected. 

Let us p lace  the  coordinate region within 
the  region and denote by L1, L 2 ,  ..., Ln, 

Ln+ 1 t h e  contours which bound t h e  region under 

considerat ion.  

We s h a l l  consider t h a t :  1) L1, L 2 ,  ..., 
Ln' Ln+l a r e  closed smooth1 contours which do 

not  i n t e r s e c t ;  2) contour L encompasses a l l  
n+ 1 

of t h e  preceding. 
Ln+r I 

Each contour Ln has applied t o  it exter -  

Figure 1 . 3 .  n a l  forces  under t h e  ac t ion  of  which t h e  body 
i s  i n  t h e  e l a s t i c  equil ibrium s t a t e .  Let us  
denote the  r e s u l t a n t  vector  of t h e  external  

forces  applied t o  contour Lk by Xk + i Y k .  

Let us mentally i s o l a t e  some p a r t  of  t h e  region ( i n  Figure 1 . 3  t h e ' d o t t e d  

l i n e s  denote these  contours c(') and C (2) )  and determine according t o  formula 
(1.99) the  r e s u l t a n t  vector  of the  ex te rna l  forces  applied t o  the  contour of the  
cut  out  por t ion  of  region S. I f  t h e  region thus cut  out i s  singly-connected 

( f o r  example, i n  Figure I .  3  t h e  region bounded by contour ~ ( l ) ) ,  t h e  r e s u l t a n t  
vector  w i l l  be equal t o  zero, s ince  the  functions $(z l )  and $(z2) within t h i s  

region a r e  i d e n t i c a l .  I f  t h e  region i s  taken which i s  bounded by contour 

c ( ~ )  the  r e s u l t a n t  vec to r  of t h e  external  forces  applied t o  contour c ( ~ )  w i l l ,  
i n  general ,  be d i f f e r e n t  from zero and equal t o  -(Xk + iYk). The l a t t e r  

a f f i rmat ion  comes d i r e c t l y  from t h e  f a c t  t h a t  t h e  e n t i r e  body under t h e  ac t ion  
of the  given forces  i s  i n  equilibrium, and consequently, any p a r t  of it i s  i n  
equilibrium. However, s ince  contour L i s  under the  influence of  forces ,  t h e  

k 
r e s u l t a n t  vector  of  which i s  X + i Y k ,  consequently, contour c ( ~ )  i s  subjec t  t o  

k 
ex te rna l  forces ,  the  r e s u l t a n t  vector  of  which i s  equal t o  -(Xk + iYk). Instead 

of  contour c ( ~ ) ,  obviously, any o the r  contour C *(2)  may be taken which embraces 
Lk ,  with the  condit ion t h a t  it does not  encompass o r  i n t e r s e c t  t h e  o the r  

contours. 

j ~ o r e  accura te ly ,  l e t  us assume t h a t  the  contours have a continuously changing 
tangent .  



It is obvious that the 

contours c(~), c*(~) and so 
$(zl) and $(z2) in the case 

resultant vector of the external forces applied to 

forth will be the same. From here it follows that /42 - 
of a multiply-connected region should be sought in 

the form 
n 

where z z are points arbitrarily fixed within contours L $*(zl) and 1,k' 2,k k ; 
$* (z2) are asingle valved functions in region S; Ak and B are certain complex k 
constants subject to definition. 

Constants Ak and Bk, obviously, must be determined from the conditions: 

1) the resultant vector of the forces applied to,contour c") (or C *(2) ) , is equal 
to - (Xk + iYk) ; 2) displacements u and v, determined by formulas (I. 91) are 

identical, i. e. , from equations1 

Let us add to these equations their conjugate equations 

- - - - 
(P, + iq,) A, - 6, + i q ~  A, + (p, + iq2) Bk - G2 + +q2) BB, = 0. 

(I. 116) 
- - X, - iY, 

- ( I  + ( l - i ~ l ) ~ k - ( l - i & ~ & + ( l - i ~ ~ k = -  2 n 1  

- ~ 

 he second equation of (I. 115) is derived from (I .91) and represents an incr;- 
ment of the expression [u + iv] when passing around the contour Lk. 



The determinant of system (I. 116) 

is obviously different from zero. 

For the particular values of sl = iB1 and s = iB2, i.e., when al - 
= 0, 2 = a2 - 

Solving system (1.116) we find fully defined values of Ak and Bk. If the - /43 

resultant vector Xk + iYk of the external forces applied to each contour (see 

Figure 1.3) is equal to zero, then setting Xk = Yk = 0 in (1.116), we find 

Functions $(z ) and $(z ) (1.114) in this case will be regular and single-valued 1 2 
functions in region S. 

An infinite multiply-connected region. Of great practical interest1 is 
the case in which contour L approaches infinity, i.e., the case of an infi- 

n+ 1 
nite multiply-connected region (Figure 1.4). 

Let us mentally draw contour r ,  which 
would encompass all of contours L Is L2, . .., 
Ln . For greater clarity it is convenient to 

introduce two more planes zl and z2 (Figures 

1.5 and 1.6) which are obtained from z by 
affine transformation: 

x, = x +a,y. Y, = Ply, 
(I. 118) 

Figure 1.4 

1A very large number of practical problems concerning stress concentration may 
be cited in connection with this problem. If the sizes of the holes are small, 
a plate of finite dimensions may be taken as infinite under the condition that 
the holes are not located close to its edges- 



With this transformation region S (Figure 1.4) enters into regions ~ ( l )  and 

s(') of the same connectedness as the assigned region (Figure I. 5-1.6). How- 

ever, the circuit direction of regions ~ ( l )  and s(~) may be both forward and 
reverse. 

The circuit direction of regions 5'') and 5'') is maintained if the 
corresponding functional determiners1 are 

(I. 119) 

We agreed earlier to select the values B1 and B2 in order to maintain the 
(2) circuit direction of regions S, ~(l) and S . 

The function $(zl) will a function of a simple complex variable zl in 
(2) region ~(l), and the function $ ( r  ) - -  in region S . 2 

Figure 1.5. Figure  - 1.6. 

Obviously, for any point z located outside I' (Bigure I.4), points z /44 
l(2) 

- 
corresponding to it are found outside I"') (Figure 1.5) and z outside I' 2 (Figure I . )  for which, obviously, when 17.1 > 1zkl, izll > lil,k I and 131 > 

' Iz2,k I (k = 1, 2, ... , n), where z z are points inside contours l,kJ 2,k 
(1) Lk , L:~) (Figures 1.5 and 1.6) and, consequently, 

- ~ 

'see E. Gursa [Z], p. 288. 



-- ) - - . . . = lnz1 i- function holomorphic outside r (1). , 
2 Zl 

( 2 )  +function holomorphic outside . 

Substituting the expressions ln(z - z ) and ln(z2 - z ) in (1.114), 
we obtain 

1 l,k 2 ,k 

(I. 120) 

where $**(z ) and $**(z ) denote functions which are respectively holomorphic 
1 2 

outside r(ll.and r"), except, perhaps, for the infinitely remote point; A = 
= TAk and B = ZB are constants including, obviously, the resultant vector of all k 
external forces applied to contour L = L 

+ L2 1 + ... + Ln of region S 
(Figure I. 4) . 

Functions $**(zl) and $**(z ) outside r(') and I'(*) may be expanded (each /45 2 - 
in its own plane) into a Loran series: 

(I. 121) 

We assume that 0:3 = const, = const, T = const, i. e., we intro- 
Y 

duce the condition that the stress components a & and T remain bounded1 
throughout region S. x' Y X Y 

Substituting the values of functions @(zl) and $(z2) from (1.120) into tke 

formulas for the stress components (1.90) and taking into consideration the 
expansion (1.121), we obtain 

 he more general case easily reduces to that under consideration, for example, 
in 51 of Chapter 111. 

44 



Let us represent zl = r eiel; z = r2eie2 and rewrite the preceding 
1 2 

formulas in the form 

(I. 122) 



For the stress components a a and T to be bounded throughout the 
x '  Y x Y 

plane with any 8 €I2 and r r it is obviously necessary that 1 ' 1' 2 

All of these equations will be satisfied if 

Thus, functions @ (zl) and Jt(z2) (I. 120) have the form 

cp (2 , )  = A In z, + (B' + iC') 2, + !r+, (z , ) ,  

$(z,) = BInz ,  + (B" i - i C ' 3 2 ,  + $,(z2), 

(I. 123) 

(I. 124) 

where a = B* + iC*, a; = B1* + iC1*; @ (z ) and $J (z ) are functions holo- 1 0 1 0 2 
morphic at infinity, i.e., 

(I. 125) 

The constants B*, C*, B1* and C1* in (1.124) may be expressed through the 
stress components at infinity, considering the stressed state at the infinitely 
remote part of the plane to be equivalent. 

Let at infinity be given the stresses 

= const, dy") = const, ri;) = mnst .  (I. 126) 

Substituting functions @(zl) and $(z2) (1.124) into equations (1.90) and /47 - 
directing z + and z + w, we obtain 

1 2 
2 B* + iC*) + z: (B* - i c * )  + si (Br* + iCf*)  4- Ti (B'* - iCr*) = a?), 

st ( 
2B* + 2B'* = aLw), (I. 127) 

s, (B* + iC*) + 5 (B* - iC*) f s2 (Br* + iCf  *) f (8'- - iC'*) = - I($). 



We see from (1.127) that one of the values B*, C*, B 1 *  and C1* may be 
given l arbtrari ly . 

Let us assume C* = 0. The determinant2 of system is 

Solving system (1.127), we obtain 

Formulas (I. 128) take on an especially simple form when3 

(I. 128) 

- -- -- 

'The fourth constant may be associated with revolution of the infinitely 
remote part of plane xOy. Substituting the values u and v from (1.91) into 

1 do du 
the revolution equation e = - 2  ( d7;-%, ) a n d d i r e c t i n g x a n d y t o i n f i n i t y , u e  

obtain an inadequate equation. Adding the equation obtained to system (1.127) 
we obtain a system of four equations, the determinant of which when sl 
is different from zero: + s2 

Setting the value of P we obtain -from this system of f ~ u r  equations 
fully defined values for B*, C*, B1* and C1*. However, from a purely practical 
viewpoint it is more convenient to set one of the constants C* or C t *  in 
advance. 

2The case of equal roots is excluded. Consequently, it is always possible 
to select Values S U C ~  that B2 - B1 > 0. If B2 - B1 < 0, then setting C 1 *  = 0 
in (1.127), we obtain 

 o or most materials with three elastic symmetry planes sl and s2 have this form 
only if the direct intersections of these elastic symmetry planes serve as the 
chorded axes. 



sl = ip,, s, = ip,. 

Assuming ul = a = 0 i n  ( I . 128) ,  we ob ta in  
2 

( I .  129) 

S u b s t i t u t i n g  i n  func t ions  $(zl)  and $(z2)  (I. 124) t h e  va lues  found f o r  

B*, B1*, C 1  * from ( I .  128) o r  ( I .  129) and C* = 0,  we ob ta in  t h e  f i n a l  form of  
t h e s e  func t ions .  

According t o  t h e  above, we may always cons ider  t h a t  a  = 0 and a;) = 0,  0  
i . e . ,  (O(m) = ( )  = 0, and, i n  add i t i on ,  a s  was assumed before,  C* = 0. 

An i n f i n i t e  s ingly-connected reg ion .  Let us assume t h a t  t h e  i n f i n i t e  
reg ion  under cons idera t ion  i s  not  multiply-connected, bu t  s ingly-connected,  o r  
i n  o t h e r  words, an i n f i n i t e  shee t  with a  s i n g l e  hole .  I t  i s  obvious t h a t  i f  we 
p l ace  t h e  coord ina te  o r i g i n  ou t s ide  of our  reg ion ,  i . e . ,  w i th in  t h e  ho le ,  a l l  
o f  t h e  above concerning func t ions  ( (z l )  and $(z2) w i l l  remain v a l i d ,  assuming 

t h a t  t h e  r o l e  of  contour  r (Figure 1.4) i s  played by contour L o f  t h e  hole .  

Let us  s u b s t i t u t e  func t ions  ((z ) and $(z ) (1.124) i n t o  t h e  formulas f o r  
1 2 

t h e  displacement c o e f f i c i e n t s  (1.91). For t h e  displacements a t  i n f i n i t y  t o  
remain bounded, t h e s e  condi t ions  must be s a t i s f i e d :  1) t h e  p r i n c i p a l  vec to r  of 
t h e  e x t e r n a l  f o r c e s  appl ied  t o  contour L of t h e  hole  must equal  zero,  i . e . ,  
X = Y = 0; 2) t h e  s t r e s s e s  and r o t a t i o n  a t  i n f i n i t y  must a l s o  equal  zero,  
i - e . ,  B* = BI* = C* = Cl* = 0. 

Later ,  values a r e  needed f o r  c o e f f i c i e n t s  A and B def ined a s  t h e  s o l u t i o n  
of  equat ion system (1.116) f o r  an o r t h o t r o p i c  shee t  with a  round h o l e .  

D i rec t ing  coord ina te  axes x and y along t h e  p r i n c i p a l  d i r e c t i o n s  o f  
e l a s t i c i t y  of t h e  s h e e t  m a t e r i a l ,  we ob ta in  



(I. 130) 

On the basis of the preceding formulas we cite the values of constants A 
and B for the case of one concentrated force P applied normally to the contour 
of a round opening at a point determined by angle a, measured in the /49 - 
positive direction of axis Ox counter clockwise: 

(I. 131) 

Above, the solution of the basic contour problems of elasticity theory 
reduced to determining the functions $(zl) and +(z ) by contour conditions 

2 
(I. 96) and (I. 97). Functions $ (zl) and $(z2), generally speaking, in the case 

of a multiply connected region (both finite and infinite) are ambiguous. 
This is because the resultant vector of the external forces applied to 
contour Lk was different from zero. Using a very simple approach it is always 

possible to reduce the solution of the problem posed to the case where the princi- 
pal external force vector is equal to zero' on each of boundaries L indivi- 
dually. k 

Let us examine more thoroughly the first basic problem. Functions $(zl) 

and J1(z2 )  for this case have the form of (1,114). Let us substitute functions 

4(zl) and $(z2) (I. 114) into equations (1.96) 

'1n this case, as follows from (I. 116, functions $(zl) and +(z2) will be 
regular in region S. 



where $*(z ) and $*(z ) are unique functions in region S. 
1 2 

Now it is easy to see from (1.132), that f* and f* are unique functions. 1 2 
Actually, when circuiting contour Lk in the positiv; direction the increment is 

[f;] = Xk - Xk = 0; likewise, increment [fi] = -Y + Yk = 0. When circuiting k 
the external contour Ln+l we obtain X = Y = 0, i.e., the resultant vector of all 

external forces applied to contour L = L 1 + L2 + . . .  
+ Ln is equal to zero. 

In the case of the second basic problem this approach makes it possible to /SO - 
reduce the problem to the solution of functions +*(zl) and IY(z2) which are 

in region S by contour conditions (1.97). In the latter case it is necessary 
to know the resultant vector of the external forces applied to each contour L 
individually. K 

54. Table o f  Some Cauchy-type Integrals 

We present a table of Cauchy-type integrals (without delving into the method 
of t h e i r  ca lcula t ion)  which w i l l  be tencountered i n  t h e  following chapters. 

The following definitions are used here. 

y;is circle of unit radius in the plane of complex variable 5 ;  
< is arbitrary point of the plane of a complex variable; 
5 is point of application of concentrated force or moment; 0 - 
5 is point conjugate with point Go; 0 
t, a, a are points located on unit circle y. 1 

I. When 1 6 ) >  1, 1LI> 1 

ada 
3, A J ~ ~ - ~ o ~ ~ a - ~ ~  = 0; 



uda 1 =- - 9 

6, ~s(l-uto)(u-c) Y EO ( 1 - Go1) 

uda to =-- 
l5)&S(o- Lo)  (0-6). 6-60 ' 

Y 

oda 1 .  = -r, 
6 0  

Y 



IV.  When 16 1 < 1, Ibl<l 

V .  When I t ) >  1 

VI.  When I S 1  < 1 
I I n a  

30) rCF; do = In (0, - 6): 
U 

Y 

VII.  When la1 > 1 



dt 1 1, (t -,g )- = In (a - 50); 36) xi 0 t - a  

Y 

- 
1 - Too . 

t(t - lo) (t - a) a (a - t o ) .  ' 
Y 

tdt - a .  --, 
5 0 ) k I ( I - 5 d ) ( t - ~ )  I - - < @  

Y 

dt - 1 - --- : 
51)  $1 ( t - ~ o ) ( t - a ~  a - to  

'I 



IX. Type of Integrals 

1 tdt 
58) -;j scu = 0; 

Y 

62) $1 '" (' -") dl = ln (u - 03; t - a  

1 In ada 1 In (a - 0 , )  
6 3 p 6 4 ) x ~ T ' S i ; ~  da = 2. 

Y Y 



Blagoveshchenskiy, Yu. V. [I], "Some Approximate Methods of Conformal Mapping," 
Sb. Trudov Instituta StroiteZtnoy Mekhaniki AN USSR [Collected Works of the 
Institute of Construction Mechanics of the AN USSR], No. 14, AN USSR Press, 
Kiev, pp. 145-152, 1950. 
[2] "Some Approximate Methods of Conformal Mapping," Matematichniy Zbirnik 
[Mathematics Collection], No. 4, KDU Press, pp. 73-78, 1950. 

Burmistrov, Ye. F. [I], "Stress Concentration Around a Certain Type of Oval 
Hole," Inzh. 5%. [Engineering Collection], No. 17, AN SSSR Press, Moscow, 
1953. 
[2] Kontsentratsiya Napryazheniy v PZastinkakh s Otverstiyem Obshchego Vida - /55 
[Stress Concentration in Sheets with a General Type of Hole], AN SSSR OTN 
Press, p. 8, 1958. 

Vaynberg, D. V. [l] ' , PZastiny, Diski, BaZki-Stenki (Prochnost ', Ustoychivost ' 
i KoZebaniya) [Plates, Disks, Walls (Strength, Stability and Oscillation)], 
Gosstroyizdat Press, Kiev, 1959. 
[2] ' Napryazhennoye Sostoyaniye Sostavnykh Diskov i PZastin [The Stressed 
State of Component Disks and Sheets], AN USSR Press, Kiev, 1952. 

Vekua, I. N. and N. I. Muskhelishvili [I], "Analytic Function-Theoretical 
Methods in Elasticity Theory," Tr. Vsesoyuzn. Sttyezda po Teor. i FrikZ. Mekh. 
[Works of the All-Union Congress on Theoretical and Applied Mechanics], AN 
SSSR Press, pp. 310-338, 1962. 

Goluzin, G. M. [I], Geometricheskaya Teoriya E'unktsiy KompZeksnogo Peremennogo 
[Geometric Theory of Functions of a Complex Variable], GITTL Press, Moscow- 
Leningrad, 1952. 

Goluzin, G., L. Kantorovich, et a1 [I] ' , Konformnoye Otobrazheniye Odnosvya- 
znykh i Mnogosvyaznykh ObZastey [Conformal Mapping of Singly- Connected and 
Multiply-Connected Regions], ONTI Press, Moscow-Leningrad, 1937. 

Gursa, E. [I], K m s  Mat. AmZiza [Course in Mathematical Analysis], Vol. I, 
ONTI Press, Moscow-Leningrad, 1936. 
[2] K w l s  Mat. AnaZiza [Course in Mathematical Analysis], Vol. 11, ONTI Press, 
Moscow-Leningrad, p. 52, 1936. 

Gurfyev, N. F. [l], "Stress Distribution in an Elongated Isotropic Rectangular 
Sheet Weakened by a Round Hole," Naukovi zap. PoZtavstk [Scientific Notes 
of Poltava Pedagogical Institute], p. 8, 1955 
[2] "Stretching of a Rectangular Plate, into a Round Hole of which is 
Soldered an Elastic Collar,It PrikZ. Mekh., No. 2, p. 3, 1966. 

Gur'yanov, V. M. and 0. S. Kosmodamianskiy [I], '"I'he Effect of Curvature on 
Stress State of Isotropic Plate with Curvilinear Contour,I1 PrikZ. Mekh., 
Vol. 9, No. 5, pp. 487-495, 1963. 
[2] "The Stressed State of an Isotropic Sheet Weakened with a Curvilinear 

Hole," Inzh. Zhurn., Vol. 4, No. 3, 1964. 
[3] "Stretching of an Isotropic Sheet with ?'wo Elliptical Holes," Neko- 
toryye Zadachd Teorii Upmgosti o Kontsentratsii Napryazheniy i Deformatsii 
Uprugikh TeZ. [Some Problems of Elasticity Theory Concerning the Concentration 
of Stress and Deformation of Elastic Bodies], No. 2, Saratov University 
Press, 1965. 

*Translator 's  Note: The references here and a: the  end of the other chapters 
a r e  presented i n  t h e  o r i g ina l  Cy r i l l i c  a lphabet ica l  order.  



Kantorovich, L. V. and V. I. Krylov [I], Metody Priblizhennogo Resheniya 
Uravneniy v Chastnykh Proizvodnykh [Methods of Approximate Solution of Equa- 
tions in Partial Derivatives], ONTI Press, Moscow-Leningrad, 1936. 
[2] PribZizhennyye Metody Vysshego AnaZiza [Approximate Methods of Higher 
Analysis], 5th Edition, Fizmatgiz Press, Moscow-Leningrad, 1962. 

Kartsivadze, I. N. [I], "Effective Solution of the Basic Problems of Elasticity 
Theory for Certain Regions," Soobshch. AN GmzSSR, Vol. 7, p. 8, 1946. 

Kolosov, G. V. [l] , Primeneniye KompZeksnoy Peremennoy k ~ e o r i i  Uprugosti 
[Application of the Complex Variable to Elasticity Theory], SNTI Press, 
Moscow-Leningrad, 1935. 

Lekhnitskiy, S. G. [I], Teoriya Uprugosti Anizotropnogo TeZa [Elasticity 
Theory of An Anisotropic Body], Gostekhizdat Press, Moscow-Leningrad, 1950. 
[2] Anizotropnyye Plas t inki  [Anisotropic Plates], GTTI Press, Moscow, 1957. 
[3] "Some Cases of Elastic Equilibrium of a Homogeneous Cylinder with Arbi- 
trary Anisotropicity," Prik l .  Mat. i Mekh., Vol. 2, p. 3, 1939. 
[4] "Some Cases of the Plane Problem of Elasticity Theory of an Anisotropic 
Body," Sb. Trudov I n s t i t u t a  Mat. i Mekh. [Collection of Works of the Insti- 
tute of Mathematics and Mechanics], LGU. ONTI Press, Moscow-Leningrad, 1935. 
[S ]  "The Plane Statistical Problem of Elasticity Theory of An Anisotropic 
Body," PrikZ. Mat. i Mekh., Vol. 1, p. 1, 1937. 

Lyav, A. [I], Matematicheskaya Teoriya Uprugosti [Mathematical Elasticity 
Theory], ONTI Press, Moscow-Leningrad, 1935. 

Makhovikov, V. I. [I], "Approximate Co~formal Mappings and Their Application in 
Elasticity Theory," Prik l .  Mekh., Vol. 3, No. 1, pp. 20-37, 1957. 
[2] "Approximate Methods of Conformal Mapping of ~~ubl~-Connected Regions," 
P r i k Z .  Mekh., Vol. 5 ,  No. 3, pp. 257-275, 1959. 

Me lent yev, P. V. [l] , "Approximate Conformal Mapping, " Konformnoye Otobrazhe- 
niye Odnosvyaznykh i Mnogosvyaznykh ObZastey [Conformal Mapping of Singly- 
Connected and Multiply-COnne~ted Regions], ONTI Press, Moscow-Leningrad, 
pp. 80-89, 1937. 
[2] XbZizhennyye  Vychisleniya [Approximate Calculation], Fizmatgiz Press, 
Moscow, 1962. 

Mikhlin, S. G. [I], "Plane Deformation in an Anisotropic Medium," Tmdy Seysm. 
In-ta AN SSSR [Proceedings of the Seismic Institute of the USSR Academy of 
Sciences], No. 76, AN SSSR Press, Moscow-Leningrad, 1936. 

Muskhelishvi li , N. I. [l] ' , Nekotoryye Osnovnyye Zadachi Matematicheskoy /56 - 
Teori i  Uprugosti [Some Basic Problems of Mathematical Theory of Elasticity], 
AN SSSR Press, Moscow, 1st Edition, 1935; 4th Edition, 1954. 
[2] Singulymnyye IntegraZ'nyye Uravneniya [Singular Integral Equations], 
Fizmatgiz Press, Moscow, 1962. 

Polozhiy, G. N. [I], "Effective Solution of the Problem of Approximate Confor- 
mal Mapping of Singly-Cpnnected and Doubly-Connected Regions and 
Determination of Kristoffel1-Schwartz Constants with the Aid of Electrohydro- 
dynamic Analogies," UMZh, Vol. 7, No. 4, pp. 423-432, 1955. 

Papkovich, P. F. [1], Teoriya Uprugosti [Elasticity Theory], Oborongiz Press, 
Moscow-Leningrad, 1939. 

Privalov, I. I. [l] , Vvedeniye v Teoriyu Funktsiy Kompleksnogo Peremennogo 
[Introduction to Theory of Functions of Complex Variable], 10th Edition, 
Fizmatgiz Press, Moscow, 1960. 



Savin, G. N. [I], "Stress Distribution in a Plane Weakened by a Hole," Trudy 
Dnepropetr. Inzh.-Stroit [Proceedings of the Dnepropetrovsk Construction 
Engineering Institute], p. 10, 1936. 
[2] ' Kontsentratsiya Napryazheniy OkoZo Otverstiy [Stress Concentration 
around Holes], GITTL Press, Moscow, 1951. 

Smirnov, V. I. [I], Kurs Vysshey Matematiki [Course in Higher Mathematics], 
Vol. 111, GTTI Press, Moscow-Leningrad, 1933. 

Stepanov, G. Yu. [l], Gidrodinamika Reshetok Turbomashin [Hydrodynamics of 
Turbine Systems], Fizmatgiz Press, Moscow, 1962. 

Tozoni, 0. V. [I], "Experimental-Analytic Solution Method of the Dirichletls 
Problem for Singly-Connected and Doubly-Connected Regions," Tmdy Novocher- 
kasskogo PoZitekhn. In-ta [Proceedings of the Novocherkasskiy Polytechnical 
Institute], 43-57, NPI Press, pp. 45-64, 1956. 
[2] "Modeling of Function that Infinitely Conformally Maps a Doubly- 
Connected Region on a Rod," Izv. Vuzov. EZektromekhanika, No. 5, 1958. 

Tolstov, Yu. G. [I], "Conformal Mapping of Doubly-Connected Regions with the 
Aid of the Electrointegrator," Izv. AN SSSR, OTN, pp. 7-8, 447-461, 1944. 
[2] "Use of Electrointegrator for Conformal Mappings of Singly-Connected 
Regions," Izv. AN SSSR, OTN, No. 2, pp. 159-164, 1947. 

Ugodchikov, A. G. [I], "Electromodeling of Problem of Conformal Mapping of a 
Circle in Advance of a Given Singly-Connected Regions1' UMZh, Vol. 7, No. 2, 
pp. 221-230, 1955. 
[2] llElectromodeling of Conformal Mapping of a Circular Ring in Advance of a 
Doubly-Connected Region," UMZh, Vol. 7, No. 3, pp. 305-312, 1955. 
[3] About the Compensation of Deflections at ~lectromodulatio~ of 
the Problem of Conforming Conversion on the EGDA-6 Device. From the 
book: "Application of the Method of Electrohydrodynamic Analogy for 
Solution of Some Technical Problems," AN-URSR Press, Kiev, p. 154-161, 
1959. 
[4] "Construction of Conformally Mapping Functions with the Aid of Electro- 
modeling ,'I DokZ. IV Mezhvuz. Konf. po Primeneniyu Fiz. i Mat. ModeZirovaniya 
v RazZichnykh OtrasZyakh Tekhniki [Reports of IV Interscholastic Conference 
on the Use of Physical and Mathematical Simulation in Various Branches of 
Technology], Vol. 1, ME1 Press, Moscow, 1962. 
[5] "Use of Electromodeling and Lagrange Interpolation Polynomials for 
Construction of Conformally Mapping Functions," DAN URSR, No. 11, 
1963. 
[6] "Use of Electromodeling and Lagrange Interpolation Polynomials for 
Construction of Conformally Mapping Functions," Mater. Nauchn. Seminarov po 
Teor. i PrikZ. Voprosam Kibernetiki [Materials of Scientific Seminars on 
Theoretical and Applied Cybernetics], Vol. 5, AN USSR Press, Kiev, 1963. 
[7] "Construction of Conformally Mapping Functions with the Aid of Electro- 
modeling and Lagrange Interpolation Polynomials," Kontsentratsiya Napryazheniy 
[Stress Concentrations], Vol. 2, Naukova Dumka Press, Kiev, 1968. 
[8] "Solution of Generalized Biharmonic Problem of Plane Elasticity Theory for 
Doubly-Connected Regions," StroiteZ'naya Mekhanika i Teoriya Uprugosti 
[Construction Mechanics and Elasticity Theory], Gorlkiy, DAN URSR Press, p. 
11, 1961. 

Ugodchikov, A. G. and A. Ya. Krylov [I], l'Electrosimulation of Conformally 
Mapping Semi- inf inite Regions ," Izv. Vuzov. EZektromekhanika, Vol . 11, 
pp. 31-35, 1960. 



Ugodchikov, A. G. and I. I. Serebrennikova [l],tt~ie~tro Modulation of Con- 
forming Conversion of the Exterior of a Circle of an Exterior of a Given 
Curve," PrikZ. mekh., Vol. 3, pp. 269-276, 1957. 

Uolsh, Dzh. L. [I], InterpoZyatszya i Approksimatsiya RatsionaZfnymi Funktsi- 
yam-i v KompZeksnoy ObZasti [Interpolation and Approximation by Rational 
Functions in Complex Region], Foreign Literature Press, Moscow, 1961. 

Fil'chakov, P. F. [I], "Method of Series Mapping of Grooves," DAN SSSR, Vol. 
78, NO. 3, pp. 413-416, 1951. 
[2] "Modeling of Problems of Filtration on Electroconducting Paper," DAN 
SSSR. Vol. 84, No. 2, pp. 237-240, 1952. 
[3] "Determination of Constants of Kristoffelt-Schwartz Integral with the 
Aid of Generalized Power Series," Nekotoryye ProbZemy Mat. i Mekhan. K 60- 
Zetiyu Akad. M. A. Lavrent'yeva [Some Problems in Mathematics and Mechanics. 
In honor of the 60th Birthday of Academician M. A. Lavrentlyev], SO AN SSSR 
Press, Novosibirsk, pp. 236-252, 1961. 
[4] "On Conformal Mapping of Given Singly-Connected Single-Sheet Regions with - /57 
the Aid of Electromodeling," DokZ. IV Mezhvuz. Konf. po Primeneniyu Fiz. i 
Mat. ModeZirovaniya v RazZichnykh OtrasZyakh Tekhniki [Reports of IV Inter- 
scholastic Conference on the Use of Physical and Mathematical Simulation in 
Various Branches of Technology], Vol. 1, ME1 Press, Moscow, pp. 21-43, 
1962. 
[5] ~tConformal Mapping of Given Regions by the Method of Trigonometric Inter- 
polation, Part I," UMZh, Vol. 15, No. 2, 1963. 
[6] PribZizhennyye Metody Konformnykh Otobrazheniy [Approximate Methods of 
Conformal Mappings], Naukova Dumka Press, Kiev, 1964. 
[7] "Conformal Mapping of Given Regions by the Method of Trigonometric Inter- 
polation, Part 11, UMZh, Vol. 16, No. 5, 1964. 

Khara, I. S. [I], "On One Method of Approximate Conformal Mapping of Regions on 
Unit Circle," DAN URSR, Vol. 4, pp. 289-293, 1953. 

Chaplygin, S. A. [I], Sobr. Soch. [Collected Works], Vol. 111, GTTI Press, 
Moscow-Leningrad, pp. 306-316, 1950. 

Shamanskiy, V. Ye. [I], "Conformal Mapping by Electromodeling," UMZh, Vol. 8, 
NO. 1, pp. 92-96, 1956. 

Sheremetfyev, M. P. [I], PZastinki s PodkrepZennyrn Krayern. [Plates with 
Reinforced Edge], Lyvovsk University Press, 1960. 

Shilov, B. F. [ I ] ,  "Approximate Conformal Mapping of Doubly-Connected Regions," 
Tmdy Voyenno-Mekh. In-ta [Proceedi~gs of Military-Mechanics Institute], 
Leningrad, pp. 153-187, 1939. 

Kikukawa, M. [I], "On Plane-Stress Problems in Domains of Arbitrary Profiles, 
Part I," Proceedings of the Second Japan NationaZ Congress for Applied 
Mechanics, No. 3, 1953. 
[2] "On Plane-Stress Problems in Domains of Arbitrary Profiles, Part 2," 
Proceedings of the Third Japan National Congress for Applied Mechanics, 
No. 4, pp. 5-9, 1954. 
[3] "On a Method of Calculating Stress Concentration in an Infinite Plate with 
a Hole of an Arbitrary Profile," Proc. of the 1st Japan Nut. Cong. for Appl. 
Mech., 1951. 
[4] "On Applications of the Conformal Mapping in Plane Stress Concentration 
Problems, JUTAM Symposiwn, Tbilisi, 1963; "Application of Theory of Functions 



in Mechanics of Dense Medium," TmLdy Mezhd. Simpoziwna v TbiZisi [Proceedings 
of International Symposium in Tbilisi], 17-23 September, 1963, Nauka Press, 
Moscow, Vol. 1, 1965. 



CHAPTER 11 .  STRESS DISTRIBUTION IN A PLANE ISOTROPIC 
FIELD WEAKENED BY ANY HOLE OR SERIES OF HOLES 

ABSTRACT. Chapter I I  deals with methods of solving the 
problem of a stressed state of the isotropic medium weak- 
ened by one or several curvilinear holes. The author 
considers a great number of examples for the medium with 
one curvilinear hole whose forms correspond to the majority 
of those that find direct application in current practice. 
Various forces applied to the mentioned medium are accounted 
for. Different problems are considered on the stress con- 
centration in a beam of an infinite length and for a half- 
plane, weakened by a circular hole, and for an elastic 
plane with a finite series of identical circular and 
curvilinear holes as well as with two different holes. 

51. Solution Method 

Statement of the Problem. Let us consider an unbounded elastic isotropic 158  
plane which is in some stressed state (tension, compression, pure deflection, 

- 
deflection with constant shear force and so forth). Let us denote by IJo(x,y) 

the stress function corresponding to this stressed state. 

If a hole of any form (Figure 11.1) is made in 
the plane under consideration, the distribution of 
stresses in it will change and instead of the stress 

0 state oo o and ro which was present in a plane 
x' Y XY' 

-- not weakened by a hole, we will have a new distribution 
of stresses characterized by new values of the stress 
components -- ox, 

XY ' 

Let us place the origin of the coordinate system 
xOy at any point within the hole (in the case of a rec- 

Figure 11.1, tangular hole - -  at its geometric center) and call 
the stressed state in a plane without a hole the 
basic stressed state. 

A new stressed state in the same plane, but weakened by any hole, may be 
represented in the form 



where a* a* T* are additional stress components which arise because of the 
x' yJ xy 

presence of a hole. 

0 0 For the basic stressed state ox, a and To as well as for the stressed 
Y xyJ 

state o* a* and T* according to (1.6) and ( I . 8 ) ,  may be found according to 
xJ Y XY ' 0 0 N. I. Muskhelishvili's functions [l].of the complex variable z --  @ (z ) ,  $ (z) 

and $* (z) , $* (z) . Thus, functions corresponding to the stressed state (11.1) 
will have the form 

CPI (2) = (PO (2)  + cp* (21, 

$1 (2) = 9O (2) + 9* (2). 

The functions $*(z) and $*(z )  are unknown and must be defined. /59 - 
As experimental research shows (see Appendix), the influence of a hole 

on the stressed state pattern in the plane under consideration is of a 
local nature, i.e., the stress components a* a* T* fade rapidly as the x' y' xy 
distance from the hole increases. It follows that functions 
$* (z )  and $*(z) which characterize this stressed state are essentially holo- 
morphic functions in the region outside the hole, i.e., functions of form 
(I. 24) . 

Let us use conformal mapping of the inside of unit circle y onto the 
region S under consideration (the plane outside the opening). If we switch to 
the transformed region using function w ( r )  (I. 39), (1.49) or (I. 5 4 ) ,  
then depending upon the shape of the-hole in quests, the stress functions 
(11.23 will acquire the form 

We introduce the definitions 

Then functions (11.3) acquire the form 

'P (TI = cp' (f) + (Po ( 5 ) s  

9 (6) = q1 (6)  + $0 (0, 
(TI. 4) 



where 

To f i n d  equations f o r  determining' the sought funct ions  $ (c) and $ (c), 0 0 
l e t  us  s u b s t i t u t e  funct ions  (11.4) i n t o  contour condit ions (1.26). Multiplying 
both p a r t s  of  condit ion (1.26) (and i t s  conjugate expressions) by 
1/21~i*du/u - < ,  where 5 denotes a point  within t h e  u n i t  c i r c l e  y,  and in teg ra -  
t i n g  by y,  we obta in  two funct ional  equations1 f o r  determining t h e  funct ions  +, t r )  and qo( r )  111.5) : 

0 where fy - i f 2  denote the  contour conditions c i t e d  f o r  functions m0(5) and 
+ , ( 5 )  : 

[ 
o (a) --- + it == f ,  - I -  if2 - q1 (0) -t- == TI (GI - I -  $1 (D) , 
of (a) --I 

0 and fl - i4 is an expression conjugate with (11.7). 

By determining the  functions +o(r )  and $o(c) from t h e  funct ional  equations 
(11.6) and s u b s t i t u t i n g  them i n  ( I I . 4 ) ,  we f i n d  t h e  functions v ( < )  and $(c).  

To determine s t r e s s  components up, u8 and aB8 i n  the  cu rv i l inea r  orthogonal 

(given by conformal mapping) coordinate system, i t  i s  necessary t o  s u b s t i t u t e  
the  functions m(5) and $(c) (11.4) i n t o  equations ( I  .23) and separa te  the  r e a l  
and imasinary p a r t s .  I f  t h e  contour of  the  hole  i s  f r e e  of  ex te rna l  fo rces ,  
the  s t r e s s e s  along the  contour of the hole can be found from the f i r s t  equa- 
t i o n  o f  ( I  .23), assuming a = 0 where P = l :  

P 

where o = ei* is the  value of the  var iable  5 = peiJ on the contour of the  hole.  

Functions mO (2) , I / J ~  ( z )  for Bas i c S t r e s s  S t a t e .  From equation ( I .  8) , 

l ~ e e  N .  I .  Muskhelishvili  [I] ,  pp. 246-251. 



Hence the real part of the function $Ot(z) is completely defined. By denoting 
0 [$ (z)]' = P(x, y) + iQ(x, y), we obtain from (11.9) 

a2uo atvo = 4 P (x, y). dx'-f-dya 

0 
The imaginary part of [$ (z)] ' , i. e., the function Q(x, y) is found from 

the known differential relations: 

Since the function Q(x, y) is found from a differential equation of the first 
0 order, the function [$ (z ) ] '  is defined with an accuracy up to an imaginary 

0 constant iC1 The function $ (z), however, is defined with an accuracy up to 

an expression of the form iClz + C2. However, without changing the stress 

state, as follows from (1.13), the arbitrary constants C1 and C can be found /61 2 - 
arbitrarily. In the following discussion we will assume them to be equal to 

0 0 zero. Thus, the function $ (z) is completely defined. The function + ( 2 )  , 
0 0 0 however, or the function x (z), which is the same thing, since $ (z) = [X (z)]', 

is found from equation (1.8). By denoting 

we find 
- 

R (x. y) = Uo (x. 9) - [iqO (7) + 290 (211. 

The function S(x, y) is found from the relations (11.11). Consequently, 

0 
i.e., the function x (z) is defined with an accuracy up to an imaginary 
constant . 



And so, for the given basic stress state a:, oo ro both functions 
0 0 yY xyY 

$I (z) and I) ( 2 )  are defined. Depending on the shape of the hole, it will be 
necessary in proceeding to the transformed region to introduce, instead of z, 

n u 
the corresponding representative function w(<) into the functions @ (z) and 
0 1 

$J ( 2 )  that we have found; by this means we will define the functions 4 (c) and 
1 

$J (<) that appear in equations (11.4) and (11.7). 

Since the function w(<) has the form of an infinite series (see formulas 
(1.49) and (1.59)) for the examined holes, which are in the form of a rectangle, 
square, or regular polygon, then, by taking a certain finite number of terms of 
this series, we find the solutions for the regions that differ somewhat from 
those with identical holes. However, as pointed out in 52 of Chapter I, it is 
always possible to select from the series of the function w(<), a number of 
terms such that predetermined conditions will be satisfied. 

By taking from the series of the function w(<) a different number of 
terms, we can obtain a clear picture of the effect of the rounding off of the 
corners on the stress distribution around the hole. However, by changing the 

value of 6 in the expression C = ~ e ~ '  (see formulas (I .39), (I.49), (I .54)), 
we determine the effect of the location of the hole on the stress distribution 
around it. 

The data obtained in this chapter can be used with accuracy sufficient for 
practice (see Appendix) for the design of plates and beams of finite dimensions, 
with the condition that the dimensions of the holes that weaken them are 
sufficiently small1 in comparison with the dimensions of the plate (beam), and 
that it is located at a sufficient distance from its edges. 

In examining individual problems, it will be interesting to consider the 
perturbation that a given hole imparts to a given basic stress state, as well 
as the corresponding stress state factors. We will define the concentration 
factor as the ratio of some tensor component of stress at some point located 
in the zone of perturbation near the hdle, to the same tensor component of - /62 
stress at the same point of the plate, but without a hole, under the effect of 
the same system of external forces as the plate with the hole. Therefore, for 
the plane problem, there are three concentration factors at each point: kl for 

a k far a and kg for T 
P' 2 9 P 9' 

But since the greatest stresses in the zone of 

concentration around the hole are located on the contour of the hole, then only 
one of the three concentration factors remains, namely k = k for og,  since no 

2 
external forces are applied to the contour of the hole. 

- -  - 

 h he hole may also be rather large in comparison with the cross section dimen- 
sions of a beam, approaching, according to Z. Tuzi [I], 0.6 of its height in 
the case of a round hole, and 1/3 of its height, according to G. N. Savin [13], 
with a square hole in any position in a beam under deflection (see Appendix). 



We will examine certain cases of the stress state of a plane, weakened by 
different holes, considering the contour of a hole to be free of external 
forces, i.e., assuming f = f2 = 0 in (11.7). 1 

52. Un iax ia l  Tension or ~orn~resslon' 

During the stretching of a solid plate by forces p in the direction 
constituting angle a with the Ox axis, the basic stress state of the plate is 
characterized, as we know, by the stress components 

q = p cos2 a, 

uu = p sin2 a, 

ZXu = p sin a cos a, 

and the function of the stresses is 

P U, ( x ,  y) = - (x sin a - y cos a)2. 
0 0 We will find the functions 4 (2) and $J (2). From (11.15) and (II.10), 

1 
P(x, y) = p, while from (II.ll), we find Q(x, y) = 0. Hence 

Consequently, 

0 We will find the function (z) from (11.12) (we will omit the interme- 
diate calculations) : 

If, in the given plate, a hole is.made, the center of which coincides with /63 - 
the origin xOy of the coordinate system, and the contour of which is free of 
external forces, then 

'we will agree to consider as positive the stresses that are identical to those 
at an infinitely remote point. The lines of equal but opposite stresses are 
indicated in the figures by a shaded area. 



Converting to the region transformed by formulas (I.39), (1.49) or ( 1 . 5 4 ) ,  we 
find 

We write the adduced contour conditions (11.7) for the given case of the 
basic stress state of the plate: 

From (II.6), for (11.211, we find the stress functions $o(~) and $0(5). 

By substituting them into (11.201, we find the functions $(<) and $(<) that 
correspond to tension of the plate with the given hole. If the stress func- 
tions @(<) and $(<) (11.20) are known, the components of stresses a ogand 

P ' 
T 

p a '  
are defined by formulas (1.27). The stress components near the hole are 

conveniently calculated from the coordinate lines p = const, which give a 
conformal representation. 

In the examples given below, the components of stresses up, U J  and r J 
P 

were calculated for p equal to 1.0, 0.9, 0.8, 0.7, 0.5, and 0.3 every 5 or 10". 
The values1 Pax, Pin and Tmax were then calculated by the known formulas 

 he law of distribution of these stresses will be given later (see Figures 
11.3-11.35). 



The curves of equal principal and tangential stresses were constructed through 
the points; the corresponding stresses are shown on the graphs, where the /64 - 
stress at the infinitely remote point is assumed to be unity. Moreover, the 
trajectories of the principal stresses, i.e., the curves whose tangentials 
coincide at each point with the direction of the principal elements at this 
point, were constructed by the formula 

*TQV tan 2a = - 
OQ - "V 

Square  ole' . We will use the function w(5) (I .56) in the form (Figure 
11.2) 

The equations of the contour of the hole are found from (11.24) forp = 1, 
by dividing the real and imaginary parts2: 

By expressing R through the length of the side of 
the square hole, we find R = 3/5-a, where a is the 

Figure 11.2. length of the side of a curvilinear square hole, 
measured along the Ox or Oy axes. The radius of 
rounding of the corners of.the curvilinear square 
hole (11.25) is 

The stress functions for this case, according to (II.20), are 

  he solutions for square or rectangular holes with the lateral ratio a/b = 5 
and a/b = 3.2, and for a triangular hole, were given by G. N. Savin [I]. P. A. 
Sokolov [I] found a somewhat different solution for a square and triangle with 
rounded corners. The solution of this problem for various values of the fac- 
tor for c 3  in (11.24) was found by H. Czudek [I]. 
  he contour in Figure 11.2 was constructed by equations (11.25) . 



The adduced contour conditions (11.21) are 

From the given function w(<) (11.24) we determined the expressions 

9 - 

G) and * . 0' (0)  

found in functional equations (11.6): 

- 
O(0)  1 1 1 3oa ---.-- 
ca' (o) - 6 o 6 (2 f 0') ' 

We will find the values of the integrals in the right hand sides of system 
(11.6): 

We now compute the integral 



in which the function 9, (c) has the form (11.5) : 

1 o (a) - do  1 13u 
wSmdu)-= mS[Td 2 ( 6 o 4 + 3 ) ]  x 

Y Y 

By substituting the values of the integrals from (11.28) and (11.29) into 
the first equation (11.6) and assuming the factors to be equal for identical 
degrees of 5, we find the equation system for determining the factors of the 
function 40 (5) : 

a, = 0, 

whence 

Consequently, 

The function $ (5) (11.5) is found from the second equation of (11.6) by 
0 

substituting the corresponding expressions from (II.27), (11.32) and (11.28). 
Omitting the intermediate calculations, we write its final form: 

The expressions for the functions $(<) and $(<) are found from (11.26) by 
substituting the values obtained for ( 1 1 . 3 2 )  and ( 1 1 . 3 3 )  : 



Stress functions (11.34) for a = 0, i.e., for the condition O:w) = p and 
0 (m) = = 0, will have the form 
Y *Y 

By substituting the corresponding values of the derivatives of functions w(<) 

(11.24) and $(<) (11.35) into formula (11 8) , assuming 5 = P ei for p = 1, we 
find the formula for determining the stresses on the contour of the square 
hole: 

8~ 
OQ = 5 + 4 cos 4 8  

By assigning Svarious values from 0 to 360° (due to the complete 
symmetry in the given case we may confine ourselves to the range 0-90°), we 
calculate by formula (11.36) the stresses at the points of the contour of the 
given hole. 

When a = ~ / 4 ,  stress functions (11.34) become 

The stresses at the points of the contour of the hole are 

0 = 8 P sin 28) . 



For any value of a, the stress is 

3 cos 2a cos 2.19 - 3 sin 2a sin 28) . 
5 - t . 4 ~ 0 ~ 1 8  (B-f 

From the functions $(c) and $(c) (II.35), we determine the stress compo- 
nents in the vicinity of the plate around the square hole. The lines of equal 

'max and amin are shown on Figure 11.3 and the lines of equal T ~ ~ ~ ,  on 

Figure 11.4. Figure 11.5 shows the trajectories of the principal stresses. 

We now write the function w(c) (1.56) in the form (Figure 11.6) 

An increase in the number of terms of the function w(<) results in a 
decrease in the radius of rounding of the angles of the hole and less deviation 
of the sides from rectangular (see Figures 11.2 and 11.6, where these contours 
are constructed by their equations). The radius of rounding of the angles of 
the curvilinear square for a side equal to a is ro=450 = 0.0245 a in this case, 
while the functions are 

9 (6) = PR [F + (0.426 eos 2a + i0.608 sin Pa) E + 

+ 0*046r + (0.008cos2a-iO,011 sin 20) - 0,004~] ; 

0 ~ - 2 f a  0,5486- (0,457~0~ 2 a  + i0k72 sin 2a)  5' 
$ ( o = - P R [ ' ~  + 1 + O3c4- 0,125c8 - 

- 0.026<6+ (0.029 a s  20 - i0.068 sin 2 a ) p j  
I + 0.55' - 0.12568 

The functions $(<) and $(<) (11.40) for a = 0 are 

For a = ~ / 4 ,  functions (11.40) are 

9 (0 = [OF + i0.6086 + 0,046P - iO.O 1 1Cb - 0.004c7]; 



I I 
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I i l p l i I I  

F igu re  11.5. 
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Figure  1 1 . 4 .  

F igu re  1 1 . 7 .  



To evaluate the effect of rounding of the angles on the stress concentra- - /69 
tion along the contour of the curvilinear square hole, we present in Table 11.1 
the values of stresses ag in fractions of p for two cases: 1) for a = 0 in 

accordance with functions (11.35) and (11.41) and 2) for a = ~ / 4  in accordance 
with functions (11.37) and (11.42). 

TABLE 11.1 The numerical data of Table 11.1 
indicate the following. 

1. The maximum stress concentra- 
tion occurs near the angles of the 
square. 

2. As the radius of rounding of 
the angles gets smaller the concentra- 
tion of stresses near the hole increases 
greatly . 

- 
3. If we retain four terms in the 

function w ( < )  (1.56),  i.e., take it in 
Tr. Note: Comas indicate deci- the form (Figure 11.7) 
ma1 points. 

the radius of rounding of the angles of the curvilinear square is rg-450 - = 

= 0.014 a. 

The stress functions 4(5) and $(<), for the condition a = ~ / 2 ,  i.e., when 

will have the form 



The values of the stresses u in fractions of p along the contour of the /70 9 - 
hole for a = r/2,  corresponding to functions (II.41), are presented in 
Table 11.2. 

~ t ~ t t t t t i t t t t t t t l t t /  TABLE 11.2 

l l I I i I I I I I I I I I I I I I IP  
Figure 11.8. 

T r .  Note: Commas ind icate  deci-  
mal po ints .  

The problems of the stress state near a square hole for various loads on 
its contour and conditions at infinity for different numbers of terms of 
series w(5) (1.56) were examined by D. V. Vaynberg [I], V. M. Gur'yanov and 
A. S. Kosmodamiansk. [2], Barton Cliff Smith [I], H. Czudek [I], I. J. Geer- 
lings [I], H. G. Hahn [I],  Isida Makoto [3], Kunert Karlheinz [I], Takeuti 
Yoitiro, Yurikowa Takasi [I], Villagio Piero [I], Isida [I], and others. 

Rectangular Hole w i t h  Rat io  o f  Sides a/b = 5.  We will confine ourselves 
to five terms of expansion in the representative function w(<) (1.49) and 
state that 

Omitting all intermediate calculations analogous to those described above, 
we write the functions $(<) and $(C) for certain values of a (Figure 11.8). 
For a = ~ / 3  



For a = ~ / 6  

'"' = = 0 For a = 0, i.e., for a',"'=p, a, 

9 (s) = p ~ r ?  + 00.233 + 0.016p + 0,008Sj -I- 0.00337 ; I 

For a = ~ / 2  

By substituting the functions $ (C) and $(<) (I I. 46) - (11.49) into equations 
(1.27) and separating the real and imaginary parts, we find the stress compo- 
nents a,, rQ*. - 

The values of the stress agcomputed by formula (II.8), in fractions of p 

for a/b = 5 around the contour of the square hole, are presented in Table 11.3. 

Figures 11.9-11.11 show 
the lines of equal urnax, amin, 

and T ~ ~ ~ ,  while Figure 11.12 

shows the trajectory of the 
principal stresses for the case 
a = Tr/3.  

TABLE 11.3 
- 

a=n/3 a=n/6 
=O I a=n/2 

Figures 11.13-11.15 show 
the lines of equal urnax, urnin, 

1,641 
9.070 

12.556 
5,541 
1,214 

-0.412 
- 1,889 
-2.078 

2,115 
1.641 

T r .  Note: Commas indicate decimal p o i n t s .  

7 5 

-- 2,420 
8,050 
70,030 
1,344 

4 , 6 4 4  
-0.940 
-0,644 

1,344 
8,050 
2.420 

0.033 
-0,452 
-2,519 
-2,264 
-0,278 

0,653 
1,877 
7,466 

-0.768 
-0,152 

2,692 
2,812 
1,558 
1,192 
1,558 
2,812 

5,096 -0,152 
0.033 1 -0.768 



and T and Figure 11.16 shows t h e  t r a j e c t o r i e s  of t h e  p r i n c i p a l  s t r e s s e s  f o r  
max ' 

t h e  ca se  a = ~ / 6 .  

1 I I p I I I I  

F i g u r e  11.9. 

F i g u r e  11.11. 

I I I P I I I I  

F i g u r e  11.10. 

I f t ~ l  t 

I I  PI I 

F i g u r e  11.12. 
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Figure  11.13. 
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Figure  11 .14 .  

I I P  I ,I I 
Figure  11.16. 



Figures 11.17 and 11.18 show the lines of equal a maxy 'min and 'max for /74 - 
the case a = 0. 

Figures 11.19 and 11.20 show the lines of equal amax, umin and T for 
max the case a = ~ 1 2 .  

Rectangular Hole with Ratio of Sides a/b - 3.2. We are limited here to 
four terms of expansion in the representative function w(3) (I.49), and we 
assume the function corresponding to the given ratio of the sides to be in the 
form 

4- 0.55 - 0,1255s - 0.038c6~. (11. SO) 

By substituting, as earlier, we find the functions $(<), +(<). 

(Q)) '"' = *'"' - 
For a = 0, i.e., for ax = P ,  au .zU - 0, 

The lines of equal a and a are illustrated on Figure 11.21, and the max min 
lines of equal T are shown on Figure 11-22. The trajectories of the prin- max 
cipal stresses calculated by formulas (11.22) and (11.23) with consideration 
of (11.51) are shown on Figure 11.23. 

(") = 4;' = 0, m e n  a = ?r/2, i.e., when u ~ " ' = P ~  ax 

The lines of equal umax and amin are shown on Figure 11.24, and the lines 
of equal omax are shown on Figure 11.25. Figure 11.26 shows the trajectory of 

the principal stresses, calculated with consideration of functions (11.52). 

The stresses %/p on the contour of a rectangular hole, calculated from 

fuctions (11.51) and (11.52) where 9is determined from the middle of the short 
side of the rectangle, are given in Table 11.4. 

Ye. P. Anikin [l] studied the problems of stress concentration in an 
infinite plate with a rectangular hole when a/b = 1-5.15 in the case of tension 



(compression) as a function of the ratio of the radius of rounding of the 
angle of the hole to its short side. This problem was also examined in the 
works of V. M. Gurlyanov and A. S. Kosmodamianskiy [ 2 ] ,  V. N. Kozhevnikova [I], 
S. R. Heller [I], and also S. R. Heller, Jr., S. S. Brock and R. Bart [I], 
Boyd H. Phillips, F. Asce and Ira E. Allen [I], and A. I. Sobey [I]. 

T r i a n g u l a r  Hole. We confine ourselves in the function w(c)  (1.55) to 
only two terms: 

Figure  11.17. Figure  11.18. 

The equation of the contour of the given hole is found from (11.53) by - /77 
i 9 

assuming 5 = pe for p = 1 and separating the real and imaginary parts: 



The radius of curvature of the angles of the given hole is r = 1/21 R. By 
determining this radius through height H of the triangular hole, we find 
r = 1/14 H. The contour of the hole constructed by equations (11.54) is shown 
in Figure 11-27. 

Figure 11.13. 

Figure 11.21. 

Figure 11.20. 

1 I f  1 I 
Figure 11.22. 



F igu re  1 1 . 2 3 .  

F igu re  11.25. 

F i gu re  11.24. 

I I p 1  I 1  
F igu re  11.26. 



Figure 1 1 . 2 7 .  

For this case 

Figure 1 1 . 2 8 .  

. TABLE 1 1 . 4 .  

I 

in particular, f o r  a = 0 

If, on the other hand, a = ~ / 2 ,  then 

T r .  Note: Commas 
indicate decimal 
points. 

If in the function w(5) ( 1 . 5 5 )  we use not two terms of expansion, but 
three, i.e., we use it in the form (Figure 11.28) 

0 ( C ) = = R  (11 .58)  



then the functions of the stresses for any uniaxial tension or compression, 
i.e., for any a, are 

The values of u8/p along the contour of the trianguaar hole, that 

correspond to the functions (II.56), (II.57), (11.59) for a = 0 and a = 7r/2 
are presented in Tables 11.5 and 11.6 

El 1 iptic   ole'. The function that conformally represents the interior of /79 - 
a unit circle y on the exterior of an elliptic hole with semi-axes a and b has 
the form 

We see by comparing the data 
TABLE 11.5 in Tables 11.5 and 11.6 that as 

where 

a + b  a - b  - 1 - k  R=7 ,  m=- -- b 
a + b  l + k '  k = - .  

a 

By omitting the intermediate calculations, we write in final form: 

c 1 111. 56; I (11. 591 

 he solution of this problem is given by N. I. Muskhelishvili [ 4 ] ;  see also the 
solutions of G. V. Kolosov [ I ] ,  C. E. Inglis [l] and T. Poschl [I]. 

83 

of H. Czudek [I]. This problem 

T r .  Note: Commas indicate decimal points. is also discussed in the work of 
Villagio Piero [I]. 

the radius of rounding off of the I e0 1 ( ~ t .  561 1 (11- 59) angles decreases the concentration 
- of stresses in the angles of the 

0 
10 
15 
30 
90 

115 
120 
125 
135 
180 

-1,000 
-0.037 

0,222 
0,492 
1,770 

-1,600 
0.056 
0,222- 
0,439 
1,632 

g , l e o  I 8,863 triangle increase considerably. 
8,000 
31032 

-0,772 
-1,000 

12,800 The solution of this problem for 
the factors for c2  equal to 1/4, -1,060 

--1,086 3/8, and 112 is found in the work 



The stresses for the points of the contour of the elliptic hole are found 
from (11.8) in the form 

By substituting m in (11.62) as shown above, we obtain 

Then, by substituting in (11.62) the various values of m, we find the formulas 
for stresses along the contour of any elliptic hole. In (11.62) we assume 
a = 0; then 

I - m * ~ - 2 m - 2 c o s 2 6  sins 6 + 2k sin' 6 - k'aos18 
O Q = p  1 - 2 m c o s 2 6 + m ~  = P  sinL6+kacoss6 (11.64) 

The greatest stresses on the contour of any elliptic hole, i.e., for any %will 
be, for 8 = kn/2: 

where a is the semi-axis of the ellipse lying on the Ox axis, and b, on the Oy 
axis. The small stresses on the contour of any elliptic hole, i.e., for any m, 
for a= 0, will be: 

If b = a, i.e., m = 0, the ellipse is converted to a circle, and we find 
from (11.65) the known result: a 8 =  3p. 

For an ellipse for which the ratio of the semi-axes is k = b/a = 2/3, 
according to formulas (11.22) and (11.23), the lines of equal and %in are 

shown in Figure 11.29, and the lines of equal T are shown in Figure 11.30. max 
The trajectories of the principal stresses are illustrated in Figure 11.31. 

8 4 



TABLE 11.6 For an e l l i p s e  with t h e  semi- /81 - 
a x i a l  r a t i o  k  = b/a = 3 /2 ,  t h e  
l i n e s  of  equal umax and umin a r e  

shown i n  Figure 11.32 and t h e  
l i n e s  of equal T~~~ a r e  shown i n  

Figure 11.33. The t r a j e c t o r i e s  of 
t h e  p r i n c i p a l  s t r e s s e s  a r e  shown 
i n  Figure 11.34. 

T r .  Note: Commas ind ica t e  decimal po in t s .  The s t r e s s e s  o g o n  t h e  con- 

t o u r  of  an e l l i p t i c  ho le  when 9 
i s  c a l c u l a t e d  from t h e  end of t h e  semi-axis ly ing  on t h e  Ox a x i s ,  counter  c lock-  
wise,  a r e  presented  i n  Table 11.7.  

Figure 11.29. Figure 11.30. 

The va lues  of o9 f o r  o t h e r  m (11.60) a r e  given i n  t h e  works of I .  I .  
Vorovich and A.  S. Kosmodamianskiy [ I ] ,  H. Czudek [ I ] ,  K. Hirschfeld El], 
I s i d a  [Z],  and V i l l a g i o  P ie ro  El]. 

C i rcu la r   ole'. I f  i n  (11.61) we assume m = 0 and a = 0, we ob ta in  t h e  
func t ions  of t h e  s t r e s s e s  f o r  a  p l a t e  with a  c i r c u l a r  ho le  of r ad ius  R ,  under 
t ens ion  along i t s  Ox a x i s  by fo rces rp :  

 he s o l u t i o n  of t h i s  problem i s  given i n  t he  work of G .  Kirch El]. 

85 



The stresses are found from formula (1.27) by substituting the correspon- 
ding values of the functions (11.67): 

rQe -- " 1 l 2~~ - 3 ~ ~ )  sin 26. 2 

The stresses along the contour of the hole are found from (11.62) when 
m = 0 or from (11.68) when p = 1: 

From (11.69) we see that the maximum values of a& will occur when cos 2 9= 
= -1, i.e., when 8= + ~ / 2  

The lines of equal u and urnin constructed by formulas (11.22) , (11.23), 
max ' 

and (11.68) are shown in Figure 11.35, and the lines of equal T are shown in max 
Figure 11.36. The trajectories of the principal stresses are shown in 
Figure 11.37. 

Narrow slit1. In analyzing stress concentration near a narrow slit, it is 
necessary to distinguish between cases of tension of a surface with a slit and 
compression, since the solution for tension of a surface with a slit that is 
free of external forces will be inapplicable for compression. When the edge of - /83 
the slit is under compression, contact can occur, and consequently, the boun- 
dary conditions (along the contour of the slit) in these cases will be 
different. Therefore, in the following we will examine individually the cases 
of tension and compression of a plane with a slit. 

'Investigation of stress concentration near variously oriented rectilinear and 
curvilinear slits (cracks) is discussed in Chapter VIII. 



Tension of an elastic plane with a slit. The function of stresses for an 
elastic surface with a narrow slit that is free of external forces is found 
directly from the functions (II.61), assuming that m = +1 in them. 

For a surface with a slit of length Za, distributed along the Ox axis, we 
have rn = 1, and for a slit of length 2b distributed along the Oy axis, m = -1. 

Figure I 1  - 3 1 .  

Figure 1 1 . 3 2 .  

Figure 1 1 . 3 3 .  Figure 1 1 . 3 4 .  



TABLE 1 1 . 7  The s t r e s s e s  ag a t  t h e  po in t  /84 - 
of  i n t e r s e c t i o n  o f  t h e  contour  o f  
an e l l i p t i c  ho le  (on t h e  semi- 
a x i s  b # 0) with t h e  Ox a x i s  i s  
found from formula (II.63), 
assuming t h a t  9 = 0 o r  9 = 180' 
i n  i t :  

T r .  Note: Commas ind ica t e  decimal p o i n t s .  

If t h e  s l i t  i s  d i s t r i b u t e d  along t h e  Ox a x i s ,  then  b = 0,  and from t h e  l a t t e r  
formula we know t h a t  t h e  s t r e s s e s  a* f o r  a l l  a # 0, on t h e  ends of t h e  s l i t ,  

i nc rease  i n f i n i t e l y .  In  o t h e r  words, on t h e  ends of t h e  s l i t  t h e r e  w i l l  be  
p l a s t i c  deformations o r  ( i n  t h e  case  of  b r i t t l e  d e s t r u c t i o n  of  t h e  ma te r i a l  o f  
t h e  p l a t e ) ,  c racks .  

F i g u r e  11.35. Figure 1 1 . 3 6 .  

Thus, a t  t h e  ends of  any s l i t  i n  a  p l a t e  under t ens ion  by fo rces  p t h a t  
c o n s t i t u t e  angle  a # O with the  s l i t ,  p l a s t i c  deformations1 o r ,  when p  = per, 
cracks2  begin t o  occur .  Only a  s l i t  co inc id ing  with t h e  d i r e c t i o n  of t h e  
f o r c e s  p  of t ens ion  w i l l  have no e f f e c t  on t h e  s t r e s s  s t a t e  of t h e  p l a t e .  

-- -- 

' s ee  58, Chapter V. 
'see 56, Chapter VIII. 



Compression of  an e l a s t i c  p lane  with a 

t t P 1  
s l i t 1 .  We w i l l  assume t h a t  an e l a s t i c  i s o -  
t r o p i c  p lane  t h a t  i s  weakened by a r e c t i -  
l i n e a r  s l i t  of length  2a i s  compressed a t  
i n f i n i t y  by uniformly d i s t r i b u t e d  fo rces  p 
t h a t  form angle  a with t h e  d i r e c t i o n  of t h e  
s l i t .  We w i l l  s e l e c t  t h e  axes of  t h e  Oxy 
coord ina tes  such t h a t  t h e  Ox a x i s  co inc ides  
with t h e  a x i s  of t h e  s l i t ,  and t h e  o r i g i n  of  
t h e  Oxy coord ina tes  w i l l  be placed a t  i t s  
c e n t e r .  

We w i l l  d i s t i n g u i s h  two types of  s l i t :  
t h e  "inathematical" s l i t ,  whose width i s  s o  
small  t h a t  it can be d is regarded  and assumed 
t o  be equal  t o  zero ,  and t h e  "phys ica l t f  s l i t ,  
whose width (up t o  deformation) 6 i s  commen- 
s u r a t e  with t h e  magnitude of  e l a s t i c  deforma- 
t i o n s  of t h e  ma te r i a l  of t h e  p l a t e .  

F i g u r e  1 1 . 3 7 .  We w i l l  f i r s t  examine t h e  case  of  t h e  
"mathematicaltt s l i t .  When ex te rna l  compressive f o r c e s  p a c t  upon t h e  p l a t e  a t  
angle  a # 0 ,  t h e  edges of t h e  s l i t  come i n t o  con tac t  f o r  a l l  va lues  p # 0 .  

By assuming t h e  f o r c e s  of f r i c t i o n  (which can occur  i n  t he  p o i n t s  of con- - /85 
t a c t  of t h e  edges of  t h e  s l i t )  t o  be governed by Coulomb's law, we w r i t e  t h e  
boundary condi t ions  on t h e  contour  of t h e  s l i t  ( i . e . ,  f o r  t changing i n  t h e  
range - a  < t < + a :  

a(+) (f) = (t), r!;' ( t )  = k,  05' (t) ,  T:;) (t)  = k,r$) ( t ) ,  v(+) -- v(-), 

where kS i s  t h e  c o e f f i c i e n t  of  f r i c t i o n ;  t i s  an a r b i t r a r y  po in t  on t h e  Ox a x i s  

wi th  which t h e  p o i n t s  of t h e  "upper" and "lower" edges of  t h e  "mathematical" 
s l i t  co inc ide .  

The s t r e s s e s  along t h e  s l i t  a r e  def ined  by t h e  formulas: 

t (sin 2a + k, cos 2a - k,) v72_T -- cos2 a ] .  

 he s o l u t i o n  of  t h i s  problem was found by V.  I .  Mossakovskiy and P .  A .  Zagubi- 
zhenko i n  works [l, 21,  t h e  b a s i c  r e s u l t s  of  which a r e  d iscussed  below. Ten- 
s i o n  and d e f l e c t i o n  of  p l a t e s  wi th  var ious  s l i t s  a r e  examined i n  a s e r i e s  of 
works by V. V. Panasyuk and B. L. Lozoviy; t h e  b a s i c  r e s u l t s  of t h e s e  works 
are presented  i n  54 and 7 of Chapter VIII. A r a t h e r  complete b ib l iography on 
cracks  i s  a v a i l a b l e  i n  t h e  Candidate D i s s e r t a t i o n  of  B .  L.  Lozoviy [ I ] .  



From t h e s e  formulas we s e e  t h a t  a and T along t h e  s l i t  remain cons t an t s ,  
Y x Y 

while  t h e  s t r e s s e s  a on t h e  ends of t h e  s l i t  inc rease  i n f i n i t e l y .  Here we 
X 

must expect e i t h e r  p l a s t i c  deformation o r  t h e  occurrence of c racks  due t o  t h e  
b r i t t l e  d e s t r u c t i o n  of t h e  ma te r i a l  from which t h e  p l a t e  i s  made. 

Let y = f l ( t )  and y = f 2 ( t )  be t h e  equat ions  of  t h e  "upper" and "lower" 

edges, r e s p e c t i v e l y ,  of a t fphys ica l t '  c rack .  By d e f i n i t i o n ,  t h e  width of t h i s  
s l i t  6 = f l ( t )  - f  ( t )  i n  t h e  nondeformed s t a t e  i s  commensurate with t h e  2 
e l a s t i c  deformations. Under compression, t h e  edges of a su r f ace  with such a 
s l i t  may come i n t o  con tac t  a t  some s e c t i o n  ( - T ~ ,  + T ~ ) ,  such t h a t  a f t e r  t h e  

deformation, t h e  contour  of  t h e  s l i t  w i l l  c o n s i s t  o f  t h r e e  s e c t i o n s :  two f r e e  
( a ,  - T  ) and (+-c0, + a ) ,  and one s e c t i o n  T ,  + T ~ )  of contac t  i n  t h e  middle. 

0 
The lengths  of t h e s e  s e c t i o n s  a r e  not  known beforehand and must be determined 
dur ing  t h e  s o l u t i o n  of t h e  problem. 

The boundary condi t ions  i n  t h i s  problem, a s  we w i l l  s e e  (on t h e  contour of  
t h e  s l i t )  w i l l  be:  

on t h e  average s e c t i o n  of con tac t  (-T + T ~ )  0 ' 

on t h e  segments f r e e  of f o r c e s  ( a ,  - T ~ )  and (+'r0, +a) 

The stresses along t h e  contour  of t h e  s l i t  i n  t h i s  case  a r e  def ined  by t h e  
formulas 

V ~ J  v2 - 12 
0(+) = - - psin2a, z ( + ) = - k p  sin2 a,  

u v a ~  ttP xu vgZ_Tz 

t I .rX--t' 
(sin 2a + ks cos 2a - k,) --- - - sin? a - cos 2a , 

I/ a2- t z  l/az - 1 2  I 
while t h e  length  of  t h e  s e c t i o n  of con tac t  is def ined  by t h e  formula 



where A = r /a; k = m, while K and E are complete elliptical integrals 
0 

of the first and second kind, respectively. 

If h = O(ro = 0), then E(n/2, 1) = 1, while h2~(r/2, 1) = 0. Hence the 

"upper" and "lower" edges of the llphysicalll slit come into contact under the 
condition 

For the "mathematical" slit 13 = 0, and from the above inequality we see that 
its edges come into contact for any value p # 0, which was assumed for the 
solution of the problem for this slit. 

Semi  c i  r c u l a r  Hole. The function that conformally represents the interior 
of unit circle y on the exterior of an infinite elastic plane with a hole close 
to a semicircle is found from the function 

for n = 5, al = -0.31250; a2= -0.15625; a3 = -0.05078; a4 = 0.00195; as = 

= 0.015113; R is a constant that affects the dimensions of the hole and its 
position relative to the axes of the Oxy coordinates. 

By assuming in (11.70) that 5 = peid for p = 1, we find the equation for 
the contour of the hole 

-i 0.00 193 cos 46 + 0.0 15 13 cos 5-81; 

g - R [ 1,31250 sin 6 - 0,15625 sin 26 f 0,05378 sin 34 - 
- 0.00 193 sin 46 - 0,015 13 sin 561. 

The stresses along the contour of the hole in a plate under tension along 
the Gx axis (a = 0) are defined by the formula 

as = (0,16532 - 0.92 14 1 cos 6 - 1,75649 cos 2 6  f 
L (0) (11.72) 

f 0,03923 cos 3 6  4 0.07549 sos 46), 
-- - - - - - 

 h he solution for holes in the shape of a semicircle and arch is given by Ye. F. 
Burmistrov [I-31. 



and under tension along the Oy axis (a = n/2), by the formula 

06 = - (l.38129 + 0.32298 cos 6 + 1,86243 cos 2 6  + 
L (0 )  

4- 0.02376 cos 3-4 - 0.03928 cos 46), 

where 

L (6) = 1,2243 f 0.28930 cos 6 + 0.69230 cos 26 + 0,57280 cos 3 6  + 
+ 0,25710 cos 46 - 0,1560 cos 5 6  - 0.!524 cos 60. (11.74) 

The concentration factors of stresses k = a d p ,  found by formulas (11.72) 

and (II.73), are presented in Table 11.8. 

F i g u r e  11.38. F i g u r e  11.39. 

The distribution of stresses ag along the contour of the given hole is 

illustrated in Figures 11.38 and 11.39. From these graphs we see that the 
greatest concentration of stresses c+, will occur under tension along the Ox 
axis. 

The case where the edge of the semicircle is subjected to uniform compres- 
sion is examined in the works of G. S. Grushko [ I ] ,  and the case of tension of 
a semi-infinite plate with a semicircular notch is discussed in the works of 
S. F. Yeung [ I ]  and L. H .  Mitchell [ l ] .  



Arch-Shaped Hole. The contour  of t h e  ho le  i s  given by t h e  equat ions1  

x =  R[l.I4153cos6+ 0.06795~0~26-0,10130cos36+ 

+ 0.03873 cos 44 + 0.00194 co;58]; 

y = R [0,85847 sin 6 - 0.06795 sin 2 6  + 0.10 130 sin 3.9 - (11.75) - /88 

- 0,03873 sin 44 - 400194 sin 561. 

S t r e s s e s  along t h e  contour of t h e  ho le  f r e e  of  ex t e rna l  f o r c e s ,  under 
t ens ion  along t h e  Ox a x i s  ( a  = 0) a r e  

[ 1.1 1878 + 0,40289 cos 6 - 2.4 1694 cos 26 + =e = T@j- 

+ 0,11960 cos 36 + 0.01519 cos 461, (11.76) 

and under t ens ion  along t h e  Oy a x i s  ( a  = 7r/2), 

U O =  - 10.57096 - 0.08668 cos fi 4- 1,66426 cos 28 - 
L ( 6 )  

- 0,16,301 cos 36 - 0,02026 cos 461, (11.77) 

where 

L (6) - 1,1549 - 0,1353 cos 6 - 0.3329 cos 26 - 0,2253 cos 36 + 
+ 0.6 105 cos 46 - 0,3098 cos 56 - 0.0 194 cos 66. ( I  I .  78) 

The va lues  of  ag;/p along t h e  contour  of t h e  given hole  a r e  presented  i n  
Table 11.9. 

The d i s t r i b u t i o n  of s t r e s s e s  a g c a l c u l a t e d  by formulas (11.76) and (11.77) 

i s  i l l u s t r a t e d  i n  Figures  11.40 and 11.41. We s e e  from t h e s e  graphs t h a t  t h e  

h ighes t  va lues  of c r a w i l l  occur when t h e  p l a t e  is under t ens ion  along t h e  Oy 

a x i s  (Figure 11.41) . 

Inves t iga t ion  of s t r e s s  concent ra t ion  near  an arch-shaped ho le  i s  a l s o  /89 - 
discussed  i n  t h e  works of  I .  S. Khara [I ,  21, who r e t a i n e d  t e n  terms i n  func- 
t i o n  (11.70).  

- 

'This corresponds t o  s i x  terms i n  func t ion  (11.70) f o r  a = 0.14153, a = 
1 2 

= 0.06795, a J  = -0.10130, a4 = 0.03873, a5 = 0.00194. 



Figure 11.40. 

F i g u r e  11-.42. 

Figure 1 1 . 4 1 .  

F i g u r e  I1 - 4 3 .  

F i g u r e  1 1 . 4 4 .  F i g u r e  1 1 . 4 5 .  



TABLE 11.8 The values of a /p along the 
6 

contour of the given hole under 
tension along the Ox (a = 0) and 
Oy (a = ~ / 2 )  axes, found by for- 
mulas (11.76) and (II.77), 
respectively, are given in Figures 
11.42-11.44. The stress-strain 
diagram of stress a* along the 

contour of hole (11.75) under bi- 
axial tension at infinity is 
shown in Figure 11.44: 

T r .  Note: Commas indicate decimal points. 

Trapezoidal   ole'. In the 
function (11.70) that represents the interior of a trapezoidal hole on the 
exterior of the unit circle, I. S. Khara [l] used six terms, i.e., he assumed 
n = 5 in (11.70) for the corresponding values of the factors a.(i = 1, 2, ..., 

1 
5). 

The stress-strain diagrams of the concentration factors k = aq/p along the 

contour of this hole are illustrated in Figures 11.45-11.47, both under uni- - 
(m) = p, a (-1 - axial (ax = 0; = 0, a$) = p, T(~' = 0). and under 

Y 
- 0, Txy 

(a) 
XY 

biaxial (ox = p, o(-) = 0 . 2 5 ~ ~  r (-) = 0) stress. 
Y XY 

In the work of A. A. Boyma [I], the function w(<) (11.70) was used in the 
form2 

Figures 11.48-11.50 represent the stress-strain diagrams of a8/p and %/p, - /91 

both for a free (curves I1 for a /p) and fortified (by an absolutely rigid ring) 
9 

(curves I for a /p) holes defined by functions (11.79) for p = 1, in the case 
0 

of plane deformation when Poisson's ratio is v = 0.2. Figure 11.48 shows the 
case of tension of aaplate (at infinity) along the Ox axis by forces p, and 
Figure 11.49, for tension along the Oy axis by forces 0.25~. Figure 11.50 

- 

'The solution of this problem is found in the works of A. A. B o p  [I], I. S. 
Khara [I], V. M. Gurtyanov and A. S. Kosmodamianskiy El]. 

2 ~ h e  origin of the coordinate system is placed at the center of gravity of the 
given hole. 



shows the case of biaxial stress by forces o(m) = p, o(m) = 0.25~ and r(m) . 0. 
X Y x Y 

TABLE 11.9 

F i g u r e  11.46. 

Tr. Note: Commas indicate decimal points. 

F i g u r e  11 .47 .  

A hole close in shape to an equilateral trapezoid is analyzed in the work 
of V. M. Gur'yanov and A.  S. Kosmodamianskiy [I]. In this work the effect of 
rounding off of the corners of the hole is examined in the general case for 
holes given by the functions (11.70). 

The curvature of contour of a curvilinear hole given by the function w(<) 
for p = 1 at any of its points is 



This curvature can be represented in the form 

and in the following will be called the adduced curvature. 

The values of o'/p in the angular points of the trapezoidal contour of 
the hole with the least radius of rounding as a function of the adduced curva- /92 - 
ture R of form I, I1 or I11 of the basic stress state, are presented in 
Table 11.10. 

Figure 11. 48. Figure 11.49. 

T r .  Note: 'commas 'indicat'e decimal 
points 

Figure 11.50. Figure 11.51.  



Figure .I1 . 1 1 .  The values of a /p at the acute angles 
8 

of the trapezoidal contour with an adduced 
curvature equal to 60, as a function of the 
parameter8 and form of load, I, 11, or 111, 
are presented in Table 11.11. 

The following definitions are used in 
Tables 11.10 and 11.11: I, universal tension 
by forces p; 11, uniaxial tension by forces 
p along the axis of symmetry of the hole, 
i.e., along the Ox axis (Figure 11.48); 111, 
uniaxial tension by forces p transverse to 
the axis of symmetry of the hole, i.e., along 
the Oy axis. 

Tr. Note: Commas indicate The graph of the dependence of og/p on R 
decimal  points. for the given hole is shown in Figure 11.51 

(the definitions are the same as those used 
in Tables 11.10 and 11.11). 

Other Forms o f  Holes. We cite some brief reports concerning certain works 
on stress concentration near holes of other shapes. 

The concentration of stresses in disks with holes of special shape was 
examined by D. V. Vaynberg and A .  A.  Sinyavskiy [I]; with a star-shaped hole, 
by B. A .  Obodovskiy [I] ; with an oval hole, by E. Ye. Khachiyan [I], Ye. F. 
Burmistrov [2]; with a lemniscate hole, by A .  M. Sen-Gupta [I], W. Showdon [I], 
with a cross-shaped hole, by H. C. Hahn [I], and with a hypotrochoidal hole, 
by Villagio Piero [I]; near a hole with a serrated contour, b I. V. Baklashov Y [I], and in the shape of a rhombus, by A. S. Avetisyan [ l ,  21 . 

Concluding Comments. On the basis of the tables and figures presented - /93 
herein, several features of the law of distribution of stresses near holes in 
the uniaxial stress state can be established. 

It is necessary first of all to note the heavy concentration of stresses 
near the edge of a hole in the vicinity of the points where the tangent to the 
contour is parallel to the direction of the forces of tension. 

For circular hole (II.69), the greatest concentration factor is equal to 
three and relates to points lying on the ends of the diameter that is perpen- 
dicular to the forces of tension. For the ellipse under tension (or compres- 
sion), parallel to one of the axes of symmetry of the ellipse, the concentration 
factor of stresses is determined by formula (11.65). 

'see also the review of G. Neyber and G. Khan [l] of theoretical and experi- 
mental research on stress concentration near holes in linear and nonlinear 
statements, published in foreign press. 



For holes with the shape of a rectangle, square, semicircle, trapezoid, 
or equilateral triangle, the greatest stress concentration occurs at the 
aneles, and the concentration factor k depends both on the radius of rounding 
of the corners, and, particularly, on the position of the hole in relation to 
the direction of the forces of tension. 

I I 
In the appendix to Table 11.10, below, - /94 

I P 1 are given the values of the concentration 
factors of stresses k '  for rectangular holes 
with different side ratios, corresponding to 
the middle of the sides parallel to the forces 

I 

I 1 ' 1  
of tension, as well as of the concentration 

I factors of stresses k" in the corners' of 
these holes under tension parallel to one of 
the axes of symmetry of the rectangle (a = 0 

Figure 1 1 . 5 2 .  or a = n /2 ) :  

alb 1:5 1:3 1:l 3:l 5: 1 

Figure 11.53. 

The coefficients of stress concentration 
k in the corners of the square are given 
below for various ratios of the radius of 
rounding r of these corners to the length of 
the side of the square under tension parallel 
to one of the sides: 

The law of change of stresses a and 
max 

'm in near a rectangular hole along the axis 

perpentlicular to the forces of tension is 
illustrated in Figure 11.52. Along the edge 
of the contour, where the tangent to the con- 
tour is perpendicular to the forces, or forms 

'since the holes examined above have rounded corners, the stress og in the 

angular point of the contour can be less than at the points of the contour lo- 
cated in the immediate vicinity.of the corner (see, for instance, the first 
column of Table 11.1, where (a 9) = 3 . 8 6 ~ ~  and (og) = 3 . 0 0 ~ .  

9=50° 6=4s0 



with it an angle close to 90°, stresses a change signs. The region that is 
min 

encompassed by the stresses of the opposite is saddle-shaped, as indicated in 
Figures 11.3, 11.10, 11.14, 11.17, 11.19, 11.21, 11.24, 11.29, 11.32, and 
11.35, by the shaded areas. The law of change of stresses omax and amin near 
a rectangular hole along the axis parallel to the forces of tension is illus- 
trated in Figure 11.53. 

$ 3 .  Biaxial Homogeneous Stress State - /95 

Biaxial Tension or Compression. We will write the function of stresses in 
the form 

where hl, h are dimensionless parameters, and o is the yield point of the 2 T 
material under simple tension. To this function corresponds the basic stress 
state 

When h # 0 and h2 # 0, we have the homogeneous biaxial stress state. By 1 
knowing1 h1 and h2, we can find all possible cases of the homogeneous stress 
state. 

0 0 The functions 4 ( 2 )  and $J ( 2 )  (II.2), corresponding to the function (11.82) 
will have the form 

The given contour conditions (11.7) for f = f = 0, i.e., for the case 
1 2 

where the contour of the hole is free of external forces, will have the form 

 h he values A1 and h2 must be such that the material in the zone of stress con- 
centration remains in the elastic state. 



Proceeding in the same manner as was described in detail in the preceding 
sections for the various hole shapes, we easily find the functions $I(<) and 
( )  For instance, for a plate with a circular hole, 

By functions (11.85) we determine from (1.27) the stress components: 

=- 
6 

'"I + o, ( 1  + p2) + l o ,  ( 1  + 3p4) cos 28, 2 
(11.86) 

= - ha, (1  + L"e2 - 3e4) sin 26, 

where 

However, from the point of view of simplicity 'of calculations, it is much more 
convenient to find directly the individual solutions for uniaxial stress states, 
and then, by using the corres onding solutions, to find the solutions for the 1: desired biaxial stress states . Figures 11.54-11.57 show the results of such 
superposing of two solutions for uniaxial stress states obtained above, namely 

and 

(~("1 = 0, LL p,  $Xy) = 0, 

for an elliptic hole for which the ratio of the semiaxes is a/b = 3/2 and for 

'several such problems for p = q/4,  for elliptic and rectangular holes (in par- 
ticular, narrow, long slit), and for square holes, were analyzed in detail in 
the joint work of A .  N. Dinnik, A .  B. Morgayevskiy and G. N. Savin [ I ] .  



a rectangular hole, for which the ratio of the sides is a/b = 3/2. The com- 
pressive stresses are represented in these figures by the shaded areas. 

Pure Displacement. In the case where the basic stress state is pure dis- 
placement, the solution can be found by two methods: 1) by assuming in (11.82) 
h l  = - A  and 2) by taking directly the function of stresses in the form 2 

uo ( x ,  y) = - T'xy. 
(11.87) 

It is easier to use fuuction (11.87) and to obtain for it the functions 
@(<) and $(<), since this function is much simpler than (11.82). 

0 0 Functions @ (z) and $ (z) , corresponding to function (II.87), as is 
readily seen, have the form 

and the given contour conditions (11.7) are 

- f l +  if02 = iro (0). 

f: - ifi = - iro (a). 

The functions @(<), $(<I for the region with one hole under simple displacement - /97 
consequently, will be 

T (0 = 'Po (GI, 

$ (6) = 9 0  (6) + irw (5 ) .  

For a region with a square hole', we will use the representative function 
in the form (11.24). However, the functions @ (5) and qO (5) are found from 

0 
equations (11.6) and from the adduced contour conditions (11.89). Finally: 

"he problem of pure displacement of a finite square plate with a central cir- 
cular hole was solved by C. K. Wang [I]. 



The stresses along the contour of the hole are found from (11.8): 

The values of stresses qg in 

fractions of T, calculated by 
TABLE 11.12 formula (II.92), are presented in 

Table 11.12. 
6' I "Ul r  I U0 1 %Ir 1) U" ( ad% 

I I; I 11 I Stress concentration with 

T r .  Note: Commas indicate decimal points. hole) for various values of a/b 
were examined by Ye. P. Anikin 
[l]. In this work are found the 

functions of stresses and the representative functions as functions of 
parameters a/b and r/b. 

0 
20 
30 
40 
45 
50 

The stresses along the contour of the hole are found from formulas (11.8). 
The values thus found for k = T /T at the most stressed points of the con- max max 
tour of the hole, depending on parameters a/b and r/b, are presented in Table /I00 
11.13~. 

- 

TABLE 11.13 

1,084 
2,771 

- - 

'~rorn the data of this table it is easy to construct a system of curves 
k (r/b) and kmax(a/b) for the given values a/b = 1.0; 1.4; ... 5.0 and 
max 
r/b = 0.03; ... 0.50, and, on the basis of these smooth curves, to find 
(approximately) kmax for all values of a/b and r/b within the ranges 

2,771 
O9407 
0,000 

-0,407 
-1,034 
-7,618 

7,618 1 
9,600 
7.618 1 

(0.03 < r/b G0.50) and (1.0 <a/b <5.0). 

100 
110 
130 

135 
140 
150 
160 
170 
180 

-9,600 simple displacement in an infinite 
-79618 plate with a rectangular hole with 
-2,771 
-1,084 sides a and b, depending on the 
-0,407 value r/b (r is the radius of 
0*000 rounding off of the corner of the 



Figure 11.54. 

Figure I 1  -55 .  



Figure 11.56.  



The stress concentration in an infinite plane, weakened by a rhombic hole, 
was examined by A. S. Avetisyan [3],  and by A. Sen-Gupta [I], in the case of a 
lemniscate hole. The effect of crescent shaped holes on the stresses under 
pure displacement was investigated by N. A .  Savruk [ 6 ] .  The stress concentra- 
tion near a rectangular hole under pure displacement and under tension was 
examined by I. M. Budnyatskiy [I] and V. N. Kozhevnikova [2]. 

54. Pure ~eflection' 

Stresses under pure deflection of a rod (beam) are defined by the formulas 

where M is the deflecting moment; J is the moment of inertia of the cross sec- 
tion of the beam. The direction of the axes of the coordinates and the effect 
of the deflecting moment M are illustrated in Figure 11.58. 

The Ox axis coincides with the neutral /lo1 
axis of the beam2. The stress function is 

h 1 
U,,(X, Y) =; - =dm (11.94) 

0 We will determine the functions c$ (z) 
Figure 11.58. 0 and $ (2). From (11.9) and (II.10), we know 

M that P(x, y) = -- M 
45 Y' From (11.11) , we see that Q(x, y) = x. Hence 

M M cp"' (2) = i -Q (x  + iy) = i - z;  
4 J 

consequently, when C1 = C2 = 0, 

'The solutions presented in 54 and 5 of this chapter were presented by G. N. 
Savin in [Z] . 
*1f the center of the hole does not lie on the neutral line of the beam, but is 
displaced from it by a distance d, the problem of the distribution of stresses 
near holes reduces to the solution of the following types of problems: a) rod 
under tension in direction of neutral line by forces p = -Md/J and b) rod 
under pure deflection, with a hole whose center lies on the neutral line (for 
instance, see 51, Chapter 111). 



0 The function $ (z) is found from (11.13). By omitting the intermediate calcu- 
lations, we write, finally: 

Now let a hole of some shape be made in a rod (beam). The center of this 
hole coincides with the origin of the coordinate system (see Figure 11.58). 
The dimensions of this hole are small in comparison with the height 2h of the 
beam, and the contour of the hole is free of external stresses. The functions 
of complex variable (11.1) have the form 

M 
91 (2) = cp* (2) + iG z2* 

Converting to the transformed zone, or, in other words, to the variable 5 ,  
depending on the shape of the hole, from formulas (I. 39)) (I .49) or (I. 54), we 
have 

The given contour conditions (11.7) (considering that the contour of the /lo2 - 
hole is free of external forces) for the given case of deflection of the beam 
will have the form 

E l l i p t i c   ole'. By taking the function that conformally represents the 
interior of the unit circle y on the exterior of the ellipse in the form (11.60) 
we obtain 

 o he solution of this problem is given by N. I. Muskhelishvili [4] and A .  S. 
Lokshin [I]. 
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The stresses along the contour of the elliptic hole are found from the 
equation (11.8) by substitution of the corresponding derivatives of the func- 
tions $(<) (11.100) and w(<) (II.60).into it: 

By substituting into (11.101) the various values of m and R, we find the 
formula for stresses u along the contour of any elliptic hole. For instance, 

9 
for an elliptic hole of any size with the ratio of the axes k = 1/3, i.e., for 
m = 1/2, we have 

We find the greatest value of ugon the contour of any elliptic hole from 

(11.101) for 9 = ~ / 2 :  

If b = 0 and a # 0, i.e., in the case of a slit on the Ox axis of length 
Za, u = 0. This signifies that the slit of length 2a, located parallel to the 

9 
central line of the beam, does not cause concentration of stresses in the rod 
(beam) under examination. 

If b # 0 and a = 0, i.e., in the case of a slit located on the Oy axis of 
length 2b, cr9will be infinitely great, i.e., zones of plastic deformation of 

the material or cracks will occur. 

Round   ole'. If we assume m = 0 in (11.100) we find the stress functions 1103 - 
for a circular hole 

'pure deflection of a beam, weakened by a hole in the form of a symmetrical cir- 
cular lune, is discussed by G. N. Savin and M. A.  Savruk [l, 21.  From these 
solutions, the solution of the given problem follows as a partial case. 



We find the formula for stresses along the contour of a circular hole from 
(11.101) for m = 0: 

a* = [sin 8 - sin 361. J 

Square Hole I. We take the function w(c) in the same form (11.24) as in 
the case of tension1. The location of the hole relative to the coordinate 
axes is shown in Figure 11.2; the Ox axis coincides with the central line of 
the beam. The final form of the functions for the given hole are: 

The formula for stresses along the contour of square hole I is found from 
(11.8) : 

Square Hole 1 1 .  Rotated relative to the position of the preceding hole 
by angle ~ / 4 .  By taking the representative function in the form 

we find the functions for a plane with square hole 11: 

'~eflection of a beam with square and triangular holes of somewhat different 
forms is examined by M. I. Neyman [I]. 



The formula of stresses for the points of the contour of the given hole is /lo4 - 
found from (I I. 8) : 

MR sin 6 - 6 sin 3 6  + sin 5 6  ,ye := 2 - . 
J 15 - 12 cos 4f) 

Triangular Hole. By taking the representative function w(<) in the same 
form (11 .53 )  as in the case of tension (see Figure I I . 2 7 ) ,  we find 

MR* 1 2 r (6) = i [F - 6' + r 3 ]  ]. 

The stress along the contour of a triangular hole is 

MR sin 8 - 3 sin 36 + sin 46 ab =- 3- .  . 
J 13 - 12 cos 36 ' 

Rectangular   ole' w i t h  Ratio of Sides a/b " 3.2. We will take the 
representative function w ( ~ )  in the form (11.50): 

The final form of the functions is 

The stresses along the contour of the hole are 

MR 1228 sin O - 490 sin 3 6  - 112 sin 5 6 -  48 sin 76 (11.114) o, ,=- .  
J 1825--1580cos26+720cos46+480cos66 ' 

  he problem of the distribution of stresses near a rectangular hole in an infin- 
ite plate under deflection is also examined in the work of V. N. Kozhevnikova 

[ 2 ,  31. 



Cbncluding Comments. We w i l l  compare t h e  e f f e c t  of va r ious  ho le s  on t h e  
p a t t e f n  of  t h e  s t r e s s  s t a t e  i n  t h e  beam under pure d e f l e c t i o n  with t h e  a i d  of  
formu1'~s (11.102), (11.105) , (11.107), (11. l o g ) ,  (11.111) and (11.114). 

A l l  formulas f o r  s t r e s s e s  08 inc lude  a s  a f a c t o r  t h e  va lue  M R / J ,  where 

t h e  cons tan t  R c h a r a c t e r i z e s  t h e  s i z e  of t h e  hole .  In  o rde r  t o  o b t a i n  t h e  
c o r r e c t  r ep re sen ta t ion  of t h e  e f f e c t  of  a given ho le  on t h e  s t r e s s  d i s t r i b u t i o n  
near  t h e  ho le s ,  it i s  necessary t o  make t h i s  comparison f o r  ho le s  of i d e n t i c a l  / l o5  
s i z e s ,  i . e . ,  when t h e i r  dimensions c o n s t i t u t e  a c e r t a i n  p a r t  o f  t h e  he ight  of  
t h e  beam. 

The va lues  of  s t r e s s e s  ag i n  f r a c t i o n s  of  M R / J  along t h e  lower p a r t  o f  t h e  

contour  of t h e  examined ho le s  (see Figure 11.8) a r e  presented  i n  Table 11.14. 
In o rde r  t o  f i n d ,  f o r  i n s t ance ,  t h e  s t r e s s e s  f o r  an e l l i p t i c  ho le  with semi- 
axes a = 6 cm and b = 2 cm, we f i n d  f i r s t ,  from ( I I . 6 0 ) ,  t h a t  R = 4. By 
mul t ip ly ing  a l l  va lues  from t h e  t h i r d  column of  Table 11.14 by 4M/J, we f i n d  
t h e  va lues  of s t r e s s e s  00 along t h e  contour of t h e  given ho le .  

TABLE 1 1 . 1 4  
- - 

I Shape of Hole 

T r .  Note: Commas Indica te  decimal po in t s .  

For t h e  case  of  d e f l e c t i o n  of  a beam by a cons tan t  shea r  fo rce ,  t h e  s t r e s s  
concent ra t ion  nea r  t h e  same ho le s  as i n  t h e  case  o f  pure d e f l e c t i o n ,  is 
d iscussed  i n  55, Chapter I1 of G. N .  S a v i n t s  monograph [13]. Here, however, i n  
56, Chapter 11, only t h e  problem of  s t r e s s e s  near  a c i r c u l a r  ho le  f o r  rods 
(beams) under more complex forms of  d e f l e c t i o n  i s  d iscussed .  I t  should be 
mentioned t h a t  s i n c e  t h e  pub l i ca t ion  of  G .  N .  Sav in ' s  monograph [13], many 
works have appeared on t h e  sub jec t  of  d e f l e c t i o n  of  a beam (with va r ious  types 
of  ho le s )  by a cons tan t  shea r  fo rce .  We w i l l  mention a few of  them. Thus, 
S. R. He l l e r  [ I ] ,  S. R .  He l l e r ,  J r . ,  I .  S. Brock- R .  Bart  [2],  i n v e s t i g a t e d  
s t r e s s  d i s t r i b u t i o n  nea r  square,  r ec t angu la r ,  and oval  ho le s  i n  a c a n t i l e v e r  



under deflection. G. N. Savin and M. A.  Savruk [2, 31 analyzed the problem 
of stress distribution near a hole in the form of a symmetrical circular lune 
in a cantilever beam (rod). A. M. Averin and Ye. F. Burmistrov [l] investi- 
gated the problem of stress distribution in beams with a common form of hole. 

55. Determination of Effect of Forces of Gravity on Stress Distribution i n  an /lo6 - 
Elastic Plane with a Hole 

In discussing the pattern of the stress state around holes, we did not 
take into account the volumetric forces of gravity. However, in practice it is 
often forbidden to disregard the effect of gravity, particularly when gravity 
is not an insignificant force in comparison with the actual surface forces, and 
particularly in those cases where gravity is the sole factor governing the 
stress state, and consequently, the concentration of stresses around holes (as, 
for instance, in the concentration of stresses around underground mine shafts, 
etc) . 

We will assume that the stress components 

are related to a polar system (r, 8) and define the stress state of an 
infinitely heavy elastic isotropic plane that is not weakened by a hole. As 
we know, these stress components (11.115) should satisfy the basic equations 
of equilibrium 

and the equation of compatibility 

In (11.116) y = pg, where g is acceleration of gravity and p = const is 
density. Obviously, due to the linearity of equations (11.116) and (II.117), 
their general solution, i .e., the stress components ( u ~ ] ~  and ( T ~ ~ ) ~  
(II.115), can be represented in the form 



where the stress components 

are the partial solution of equation system (11.117) and (II.116), while the 
components 

are found from the solution of the homogeneous system of differential equations - /I07 
of equilibrium (11.116) for y = 0 and equations of compatibility (11.117) of 
the plane problem of elasticity theory. 

Circular Hole. If the heavy elastic plane under examination is weakened 
by a circular hole of radius R, with the center at the origin of the 
coordinate system, some zone of concentration of stresses, caused by the basic 
stress state (II.118), occurs near the hole. 

We will denote the stress components in the plane with the circular hole 
through 

where the first components of the right hand side correspond to the basic 
stress state (II.119), and the second, to the stress state (11.120). We will 
take the partial solution (11.119) of the basic equations (11.116) and (11.117) 
in the form 

0; G y (3 sin 8 - sin 36), 

$2 
4 

(sin 6 + sin 36). 

Direct checking shows that the components of stresses a;, a; and in the 

plane with the circular hole, caused by the stress state (I1.122), will have 
the form 



The unknown factors a l ,  a  B , f3 , w in (11.123) are found from the 
3 ' 3 5  1 

boundary conditions 

a0=Oandz' r o for rr; .R 

and from the condition of identity of displacements1 

where v is Poisson's ratio. 

After substitution of expressions (11.123) into conditions (11.124) and /I08 
(II.125), we obtain the equation system from which we find 

We now represent the stress components (11.123) in their final form: 

3 r 3 - 2 v  R 
o;== y ~ ( [ ~ . ~ -  4(1  - V] -7 + 4  (1 v  - 1 7 1  R' -1 ra sine + 

1 r 
-- + [ - T . K +  T T - -  "a rjsin38). 

1 r 1-2v  R -- v - ] s i n ~ ~ +  R' 
" ; ' ~ R ( I T . T + ~ ( ~ - - ~ )  ~ ( I - I * )  ,a 

1 r 1-2v R 
. -A  

v  Rs 
' : O Z ~ R { [ T ' ~  - 4 ( l - V )  r 4 ( 1 - Y )  

   or example see P. F. Papkovich [ I ] ,  p. 486. 

114 



Accordingly, we obtain the expressions for the components of displacement, 
which we write out with an accuracy up to a rigid displacement of the plane as 
a whole: 

3 - i v  r2 3-4v  
2 R V - v  lnr - 

1 4 - 4 v  r2 3 - 4 v  
2 R- 1 - v  Inr - 

1 -- v .-]case R~ + 
1 -v  4- 2 ( 1 - v )  r 2  

1 r2 1 - 4 v R 2  +- --.---. --- : [  2 R2 2 r z  
;,'I cos 34 ) . 

Formulas (11.127) and (11.128) are derived for the case of plane deforma- 
tion. In the case of the generalized plane stress state, these formulas will 
give the mean components of stresses and displacements through the thickness of /lo9 - 
the plate if we substitute in them the constant v by the value v* = v/l + v. 

Combining now the stresses (11.127) and stresses og*, a *  and r;:, we 

obtain the desired total stresses (11.121) in the heavy plane with a circular 
hole under a given external load1. 

Semici r c u l a r    ole^. In a heavy half plane, at distance H from the surface, 
a hole is cut in the shape of a semicircle, the contour of which is described 
by equation (11.71). The stresses along the contour of the given hole are 

Q =-- v yH [ 1.44405 - 085986 cos 4 - 1.40164 cos 28 + 
L (*) 

+ 0.0 1850 cos 36  -1- 0.06799 cos 461. (11.129) 

Here y is the density of the medium; H is the depth (from boundary of the half 
plane) of the center of the hole, and the function L ( 9 )  is defined by formula 
(11.74). 

'see A. N. Dinnik, A. B. Morgayevskiy and G. N. Savin [I], where the problem 
of stress around a circular hole in a heavy half plane is examined; see also 
the works of P. A. Zhuravlev and A. F. Zakharevich [l] and S. A. Orlov [I]. 

2 ~ h e  solution of problems for holes in the shape of a semicircle and arch is 
given by Ye. F. Burmistrov [3]. 



The values of stresses ag (in fractions of yH), calculated by.formula 

(II.129), are presented in Table 11.15. 

Figure 11.59 shows the graph of distribution of stresses ag along the 

contour of the hole for the material (concrete) with Poisson's coefficient 
v = 0.16 and y = 2.4*9.81-10~ n/m3. 

TABLE 11.15 TABLE 11.16 

Tr. Note: Commas indicate decimal points,  

Figure 11.60. 

Figure 11.59. 



Arch-Shaped Hole. The contour of the hole is given by formulas (11.75). /110 
The stresses along the contour of the hole are 

4 = -*[1.22758 + 0.35174 cosB - 1.98149~0~26 +. 
L 

+ 0,08837 cos 319 + 0.0 1 133 cos 461, 

where the function L ( 8 )  is defined by formula (11.78). 

The values of oO/yH, found by formula (11,130) are presented in Table 

11.16. The graph of distribution of stresses o0 along the contour of the hole 

for a half plane made of concrete, with Poisson's coefficient v = 0.16 and 
y = 2.4*9.81*103 n/m3, is illustrated in Figure 11.60. 

A. G. Ugodchikov and A .  Ya. Krylov [l] studied the problem of the concen- 
tration of stresses around spectator galleries, both for the given form of 
hole, and for the basic stress state: 

The stress state caused by gravity near the hole (Figure 11.61) in a dam, the 
outer contour of which is shaped like parabola 5 = cv2, is analyzed in this 
work. In Figure 11.61, the parameter c = 0.055 and its numerical value are 
selected such that its best approximation to actual profiles of dams can be 
selected. The hole is shaped like an arch with the following dimensions: 
a = 2.5 m, h = 3.0 m, R1 = 1.25 m, E0 = 7.5 m. 

The function representing the interior of the unit circle on the exterior 
of a curve very close in contour to the given hole has the form 

z = o (5)  = 1,50835 , - 0.266786 + 0*0769579[ + [ : 

The problem is solved approximately by /I11 
the method of series approximations. The solu- 
tion for an infinite (heavy) plate under the 
basic stress state (11.131) is used as the 
zero approximation. This solution does not 

o \ satisfy the conditions on the contour L (see 
1 

1;. . ', Figure 11.61). According to those found from 

i f  
- (II.131), on L (-X ) and (-Y ) are located the 

1 n n 
corresponding complex Kolosov-Muskhelishvili 

F igure  11.61. 



potentials $ (1) and $l(z), which give the first corrections to the solution 1 
of (11.131). From these functions (bl(z) and (z) are found the corresponding 

components of stresses 01, U" and T" 
Y XY ' 

The solution in the first approximation is found in the form 

However, the solution of (II.132a) will not satisfy the conditions on the outer 
contour L (see Figure 11.61). By eliminating the conditions on L, given by the 
solution of (II.l32a), we find the solution of the problem in the second 
approximation, etc. If the hole is small and located sufficiently far from the 
outer contour L, then the first approximation yields quite satisfactory agree- 
ment. 

The results of calculations (for y = 2.4*9.81@10~ n/m3, v = 1/6) for a 
(1) (I) = ah + o# and oP = u; + 0; concrete dam in the first approximation for ag 

on contour L1 and through cross section 19 = 0 are presented in Tables 11.17 

and 11.18, and in the form of stress-strain diagrams in Figure 11.62, where 
the stress-strain diagrams for a; and of of the basic stress state (11.131) are 

indicated in the cross section 8 = 0 by the shaded area. 

T r .  Note: Commas indicate decimal points. 

TABLE 11.17 TABLE 11.18 

The stress concentration in a heavy half plane near an arch-shaped hole, 
both free and fortified by an absolutely rigid ring, is analyzed in the works 
of A. A. Boyma [2, 31 and I. S. Khara [2]. 

Other Types of Holes. The problem of stress distribution in a heavy half 
plane near a free trapezoidal hole and near one that is fortified by an abso- 
lutely rigid ring is discussed by I. S. Khara [Z]. The same problem, but with - /112 
a somewhat different representative function, was investigated by K. V. Ruppen- 
eyt and Ts. Gomes [I]. The case of an elliptic hole is examined in the work of 

- 
J a , I . o , ~ /  e0 

II 

2 2 o, 19.a1 lo*, nlm up /9.81, IP. n/m ue/9.s~.~oS n/m 2 

-- I I 

? 1 -12.49 
IS -13.26 

-16,96 2 1 -23.89 
'3) - - -24,90 
I d  -19,13 
-?I 1 -16.12 

I 

-19,Ol 1 ,o 
-32,37 
-52,28 O,8 
-12.42 

105 
120 
135 
150 
165 
180 
- 

0.0 I -12.49 

-2,598 - 9,833 

0,5 -5,386 - 2,99 
- 1,67 0,12 1 -5.252- 
- 

- 8,151 
- 7,756 



V. I. Vespalyy [I]. In the case where the elliptic hole is located sufficient- 
ly close to the boundary of the half plane, the problem is discussed by 
D . I. Sherman [lo] , and by L. N. Karpenko [l] by D . I. Sherman1 s method. The 
case of a rectangular hole in a heavy elastic plate was analyzed by V. N. 
Kozhevnikova [3]. 

Figure 11.62. 

56 .  S t r e s s e s  i n  a Rod of Finite 
Width, Weakened by a C i r c u l a r  
Hole 

In discussing the problem 
of the effect of holes of 
various shape on the stress 
state in an elastic plane 
(plate, beam), we assumed this 
plane to be infinite. However, 
in engineering practice, prob- 
lems concerning stress concen- 
tration near holes, in which the /113 - 
region weakened by a hole is 
infinite, are rarely encountered. 
In most cases the dimensions of 
these planes are small. There- 
for the question arises as to 
which cases (in observance of 
a certain degree of precision) 
the solutions obtained in the 
preceding sections for infinite 
regions can be used for finite 
regions. The best answer to 
this question would be a compar- 
ison of the results of accurate 
solutions of problems for both 
infinite and finite regions. 
Unfortunately, this cannot be 

done for the problems at hand, since there are few reliable solutions of the 
corresponding problems for finite regions, even though the theoretical solu- 
tions of these problems for any coupling, both for isotropic, and for aniso- 
tropic media, have been available for quite a long time1 .' However, these 
solutions for finite regions are given in such a form that apart from the 
theorems of existence, nothing much has been obtained from them up to now 
because of the colossal computational difficulties2. 

the works of N. I. Muskhelishvili [l, 2, 31, S. G. Mikhlin [s], D. I. Sher- 
man [13], G. N. Savin [ll, 121 and also the reviews of D. I. Sherman [12, 171. 
'~t should be pointed out that by using the method' of electrosimulation (see 
References of Chapter I) for the construction of the representative function 
of a given region doubly-connected to a circular ring, it is possible to con- 
struct accurate or approximate (with a high degree of accuracy) solutions for 
doubly-connected regions, from which several important conclusions can be de- 
rived, particularly concerning the effect of the finiteness of the dimensions 
of the plate on stress concentration near a hole in it. 



Let us examine the problem of stress concentration near a circular hole 
for a rod of finite width and of infinite length. 

Rod with C i  rcular Hole under   ens ion'. We will assume that a thin infi- 
nite rod made of an elastic isotropic material of width 2b, thickness 2h, and 
with a circular hole of radius R = a < b, the contour of which is free of 
external forces, with the center lying on the axis of symmetry of the rod, is 
subjected to tension along this axis of symmetry by forces p = const (Figure 
11.63). 

L_. 

Y A - We will place the origin of the axes of - coordinates xOy at the center of the circular - - hole, direct axis Ox along the axis of - 
,r symmetry of the rod, and the Oy axis upward. 

- - -P We will determine the pattern of the stress - state in this rod2, weakened by a circular - 
I hole. 

We will relate all dimensions to the half 
Figure 11.63. width of the rod, introducing the dimension- 

less coordinates: 5 = x/b, q = y/b, X = a/b. 
Instead of the Cartesian coordinates 5 and q, we will use polar coordinates 
p, 8; x = r cos 8, y = r sin 0 ,  p = r/b (see Figure 11.63). The polar axis  
coincides with the Ox axis, and the angles are read, as usual, from the Ox 
axis to the Oy axis. 

The problem reduces to the determination of the biharmonic function /I14 
U ( < ,  n) that satisfies equation (1.5) and conditions: - 

on the boundary of the rod, i.e., on the contour n = +I, 

on the contour of the hole r = a, i.e., for p = A ,  

since the contour of the hole is free of external forces; 

'The stress state in an infinite rod containing a circular inclusion is dis- 
cussed in the work of R. G. Wilson [I]. 
2 ~ e e  R. Howland [I]. 



at infinity for x = Sb + 

We will represent the function U(S, n) in the form of the series 

where the terms of this series are biharmonic functions with the following 
0 

properties: the function U (5, ) = LJA1)(5, n) + U (5, ) satisfies the condi- 
0 

tion at infinity (11.135) and on the contour of the hole (II.134), but does not 
satisfy the condition on the boundary of the rod (II.133), i.e., the function 

n 

U"(S, ) is the solution of the problem for an infinite plane with a circular 
hole subjected to tension along the Ox axis by forces p. 

From (11.67) and (II.8), we have the function 

For simplicity we will break it down into two parts: 

( 1 )  b2p Uo -; Te2(l -cos26) 

and 

u. = [ ( 2 ~  - -$) w ne-sn2 In, I . 
The function U (5, q) from (11.136) nullifies the stresses caused by the 1 

function U (5, q)on the boundary of the rod n = fl, but introduces stresses on 
0 

the contour of the hole, etc. 

Generally speaking, the function UZn 
+ "2n+l produces zero stresses on the /I15 - 

boundary n = tl, whereas the function UZn - + UZn produces zero stresses on the 
contour of the hole p = A .  



The s t r e s s  components i n  t h e  rod near  t h e  c i r c u l a r  ho le  f o r  X = a / b <  0 . 5  
a r e  given i n  t h e  form of t h e  s e r i e s  

+ n(2n - 1 )  I ~ ~ ~ ~ " - '  + (n + 1) (2n -t 1 )  rn2,p2" cos 2nO , I I 

The va lues  of  t h e  c o e f f i c i e n t s  i n  formula (11.138) f o r  c e r t a i n  va lues  of  
A a r e  presented  i n  Table 11.19 . 

The va lues  of ag/p along t h e  contour  of a  c i r c u l a r  ho le  i n  a  rod ,  f o r  

var ious  va lues  of  X = a /b ,  are presented i n  Table 11.20. 

The va lues  of og/p through t h e  c ros s  s e c t i o n  of t h e  rod (0 =  IT/^), pass ing  

through t h e  cen te r  of  t h e  c i r c u l a r  ho le  ( s ee  Figure I1 .63 ) ,  a r e  presented  i n  
Table 11.21. 

The va lues  o /p = o /p  and oO/p = CJ /p through c r o s s  s e c t i o n  0 = 0,  i . e . ,  
P X Y 

through t h e  Ox a x i s  a r e  presented  i n    able 11.22 ( i n  t h e  columns f o r  a f i n i t e  
rod) f o r  t h e  case  where t h e  diameter  of t h e  ho le  i s  equal t o  t h e  he ight  of t h e  
rod (when A = a/b = 0 .5 ) .  For comparison, t h e  same va lues  around such a  ho le ,  
bu t  f o r  a  p l a t e  of  i n f i n i t e  dimensions, a r e  presented  i n  t h e  same t a b l e .  

The curves shown on Figure 11.64 f o r  var ious  va lues  of 1 were cons t ruc ted  
on t h e  b a s i s  of  d a t a  i n  Table 11.20 : curve 1, f o r  A = 0.5 ;  curve 2 ,  f o r  X = 
= 0.4;  curve 3 ,  f o r  A = 0 . 3  and curve 4, f o r  X = 0, i . e . ,  f o r  a  p l a t e  of 
i n f i n i t e  dimensions. 

'Tables  TI. 19 and 11.20 were borrowed from t h e  work of R .  Howland [ I ] .  
2 ~ h e  va lues  of  a /p a r e  arranged r a d i a l l y  a s  fo l lows:  p o s i t i v e ,  ou t s ide  t h e  8 
c i r c l e ,  and negat ive ,  wi th in  t h e  c i r c l e .  



Tr .  Note: commas i n d i  cate decimal p o i n t s .  

TABLE 11.19 
. .. -- - - - ------ 

?. I 0.1 I 0.2 1 0.3 0.5 

F igure  11.64. F igu re  11.65. 
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TABLE 11.20 

T r .  Note: Commas ind ica t e  decimal po in t s .  

TABLE 11.21 
L 

The s t r e s s - s t r a i n  - /117 
diagrams of  t h e  s t r e s s e s  - 
a r e  cons t ruc ted  i n  Figure 
11.65: curve 1 gives t h e  
va lues  of ug/p along t h e  

contour  of t h e  hole  f o r  
A = 0 . 5 ;  curve 2 g ives  t h e  
va lues  of og/p along t h e  

contour  p = 0.55, d e t e r -  
mined by  formulas (11.138) 
f o r  X = 0.5 and curve 3 
(poin t )  i s  based on d a t a  
obtained by t h e  method of 
p h o t o e l a s t i c i t y  on t h e  
contour  of t h e  ho le .  

TABLE 11.22 

plate 

T r .  Note: Commas ind ica t e  decimal po in t s .  

Figure 11.66 shows t h e  curves f o r  og/p 

through t h e  most dangerous c r o s s  s e c t i o n  8 = 
= ~ r / 2  f o r  va r ious  va lues  of A ,  cons t ruc ted  on 
t h e  b a s i s  of t h e  d a t a  i n  Table 11.22. The 
broken curve shows t h e  inc rease  i n  t h e  concen- 
t r a t i o n  f a c t o r  of t he  s t r e s s e s  a s  X i nc reases .  

Figure 11.67 r ep resen t s  g raph ica l ly  d a t a  
presented i n  the  preceding t a b l e s  f o r  a rod 

(22 Qb 48 y/b with  a c i r c u l a r  h o l e ,  subjec ted  t o  t ens ion ,  
f o r  h = 0.5:  curve 1 g ives  t h e  s t r e s s e s  og/p - / I18  

Figure 11.66. a long t h e  contour  of t h e  c i r c u l a r  ho le  f o r  
X = 0.5 (see Table 11.20); curve 2 g ives  

s t r e s s e s  uR/p  through t h e  most dangerous c ros s  s e c t i o n  0 = n/2 f o r  h = 0.5  (see 

~ a b i e  11 -21) ;  curve 3 gives  s t r e s s e s  a /p through c ros s  s e c t i o n  8 = 0 ,  i . e . ,  8 
a long t h e  a x i s  of t h e  rod f o r  X = 0.5  (see Table 11 .22) ;  curve 4 g ives  s t r e s s e s  



a /p  through c r o s s  s e c t i o n  8 = 0 f o r  A = 0.5  (see Table 11.22) .  The broken 
Y 

ekes were cons t ruc ted  on t h e  b a s i s  of  experimental d a t a  obtained by t h e  
o p t i c  method. 

Figure  11.67. 

According t o  t h e  d a t a  presented  i n  t h e  t a b l e s ,  it i s  p o s s i b l e  t o  de r ive  
t h e  fol lowing conclusions.  

1. For a  rod of given width, a s  t h e  r ad ius  of  t h e  hole  i nc reases ,  t h e  
concent ra t ion  f a c t o r  i nc reases  considerably (see Table 11.20) .  For i n s t ance ,  
when = 0 .5 ,  t h i s  f a c t o r  i s  equal t o  4 . 3 2 ,  whereas f o r  a  p l a t e  of  i n f i n i t e  
dimensions, it i s  only 3 .0 .  For va lues  of  A d i f f e r e i n g  from those  i n  Figure 
11.66, t h e  concent ra t ion  f a c t o r  can be taken d i r e c t l y  from t h e  broken curve of  
t h i s  f i g u r e .  

2. Under t h e  l i m i t a t i o n  of  usua l  accuracy (up t o  6 % ) ,  then ,  a s  fol lows 
from t h e  d a t a  i n  Tables 11.20 and 11.21, t h e  s o l u t i o n s  found f o r  t h e  i n f i n i t e  
reg ions  can be used f o r  p l a t e s  of  f i n i t e  dimensions i f  t h e  r a t i o  of t h e  d i a -  
meter of  t h e  ho le  ( loca ted  c e n t r a l l y )  t o  t h e  sma l l e s t  dimension of  t h e  p l a t e ,  /119 
i . e . ,  A = a/b,  w i l l  no t  be l e s s  than  0.2; i n  o t h e r  words, t h e  width of t h e  
p l a t e  should be a t  l e a s t  f i v e  t imes g r e a t e r  than  t h e  diameter  of  t h e  hole1 

Pure Displacement of Rod w i t h  Circular Hole. By t h e  same method used f o r  
t h e  s o l u t i o n  of t h e  problem of  a  rod with a  c i r c u l a r  ho le  under t ens ion ,  
C .  K .  Wang [I] solved t h e  problem of stress d i s t r i b u t i o n  i n  an i s o t r o p i c  rod 

 h his conclusion,  der ived  f o r  a  p l a t e  with a  c i r c u l a r  ho le  under simple t en -  
s ion ,  w i l l  obviously be v a l i d  f o r  t h e  case  of a  p l a t e  weakened b> a c i r c u l a r  
ho le  under pure d e f l e c t i o n  (see 52 and 4, Chapter 11, and a l s o  94, Chapter 
111).  



of width 2b (see Figure 11.63) with a circular hole of radius R = a < b, where 
displacing forces T = -T = const are applied to boundaries y = +b. The con- 

XY 
tour of the hole was free of external forces. The stress along the contour of 
the hole is found by C. K. Wang [l] in the form 

oe = r (a, sin 29 - a, - sin 45 + a ,  sin 60 - a, sin 88 + a, sin 10 6). 

The numerical values of the coefficients al, a2, ag, a4, a for the various 
5 

values of X = a/b are presented in Table 11.23. The values T /T through the 
P 0 

cross section 0 = -7r/2 for various values of A are presented in Table 11.24. 

TABLE I1 -23 

T r .  Note: Commas indicate decimal points. 

TABLE 11.24 

- 
0 (rod 

wm 1 ~ i t h 0 ~ l  0 , l  1 0 2  1 0.3 1 i l  1 0.5 
hole) 

T r .  Note: Commas indicate decimal points. 



Concluding Comments. We will cite several works concerning the investiga- 
tion of the stress state in a plate of finite dimensions, weakened by a 
circular hole. The stress concentration near the circular hole in a finite 
rectangular plate under tension was examined by N. F. Gurlyev [l, 21, and in a 
square plate, by V. M. Rakivenenko and V. I. Makhovikov [I]. Tension and shear 
of an infinite isotropic rod, weakened by a circular hole, was examined by 
Nagai [I]. He analyzed the stress concentration near a hole as a function of 
the dimensions of the hole and its distribution through the width of the rod. 
Stress distribution in a square plate with a central circular hole under hydro- 
static pressure along the contour of the hole was investigated in the work of 
G. A. 0. Davies [ I ] ,  D. K. Vaid, R. K. Varma, S. T. Awade [I].. In the latter 
work, the problem was solved by the method of relaxation with a fine screen. 
Many graphs were constructed for stress distribution for various geometrical 
ratios. The same problem was examined by Z. G. Aliyev [l] for a noncentral 
circular hole. M. Z. Narodetskiy [ 4 ] ,  using the method of complex Kolosov- 
Muskhelishvili potentials, solved the problem of tension of an isotropic square 
plate with a central circular hole by forces uniformly distributed along the 
two opposite sides, where the contour of the hole is free of external forces 
(Figure 11.68). 

The contour of the square was replaced by a smooth contour, where the 
representative function was taken in the form 

Figure 11.68. 

'v - 

Figure 11.69. 



Since the boundary conditions on the contour of the hole are satisfied - /I21 
precisely, or = 0, ze = 0 on the contour of the hole, while 

0, = 4p (: c y k  ( ( 4 k  4- 1 )  [a,,, cos 4kO - b,,+, sin (4k + 2) 91 - 

The stress-strain diagrams of stresses CJ at the points lying on the con- 
8 

tour of the hole are presented in Figure 11.69 for c = 0.7 and c = 0.8, where 
c = R/b (R is the radius of the hole). As we see, an increase in the parameter 
c by 0.1 (from 0.7 to 0.8) increases the largest stress by a factor  of 2.5. 

57. Stress Concentration in Regions Bounded by Two Circles or by a Circle and 
a Straight Line 

In the general case where a region is bounded by two nonconcentric circles, 
the problem of determining the stress state within it on the basis of given 
external forces along the boundary is reduced by V. N. Zamyatina [l] to an 
integral equation. However, for the solution of partial problems, it is more 
convenient to change, as demonstrated by N. Ye. Zhukovskiy [l], to a curvi- 
linear coordinate system x = x(S, q), y = y(<, n ) ,  such that the boundary of 
the region can be represented in the form of the equation q = const or 5 = 
= const, i.e., so that it will coincide with one of the coordinates of the 
lines of our system. For this purpose we will use the following curvilinear 
coordinates : 

a sin 11 
X = lj == ash E 

chE-cosq ' ch c--cosq ' 

Then, on the plane xOy, the curves 5 = const and Q = const represent circles 
(the centers of which lie, respectively, on the Ox and Oy axes), intersecting 
at a right angle. 

For instance, we will consider the curve 5 = 5 = const > 0. This will be 
the circle 0 

a = (Y - a cth E,): + x? = - 
sh2 t o  

with the center C(0, a cth 5 ) lying on the Oy axis, and with radius 
0 

a R = - -  
Sh Eo 

-- a csch E,. 



When E0 + 03, the radius (11.143) will approach zero while the center of 

this circle will approach the point 02(0, a) (Figure 11.70). 

Analogous considerations for 5 = to = const < 0 lead to the same thing, 

namely that the limit circle for 5 < 0 will be the point 0 (0, -a). It is 
0 1 

clear that for all 5 > 0, circles (11.142) will be located above the Ox axis, /I22 - 
while for 5 < 0, below it. The value of 5 = 0 will correspond to the straight 
line y = 0, i.e., the Ox axis. 

Let us consider the curves T-I = qO = const > 0. By excluding the para- 

meter 5 from equation (1.141), we find that the curve = qO = const is a 
circle 

with the center Cl(a, cot no, 0) lying on the Ox axis, and with radius 

It is obvious that all circles (11.144) pass through the points 01(0, -a) 

and 02(0, a). As q in (11.144) approaches zero, we see that the radii of the 

circles will increase infinitely, and since all these circles will pass through 
two points O1 and 02, the value T-I = 0 will correspond to the straight line 

x = 0, i.e., the Oy axis. For no > 0, the centers of the circles (11.144) will 

be arranged on the right hand side of the Oy axis, and for q < 0, on the left 
hand side. 

We will use the parameters 5, T-I as curvilinear coordinates. The relation- 
ship between these curvilinear (orthogonal) coordinates, called bipolar 
coordinates, and the Cartesian coordinates, is given by formulas (1.141). On 
the plane xOy we will take some point K(5 q ) of intersection of the circles 

0' 0 
5 = E0 = const and = no = const. Obviously, the coordinates of point A will 

be 5 = E0 and q = 0, and of point B, 5 = and q = r. If we denote the 

central angle ACK through 9* and calculate it as shown in Figure 11.70, we 
easily find the relationship between angle 8 and the parameter q: 

X sine* - - = sh 5 sin q 
R cht-cosq' 



By using this system of curvilinear (orthogonal) coordinates, S. A.  Chaplygin 
[I], S. G. Gutman [l] and G. B. Jeffery [l] solved several technically impor- 
tant problems concerning the stress concentration for regions bounded by two 
nonconcentric circles or a circle and straight line, and R. D. Mindlin [l] 
investigated stresses near a circular hole in a heavy half plane. Using 
another system of bipolar coordinates, C. B. Ling [l, 21 found the solution for 
problems of uniaxial tension of a plate weakened by two equal circular holes 
or by a hole, the contour of which consists of two equal arcs of a circle. 

Cylinder under Internal Pressure p ,  = const. We will assume that the 

cross section of the cylinder is a doubly-connected region bounded by two non- 
concentric circles of radius R1 (internal circle) and R 2  (outer circle), as 

indicated in Figure 11.71. 

Figure 11.70. Figure 11.71.  

We will assume that a uniformly distributed pressure p is applied to the / I23 1 - 
inner circle of the cylinder, and that the outer contour (circle of radius R ) 

2 
is free of external forces. The distance between the centers of these circles 
is denoted through d (see Figure 11.71). 

Stresses along the contour of the outer circle of radius R (in the 
2 

elements perpendicular to the contour 5 = const) are 

0 "  

R: [R: (R2  - 2d cos q)' - (R: - d-)'] 

a,, = 2 ~ ,  - (R: + R:) [R: - (R1 + d)'l [R: - (RI - 
' 

From (11.147) and inequa l i ty  d + R1 < R2, we obtain the following. 



1. The largest numerical value of a (11.147) will occur for n = IT, i.e., n 
at the point of intersection of the line of the centers (Oy axis) with the 
circle of radius R (i.e., with the curve 5 = const) in the thin part of the 
cylinder : 2 2 

2. If the distance between the centers of circles C and C is greater 
1 2 - 

than half the radius of the outer circle, i.e., d > 1/2 R2,  a (11.147) n 
acquires its least value at the point cos n = R2/2d. This stress a is always 
negative (if pl is pressure): rl 

The values of 0 (11.149) are always numerically smaller than the maximum 
17 

values of a (11.148). Since in the range 0 < n < n the stresses o change n n 
sign, then at the point n = 0, i.e., at the point of intersection of the line 
of the centers (Oy axis) with the circle of radius R in the thick part of the /I24 2 
cylinder, the stresses also acquire their extremal (maximum) value: 

although always (o ) > (o~)~.~. n n=IT 
3. If the distance d between the centers of circles C and C2 (see 1 

Figure 11.71) is less than half the radius of the outer circle, i.e., 
d < 1/2 R2, we have, in addition to maximum stresses a (11.1481, minimal 

11 
values of a for q = a, given the formula (11.150). Greater maximums and mini- n 
mums of a dill not occur in this case. It constantly decreases from maximum 

n 
values of a (11.148) in the thin part of the cylinder to the values of a n n 
(11.150) in the thick part of the cylinder. 

Stresses a in the interior of the circle of radius R (5 = const) will 
rl 1 1  

always be tension stresses: 



From (11.151) we obtain the following. 

1. If the distance d between the centers of circles 6 = const and 5 = 1 2 
= const is greater than half the radius of the inner circle, i.e., d > 1/2 R1, 

the maximum values of a in the interior of the circle will occur at the point 
cos q = -R1/Zd: 1? 

2. If the distance d between the centers of the circles is less than half 
the radius of the inner circle, i.e., d < 1 R1, the maximum value of o will 

rl 
occur at the point Q = TT, i.e., at the point of intersection of the Oy axis 
with the circle of radius Ri at the thin point of the cylinder: 

3. The minimum values of o on the circle of radius R1 will occur at the 
Q 

point q = 0, i.e., at the point of intersection of this circle with the line 
of the centers (Oy axis) in the thick part of the cylinder: 

Cylinder under External Pressure p = const. We will assume that pressure 2 
p2 = const is applied only to the outer circle of radius R and that the inner 2 ' 
circle R = R is free of external forces (see Figure 11.71). 1 

The stresses along the internal contour, i.e., on the circle of radius R /I25 
1' - are 

( R E  - d2)2 - R; ( R ,  f 2d cos q12 
a = - 2p R~ rl (R:+R$ [R;- ( ~ , - d ) ' j  [ R ~ - ( R , - F ~ ) . L I  ' (11.155) 

and along the outer contour, i.e., on the circle of radius R 
2 ' 

2 ~ :  [R: ( R 2  - 2d cos q)* - (R: - d2)2]  
0 (1 = - P , { l f  

(R:  + R:) [R,' - (Rl  - d)21 [R: - ( R ,  + dj21 ' 



From (11.155) we ob ta in  t h e  fol lowing.  

1. I f  t h e  d i s t a n c e  between t h e  cen te r s  of t h e  c i r c l e s  E l  = const  and 

E2  = const  i s  l e s s  than  h a l f  t h e  r ad ius  of t h e  inne r  c i r c l e ,  i . e . ,  d  < R 1 / 2 ,  

t h e  extremal va lues  of a w i l l  occur a t  t h e  p o i n t s  n = 0 and q = IT, and t h e  n 
g r e a t e s t ,  i n  abso lu t e  va lue ,  CJ ( I I . 155) ,  a t  t h e  po in t  Q = T, i . e . ,  a t  t h e  n 
poin t  o f  i n t e r s e c t i o n  of t h e  l i n e  of  t h e  c e n t e r s  and t h e  inne r  c i r c l e  of  
r ad ius  R1 i n  t h e  t h i n  p a r t  of t h e  cy l inde r .  

2. If t h e  d i s t a n c e  between t h e  c e n t e r s  of t h e  c i r c l e s  5 = cons t  and 
1 

c2 = const  i s  g r e a t e r  than h a l f  t h e  r ad ius  of  t h e  inne r  c i r c l e ,  i . e . ,  d  > R1/2, 

t h e  extremal va lues  of a w i l l  occur a t  t h e  p o i n t s  rl = 0 and n = IT, and t h e  n 
g r e a t e s t ,  i n  abso lu t e  va lue ,  compressive s t r e s s e s  a ( I I . 155) ,  a t  t h e  p o i n t s  

n 
cos n = -R1/2d. I t  i s  c l e a r  from (11.156) t h a t  f o r  both d  < R2/2 and f o r  

d  > R / 2 ,  t h e  g r e a t e s t ,  i n  absolu te  va lue ,  o on t h e  ou te r  contour w i l l  occur  
2  rl 

a t  t h e  po in t  n = T .  I f  i n  formulas ( I I . 147) ,  ( I I . 151) ,  (11.155) and ( I I . 156) ,  
we assume d  = 0, we f i n d  t h e  known Lame formulas.  

Half Plane w i t h  C i r cu la r  Hole under Uniformly Dis t r ibu ted  Pressure  along 
t h e  Edge. I f  we assume i n  t h e  preceding formulas t h a t  c2 = 0, p2 = 0,  p l  = p 

and R1 = R ,  we obta in  t h e  s o l u t i o n  f o r  a h a l f  p lane  i n  which, a t  some d i s t a n c e  

d  from a  s t r a i g h t  edge (Figure I I . 7 2 ) ,  a  c i r c u l a r  ho le  of r ad ius  R is  made, 
around which i s  appl ied  a  uniformly d i s t r i b u t e d  p re s su re  p .  Externa l  f o r c e s ,  
however, a r e  not  appl ied  t o  t h e  boundary of t h e  h a l f  p lane  i t s e l f 1 .  

By denoting through x t h e  d i s t ance  measured along t h e  Ax a x i s  from po in t  
A, we ob ta in  s t r e s s e s  a along t h e  contour of  t h e  s t r a i g h t  boundary o f  t h e  

X 
h a l f  plane,  i . e . ,  along t h e  Ax a x i s ,  

The g r e a t e s t  t ens ion  s t r e s s e s  w i l l  occur a t  po in t  A:  

- - -  

'The case where a  uniformly d i s t r i b u t e d  p re s su re  p = const  i s  appl ied  t o  t h e  
s t r a i g h t  boundary of a  h a l f  plane i s  examined i n  d e t a i l  by S.  G .  Gutman [ l ]  
and D .  P .  Gupta [ l ,  2 1 .  



A t  t h e  p o i n t s  x  = kJd2 - R', s t r e s s  CJ i s  equal  t o  zero,  and a s  x i nc reases  
X 

/ 126 - 
f u r t h e r ,  it becomes compressive, reaching i t s  g r e a t e s t  magnitude a t  t h e  po in t  

x  = +&(d2 - R2): 

S t r e s s e s  a along t h e  contour  of t h e  c i r c u l a r  ho le  can be found from 
rl 

simple geometric cons t ruc t ion .  By denoting through C t h e  c e n t e r  of  t h e  c i r c u -  
l a r  ho le ,  and through Q, t h e  a r b i t r a r y  p o i n t  of  t h e  c e n t e r  of  t h e  ho le ,  
through CA, a  perpendicular  cons t ruc ted  from po in t  C t o  t h e  s t r a i g h t  edge of 
t h e  h a l f  p lane ,  and through $, angle  QAC ( see  Figure I I . 7 2 ) ,  we f i n d  s t r e s s e s  
a around t h e  contour  of  t h e  c i r c u l a r  h o l e :  

rl 

I t  i s  c l e a r  from t h i s  cons t ruc t ion  t h a t  s t r e s s e s  CJ w i l l  be i d e n t i c a l  a t  p o i n t s  
rl 

Q and Q 1 ,  which l i e  on a  s i n g l e  s t r a i g h t  l i n e ,  pass ing  from p o i n t  A and i n t e r -  
s e c t i n g  t h e  contour  of t h e  ho le .  The minimum tens ion  s t r e s s e s  a on t h e  n 
contour  of t h e  ho le  w i l l  obviously occur  a t  p o i n t s  B and D ,  i . e . ,  a t  t h e  p o i n t s  
t h a t  a r e  c l o s e s t  t o  and f a r t h e s t  from t h e  s t r a i g h t  boundary of t he  h a l f  p lane .  

Assuming in (11.159) that @ = 0, we f i n d  a = p. From formula ( I I . 159) ,  
r) 

it fol lows t h a t  t h e  g r e a t e s t  va lues  of a w i l l  occur a t  t h e  p o i n t s  of  t h e  con- 
rl 

t o u r  of  t h e  ho le  f o r  which 4 = @max: 

these  a r e  t h e  p o i n t s  of  t h e  contour  of  t h e  round ho le  a t  which t h e  s t r a i g h t  l i n e  
AQ w i l l  be  tangent  t o  t h e  contour .  

I f  d  = RG, then  t h e  g r e a t e s t  va lue  o f  t h e  t ens ion  s t r e s s e s  a on t h e  con- 
rl 

t o u r  of t h e  round hole  w i l l  be  equal t o  t h e  maximum value  of t h e  t ens ion  
s t r e s s e s  a along t h e  s t r a i g h t  boundary of  t h e  h a l f  p lane  and, a s  fol lows from 

X 

formulas (11.158) and ( 1  160) , (uq)max = 2p. 

From formulas (11.158) and (11.160) we know t h a t  i f  t h e  d i s t a n c e  d of t h e  
c e n t e r  of  t h e  round ho le  from t h e  s t r a i g h t  edge is g r e a t e r  than  ~ 6 ,  then t h e  
g r e a t e s t  t ens ion  s t r e s s e s  a w i l l  occur on t h e  contour of t h e  round hole .  v 



I f ,  on t h e  o t h e r  hand, d  < RJ?;, then  t h e  g r e a t e s t  s t r e s s e s  a w i l l  he  a t  
p o i n t  A of t h e  s t r a i g h t  edge of  t h e  h a l f  p lane .  rl 

By in t roducing  t h e  d e f i n i t i o n  d  = 2XR, formula (11.158) acqu i r e s  t h e  form 

where h = 3/5, i . e . ,  i f  t h e  d i s t a n c e  AB = 0.2R, (ox)max = 9 . 1 ~ .  I f  we d i v i d e  

AB i n  h a l f ,  i . e . ,  t h e  d i s t a n c e  AB = O . l R ,  then  (ox)max = 1 9 . 5 ~ .  

Usually,  i n  c a l c u l a t i n g  r i v e t e d  j o i n t s  X = 1.5-2.5, and from t h e  l a t t e r  / 12 7 - 
formula we f i n d  t h a t  t h e  s t r e s s  a t  po in t  A f a l l s  i n  t h e  range 

Figure 11.72. Figure 11.73. 

Half Plane,  Weakened by a C i rcu la r  Hole, under   ens ion'. We w i l l  assume 
t h a t  a  c i r c u l a r  ho le  of r ad ius  R i s  made i n  an i s o t r o p i c  h a l f  p lane .  The 
c e n t e r  o f  t h i s  ho le  i s  loca ted  a t  d i s t a n c e  d from t h e  s t r a i g h t  boundary of  t h e  
h a l f  p lane  (Figure 11.73).  This  h a l f  p lane  i s  subjec ted  t o  t ens ion  by f o r c e s  
p  = cons t ,  p a r a l l e l  t o  t h e  s t r a i g h t  boundary of  t h e  h a l f  p lane .  

S t r e s s e s  o  = ax on t h e  boundary of  t h e  h a l f  p lane  
rl 

 his case  i s  a l s o  d iscussed  by Yu. A .  Ustinov [l] when t h e  hole  i s  loca ted  
very c l o s e  t o  t h e  boundary of  t h e  h a l f  p lane .  



The stresses on the contour of the circular hole1 are 

X -  
25h E L  I + 2e-2L con q + C N ,  coi nq I} -,- 

n= 2 

where the parameter t1 is defined by the formula d = R ch t1 or 

The relationship between angle. 8 (determined on the Oy axis in the direc- /I28 
tion indicated in Figure 11.73 by the arrow) and the parameter ?-I is defined by 
formula (11.146). It is readily seen from Figures 11.70 and 11.73 that the 
abscissas of the points of the straight boundary of the half plane are related 
to the parameter 0 by the relation x = am1 - cos n/sin n ,  where a = R sh c1 or 
a = d/cth El. The factors Pn and Nn in formulas (11.161) and (11.162) are 

presented in Tables 11.25 and 11.26; respectively, for several values of 5 , .  
1 

TABLE 11.25 

PI 1,7241 1,0119 0,6261 
' P ,  3,1481 2,0238 1,2521 
p, 2,2403 1,0617 0,5110 

1,3549 0.4874 0,1699 2 0,7601 0,1969. 0.0474 
0,3961 0.07131 0,0116 
0,1934 0,0237 0,0026 
0,0891 0,0073 0,0005 
0,0391 0,0022 0,0001 
0,0165 0,0006 - 

T r .  Note: Commas indicate decimal points. 

~ - - - -  

'~fter correction of the error that crept, unfortunately, into G. B. Jeffrey's 
sollition [I] (one:term was omitted in the stress function), which was brought 
to my attention by D. G. Khlebnikov. This error in G. B. Jeffrey's solution 
[l] was probably first noticed by R. G. Mindlin [2]. Tables 11.25 and 11.27 
were compiled with consideration of the stated corrections. 



TABLE I 1  -26 

Tr. Note: Commas indica te  decimal points .  

For l a rge  values of 5 with considerat ion of ( I I .146) ,  formula (11.162) 
acquires  t h e  form 1 ' 

i. e . ,  t h e  expected form (see 52, Chapter 11).  

The values of ox/ p and a /p a t  t h e  po in t s  0, A and D (see Figure 1 1 . 7 3 )  
II 

for various values of d/R, a r e  presented i n  Table 1 1 . 2 7 .  

TABLE 11.27 
Heavy Half Plane w i t h  Circular  / 129 -   ole'. The s t r e s s e s  i n  a  heavy ha l f  

plane, i . e . ,  a  ha l f  plane (see Figure 
II.73), under the  e f f e c t  of  g rav i ty  
y = pg = const (p i s  dens i ty  and g 
is  acce le ra t ion  of g rav i ty ) ,  weakened 
by a c i r c u l a r  hole of radius  R ,  t he  
cen te r  of which i s  located a t  d is tance  
d from the  s t r a i g h t  edge of the  h a l f  
plane,  a r e  analyzed f o r  th ree  cases of  
the  bas ic  s t r e s s  s t a t e  of  the  impact 
mass : 

€1 

- 
0,6 
0.8 
1.0 
1,2 
1.4 
1.6 
1.8 
2,O 
2.2 
00 

Tr. Note: Commas indica te  decimal 
points .  

lThe problem of s t r e s s e s  i n  an an i so t ro  i c  h a l f  plane weakened by two c i r c u l a r  
holes ,  where o i  = const ,  o0  = const ,  rg = 0, i s  discussed by L. N.  Nagibin 

Y XY 

d l R  

1,185 
1,337 
1.543 
1.811 
2,151 
1,577 
3.107 
3,762 
4.570 

00; 

I OqlP 

~t Point j I 0 (At point A point 
A I D  

0.314 
0,412 
0.506 
0,596 
0,681 
0,758 
0,822 
0,863 
1,911 
1,000 

6,960 
5,387 
4,494 
3,944 
3,596 
3,376 
3,238 
3,151 
3,096 
3,000 

3,523 
3,414 
3,323 
3,249 
3.189 
3,141 
3,104 
3,076 
3,054 
3,000 



where v is Poisson's ratio. 

The stress components in bipolar coordinates are defined by formulas 

I a'F 
at = - ((ch E - cos 7) --- 

a F  shE-- a F  ay sh E 
a all" at sinrl- arl + F C ~ E ) - ~ ~ ~ - ~ , , ,  

if the function F = UH is known, where U is the stress function in bipolar 
coordinates and H = l/a(ch 5 - cos ?I) is the first differential parameter of 
the bipolar coordinate system. 

For case I, R. G. Mindlin [l] gives the function F(6, q) in the form - / 130 

ch&cosq- 1 
wherea= > O  (seeFigureII.70), t a n @ =  . 

50 

Of greatest interest are stresses a on the contour of a circular hole. n 
These are expressed as follows: 

2yaIcha-cosq) 
sh a (ch a - cos q)P 

The values of Rn are presented in Table 11.28. 



TABLE 11.28 

Tr. Note: Commas indicate decimal points. 

Figure 11.74 shows the graph of stresses (a ) n E=a' decreased by a factor 
of 2yR, acting on the contour of a hole of radiui R and calculated by the 
formula (11.164) for v = 1/2, a = 0.4 and a = 2.0. 

Figure 11.75 represents similar graphs for 5 = a, I? = T ,  i.e., at the 
point A (see Figure 11.73) for three values of Poisson's ratio, v - 0, 1/4 and 
1/2. 

Figure 11.74. 

The data presented in Figures 11.74 and 11.75 show that: 

a change in Poisson's ratio has a slight effect.on the stresses, with the 
exception of those cases where the hole is very close (d/R < 1.2) to the 
straight line of the half plane; 

stresses a at point A (see Figure 11.73) increase by a nearly linear law 
rl 

as the depth increases; 

139 



stresses u at point A increase only slightly'as the hole is placed closer 
17 

to the straight edge of the half plane; 

the greatest value of stress 0 on the contour of the hole for large 
17 

values of a will occur at the point D (Figure 11.73); for smaller values 

a(a < 0 . 4 ) ,  the greatest a will occur at point A. 
17 

For cases I1 and 111, the function F = UH acquires the form 

3 - - 2 cschz a (ch 2E - 1) cos q + (A. [ch (n + 1) E -'ch (n -- 1) el + 

+ B n - 11 s n + 11 i - (n + 1, sh in - 1) cos rtq] - 

- 3 - 4 ~  1 5 - 6 ~  
4 (1 - v) (ch 2e - 1) cos q + - 

2 (2 (1 -  v )  

where 

for case 11, M = (1 - 2v)/6(1 - v) ,  and for case 111, -M = 1/6. Of greatest 
interest are stresses u on the contour of the round hole: n 



(uq)E=a = yMa (ch a - cos q) 6 cth a csch a + 6 csch2 a cos q + 

+ 2e-a cos rl - 2: R,, cos nq , 

n-2 I 
where 

ch a cos q - 1 sh a sin q cos g = sing = ch a - cos q ' ch a - cosq ' 

The factors Rn are presented in 

Table 11.29 and the values of the 

TABLE 11.29 - 
II 

Table 11.28, the values of a are presented 

factors Tn, in Table 11.30. 

I 2 3 
T r .  Note: Commas indicate decimal 
points. Figure 11.75. 

Figure 11.76 shows the curves of stresses (a ) r) E=a' decreased by a factor 

of 2yR, for point A (see Figure 11.73) for various values d/R, for both the 
case I1 (Figure II.76,a) and for case I11 (Figure II.76,b). 

To the conclusions presented above, it is necessary to add the following. 

For d/R > 1.5, as indicated by the data presented in Figures 11.75 and 
11.76, the effect of the straight edge of the half plane is very slight as far 
as stresses o,, are concerned. Therefore, for d/R > 1.5 (or a > l ) ,  stresses 
o on the contour of the hole can be calculated by the formulas that were n 



der ived  under t h e  assumption t h a t  t h e  r ad ius  of  t h e  hole  R i s  small  i n  compar- 
i son  with d .  In  t h i s  l i m i t i n g  case ,  t h e  formulas f o r  s t r e s s e s  a on t h e  n 
contour  of a round ho le  acqu i r e  t h e  form: 

Case I - / 133 

3-4v o, = - ?dy + yR-;r sin 0; 
2 ( 1 -  

Case I 1  

3 
where Q=l-n-rl, i s  an angle ,  which t h e  tangent  t o  t h e  curve II = const  

makes with t h e  Ox a x i s .  

By p l ac ing  i n  Figure 11.73 t h e  o r i g i n  of  t h e  Car tes ian  coord ina te  system 
xOy a t  t h e  c e n t e r  of  t h e  ho le  and d i r e c t i n g  Ox t o  t h e  r i g h t  and Oy upward, we 
w r i t e  t h e  s t r e s s  components of  t h e  b a s i c  s t r e s s  s t a t e  i n  a heavy h a l f  p lane  
t h a t  i s  not  weakened by a ho le :  

where A i s  any r e a l  number, o r ,  i n  p o l a r  coord ina tes ,  i n  reading 8 from t h e  
Ox a x i s  counter  clockwise: 

yd &). =; $ [(3 + A) sin 6 + (I  - 1) sin 381 - T[(l  + A) - ( I - I )  cos 261. 

Y' .yd = [ ( 3 I  + 1 )  sin R - ( I  - 1 )  sin 381 - [ ( I  + I )  + ( I  - I) cos 281, 

(rJ0 '- ( I  - 1) (COS 0 - cos 38) - @ (1 - 9 sin 28. 
2 

0 By sepa ra t ing  from s t r e s s e s  ( I I .168) ,  t h e  components oo oe and T:~ o f  
00 

r ' 
t h e  type  (11.122); we ob ta in  t h e  components or , uOeO, T (11.120). t o  which 
corresponds t h e  s t r e s s  func t ion  

By t h i s  func t ion ,  t h a t  c h a r a c t e r i z e s  s t r e s s  s t a t e  (11.120) i n  t h e  i n t a c t  p lane ,  



we determine' t h e  s t r e s s  components i n  t h e  plane with a c i r c u l a r  hole ,  t h e  
contour of which i s  f r e e  of external  forces :  

Figure 1 1 . 7 6 .  

TABLE I I .  30 

Tr.  Note: Commas indica te  decimal points .  

' ~ e r e  the  method described i n  G .  N .  Savin ' s  monograph [13], Chapter 11, pp. 
121-125, i s  used. 



Now, by combining stresses (11.169) with stresses (II.127), corresponding - /I35 
to the partial solution (11.122), we obtain the desired total stresses u ry * e >  
T (11.121) in a heavy half plane with a circular hole. The stresses on the 
re 
contour of the circular hole are 

By assuming in (11.170) that A = 1 or A = v/l - v, we obtain formulas that 
coincide with formulas (11.166) and (11.167). For the partial value X = 

2 
= tan (45' - +/2), where + is the angle of internal friction of the soil, some 
calculations were made by I. V. Rodin [I] . 

Figure 11.77. Figure 11.78. 

Effect of Concentrated Force or Couple Applied to A r b i t r a r y  Point of 
S t r a i g h t  Edge of H a l f  Plane w i t h  C i r c u l a r  Hole. The problem of the stress 
state of a half plane weakened by a circular hole, where a concentrated force 
p, directed through the diameter of the hole (Figure II.77), is applied to its 
straight edge, was examined by Ya. S. Podstrigach [I]. The solution of this 
problem is found in coordinates (11.141). 

The stresses along the contour of the hole are 

a -- - 
2~ of=-[cha-cost] axa 

- cha+msE + 4shax n sh 2na cos 2nE . [ s h g a  sh2 2na - 4na sh2 a ' 
n i l  1 

and along the edge of the half plane 
0 

2~ at=na(l-~~~c) na cos 2 4  
sh22no --Inzrh*a * 

-1 I 



where 

Figure 11.78 shows the graphs of stresses a at the points A and B 5 
(Figure 11.77) along the contour of the hole for various values of d/R for 
const ant a. 

In the very same bipolar coordinates 5 and 0 (II.141), R. M. Evan-Iwanow- 
ski [I] found the expressions for stress functions in the half plate with a 
circular hole, under the effect of normal tangential forces applied to an 
arbitrary point of the boundary of the half plane. 

The problem of stresses in a half plane with a circular hole under the 
effect of a concentrated couple applied to the straight boundary was examined 
by A.  M. Sen-Gupta [3 ] .  In this work the stresses a are examined both on the 

5 
straight, and on the curved boundaries. 

Tension of Plate Weakened by a Hole, the Contour of Which Consists of Two 
Equal Arcs. We will assume that a hole is made in an infinite isotropic 
elastic plane. The contour of this hole consists of two equal arcs (Figure 
11.79). We will determine the stress state around this hole under the condi- 
tion that its contour is free of external forces, while the stress state at 
infinity is bi- or uniaxial tension. 

Figure 11.79. 

Figure 11.79, a shows that when X > 1, we have two nonintersecting circu- 
lar holes, and when h = 1, the contour of the hole consists of two equal 
intersecting circles. When X = 0, the hole consists of two equal semicircles, 
i.e., of one circle of radius R. For holes shown in Figure 11.79, b, X < . 0, 
and for A = -1, the hole is reduced to a slit of length 2a on the Oy axis. 



If XR and R are known, then for the coordinate lines of the bipolar 
coordinates q = d and q = -a, coinciding with the contour of the hole, we may 
write XR = a cot a, a = R sin a or 

a = arccos I., a = J/ 1 - h.2. 

The relationship between the Cartesian and bipolar coordinates is described 
by formulas (11.141). From Figure 11.79, a, we find the relationship between 
5 (on the line q = a = const) and angle 8:  - /137 

1 +acoso c h t  = k + cos 8 

For the function F(S, q) = H(S, q)U(S, r,) we have 
00 

F (f, 7) = 4apK [ [n  ch n ( a  - q) sin q + sh n ( a  - q) cos q] sh na cos n t  
n (n2 + I )  (sh 2na + n sin 2a) dn - 

0 

- 4opK sin a [ n ch nq sin ( a  - q) + sh nq cos (a - q) 
(n" 1 )  (sh 2na f n sin 2u) cos nEdn f 

b 

;t 2ap J n ch nq sin ( a  - q) sin a - ch na sh n ( a  - q) sin q 
sh 2na + n sin2a cos nEdn, 

0 

where K is found from the expression 

We know from the two signs (upper and lower) in (11.173) and' (I1 :174) that 
we take only the upper sign for tension along the Ox axis, and the lower sign 
for tension along the Oy axis. The value 6 in (11.174) will also have two 
values, depending on the conditions in the infinitely remote parts of the plate: 
for tension of the plate along the Oy axis, 6 = 0, but along the Ox axis, 6 = 1. 
The function H(c, q) = (l/a) (ch 5 - cos q), and U(<, n )  is the stress function 
in bipolar coordinates. By knowing the function F(S, r,) (II.173), we can deter- 
mine the stress components 05,  oq and T from formulas (II.163), in which it Sr, 
is necessary to assume that y = 0. The formula for stresses along the contour 
of the hole is very important: 

OD 

S 2f( T n ( n  -wt ;I cth n a )  crt= 4p(chj-cosa) sina 
sh 2na + n sin 2a sh na cos nSdn, (11.175) 

0 

where K is defined by formula (11.174), and the double signs have the same 
meaning as before. 



The stresses a on the contour of the hole under biaxial tension for 5 
X > 0, i.e., for a < 7r/2 (see Figure II.79,a), will be greatest at the points 
A.  For A < 0, i.e., for a >7y'2 (see Figure II.79,b), stresses a at the points 

t; 
0 and O1 are converted to infinity. When the tension is directed along the 

2 
Ox axis for A > 0, the greatest stresses a will occur at the points located 5 
very close to point B, but for A < 0, the stresses a at the points O2 and O1 5 
are converted to infinity. In the case of tension along the Oy axis, both 
for A > 0 and for X < 0, the greatest stresses a will occur at the point A.  5 / 138 - 

The stresses aE computed by formulas (11.174) and (11.175) by C. B. Ling 

[Z] for three cases: universal tension of plate, tension along the Ox axis, and 
tension along the Oy axis, are presented in Table 11.31. 

'TABLE 11.31 

Biaxial ten- 

'> 

Tens ion 
along Ox axis 

oE/p 
at points B 

Tens i on 
along Oy axis 

O~/P 
at points A 

Comments 

Two circles in 
contact 
One circular 
hole 

Slit on Ox 
axis of length 
2a 

The stress-strain diagrams of the stresses, 
constructed from the data in Tables 11.30 and 
11.31, are shown in Figure 11.80: curve 1 repre- 
sents 0 /p at points A (see Figure 11.79) when 

3 
5 

the plate is under biaxial tension, curve 2 
represents a /p at points B for tension along the 

2 
5 

Ox axis, and curve 3 represents 0 /p at point A 5 
I 

for tension along the Oy axis. The shapes of the 
- I  o I t A holes corresponding to the indicated value of X 

are shown at the top of the figure. Pure deflec- 

Figure 11.80. tion of a plate weakened by a hole, the contour 



of which consists of two equal arcs, was examined by N. A .  Savruk [2] and 
B. Karunes [l] . 
58. Stresses i n  Elastic Plane Weakened by Identical Round Holes 

We will assume that an elastic medium occupies plane xOy, weakened by 
identical round holes, the distances between the centers of which are also 
identical. External forces Xn and Yn, which are statistically equivalent to 

zero on each contour, are applied to the contours of the holes. These condi- 
tions may vary on the different contours. 

The problems related to the determination of the stress state of such a 
medium have been examined by many researchers. 

In examining a medium with two round holes, C. B. Ling [l] used bipolar 
coordinates. 

For holes located close to each other, where the holes have the greatest /I39 
effect on the stress state of the medium near each of them, it is more conven- 
ient to use the theory of functions of complex variable. The solution of the 
given problem was found by D. I. Sherman [l, 51 as the solution of an infinite 
system of algebraic equations, which system is quasiregular for all distances 
between the holes. D. I. Sherman also used this method [2-81 for the solution 
of other problems related to the examination of multiply-connected regions. 

Particularly noteworthy is A.  S. Kosmod,mianskiyls method [3, 51, who used 
the basic idea of the Bubnov-Galerkin method, which makes it possible to solve 
effectively many practically important problems rather easily. 

Let an elastic medium be weakened 
by n holes, the centers of which lie 

- on a single straight line that coin- 
X cides with the x axis (Figure 11.81). 

-I-L-I--J The radius of the hole is r = 1, which 
r Y does not contradict the generality of 

the examined problem. The distances 
Figure 11.81. between the centers of the holes are 

denoted through I .  We will assume1 
that the elastic plane, at infinity, is loaded in such a way that Airy's stress 
function for a solid plate can be represented in the form of a whole polynomial 
with respect to variables x and y. 

The problem of the stress state in a plane weakened by holes is reduced to 
the determination of functions +l(z) and %(z) from boundary conditions (1.9) 

in the case of the first basic problem, and from conditions (1.10) in the case 
of the second basic problem. Here it is essential that the above conditions be 
satisfied on the contours of all holes. 

 h he solutions of the problems presented in 58 and 9 are found by A. S. Kosmo- 
damianskiy [l-71. 



We will introduce the function 

This function will be invariant during translation of the origin of the 
coordinate system along the x axis just as is the function $(z) = +l(z). 

Now boundary condition (1.9) can be represented in the form 

The functions that are holomorphic in the examined region are 

Here and 6:) are arbitrary constants which should be determined from 
m 

boundary condition (11.177). 

The functions $ ( z )  and q(z) will be found in the N-th approximation in the 
f o m  

n-l N n-l N+2 
,,fk) 

m ~2' 
(2 )  = )'-Y7, (*- kl)rn +'""yy(= 

R 4  m=l k=O m=1 

Let us examine the contour with the number v(v = 0, 1, ..., n - 1) and 
substitute expressions (11.179) in the boundary condition on this contour. We 

will require t h a t  t h e  function F(o)  = F ( r ,  F), where o = e ,  a point on the 1 
contour of the V-th hole, is orthogonal to the first N + 4 functions of the 

+k total system of functions a- (k = 0 1 2, . In this case, for the deter- 

mination of the factors a:) and B:), we obtain the equations 



After integration, we find from (11.180) the llfinal" algebraic equation 

system in which the factors a:) and 8;) are expressed through the factors 

and 6;) (k # v) .  By carrying out the analogous operation on each con- 
m 
tour, we find the algebraic equation system for the determination of all 

constants and 6:). By knowing these constants, we find from formulas 
m 

(II.179), the functions @ ( z )  and $ ( z ) ,  through which the desired stresses are 
expressed: 

Here oo oo TO are stresses in a solid elastic plate under the given forces x '  y' xy 
at infinity. 

Two I d e n t i c a l  Round Holes. Let us arrange the coordinate system as shown 
in Figure 11.82. The distance between the centers of the holes is assumed to 
be 21. We will assume that at infinity the tension forces p along the line of /141 - 
the centers of the hole and the force q, transverse to the line of the centers1, 
are known. 

In the N-th approximation 

In view of the geometric and force symmetry, we will be required in the given 
case to satisfy equations (11.180) only on the right hand2 contour y. In the 
expanded form, equation (11.180) on contour y is written as follows: 

Here a = z - 2 is a point on contour y. 

lother cases of loading are investigated by A.  S. Kosmodamianskiy and V. N. 
Lozhkin [l] and A. S. Kosmodamianskiy [14]. 
2 ~ h e  boundary conditions will be satisfied automatically on the left hand con- 
tour. 



l f l l l l l t ~  In the first approximation (N = 1) the system 
for the determination of the desired constants 4 and 

4 Y 8 ,  will be found in the form 

p2 = - ale3; flg3 = a1 ( 1  + e4). 
Fi gure 11.82. 

In the second approximation (N = 2), 

In systems (11.184) and (11.185) E = 1/22. 

The results of the calculations of factors 4 and f3 for the various k /I42 - 
distances between the holes are presented in Table 11.32. The factors 4 and 
Bk in this table are given with an accuracy up to the factor p, while c$ and 

B i  are given with an accuracy up to the factor q. 

The stresses and a at points 0, A, B and C (see Figure 11.82) of the 
Y 

real axis are presented in Table 11.33. 

Stresses og on the contour of the right-hand hole are 

In the fourth approximation, 



TABLE 11.32 

1 Con- 
e lstant 

l 

First approximation 
k 

l j 2 1;- 

- 
Second approximation - 

k 

1 1 2 1 3 1 4  

Tr. Note: Commas indicate decimal points. 

TABLE 1 1 . 3 3  

Second ADDIO- . . 
I!( j t i 3  I 2 iS  

Tr. Note: Commas indicate decimal points. 



Stresses ae in the fourth approximation are presented in Table 11.34. 

These results differ little from the (practically accurate) results of D. I. 
Sherman [5]. For comparison, the results of D. I. Sherman for the very same 
points on the real axis as found in Table 11.33, are presented in Table 11.35. 

TABLE 11.34 

T r .  Note: Cormas indicate decimal points. 

TABLE 11.35. 

T r .  Note: Commas 4ndicate decimal points. 

The graphs characterizing the distribution of stresses between the holes 
and near the right-hand hole, constructed on the basis of the data presented in 
these tables, are shown in Figure 11.83. These graphs pertain to the case 
where E = 0.4, i.e., when the distance between the holes is one half the radius 
of one of them. 

To achieve.great accuracy, it is necessary, when using the Bubnov-Galerkin 
method, to increase the number of approximations. Then, naturally, the number 
of equations in system (11.185) is also increased. 



To determine the desired constants % and Bk, it is also easy to obtain 
an infinite equation system1 : 

where 

= Bh f- kak - (k - 2) ak2, 

@ k ' t k = q , = O  ( k > 2 ) ,  q e  9f 
rl (r- q)! . 

System (11.188) is written in explicit 
form, which makes it possible to establish 
quite easily that it is always quasiregular as 
long as the given holes are not too close to 
each other2. To prove this fact it is 
necessary to add up in the infinite sums the 
factors of.the unknown % and B* taken with k 
respect to absolute value, and to establish 

Figure 1 1 . 8 3 .  that as the number k increases, the sum of 
these factors approaches zero. The expressions 

for the sum of the above factors in the first and second equations (11.188) are: 

Here 

'v. N. Lozhkin [I] studied the case where the holes are reinforced by absolutely 
rigid rings, by this method. 
'see A.  S. Kosmodamianskiy [ l o ] .  



The value E = 1/22 in expressions (11.190) is always less than 1/2, and 
therefore the values Aik and A will approach zero when k + m. 

2k. 
It should be noted that if, in system (11.188), we exclude the factors 

BE, it can be reduced to D. I. Sherman's known system [ 5 ] .  

Three Identical Round Holes. We will place the coordinate system as 
shown in Figure 11.84. The distances between the centers of the holes are 2. 
The loading at infinity is assumed to be the same as in the preceding case. 

Figure  11.84. 

Considering geometrical and force symmetry, the functions $(z) and +(z) 
are written in the form 

From the boundary conditions on the middle and right hand contours of the 
holes (on the left hand contours they are automatically satisfied), we obtain 
the following system for the determination of the factors $, f3:, and Q: 

OJ 
0 2 k+l k f v  k - ( I + (- I)'+ 'IC (- 1)'' {va;ekfv (c:+~ - e ~ k ~ ~ + ~ )  - e c ~ + ~ - , & )  = a,, 

v-1 



Here 

0 0 By summing i n  t h e  i n f i n i t e  sums, t h e  f a c t o r s  of  a,', %, 81; and Bk, we 
o b t a i n  

Expressions (11.194) have t h e  same s t r u c t u r e  a s  (11.190).  They i n d i c a t e  
t h a t  system (11.192) i s  quas i r egu la r  f o r  any d i s t a n c e  between t h e  ho le s .  S t r e s s  
d i s t r i b u t i o n  near  t h e  contours  o f  t h e  ho le s  and between the  contours  i s  found 
he re  i n  t h e  same manner a s  during t h e  a n a l y s i s  of a  medium with two round 
holes .  However, s t r e s s  concent ra t ion  i s  found t o  be somewhat d i f f e r e n t ,  a s  
seen from t h e  maximum s t r e s s e s  presented  below, which occur  i n  an e l a s t i c  
medium with t h r e e  ho le s  when t h e  medium is  under t ens ion ,  both along t h e  l i n e s  
of t h e  c e n t e r s  (p # 0,  q = 0) and t r a n s v e r s e  t o  t h e  l i n e s  of t h e  c e n t e r s  (p = 0, /147 
q # 0 ) :  

- 



These s t r e s s e s  a r e  r e l a t e d  t o  p o i n t s  B and A,  r e s p e c t i v e l y  (Figure II.84), of 
t h e  contour of  t h e  inne r  hole .  

I n f i n i t e  Row o f  Identical 
Round Holes. Assume t h a t  we 

P have an e l a s t i c  p lane  with an 
C- 

= o o  5-  i n f i n i t e  row of  equal round 

---C 
holes ' ,  where a t  i n f i n i t y ,  t en-  

L- - s i o n  i s  appl ied  i n  two d i r e c -  

- 1 i I 1 1 1 1 l 9  t i o n s 2 .  The o r i g i n  of t h e  
coord ina te  system i s  placed a t  
t h e  c e n t e r  of  one of t h e  ho le s ,  

Figure  11.85. which we w i l l  c a l l  t h e  b a s i c  
and t h e  x  a x i s  i s  placed on t h e  

c e n t e r  l i n e  of t h e  holes  (Figure 11.85). The d i s t ances  between t h e  cen te r s  of  
t h e  holes  a r e  equal t o  I .  

In t h e  N-th approximation, t h e  func t ions  a r e  

Due t o  t h e  p e r i o d i c i t y  of t h e  given problem, t h e  f a c t o r s  ak and Bk a r e  

found from t h e  boundary condi t ions  on t h e  contour  of  t he  b a s i c  ho le .  They w i l l  
be s a t i s f i e d  au tomat ica l ly  on t h e  o the r  contours .  

In  t h e  f i r s t  approximation (N = I ) ,  t h e  system f o r  t h e  de te rmina t ion  of / I48  
t h e  c o e f f i c i e n t s  % and f3 w i l l  be found i n  t h e  form k 

 his problem was examined somewhat d i f f e r e n t l y  by R .  C .  J .  Howland [ 2 ] .  
 he case where t h e  holes  a r e  r e in fo rced  by e l a s t i c  r i n g s ,  o r  a r e  f i l l e d  with 
e l a s t i c  n u c l e i ,  i s  d i scussed  by A. S .  Kosmodamianskiy [13] .  



where 

In the second approximation (N = 2 ) ,  

P-9 a, ( 1  t 4e2P12) + 6ase4P32 = - - h2e1 ( p  4- q), 2 

2 a , ~ ~ P 3 ~  -!- a ,  (1 j- 4e6Qa2) -- - A4e4 ( p  + q), 

+ a1 (1 - 4 h z e ~  + 12as;*rc4, 
$ 1 = - 3 - -  

Here 

As will be pointed out below, the second approximation insures results 
that are close to accurate, if the distances between the holes are greater than 
or equal to one half the radius of one of the holes. 

In examining a medium with holes that are located closer together, it is 
necessary to use the following approximations by obtaining, for the determina- 
tion of constants % and Bk, an abbreviated system from the following infinite 
system: 00 

m k+m 
ak + C (- 1) e {am ~ e % + ~ + z  ((k + 2)  c&%+I + 

rn- 1 



Here A '  = k 
2Ak. 

System (II .200),  a s  were the  i n f i n i t e  systems (11.188) and (11.192) 
examined e a r l i e r ,  i s  quas i regular  f o r  any d i s t ance  between the  holes  . 

The charac ter  of s t r e s s  d i s t r i b u t i o n  i n  the  e l a s t i c  plane with an i n f i n i t e  
number of i d e n t i c a l  round holes ,  between the  holes and near  them, i s  the  same 
as  i n  p l a t e s  with two and th ree  holes .  Therefore, only the  maximum s t r e s s e s  
t h a t  occur near  t h e  bas ic  hole a r e  presented i n  Table 11.36. 

TABLE 1 1 . 3 6  
- - 

T r .  Note: Commas indica te  decimal points .  

1/2,2 
112.5 
I J3  
114 

Concluding Comments. By comparing the  r e s u l t s  obtained f o r  planes with 
two, th ree ,  and an i n f i n i t e  row of round holes ,  i t  i s  poss ib le  t o  determine 
the  e f f e c t  of  the  number of  holes and the  d is tance  between them on s t r e s s  
concentrat ion.  

Figure 11.86. Figure 11.87. 

("a'p)0=n/2 for various 1 (adq),,o for various 

Figures 11.86 and 11.87 represent  t h e  graphs t h a t  cha rac te r i ze  the  change 
of t h e  maximum s t r e s s  ag on t h e  contour of one of t h e  holes a s  the  d i s t ance  

between the  holes changes, where, a t  i n f i n i t y ,  tens ion forces  a c t  along and 
t ransverse  t o  the  c e n t r a l  l ine :  t h e  dot-dash l i n e s  correspond t o  a  plane 

- approximations 
I I I1 I 111 

' see A.  S. Kosmodamianskiy [ l o ] .  

159 

- approximations 
I ( 11 1 I11 

1.45 
1.52 
1.70 
2.09 

11.15 
5,71 
3.93 
3,24 

8,69 
5,47 
4,03 
3.33 

1,76 
1,85 
1,96 
2.15 

10,39 
5,64 
3.95 
3.26 

1,75 
1,81 
1.92 
2.14 

I 



weakened by two h o l e s ;  t h e  s o l i d  l i n e s  correspond t o  t h r e e  (a i s  examined on 8 
t h e  i nne r  h o l e s ) ;  t h e  broken l i n e s  r ep re sen t  p lanes  with an i n f i n i t e  row of 
equal ho les .  The curves on these  graphs show t h a t  t h e  holes  have a  consider-  
ab l e  e f f e c t  on each o t h e r  when t h e  d i s t a n c e  between them i s  l e s s  than  t h e  
diameter  of one of them. When an e l a s t i c  p lane  i s  under t ens ion  along t h e  - /150 
c e n t e r  l i n e  of  t h e  ho le s  (Figure I I . 8 6 ) ,  t h e  s t r e s s  concent ra t ion  slowly 
diminishes a s  t h e  ho le s  become c l o s e r  t o  each o t h e r ,  whereupon t h e  degree of 
decrease  inc reases  a s  t h e  number of ho le s  i nc reases .  I f ,  on t h e  o t h e r  hand, 
t he  e l a s t i c  p lane  i s  under t ens ion  t r a n s v e r s e  t o  t h e  c e n t r a l  l i n e  of t h e  holes  
(Figure I I . 8 7 ) ,  t h e  oppos i te  p a t t e r n  occurs :  a s  t h e  ho le s  become c l o s e r  t o  
each o t h e r ,  t h e  s t r e s s  concent ra t ion  i n c r e a s e s ,  whereupon i t  inc reases  more 
r a p i d l y  a s  t h e  number of  ho les  i nc reases .  

59. S t r e s s e s  i n  an E l a s t i c  Plane Weakened by Two Unequal Holes. 

In ana lyz ing  t h e  s t r e s s  s t a t e  i n  an e l a s t i c  i s o t r o p i c  p lane  weakened by 
two unequal round ho le s ,  it i s  poss ib l e  t o  u se  b i p o l a r  coord ina tes ,  which 
method y i e l d s  an accu ra t e  s o l u t i o n  of t h e  s t a t e d  problem. Such solut . ions f o r  
va r ious  p a r t i a l  problems were found by Ya. S. Podstr igach [2, 31, M. A .  Savruk 
[ l -31 , Mori Kyohei [ l ]  and o t h e r s .  

D .  I .  Sherman [ S ] ,  i n  so lv ing  problems f o r  multiply-connected. reg ions ,  
used t h e  approximation method and reduced them t o  t h e  s o l u t i o n  of an i n f i n i t e  
a l g e b r a i c  system, t h e  equat ions  of which were quas i r egu la r  f o r  any d i s t ance  
between t h e  ho le s .  This  method was a l s o  used by D.  I .  Sherman [6] f o r   the^ 
problem where one of t h e  ho le s  i s  round and t h e  o t h e r  i s  e l l i p t i c .  Many 
i n t e r e s t i n g  problems have been analyzed by L. N.  K i s l e r  [ l ,  21, N .  P.  Moshkin 
[ l ,  21 and o t h e r s ,  by D .  I .  Sherman's method. 

I f  unequal ho les  a r e  l oca t ed  c l o s e  t o  each o t h e r ,  t h e  s o l u t i o n  of t h e  pro-  
blem of t h e  s t r e s s  s t a t e  f o r  such a multiply-connected region poses cons iderable  
d i f f i c u l t i e s .  However, a s  A .  S. Kosmodamianskiy poin ted  out  [ Z ] ,  i n  t h e  case 
where t h e  d i s t a n c e  between t h e  ho le s  exceeds two diameters  of  t h e  small  ho le ,  
it i s  poss ib l e  t o  ob ta in  r a t h e r  simple r e s u l t s  by us ing  f o r  t h e  s o l u t i o n  of 
t h e  s t a t e d  problems, Schwartz metho6 o f  s e r i e s  approximations. 

Two Unequal Round Holes. Let an e l a s t i c  i s o t r o p i c  p l a t e  be weakened by 
two unequal round ho le s ,  t h e  c e n t e r s  of  which l i e  on a  s t r a i g h t  l i n e  co inc id ing  
with t h e  x a x i s  (Figure 11.88) .  The d i s t a n c e  between t h e  contours  of t h e  ho le s  
i s  S, and between t h e  c e n t e r s ,  2 .  The r a d i i  of t h e  small  and l a r g e  ho le s  a r e  
r = 1 and R ( R  > 1 ) .  The contour of  t h e  l a r g e  ho le  i s  denoted through L1, and 

of  t h e  small  ho le ,  through L A t  i n f i n i t y ,  t ens ion  fo rces  p and q a r e  given 
0 ' 

as ind ica t ed  i n  Figure 11.88. 

The approximate s o l u t i o n  of t h i s  problem i n  t h e  f i r s t  approximation, us ing  
Schwartz method, was found by A .  S. Kosmodamianskiy [ 2 ] .  The Schwartz method 
f o r  t h e  s o l u t i o n  of  t h e  given problem c o n s i s t s  i n  t h e  f a c t  t h a t  t h e  s o l u t i o n  
f o r  t h e  i n f i n i t e  p lane  with one l a r g e  round ho le  i s  f i r s t  found by t h e  known / I51  - 
method of  N .  I .  Muskhel ishvi l i  (see 51,Chapter I ) .  This  s o l u t i o n  y i e l d s  



non-zero va lues  and on t h e  contour  of t h e  small  ho le .  Fur ther ,  by t h e  n n 
same method, t h e  s o l u t i o n  f o r  an i n f i n i t e  p l a t e  with one small  ho le ,  upon t h e  
contour  of  which a r e  appl ied  ex te rna l  forces  (-X ) and (-Y ) ,  i s  found. The n n 
determinat ion of  t hese  two s t r e s s  f i e l d s  a l s o  y i e l d s  t h e  des i r ed  s o l u t i o n  of  
t h e  problem i n  t h e  f i r s t  approximation1. 

Figure 11.88. 

For a p l a t e  under t ens ion  by f o r c e s  q t r a n s v e r s e  t o  t h e  c e n t r a l  l i n e ,  i . e . ,  
when q # 0 and p = 0,  t h e  s t r e s s e s  nea r  t h e  ho le s  a r e  found from t h e  fol lowing 
equat ions :  

I n v e s t i g a t i o n  o f  t h e  s t r e s s  s t a t e  i n  a p lane  weakened by two unequal ho le s  
has  shown t h a t  s t r e s s e s  oe, t h a t  a c t  on t h e  contour  o f  t h e  small  ho le  Lo a r e  /I52 - 
most important.  A s  concerns s t r e s s  d i s t r i b u t i o n  i n  t h e  plane nea r  t h e  l a rge  
ho le ,  i t  i s  found i n  about t h e  same way a s  i n  a medium with one ho le  (a small 
ho le  has  l i t t l e  e f f e c t  on t h e  s t r e s s  s t a t e  of  t h e  medium nea r  a l a r g e  h o l e ) .  

' I t  i s  easy t o  s e e  t h a t  i n  t h i s  manner t h e  condi t ions  a t  i n f i n i t y  and t h e  boun- 
dary condi t ions  a r e  s a t i s f i e d  only  on t h e  contour  of t h e  small  round h o l e  Lo. 
Obviously, dev ia t ion  i n  t h e  va lues  of Xn and Yn from zero on contour L1 w i l l  
show t h e  degree of  approximation o f  t h e  s o l u t i o n  found. 



The stresses for the points of contour L are 
0 

where 

The stresses at the points A(8 = 0), B(8 =  IT/^) and C(O = IT) (see 
Figure 11.88) are 

( ~ , ) ~ = o =  2q [1.5-R%* (2e L3c'+4e3+ 58') + 3Rie4 (1 -t 4e-t 10e2-+ 20e'i-35~4)],  

(ao) n = 29 I- 0.5 -i- P c 2  (2 - 15c2 f 45.9) - 3R4c4 (I - 10eZ + 35e4)], '= -2- 

(11.203) 

Here 

Formulas (11.203) are found by keeping the first three components in the 
expansions of (11.202) into a series for the small parameter E .  

For a plate under tension (Figure 11.89) along the center line of the 
holes (q = 0, p # 0): 

At the points of contour Lo (Figure II.88), 



By expanding og (11.205) i n t o  a s e r i e s  f o r  the  small parameter E and /153 

maintaining the  same accuracy a s  before,  we f ind  s t r e s s e s  oe a t  the  po in t s  A, 
B and C: 

I t  should be mentioned t h a t  i n  the  case of universa l  s t r e s s  (p = q ) ,  t he  
formula f o r  the  determination of the  s t r e s s e s  a t  the  po in t s  of contour Lo i s  
found t o  be much simpler: 

The s t r e s s e s  a t  the  po in t s  A, B and C (see Figure 11.88) a r e  

Figure 11.89, F i g u r e  11.90. 



The s t r e s s e s  a a t  t h e  p o i n t s  A, B and C f o r  t h e  case  of  un ive r sa l  t ens ion  /154 0 - 
(p = q )  a r e  presented i n  Tables 11.37 and 11.38) .  The values of  ae/q a t  t h e  

above t h r e e  p o i n t s  (see Figure 11.88) a r e  presented i n  Table 11.37 a s  func t ions  
of s/r ,  where t h e  r a d i u s  of  t h e  l a r g e  ho le  i s  20 times g r e a t e r  than  t h e  r ad ius  
of t h e  small  ho le .  The same va lues  of a /q a r e  presented  i n  Table 11.38 a s  

8  
func t ions  of  change ( inc rease )  of t h e  r a d i u s  of t h e  l a rge  ho le  R ,  where t h e  
d i s t a n c e  between t h e  ho le s  remains cons tan t  and equal t o  5 r .  

TABLE 11.37 

Tr. Note: Commas ind ica t e  decimal po in t s .  

TABLE 11.38 

Rlr 

1 3.00 / 3.78 
* i  1 ?:4: 1 ?::: 1 ?::: 1 1 0.46 1 -::::I -::::I -::g 
-1  2,06 2.20 2,36 3.38 4,19 4,63 5,49 

Tr. Note: Commas ind ica t e  decimal po in t s .  

The graphs c h a r a c t e r i z i n g  t h e  s t r e s s  d i s t r i b u t i o n  crO on t h e  contour  Lo and 

through c ros s  s e c t i o n  y  = 0 between t h e  ho le s  f o r  R / r  = 20 and s/r = 5 a r e  
presented  i n  Figures  11.89 and 11.90. The broken l i n e s  p e r t a i n  t o  a  medium 
weakened by one ho le  Lo, and a r e  given f o r  comparison. These graphs show t h e  

e f f e c t  o f  t h e  l a r g e  ho le  on t h e  s t r e s s  s t a t e  near  t h e  small ho le .  

E l l i p t i c  and Square Holes. Consider an e l a s t i c  i s o t r o p i c  p lane  weakened 
by two unequal c u r v i l i n e a r  ho le s ,  one of which i s  e l l i p t i c  and t h e  o t h e r  i s  
square with rounded co rne r s .  We w i l l  assume t h a t  t h e  l a r g e  a x i s  of t h e  
e l l i p t i c  ho le  i s  much l a r g e r  than  t h e  d i s t ance  between t h e  p o i n t s  o f  t h e  contour  
of t h e  square ho le  t h a t  a r e  f a r t h e s t  a p a r t .  We w i l l  assume t h a t  t h e  arrange-  
ment of  t h e  ho le s  i s  t h e  same a s  i l l u s t r a t e d  i n  Figure 11.91. The contour of 
t h e  e l l i p t i c  ho le  i s  denoted through Lo, and t h e  contour of  t h e  square ho le ,  

through L A t  i n f i n i t y ,  a s  be fo re ,  we w i l l  assume t h a t  t h e  e l a s t e i c  p l a t e  is  
1 ' 



under tension in two directions by forces p and q. In solving the stated 
problem by Schwartz approximation method, as was done above, we will confine 
ourselves to the first approximation1 . 

d b ~ ! ~ l ~ ~ ~ l ! l ~ i l d  - The functions that conformally map the exter- /I55 - ior of unit circle y on the exterior of the 
elliptic and square holes, respectively, are taken - in the form - - - 

b H t t t i W i m -  z - l =  R ( G  +-7). (I I. 209) 

Figure  11.91. 

Here R = a + b/2, m = a - b/a + b (a and b are the semi-axes of the ellipse), 
m = -1/9, and R is a constant that governs the dimensions of the square hole. 

3 1 

As in the problem with two unequal round holes, the most important stresses 
are those near the square hole L1. In the case of tension (Figure 11.91) 

transverse to the center line of the holes (q # 0, p = O), the stresses on the 
contour I, are 1 

a,,, = q - 2qR ( 1  + m) (J, + 2A,R, (cos 6 +. m3 cos 3 6 )  -+ 3A,R: [( 1 + 2m,) cos 2 6  + 
9 9 (11.211) 

f m~cos6.6]} -- :E1 ( A  EM, cos ha - B kMk sin k8] . 
R=l k=l 

where 

1 MI=  - 
1 - m S  ( - Rl + R ( 1 + m )  [ ~ A , R :  ( I + m, + 2m:) i Rl(B, - A,)]  j , 

M, = RR?(I 4- m)[B,  + 2A,(m3 - I)], 

MS = - Rlm3 + RR1 ( 1 f m) 12Alm3 + (B, - 3A3) R:I, 

Md = ZRRT (1 + m) A,m,, M, = SRR; ( 1 + m )  ( 1 + m,) m,A3, 

M, = RR: (1 + rn) A,mi. M, = M, = 0, Mg == R R ; A , ~ ; ( ~  + m), 

d - cos 2) - 3m3 cos 36, B = sin 6 +  3m3 sin 3 6 ,  '- C" = A2 4- B2, 

 he solution of the problem is given by A.  S. Kosmodamianskiy [9]. 



I f ,  however, t h e  e l a s t i c  p lane  i s  under t ens ion  along t h e  c e n t e r  l i n e  
(P # 0,  q = 01, t hen  

c,, = P -t 2pR ( 1  - m)  { A ,  t 2A,R, (cos0 -t. m3 cos 30) + 
+ 3A3R: [( 1 -+ 2m3) cos 26 -+ mi cos 613) - 

where 

' Here 

M ; =  - - R R : ( ~  - m ) [ 2 ~ , ( m , - 1 ) - B ; ] ,  

M; = - Rim, - R ( 1  - m )  [2A,rn3 - R: (B; + 3A3)] R,, 

Mf = - 2RR:nl3~,  ( 1  - rn), 

M;  = - ~ R R ? ~ , A , ( I  - m ) ( l  + m,), 

M: = - R R ; ~ : A ,  ( I  - m), 

M; = M; = 0, 

M; = - R R : ~ ~ A , ( ~  - m). 



S t r e s s e s  a g  on t h e  contour  of  t he  square hole  a r e  represented  i n  Figure 

11.92 f o r  t h e  case  where a /b  = 20, R/b - 10.5, m = 19/21, Rl/b = 1.125, m3 = 

= -1/9, Z/b = 26. A s  be fo re ,  t h e  broken l i n e s  denote a g  f o r  t h e  c a s e  where 

t h e  plane i s  weakened by only one square hole .  

Concluding Comments. The above ana lyses  
i ? t ! ! ! ! ! \ ! ! !  show t h a t  i n  an e l a s t i c  p lane  weakened by 

two unequal ho le s ,  t h e  small  ho le  has  l i t t l e  
e f f e c t  on t h e  s t r e s s  s t a t e  near  t h e  l a r g e  
ho le .  The l a t t e r  can have a cons iderable  
e f f e c t  on t h e  s t r e s s  s t a t e  near  t h e  small  
h o l e  i f  t h e  d i s t a n c e  between t h e  ho le s  i s  
l e s s  than  h a l f  t h e  diameter  of  t h e  l a r g e  
hole .  

When t h e  p l a t e  i s  under t ens ion  t r a n s -  
v e r s e  t o  t h e  c e n t e r  l i n e  (Figure I I . 9 2 ) ,  t h e  
s t r e s s  concent ra t ion  nea r  t h e  small  ho le  
i nc reases  sharp ly .  When t h e  p lane  i s  under 
t ens ion  along t h e  c e n t e r  l i n e  i n  t h e  case  o f  
two round holes  (Figure I I . 8 9 ) ,  t h e  s t r e s s  
concent ra t ion  nea r  t h e  small  ho le  decreases  
sha rp ly ;  however, i n  t h e  case  where t h e  l a r g e  

Figure 1 1 . 9 2 .  

- 
hole- is  e l l i p t i c ,  t h e  s t r e s s  s t a t e  of t h e  
medium nea r  t h e  small  ho le  changes i n s i g n i f i -  
c a n t l y  i n  comparison wi th  t h e  case  where t h e  
p lane  i s  weakened by one small  ho le .  

The s t r e s s  s t a t e  i n  an i n f i n i t e  p l a t e  weakened by two equal  round ho le s  
under d i f f e r e n t  condi t ions  a t  i n f i n i t y  and on t h e  contour  o f  t h e  h o l e  has  been 
examined i n  t h e  works of  V. V. Matviyenko [ I ] ,  N.  N.  Penin [ I ] ,  M.  A .  Savruk 
[ I ] ,  A .  Atsumi [ l -31 ,  Miyao Kadzyu [ l ,  21, A. M. Sen Gupta [2] ,  Z .  Khokao [ I ] ,  

V.  V. Yeganyan El]. The s t r e s s  s t a t e  i n  an i n f i n i t e  p l a t e  weakened by two 
unequal round ho le s  has  been analyzed by V.  M. Zabludovskiy [ I ] ,  Ya. S. Pods t r i -  
gach [2 ,  31, M. A .  Savruk [2-51, M. Z. Narodetskiy [ l -31 ,  A.  S. Lokshin [2 ] ,  
G. A. Davies, I .  R. Hoddinott [ I ] ,  J. N.  Sckhri  [ I ] ,  and Yu. A.  Ustinov [l]. 
The s t r e s s  s t a t e  i n  a p l a t e  with s e v e r a l  round h o l e s  i s  analyzed i n  t h e  works 
of  V. N. Buyvol [ l ,  21, I s i d a  Makoto [l, 21, H.  Kraus [ I ] ,  Okabayasi [ I ] ,  
M. Z .  Narodetskiy [5], P e t e r  P. Radkowski [ I ] ,  S a i t o  Hideo [I],  Tan-Li-Min 
[ l ,  21, S a i t o  [ l] ,  i n  t h e  monograph by L. E.  Hulbert  [ I ] ,  and L .  E .  Hulbert ,  
F .  W.  Niedenfuhr [I!. An i n f i n i t e  p l a t e ,  under t ens ion ,  conta in ing  an i n f i n i t e  / I58 - 
number of  e l l i p t i c  ho le s ,  was analyzed by N i s i t a n i  Hironobu [ l ,  21. The prob- 
lem of  s t r e s s  concent ra t ion  i n  a p l a t e  under t ens ion ,  weakened by s e v e r a l  
r ec t angu la r  ho le s ,  was analyzed by S. K.  Roy [I] .  



$10. Stresses in Elastic Plate Weakened by Curvilinear Holes 

Infinite Row of Identical Curvilinear ~oles'. We will assume that an 
elastic medium occupies plane Oxy, in which there is an infinite row of congru- 
ent notches of arbitrary shape2, arranged such that each sequential notch is 
made by translating the preceding by ZIT along the Ox axis. External forces 
X and Yn, statistically equivalent to zero on each contour, and which are 
n 
equal at the corresponding points, are applied to the contour of each of the 
notches. We will place the origin of the coordinate system within one of the 
contours and mentally break the entire Oxy plane into an infinite row of bands 
of width  IT by straight lines y = -3n, y = -IT; y = -T, y = n; y = T, y = 3~r ,  
etc., considering that each notch lies completely within the corresponding 
band. The stress components and deformation components will be periodic func- 
tions with period ZIT. It is therefore sufficient to examine them in the band 
T Re z +T with the given notch 3. 

Thus, the solution of the stated problem has been reduced to the determi- 
nation of the stress and deformation components in the band with the given 
hole, along the contour Z of which are given external forces X and Y . n n 
Through S we will denote the region bounded by straight lines y = -n ,  y = r 
and contour Z of the notch, and through S*, the region within 2. 

The solution of the plane problem of elasticity theory for the given 
external forces Xn and Yn on the contour reduces to the determination of two 

analytical functions of complex variable $(z) and $(z), which satisfy contour 
conditions (1.9) : 

where C is an arbitrary complex constant. 

The stress components ax, a and T and deformation components u and v 
Y x Y 

are defined by the functions $(z)  and $(z) from formulas (I. 10) and (I. 13) : 

-- -- 

'see G. N. Savin [6]; the same problem has been solved by somewhat different 
methods by D. I. Sherman [7, 81, I. I. Vorovich and A. S. Kosmodamianskiy [I], 
and A. S. Kosmodamianskiy [7, 81 . 
2 ~ h e  case of round holes in the uniaxial homogeneous stress state at infinity 
was examined by R. C. J. Howland [Z]; the basic results of this article are 
presented in the monograph of G. N. Savin [13] .  
3This problem has a unique solution under conditions that the stress components 
ox, uy, T ~ ~ ,  for y -+ m, uniformly approach zero, while the deformation compo- 

nents u, v, are finite values. 



0, - ox + 2ir, = 2 i'rp' (2) + 0' (41, 
- - 

2p (u f iu) = r.9 ( I )  - zcp' (2) - 9 (2). 

Since the left hand sides of equations (11.218) and (I1.219), as follows 
from the statement itself of the problem, are periodic functions of period 27r, 
then the functions $(z) and $(z) must have the form 

rp (2) = rp, ( 4 ,  $(z) = $, (2) - zv;, (2 )  

where @o(z) and $o(z) are periodic functions of period Zn. 

Contour condition (11.217) and formulas for stresses and deformations 
(11.218) and (11.219) in functions $(I) and qO(z) will have the form 

Functions $ (z) and $ (z) are defined' with an accuracy up to expression 
0 0 

where C* is an arbitrary complex constant. 
1 

We will map out the band - T <  Re z < +.rr on the plane with the notch on the 
negative part of the real Ox axis using the function 

i z w = e  . (11.225) 

The contour of the hole is transformed into some closed contour L which 
does not contain coordinates within it. Through C, we will denote the infinite 
regionkbeyond contour L of the notch, and through C*, the region within L. 

The functions Fl(w) = 40(-i in w) and Fw(w) = bo(-i in w) are holomorphic 

in the domain of C and satisfy, on contour L, the condition 

 his is clear from the theorem of identity and from the periodicity of the 
given functions. 



To determine the functions Fl(w) and F2(w), we will use N. I. hluskhelish- 

vili ' s method for reducing the problem to functional equations ' . We will 
multiply both halves of equation (11.226) by 1/2 i dw/w - we, where we is a 
point of domain I*, and we will integrate with respect to contour L in the - 1160 
positive direction relative to domain : 

As w + w in (II.227), where wo is some point on contour L, by combining 
e 0 

(11.227) with equations 

- 
. w, (ln w,., + In we) . - wo (lGo ; ln q) J' F; (w) 

2 Fi (WO) + 27i dt4) - 0, 
L. W - w e  

we obtain, after simple transformations: 

10- w, Fl(w,) - &j F l  ( z )d  (ln -) + 
w-10, 

where Aie) - iAie) + is the boundary of the right hand side of equation 

(11.227) as the point we approaches point w on contour L outside of it. Equa- 0 
tion (11,229) represents Fredholm's integral equation of the second kind with a 
regular kernel. Generally speaking, however, it is not solvable, since the 
homogeneous equation corresponding to (11.229) has a nontrivial solution. We 

'see 51, Chapter I. 
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will alter somewhat our equation (11.229) by adding to its left hand side the 
operator1 

where b is some point within C*. 

And so, the equation that solves the problem stated by us will have the 
form 

1 - w-w,, 
Fl (zu) - F~ (w)d (1n-j 4- 

I w-wo 
L 

Analysis of equation (11.231) can be carried out in the same manner2. We /I61 - 
will assume that there exists a solution of equations (11,231); if we introduce 
into our analysis the functions 

and 

we arrive at the equation 

The functions Q(w) and Y (w) , as follows from (11.232) and (II.233), are holo- 
morphic in domain C* . 

Equation (11.234) in variable z has the form 

'see D '  I. Sherman [8, 111. 
2 ~ e e  N. I. Muskhelishvili [I]. 



+ ( z  - ;) F' (2) - G ( z )  + t ~ e  {F' ( a ) !  = 0,  

where 

By multiplying both sides of equation (11.235) by dz and integrating with 
respect to contour L, we obtain 

Re {F1(a)J = 0. 
(11.236) 

whence 

Introducing the definitions 

F ( z ) = i F * ( z ) ,  G ( z ) - z F ' ( z ) = i H * ,  

we represent equation (11.237) in the form 

Equation (11.238) corresponds to the contour problem of the theory of 
elasticity with zero external forces on the contour. According to the theorem 
of identity1 of the functions 

where C is a real constant; C is complex. Consequently, 1 2 

From (11.236) and (II.240), C1 is identically equal to zero, i.e., - /I62 

- 
F (2) = iC,, G (2) = - iC,. 

From equations (II.232), (11.233) and (11.241) 

- - 

'see N. I. Muskhelishvili [I], p. 118. 



yqwe)=  - L J ~ ~ ~  2ni W-w, 
1 f w l n ( & )  

2ni w- wl F; (wW + 
L i 

By introducing a new function F* = F + iC and substituting it in equa- l l 2 
tions (II.242), we find that the function F* is holomorphic in domain C and 

1 
satisfies equation (II.227), in which the right hand side is changed to some 
constant value 2i-6 

2: 

It should be noted that the constant C is eliminated when F;(w) is restored 2 
with Cauchy's integral in domain C, such that it will not be necessary to solve 
it during the actual solution of the problem. 

In this manner, the solution of the stated problem for a hole of any 
shape can be found from the integral equation (II.231), which has a unique 
solution. This equation must first be replaced by a system of linear algebraic 
equations that is conveniently solved with the aid of a computer. 

lnf i n i  te Row of Equal Square ~oles'. Let an elastic isotropic plane, 
weakened by an infinite row of equal square holes with rounded corners, whose 
contour equations are given by the mapping functions w(<) (11.210) for p = 1. 
The centers of gravity of the examined holes are placed on the Ox axis at an 
equal distance Z from each other. The origin of the coordinate system Oxy is 
placed at the center of gravity of one of the holes (it can be any one of the 
holes), which we will call the basic hole. 

As in the preceding section, we will assume that the basic stress state of 
the elastic plane is homogeneous, i.e., 

'The solution of this problem is given by A .  S. Kosmodamianskiy [ 6 ] .  The case 
where the holes are reinforced with absolutely rigid rings is examined by 
V. A .  Shvetsov [I]. 



The mapping function of the exterior of the unit circle on the interior of the - /I63 
basic hole is written in the form of (11.210). 

Contour condition (11.221) for the given case is 

where t is the point on the contour L of the basic hole. 

The periodic functions $I ( 2 )  and J, ( 2 )  (with period 2) can be represented 
in the form1 0 0 

where 4( and B are constant coefficients, and the variable < is related to the 
k 

variable z by the relation 

The first sums in (11.246) represent functions that are holomorphic in 
the region outside the basic hole, and the second sums represent functions that 
are holomorphic within the basic hole. The latter can be expanded into 
converging series and a given (finite) number of terms can be retained within 
them. 

Such expansions are most conveniently performed for the small parameter 
E = 1/Z. If, in the above expansions, we retain the terms that contain 
multiples of E in powers not exceeding four, we obtain 

q~ (z )  = q* (5) - 2A2e2a,z - 2Apea (a,z9 + 3ag), 

9 ( z )  = $* ( 5 )  - 2h2e2$1z - 2&e4 (BIZ3 + 3891, 

'see S. G. Mikhlin [ S ]  . 
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where 

QD OD OD 

T* (t) = 2 . q* (6) = c 3 , A,, =-x n-'*. 
k-1 k=1 n=l 

Recalling the form o f  the  mapping function z = u(5) (11.210) and expan- 
s ion  (11.248),  the boundary condition (11.245) can be reduced t o  the  form 

o'(a)'- o (a) - 
cp*(o)+ - (P*'(a) + jqq == 

a' (a) - -- - P'+ 9 '- o (a) - 0 (0) + 4 0  (a) (alh2e2 f 3hra3e4) + 2 

- 
f 2he4al (0 (a)13 + 6ha1e4u (0) [o (a)12 + 2 0  (a) [A& (PI - a,) + (11.250) - /164 

- + 3i4eV(g3 - a,)] + 2he4 (pl - al) io (a)?. 

Hence, by the  method described i n  98, we f ind 

9* ( 6 )  = $ (q + al [m - 2 1 6  f 6A4e4 (1  +- m 2my] 4- 

The unknown c o e f f i c i e n t s  a l ,  a B1 and B3 are determined from the  fol lowing 3' 
algebraic  system o f  l inear  equations 

al [ 1 - m + 2h2e2 - 6hre" 1 + m + 2m2)] + 6a,h4e4 - 
P - 4  - 2fllA2e2 - 6$,h4e4 = 7 , 



By finding the functions @* (<) and $* (<) (II.251), from (11.248) we obtain the 
functions @(z) and $(z). The stress components a a and T are found from 
formulas (11.181) . x '  y' 

1 
x Y 

The stresses on the contour of the basic hole (the stresses will be the 
same on the contours of the othe? holes), are 

"-' +a; [m-2hf i2+6h4e4( l+rn+2ni2 ) ]+  a* = p + q -  7 

+ 2A,e2P, +- 6A4e4 ($, - a,)] ( A  cos 6 - B sin 6) + 
+ 3 [- rn + 2e2al (2hzm - 3h,e2) -+ 2h,e4 (8, -k 

(11.253) /I65 

-+ 6nta3) ( A  cos 30 -- B sin 36) + 30a,mh4~4 ( 1  L- m) ( A  cos 56 - B sin 56) $- I 
+ 18a1m3h4e4 ( A  cos 96 - B sin 96)  - 8e2 (&a, f 3h4e%t3) -t 

+ 3h,~?a, [ ( I  4- 2m) cos 28 i- m2 cos 6011 , 
I 

where 

A = cos 6 - 3m cos 36, B = sin 6 -+ 3m sin 36, f? L..: A? J- B'. 

For stresses at points of the real axis (in particular, at points between 
the holes), formulas (11.181) can be simplifiqd: 

For each point of interest to us, 5 should be determined from relations 
(II.247), and 



Formulas (11.255) can be used f o r  ca lcu la t ing  only the  s t r e s s e s  near  the  
contour of the  bas ic  hole,  a l l  t h e  way up t o  the  points  t h a t  l i e  h a l f  way 
between the  bas ic  holes and i ts  neighbor. 

I f  the  d is tances  between t h e  holes  I a r e  g r e a t e r  than two s i d e s  of one of 
the  square holes ,  a l l  t h e  formulas derived e a r l i e r  can be s impl i f ied  consider- 

ably,  s ince  we assume i n  them t h a t  a 3 = f 3 3 = ~  4 = 0. Formula (11.253) i n  t h i s  
case i s  

+ 3m (- 9 + 4ehlA,  (A coi 36 - B sin 36)) - 8e2hpl. i 
where 

Presented below a r e  the  values of a /q and a /q a t  po in t s  1, 2  and 3 
X v /I66 - 

(Figure 11.93) through cross  sec t ion  y  = 0 between the  ho les ,  where a  homo- 

geneous s t r e s s  s t a t e  o r 1  = 0, 0;) = q and r(m) = 0 i s  given a t  i n f i n i t y ,  i . e . ,  
XY 

when an e l a s t i c  p l a t e  i s  under tens ion by forces  q = const ,  t ransverse  t o  t h e  
cen te r  l i n e ,  and under t h e  condit ion t h a t  the  d is tance  between the  contours of 
the  holes is  measured along t h e  Ox ax i s ,  equal i n  length t o  t h e  s i d e  of one of 
the  holes  : 

Points from 
Figure 11.93 2 3 

a,l9 0.00 0.24 . 0.45 
a,/q 2.01 1.94 1.70 

The values of $/q on t h e  contour of t h e  bas ic  square hole  and the  values 

of $*/q a t  t h e  same po in t s  of  t h e  same square hole ,  but  f o r  the  case where the  

e l a s t i c  plane i s  weakened by only one hole ,  a r e  presented below: 



Two Identical Square Holes. We will 
assume that an elastic plane is weakened by 
two equal square holes of the same shape, 
and as in the preceding case, the centers of 
gravity of these holes lie on the Ox axis, 
separated from each other by distance 22 
(Figure 11.94). We will further assume that 
a biaxial stress state (11.244) is given at 
infinity. The desired functions can be 
represented in the form1 

cp (2 )  = cp* ( 5 )  ..t c p l ( 4 9  

where 

Fi  gure 1 1 . 9 3 .  

To determine the constants a and Bm, m 
it is necessary to use boundary conditions 
(11.245) only on the right hand contour 
(the boundary condition on the left hand con- 

P tour will be satisfied automatically). 
IC- 

C- 
- The functions @l(z) and $ 1 ( ~ )  will be 

holomorphic within the right hand hole. 
1 1 1 1  b They can be expanded into convergent Fourier 

series within the circle that inscribes the 
Figure 11.94. right hand hole, without coming into contact 

with the contour of the left hand hole. By 
limiting ourselves in the state expansion to terms containing, as the factor, 
the small parameter e = 1/22 in a power not exceeding four, we obtain 

'See A. S. Kosmodamianskiy [4, 71. This method makes it possible to examine 
also a finite number of curvilinear holes when the plate is under various 
stresses, and also thermoelastic problems. See A. S. Kosmodamianskiy [4, 121. 



T~ (z) = - (z - I) (ale2 - 2a,e3 -+- 3a,e4) + (2 - o2 (ale3 - 3a3e4) - (Z - l)s ale4, 

(11.260) 

\PI (z) = - (Z - I) (P1e2 - 2fizes + 2B3ea) + (z - (files - 3$#) - (z - i)3 Plea. 

Using the method outlined in 98, we find 

1 P - 4  1*(0 = T ( T + m a l + e 2 ( ~ 1 - a ~ - - 2 e s ~ - a ~  + 
+3e4[a l ( l+m7f  (PI-a3)] -p$+2ale2- 

The coefficients % and Bk(k = 1, 2, 3) in expressions (11.261) are 

determined from the equation system1 

a, [ 1 -'m + et - 3me4 - 3e4 (1 .t 2my] - 2a,e3 - 3ase4 - 
-. P - 4 .  - e2P1 5 2e3$, - 3e4gs -.; , 

2ales (m - 1) + [ 1 $. 6e4 ( 1  - m)] a, -k esP1 - 3c4fla = 0; 

'A. S. Kosmodamianskiy Ill] proved that for this case an infinite quasiregular 
algebraic is obtained. 
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Finding from (11.262) the coefficients Bk and ak (k = 1, 2, 3), and 

placing them in the functions @*(C), $*(c) (II.261), as well as in the func- 
tions $l(z) and (~~(2) (II.259), and the latter in (II.258), we obtain the final 

form of the desired functions $(z) and $(z ) .  The stresses at any point in the 
vicinity of the holes are found from formulas (11.181) . 

The stresses on the contour of the right hand hole are 

where 

- 2a2e3 f 3a,c4 - 2e2 (a, - 3a,e)(cos 6 + m cos 36) + 
+ 3al&I [ ( l  4- 2m) cos 26 .t- m? cos 66]), 

A4 = - 2me3 (a, - 3a,e); A5 = 3ma,e4 ( I  + m); 
.4c = - m2e3 (a, - 3a'e); A, ;= Ag = 0; As = maale4. 

The values for stresses on the contour of the right hand hole and through 
cross section y = 0 between the holes, where the distance between the contours 
of the holes (Figure 11.94) is equal to the length of the side of one of the 
holes, under the condition that tension forces act at infinity, both along the 
center line of the holes (p # 0, q = O), and transverse to the center line of 
the holes (p = 0, q # O), are presented in Tables 11.39 and 11.40. The values 



denoted by t h e  a s t e r i s k ,  a s  be fo re ,  p e r t a i n  t o  a p l ane  with one square  h o l e  
of  t h e  same shape. 

TABLE 11.39 

T r .  Note: Commas ind ica t e  decimal p o i n t s .  

TABLE 11.40 
- 

T r .  Note: Commas ind ica t e  decimal po in t s .  

Figure 11.95. 

Figure 11.96. 

The graphs cons t ruc ted  from the 
d a t a  i n  Tables  11-39 and 11.40, charac-  
t e r i z i n g  t h e  s t r e s s  d i s t r i b u t i o n  near  
t h e  r i g h t  hand ho le  and through c r o s s  
s e c t i o n  y = 0 between t h e  ho le s ,  a r e  
shown i n  Figures  11.95 and 11.96. The 
broken l i n e s  correspond t o  t h e  case where 
t h e  p lane  i s  weakened by one square ho le .  



Concluding Comments. In  an e l a s t i c  p lane  weakened by square ho le s ,  where - / I70 
f o r c e s  (11.244) a r e  appl ied  a t  i n f i n i t y ,  t h e  same p r i n c i p l e s  hold t r u e  a s  i n  
t h e  case  of c i r c u l a r  ho le s .  

When t h e  plane i s  under t ens ion  by f o r c e s  p  ( a t  i n f i n i t y )  a long t h e  cen te r  
l i n e ,  t h e  s t r e s s  concent ra t ion  nea r  t h e  corners  o f  t h e  holes  decreases  a s  t h e  
number of  ho le s  i nc reases  i n  comparison with the  case  where t h e  p lane  i s  
weakened by only one ho le .  I f ,  however, t h e  p lane  ( a t  i n f i n i t y )  i s  under ten-  
s i o n  by f o r c e s  q,  t r a n s v e r s e  t o  t h e  c e n t e r  l i n e ,  a s  t h e  number of  ho le s  
i nc reases ,  t h e  s t r e s s  concent ra t ion  nea r  them a l s o  inc reases .  In  t h e  case  of 
two h o l e s ,  t h e  above decrease o r  i nc rease  i n  s t r e s s  concent ra t ion  i s  found t o  
be g r e a t e r  from t h e  i n s i d e  of  t h e  ho le s ,  and sma l l e r  from t h e  ou t s ide .  

9 1 1 .  S t r e s s  Concentration Near a  Double Per iodic  System of Holes 

Statement of Problem. Per fora ted  p l a t e s  a r e  encountered q u i t e  f r equen t ly  
i n  t h e  cons t ruc t ion  of  modern machinery, and t h e r e f o r e  t h e  s o l u t i o n  o f  t h e  
problem of  s t r e s s  d i s t r i b u t i o n  i n  an i n f i n i t e  p l a t e  weakened by a  double 
pe r iod ic  system of round ho le s  can cons iderably  s imp l i fy  t h e  a n a l y s i s  of  opera- 
t i o n  of  pe r fo ra t ed  p l a t e s .  In  t h e  given case ,  t h e  boundaries  a t  " i n f i n i t y , "  
which make up func t ions  @(z)  and Y ( z ) ,  desc r ib ing  t h e  pe r tu rb ing  s t r e s s  s t a t e ,  
should be rep laced  by t h e  condi t ions  of  double p e r i o d i c i t y  of t h e s e  func t ions .  
Obviously, t h e  pe r iods  of  t h e  func t ion  w i l l  be t h e  d i s t a n c e s  between t h e  cen- 
t e r s  of  t h e  ho le s .  The genera l  s o l u t i o n  of t h e  s t a t e d  problem i s  found i n  t h e  
work of  G .  A .  Van Fo F i  [ I ] .  For s i m p l i c i t y ,  we w i l l  examine he re  only a  sys-  - / I 71  
tem of  equal1 ho le s ,  loca ted  symmetrically (Figures  11.97, 11.98) with r e spec t  
t o  t h e  axes.  I f  t h e  condi t ions  of  double p e r i o d i c i t y  a r e  s a t i s f i e d ,  a r b i t r a r y  
cons t an t s  i n  t h e  s o l u t i o n  should be found from t h e  boundary condi t ions  on t h e  
contour  of one a r b i t r a r y  ho le .  

Figure 11.97. Figure 11.98. 

- - 

' see  L.  A .  F i l  s h t i n s k i y  [ I ] .  More d e t a i l e d  d a t a  concerning pe r fo ra t ed  p l a t e s  
can be found i n  t h e  review by E.  I .  Grigolyuk and L .  A .  F i l l s h t i n s k i y  [I]. 



Double Periodic System of Identical Round Holes. Let wl = 2 and w2 = 
ia 

= 2Ze ( 2  > 0, a # 0) be the basic periods of a double periodic system, h is 
the dimensionless radius of the holes, and p = mu + nw are the coordinates of 1 2 
the centers of the holes (m, n = 21, +i). From the condition of double 
periodicity of the stress state of the perforated plate, 

a, s a, = 3Re @ ( 4 ,  

a, - a, 4- 2ir,, = 2 (3' (2) + ( 2 ) )  

(Z = x f iy) 

we have the limitations imposed on complex potentials @ and Y :  

The conditions of symmetry of the problem impose on the desired functions 
the following additional relations: 

The functions @(z)  and Y(z) can be constructed either on the basis of Appel's 
representation, or with the aid of elliptic functions. In the latter case, 
various representations of the solutions are possible, but the most convenient, - 1172 
obviously, are Weierstrassl functions. 8 (z) and the theorem of the representa- 
tion of any double periodic function through known elliptic functions and its 
derivatives. In particular, the following functions were used in the work of 
L. A. Fill shtinskiy [l] : 

The functions Q(z) are constructed such that there exists between them the 
relations 



Between the parameters yi and w exist the relationsllips 
j 

- - 
yf l l  - w2y1 = - bpi, . 6 = 2 ( )  , 62 = 26 @), 

and also 

Here <(z )  is the known Weierstrasszeta-function. The relationship between the 
complex potentials and functions t ( z )  and Q(z) is established on the basis of 
the aforementioned theorem, according to which any double periodic function can 
be determined through known elliptic functions and its derivatives. In parti- 
cular, for the functions and Y, which satisfy the conditions of periodicity 
(11.265) and (11.2661, the following representations are valid: 

.. 

?.2k+2p'2k) (z)  ; 
m ( 3 = c 0 + x  c2,+2 ,,+,,! 

k =O 

The unknown coefficients cZk, dZk in expansions (11.270) are found from 

the conditions on the contour of one of the holes and from the static condi- 
tions -- equality of the main vector of all forces acting on the contour that 
circumscribes the hole, to zero. 

The latter condition is equivalent to the relations 

where 

, . = ( )  - ) - ) q (1) = ( (1) (2 )  dz, 9 ( 2 )  = 'P (z) d ~ .  

When this condition is satisfied, we have the formulas 

co = aoc2A3 + ald2h2, do = a2c2h2 + a3d2h2, 

where, for brevity, we introduce the definitions 



- 
81 a,, ~ = 2 + 2 a , ,  a,=2a0, a ,== -  ni - .  

a0=.20,- 0 1  0 1 0 2  - OIOY 

To determine the coefficients cZk, dZk, it is convenient to expand the 

functions f(k) (2) and Q(k) (2) into Laurent series in the vicinity of point 
z = 0: 

(2n + 2k + I)! 9,+/,+, 
an, k = (zn)! 22n-k 2k+2 ' 

where 

If on the contour of the hole we have external forces N(0) - iT(0), the 
coefficients of expansion of functions @ and Y are found from the boundary 
condition 

- 
CD (7) + Q) (t) - e2" (<@' (t) + \P (z)} = N (9) - iT (6) 

(11.271) 

for z = T = Ae i 0 

where N, T are the normal and tangential components, respectively, of the force 
on the contour of the hole. 

By introducing into functional equations (11.271) the expansions of func- / I 7 4  
tions @ and Y from (II.270), we obtain, relative to c an infinite equation 
system 2k' 



where 

(2k + 2) Pk+, (2k  + 411 g,+,hL 
f 

203 k'&+, 
Yo, k = - 22k+2 

+ 21 (2k + 2)! 21*4 (1  - 2qL2) 2"+2 
+ 



The constants dZk are found from condition (11.271) on the contour of the / I75  - 
hole: 

50 

( 2 j  + 2k+3)! gi+k+2~2i+2kf  

J2izi+r = (2 j  + 3) c~~~~ ( 2 j  + 2)! ( 2 k  + I)! 22i+2k+4 '2k+2  - A-2j-23 

The coefficients of stress concentration on the contours of the holes for 
square and equilateral triangular systems are represented in Figures 11.97 and 
I I. 98 by the curves (kl) , (k2) and (kg) . The curve (kl) in these figures 

corresponds to the case of universal tension on the plate; (k ) ,  to the case 
2 

of uniaxial tension, and (kj), to pure displacement. These curves show that 

the coefficients of stress concentration for triangular and square systems 
differ only slightly from each other. The mutual arrangement of the holes 
has a basic effect on stress distribution. 

The stress state of a plate perforated by equilateral triangular and 
square systems of identical reinforced round holes is examined in the work of 
R. W. Bailey, R. Fidler [I]. Stresses in a perforated plate are discussed in 
the works of J. W. Dally and A .  J. Durelli [I], and also in the article of 
C. K. Wang [I], which is similar in content. 

512. Elastic Plate with Curvilinear Hole, Reinforced by Elastic Braces, under 
Tens ion 

Statement o f  Problem. We will consider an infinite isotropic plate with a 
bounded single curvilinear hole in the form of an ellipse, square, or rectangle, 
with rounded corners. We will assume that rigid arc-shaped plates are welded 
to the material of the plate, located in a state of stress, at arcs L of the k 
contour of hole L. Elastic braces of some other material are installed, with 
some predetermined tightness, between the arc-shaped plates. The problem is to 
determine the total axial pressure (tension) on each of the braces, depending 
on their rigidity, preliminary tightness, and stress state of the plane at 
infinity1 . 

To simplify the solution of the problem, we will examine only those cases 
where the elastic state in the plane is symmetrical relative to the geometrical /176 
axes of symmetry of the hole, and the arc-shaped plates, during deformation of 
the plane and braces, are displaced gradually without encountering rotations. 

'The solution in quadratures is given in the article by M. P. Sheremet 'yev and 
I, A. Prusov [I]. The solution of the other problems found in this section 
(including the approximate solutions) were found by I. A .  Prusov [l].  



Furthermore, as regards the braces, we will use the ordinary hypothesis of 
plane cross sections of rods, considering only their rigidity to tension EF, 
ignoring in some cases, their rigidity to deflection. We will place the 
origin of the coordinate system of the complex plane z = x + iy within contour 
L and introduce to the examination the function z = w(<), which conformally 
maps the exterior of unit circle y of complex plane 5 = on the exterior 
of contour L. Then, as is known1, in the polar coordinates of complex plane 
5 in domain 1 5 1 > 1, we have: 

where $(<) and I)(<) are functions related to a(<) and Y (5) by relations 
9' (5) = w1 (<)@(<) and (5) = w1 (5)Y (5); u and v are components of displacement 
in Cartesian coordinates ( x O y ) ;  X1 + iY1 is the.resultant vector of external 
forces acting on arc AB from the right during motion from point A to point B. 

We will apply the determination of function @(<) to domain 151 < 1, 
assuming that 

for I f l < l .  

Considering (11.277), on the basis of (11.274) - (II.276), we find the 
formulas attributed to I. N. Kartsivadze [I]: 

d 2p ,- (U + iv) - i5o' (5)  
(11.279) 

'.See formulas (1.10) and (I. 27). 
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Henceforth we w i l l  cons ider  t h a t  func t ion  @ ( c )  passes  cont inuously t o  a l l  
p o i n t s  < = a of c i r c l e  y from s i d e  I <I > 1 and 1 < 1, with t h e  except ion,  

i e k  poss ib ly ,  of a  f i n i t e  number of  p o i n t s  ok = e c l o s e  t o  which 

We w i l l  a l s o  assume t h a t  f o r  a l l  p o i n t s  u o f  c i r c l e  y, wi th  t h e  except ion ,  
i ek  

poss ib ly ,  o f  t h e  p o i n t s  a = e , k 

lim 6 (6) (1 - p) = lim 0' (i) [o (;) - o (+)I = 0. 
t+a t-+a 

We w i l l  assume t h a t  a  mapping func t ion  z = w(<) is  o f  t h e  form 

where R ,  m ,  n  and Z a r e  r e a l  parameters.  

Then func t ions  w 1  (< )a  (T) and w' (5)Y (T) f o r  1 1; ( -+ have t h e  form 

where X + i Y  is  t h e  r e s u l t a n t  v e c t o r  of  e x t e r n a l  load appl ied  t o  contour L. 

The func t ions  @(<) a.nd Y (c) a r e  holomorphic i n  domain 1 z;l > 1. Consid- 
e r i n g  t h i s ,  and t h e  f a c t  t h a t  w '  (5) # 0 i n  domain 1 5 1 2 1, on t h e  b a s i s  of  
(11,277) and ( I I .284) ,  we know t h a t  w i th in  c i r c l e  y t h e  func t ion  wl (< )@(c )  i s  

holomorphic everywhere except f o r  p o i n t  5 = 0, where it ha+, as  i s  r e a d i l y  
seen, a  po le  not  exceeding t h e  s i x t h  power: 



Here 0 (c) is holomorphic in the domain outside the circle of sufficient- /I78 
0 - 

ly large radius: 

A2, AgJ A are coefficients of expansion of function w l ( < ) @ ( < )  into the series 
4 

We will assume, in the following, that the axes of the coordinates of the 
complex plane z = x + iy are directed along the axes of symmetry of hole L, 
and the stress components at infinity are given in the form 

Moreover, we will assume that on the segments of the contour of the hole on 
which the materials of the plate and arc-shaped plates do not come into contact, 
the external load is zero and the resultant vector of external load on 
contour L is also equal to zero: 

E l l i p t i c  Hole w i t h  Two Braces that Transmit Pressure to Two Rigid Arc- 
Shaped Plates. Let L be the contour of an elliptic hole with semiaxes a and b, 
within which are installed arc-shaped plates and braces symmetrical to the 
coordinate axes (Figure 11.99); 6 is preliminary tension of each of the braces; 
2 is length, and EF is rigidity to tension of each one of them; Lk are arcs on 

which the plates are welded to the material of the surface; Li are the other 

parts of contour L; ak and b are the ends of the arcs Lk (k = 1, 2) ; yk, y,', k 
% and B are arcs and points on circle y corresponding to L k k, and akJ bk. 



In the case at point, 

On the basis of (11.284) and (II.285), func- 
tion w l ( < ) @ ( < )  in the vicinity < = 0 and 
I <I = 03 acquires the form 

where 

1 
r = T ( P + Q ) ;  

1 
r l = T ( Q -  P). 

Considering (11.278) and (11.279) and also the conditions assumed 
concerning displacements of the arc-shaped plates, we find for function 
w' (c) 0 (<) , the boundary condition 

[a' (u) Q) (a)]+ - [a1 (a) Q) (a)]- ---- 0 on y;. (11.293) 

Satisfying this condition, we write the general solution of the problem: 

where 

x (0 = (6' - a ~ '  (Ca - ~f)'; 
1 - A = - -  + i b ,  A = - - -  1 Inn . (11.295) is, B = -  2n ' 

D and C are arbitrary constants. k k 

We agree here to take that branch of the ambiguous function X(<) for which, 
when -+ rn, c2x(<) + 1. 

Keying the solution of (11.294) to conditions (II.291), we find 



where w is the central angle corresponding to the arc y (k = 1, 2). k 

By denoting through 2iv the difference of displacements of the points by 0 
L1 and L and through 2P the main vector of the forces acting on arc L from 

2 ' 0 ' 1 
any one side, we find, for the determination of vg, pressure on each of the 

braces p, and real constant C2, the following two equations, on the basis of 

(11.280) and (11.281) : 

(1 + X )  0- (0) )J (a) du = 4 i ~ ,  . - 
*I 

After combining them with equation 

as a consequence of Hooke's law for rods, we find the total equation system for 
the determination of all unknowns. After solving this system, we find the /I80 
following formula for the total pressure on each of the rods: 

where 

Assuming v = 0.25, K = 2 (plane deformation), we find, for the values of 
w equal to 90, 60, and lo0, respectively, 



Under the conditions of the problem under examination, we find the 
approximate expression for P for the following simplified hypotheses: 

0 

1) normal stresses N on the points of contact between the plate and the 
arc-shaped plates (or between the plate and the ends of the rods in the absence 
of the plates), distributed uniformly; 

2) tangential stresses in these areas are negligibly small; 

3) the vertical components of displacements v of the points of the plate 
at the points of contact in plane (v, x) form a parabola that is defined by 
the values of v of the center and ends of the section of contact; 

4) the relationship between the average values of these displacements vav 
and the axial forces in the rods P is 0 

where 

is the height of the rectangle of the same size as the figure bounded by the - 1181 
parabola mentioned above (Figure 11.100); a and B1 are the ends of arc yl, 1 
a is the mean point on this arc. 

0 

In the following, we will denote the central arcs that define the positions 
of points % and B on circle y by the same symbols as the points and k Bk 
themselves. Thus, in the given case, 



C 

On the basis of (11.2781, we have the 
condition on contour v: 

(0 
[a' 0 (@I+ - [a1 (0) @ (dl- = f (u), (11.305) 

> I , ? l  9 a a 
where f(u) = -Nu' (o) on yk and flu) = 0 on y1 k ' 

Hence, considering (11.291)) we find 
Figure 11.100. 

Then, recalling that $(<) = /wl(<)@(<)d<, we find $(<), and along with this, 
using formulas (11.280) and (II.303), we find vav as a function of N .  

Thus, to determine the unknown vav, P and N, we have two equations, 
0 

namely (11.302) and (11,303). The incomplete third equation 

Po = RN (1 4- m) sin (11.307) 

is found from the condition of equilibrium of o;le of the plates. As a result 
of the solution of these equations we,find the approximate formula 

where 

1 1-rn o p1 - - ( x -  1)- 
3 l + r n  tan -r 3- EF - 

In the practical sense, this formula is much simpler than the analogous formula 
obtained earlier (II.299), in that it precludes the necessity to calculate the 
improper integrals J and T Assuming in formula (11.308) that K = 2, we find /I82 

k k ' 
for the values of w, respectively equal to 90, 60 and lo0, 



Comparing equations (11.301) and (II.309), we see that the values Po obtained 

from the approximate formula (11.309) differ only slightly from the correspon- 
ding values of P obtained by formula (II.301), for all oG ~ / 2 .  

0 

Elliptic Hole with Two Braces That Transmit Pressure to Four R i g i d  Arc- 
Shaped Plates. We will assume that the arc plates and the braces are installed 
within the hole symmetrically with respect to the axes of the ellipse (Figure 
11.101). The ends of arcs Lk are symmetrical with respect to the center of the 

ellipse. The elastic braces, of identical length 2 ,  and of identical rigidity 
to tension EF and preliminary tension 6, are arranged such that the arc plates, 
due to deformation of the braces and plate are displaced without rotations. 
The boundary conditions on contour y are also represented in the form (II.293), 
and the general expression for w!(<)@(<), with consideration of symmetry of the 
elastic state, is 

where 

2 2 .  2 x (5) = (c2 - = I )  (5 - a:)' (t2 - E:F (5' - 822)'; 
C and C are real arbitrary constants. 

D2' Co' 2 4 

Considering (11.291) and (II.310), we find 

where o is the central angle corresponding to arcs y k' 

We will denote through 2ivl and 2ul the difference of displacements of 

points on arcs L and L L and L2, and through P the axial force in each of 
1 4' 1 0' 

the braces (the resultant vector of forces acting on arc Lk from the side of the 
material of the plane). 



Then, on the basis of (11.280) and (II.281), we have 

(1 + x) SO- (a) o1 (a) da - 4pvli; 

v ; 
- i (1 + x) 1 0- (a) O' (a) dr = iPo. 

. - ;Y, 

Considering (II.310), we find from equations (11.312) 

The following definitions are made in these equations: 

. . 

sin ( A  + kg) d0 
; s; = f sin ( A  + "1 . 

R (0) 
a 8 

sin (8 + a) sin (0 - e) - ~ = $ l n l  sin (0 -a) sin (0 + e)  ' 

Combining equations (11.313) and 

we find a system of five equations for the determination of C1, C4, Po, vl and / I84  - 
u In particular, 
1 ' 



where 

All that remains now is to determine the position of the braces in which 
the arc plates, during deformations of the plate and braces, are displaced 
gradually. We will assume that this position of the braces is defined as the 
distance x from the center of the ellipse to the line of action of the main 

0 
vector P of the tension forces in the cross section of the brace. To find xo 

0 
we will use the formula 

which defines the main moment M of forces acting on arc L from the direction 1 
of the plate (taken relative to the origin of the coordinate system). As the 
result, assuming P x = M, and considering (II.310), we find1 the equation for 0 0 
the determination of x 0 : 

Assuming in (II.314), by way of example, w = lo0; a = 45'; V = 0.25; K = 2, 
we obtain 

'we will disregard the rigidity of the braces to deflection. 



We will assume that the tangential and normal stresses on arcs L are k 
distributed uniformly and we will use hypotheses 2-4 presented above. Then, 
proceeding as before, we find for pressure on each o f  the braces, the approxi- 
mate formula 

where 

B* r= I + %  6n (I + k2) (COS a - cos p) [ c o s a I n ~ , - c o s $ l n ~ , f  

+ 2 c o s a , I n ~ , + o ( s i n a  + sinp $4sina,)]- 

( x -  1)(1 - m ) ( 5 s i n a - 4 s i n a o - s i n p )  k ( x -  1 ) (5cosa-4cosao-cos f3) -  - 
12(1 + m ) ( l  + k z ) ( c o s a - a s p )  - f -  12 (1 -t k?) (cos a - cos p) 

- &(I  +%)(I -m) 
6n(1 +Ra)(I + m ) ( m s a - a s p )  

(sin a  In Q, - sin f! In Q L- 2 sin a, In QJ; 

a ~ + a  
sin a* t a i  (T) P +  sin a. t a i  (q) 1 

0 
sin -ij m s  tg2 1' 

a04-B sin pral  (T) 
( I  - m) (sin p - sin a )  . 

QS ' o o . ;  k =  (1  +m)(a)sa- -msp)  ' 
sin 'P a0 tali( T )  

-a+$ - --i-, . p = a 4 = e1 and B1 = eiB are the ends of arc yl. 

' 

\ 

e, = 

Assuming a = 4 S 0 ,  w = l o 0 ,  K = 2 ,  we find by formula ( 1 1 . 3 1 8 )  : 

a o + a  sin o tafi (T) 
b 

sin ij-Em a. ra(T)  

where 

B = -  ' 1.95 + U 4 4 k  + I -" (0.217 +-1.63k)I ; 
1.  .[ 

I - m  k = 0.8397 - l + m '  



Considering t h a t  when 0 < m < 1 t h e  va lue  of B ( i n  t h e  given case)  changes 
wi th in  t h e  range 1.95 < B < 2.19, it i s  easy t o  s e e  t h a t  t h e  divergence between 
t h e  va lues  of P found by formula (11.317) and by t h e  approximate formula 

0 
( I I . 319) ,  i s  only s l i g h t .  

Square Hole w i t h  R i g i d  Plates. Assume t h a t  w i th in  a square hole  with 
re inforced  angles  t h e r e  a r e  two r i g i d  arc-shaped p l a t e s ,  welded t o  t h e  ma te r i a l  
of t h e  p l a t e  a t  a r c s  L1 and L2. Between them a r e  i n s t a l l e d ,  with t ens ion  6 ,  / I86 

two i d e n t i c a l  b races  of  length  2 ,  with r i g i d i t y  t o  t ens ion  EF.  Arcs Lk and 

t h e  b races  a r e  arranged symmetrically wi th  r e spec t  t o  t h e  middle l i n e s  of  t h e  
contour  of  t h e  ho le  (Figure 11.102).  Recal l ing t h a t  t h e  arc-shaped p l a t e s ,  due 
t o  deformation of t h e  p l a t e  and b races ,  a r e  d i sp l aced  g radua l ly ,  and proceeding 
a s  i n  t h e  preceding case ,  we o b t a i n  

where 

2 %  2 - $ 3 % ;  x ( D = ( f 2 - a , )  (6 

(t) = R (5  + ;) ): 

n =  -- ' . 4 = r; D. = 3n~e-*; 
9 '  

D, = e-*[r' + 2nr (cos o +4$ sin a) + +J; 

C i s  an a r b i t r a r y  cons t an t1 .  
2 

We f i n d  t h e  r e a l  cons tan t  C2 and p re s su re  on each of  t h e  rods  Po from t h e  

equat ion system 

'The cons tan ts  D D and C a r e  found by subord ina t ing  func t ion  (11.320) t o  4 '  2 0 
t h e  following cond i t i ons ,  der ived  from (11.285) and (11.287): 

@' ( 5 )  0, (C) = 3r~n5- '  + (I"R + nZ2) 6-2 f 0 (1) f o r  5 -+ 0; 

o' ( 5 )  ( 6 )  = I'R +- A,<-' + 0 f o r  161-*00. 



where 

D; = [r ' + 2nr (cos o + 4$ sin o)] e-"; 

Finally, 

where 

In particular, for values of w equal to 90 and lo0, we find 

It is possible to find the approximate solution of the given problem by 
using the hypotheses formulated earlier. Considering the properties of the 
function w T ( < ) O ( < ) ,  as stated above, we find for pressure on each of the rods, 
the approximate formula 



where 
.I- 

B =  1 0 o 
0 30 (* [- 2 (sin - n sin - In sin --tad 

sin - - tl .%in - 
2 2 

;") ( 2 (9) + 

1 + x  n s i n o  w x -  1 o 
+YZ (2+cosT) -T[ l - cosV+~n( l - cos~ ) ] ] .  

Assuming t h a t  K = 2 and n = -1/9 i n  t h e  l a s t  formula, we f ind  f o r  values of 
w equal t o  90 and l o 0 ,  

Figure 11.101. Figure 11.102. 

A s  we w i l l  see ,  t h e  values Po from (11.323) and (11,325) d i f f e r  only /188 - 
s l i g h t l y  from each o the r .  

Rectangular Hole w i t h  Three Supporting Braces. Assume t h a t  within a 
rec tangular  hole t h e r e  a r e  t h r e e  braces 1, 2 and 3 (Figure I I .103) ,  with ten-  
s ions  $,  r i g i d i t y  t o  tension EkFk and length Zk (k = 1, 2,  3 ) .  We w i l l  assume 

t h a t  the  axes of the  coordinate plane xOy a r e  d i rec ted  along t h e  axes of 



symmetry of t h e  holes ;  t h e  axes of braces 1 and 3 a r e  p a r a l l e l  and equidis tant  
from a x i s  Oy, and t h e  a x i s  of  brace 2 is  d i rec ted  along the  Oy ax i s .  Further- 
more, we w i l l  assume t h a t  Z3 = Z1, E3F3 = EIF1, 63 = 13~. The a rcs  on which 

the  braces come i n t o  s o n t a c t  with t h e  mater ia l  of the  p l a t e  without a  hole 
a r e  denoted through Lk (k = 1, 2, ..., 6 ) ,  and the  o ther  p a r t s  of contour L of 

t h e  hole  a r e  denoted through Li. 

We w i l l  f i n d  t h e  t o t a l  a x i a l  force1 Pk t ransmit ted  t o  each brace from t h e  

d i r e c t i o n  of the  mater ia l  of the  p l a t e .  The boundary condit ion i s  

where 

f (0) -- - N,o' (a) on y,; f (a) = 0 on y;; 

N i s  normal s t r e s s  on Lk (k = 1, 2, 
k 
..., 6 ) ;  

We w i l l  note here t h a t  due t o  
symmetry of  t h e  s t r e s s  s t a t e ,  

Figure 11.103. On t he  b a s i s  of (II.326), r e c a l l i n g  - /189 
t h e  form of function w' (c)@(<) when 

5 -f 0 and I -+ defined by formulas (11.285) and (XI. 287), we f ind  

where 

1 Obviously, due t o  symmetry, P3 = PI. 



2 B1=--- 
%A [(m + 3rd) ol + (n + 13 (sin 28 - sin 2a) + I (sin 48 - sin 4a)I; 

&=--  I [(m + 3n0 o, - 2 (n + 12) sin o2 + 21 sin 202]; 
n A 

3 
C,, = [lr' + r (n + 2ml-  n2 - mnl + 3d2)]; 

2 cl=-- 13 (1 - n) (n + ml) ol+ f(1 + 2n - mf) (sin 28 - sin 2u) + (11.328) 

+ 3P (sin 48 - sin 4a)l; 
1 C , = - -  [3 (1 - n) (n 4- ml )o2 - 21 (1 + 2n - ml) sin o2 + 612 sin 2o,]; 

= a + w l ;  ak and B a r e  t h e  ends of  a r c s  y ( L  ); wl i s  t h e  c e n t r a l  angle  k k k  
corresponding t o  a r c s  y y3, y4, y6; w i s  t h e  c e n t r a l  angle  f o r  a r c s  y2 and 2 
y5; a i s  a p o l a r  angle  t h a t  de f ines  t h e  p o s i t i o n  of  a po in t  on c i r c l e  y(L). 

Then, us ing  formulas (11.280) and (11.327) and hypothesis  3, we f i n d  

v") and vi:) on a r c s  Ll (yl) and L2 (y2) : 
av 

where 
q,=*[(I'+ ~ J ( s i n a + s i n f i  +4sinao) + 

c, -k 3 (sin 3a + sin 30 + 4 sin 303 + 4 (sin 5a + sin 5$ + 4 sin 5ao) ; 1 

+ "  {T(a)lnp;+T(B)1np2+4T(aJlnp,~ "I = -- 12n 
R{2n(sin2~--~3128)+ + 201 1s (a) + S (PI + 4S@o)I) -- 

+[21(s in4a-s in4p)-drrS,] (s ina+sin~+4&~-i -  
1 + [21 (sin 2a - sin 28) - nCl] (sin 3a + sin 38 + 4 sin 3%)) 4- 

I-x +% RD1(sin5a +sin58 +4r in5aJ+  T[5S(a)-QS(4)-S(B)]; 



n2=-- ' + *  1271 ( T ( a ) ~ l n e 4 + T ( ~ ) l n e , - T ( a J I n e , + 4 T ( a J ~ ~ +  

(2nsin y - 2 1 r i n h ~ -  

2 - nBd (sin a + sin 8 + 4 sin ao) i (-j 1 sin y - r6.1 (sin 30 4- 

I + " RDa (sin 5a + sin 58 -;- 4 sin w; + sin 38 + 4 sin 3ao)] + 7 
1 30 

+ "  [(r + B ~ ) ( ~ + C ~ S $ ) - ~ C ~ ( ~ +  C+j + 4 ( 2 + ~ = ~ ) ] ;  m, = - 3 

+ (T (ad in e, + T ($) In e, + T (a) ln el, + [ 2 ~  ($) f ~(41)- m l =  -- 6n 
2n (sin 2a - sin 28) + [2l (sin 4a - sin 48) - xB1] (2 + sin az) + 

1 + 121 (sin 2a - sin 28) - rrC,] (- 2 + sin 3p)] d- 

l - %  + % ~ , ( 2 + s i n 5 a ~ +  T[S(a)-S(B~J; 

I + %  
%=-- 6n ( 2 ~  (03 in p,, + o, [2s (+) + s (031) - 

+ R (2n sin 2a2 + 21 sin 4a, - nB3 (2 -+ sin a,) + -7 [ (1 1. 330) 

1 t T ( 2 1 s i n 2 a 2 - d J ( - 2  +sin3aJ i 

I f'x 
I 

+15 R D , ( ~  +sin5aJ ++[S ($-)-s(aJ]; 
T (6) + is (8)  = o (a); a =; e"; 

sin(% + B) . sin (a - a,) . 
~ 3 =  Is in(aU+a)(9  ~4~ ls in(a+a2)19 



I 
+?) cos(B-$j 

sin (ao  - a?) . 
~ 7 = I s i n ( a ~ - h )  Q8= 

cos ( a  - $1 cos (@ + $1 

cor2 (?) 
Qll = 

sin (2) 
In formulas (11.330) a and B denote the same as in (11.328) ; the polar angles 
that define the positions of the ends of arc y2 = a2B2 are denoted through 

a and B (by the same symbols as points a2 and B2 themselves). 2 2 

@9= 

On the basis of hypothesis 4, 

a 2 + a  
2 

2 

On the other hand, using formulas (11.281) and (II.327), we find 

tan4 (2 + %) ; 
a 2 - B  tan- 2 

tan- a 2 + p  
2 

(PI. 332) 

( )  @lo = 

From equations (11.331) and (II.332), recalling (II.329), we find the / I92 - 
following formulas for the determination of the axial forces in braces 1 and 2 
(see Figure 11.103) : 



In p a r t i c u l a r ,  by assuming El -+ a, we f i n d  

assuming E -+ we f i n d  
2 

Pressure on Cross Pieces between Holes i n  I n f i n i t e  E l a s t i c  I so t rop ic  Plane. 
We w i l l  use  t h e  formulas derived i n  t h i s  s e c t i o n  f o r  t h e  determinat ion of  t h e  
t o t a l  p re s su re  on each of  t h e  c r o s s  p i eces  between i d e n t i c a l  holes  i n  t h e  form 
of squares with rounded corners  o r  e l l i p s e s .  We w i l l  assume t h a t  t h e  cen te r s  
of  t h e  ho le s  a r e  loca ted  on one s t r a i g h t  l i n e ,  and t h a t  t h i s  s t r a i g h t  l i n e  i s  
t h e i r  common ax i s  o f  symmetry, while  t h e  s i d e s  o f  t h e  squares and t h e  p r i n c i p a l  
diameters o f  t h e  e l l i p s e s  co inc ide  wi th  t h e  d i r e c t i o n  of  t h e  p r i n c i p a l  
s t r e s s e s  a t  i n f i n i t y .  

Pressure on Cross Pieces between Three Square Holes. Let t h e  holes  be 
arranged a s  ind ica t ed  i n  Figure 11.104; 2a i s  t h e  s i d e  of t h e  squares,  a i s  t h e  
wiclth of each c ross  p iece .  By regarding t h r e e  ho le s ,  along with t h e  ma te r i a l  
t h a t  s epa ra t e s  them, a s  one r ec t angu la r  ho le  with two p r i sma t i c  rods wi th in  it, 
we f i n d  f i rst  t h e  parameters i n  t h e  expression of t h e  mapping funct ion  

Thcis, us ing  geometrical cons idera t ions1 ,  we f i n d  

Then, assuming i n  t h e  parametr ic  equat ion t h a t  

x = R [(l $. m) cos b + n cos 34 -k 1 cos 581 

we f i n d  angles  a and 6 f o r  t h e  absc i s sa  of p o i n t s  of contour L of ho le  x equal 
t o  2a and a .  

2 2 
'BY determining, f o r  ins tance ,  R,  m, n and Z from equat ions x = 4a, d x jde  = 0 

2 when 6 = 0, y = b ;  d y/df3Z = 0, when €I = n/2. 



The numerical value f o r  pressure  on each of t h e  c ross  p ieces  is  found by 
formula (I1.336), assuming 61 = 0, El = 2 ~ ( 1  + v) . Then, by using,  f o r  

ins tance ,  p = hq, X = v/ l  - v and K = 3 - 4v (plane deformation),  corresponding 
t o  Poisson r a t i o s  v equal t o  0.25 and 0.50, we f i n d  

I f ,  however, t h e  t h r e e  holes  a r e  
circumscribed by an e l l i p s e  with semiaxes 4a 
and a ,  r a t h e r  than by a r ec tang le ,  then ,  by 

_f f I I f f1 f1I f f t I IL  using formula (11.318) (assuming Z = 2RCl - 
- - m)sin a ) ,  we f ind1  - - - 

P,j , =2.12aq, P , ]  , =1,88aq. 
""7- V=l 

Pressure on Cross Pieces between Round 

7 1 1  I I  I Iri I I and E l l i p t i c a l  Holes. As o the r  examples o f  
t h e  use of t h e  formulas derived i n  t h i s  
sec t ion ,  t h e  t o t a l  pressure  P on t h e  c ross  

Figure 11.104. 0 
piece  between two i d e n t i c a l  holes  of c i r c u l a r  
and e l l i p t i c a l  form i s  determined under t h e  

condit ions of  plane deformation f o r  v = 0.3. The numerical values obtained a r e  
presented i n  Table 11.41. The first two rows of t h i s  t a b l e  p e r t a i n  t o  t h e  case 
of round holes  of  r ad ius  r, t h e  next  t o  l a s t ,  t o  t h e  case of e l l i p t i c  holes  
with semiaxes 10 and 4, and t h e  l a s t ,  t o  t h e  case where t h e  e l l i p s e s  a r e  
reduced t o  slits.  The semiaxes of e l l i p s e s  t h a t  "surround" both holes a r e  
l i s t e d  i n  t h e  f i rst  two columns of  t h e  t a b l e ,  and t h e  smal les t  width of the  
cross  p iece  i s  l i s t e d  i n  t h e  t h i r d  column (Figure 11.105). 

TABLE 1 1 . 4 1 .  

T r .  Note: Commas indica te  decimal poin ts .  

l ~ y  assuming Z = 2R(1 - m) s i n  a f o r  t h e  same condit ions we obta in ,  0 ' 
P1 I v=- = 2108aq and P i  i , = 1,S-laq. 

4 
y=-- 

2 



We w i l l  agcee t o  c a l l  t h e  region / I94  
between t h e  holes ,  loca ted  wi th in  t h e  
contour surrounding both holes ,  a s  t h e  
c ross  p iece  between t h e  holes  (as  a 
whole). The po in t s  of i n t e r s e c t i o n  of 
t h e  'lsurrounding" contour with t h e  

Figure 11.105. contours of  the  boles a r e  n a t u r a l l y  
assumed t o  be t h e  ends of t h e  a rcs  of 

contac t  o f  t h e  c ross  p iece  and t h e  mater ia l  occupying t h e  e x t e r i o r  of  t h e  
surrounding contour. 

By regarding a c ross  p iece  a s  a rod (brace) of varying cross  sec t ion  of  
some length I ,  we ob ta in  t h e  average value of 1/EF f o r  t h e  c ross  p iece  by two 
i d e n t i c a l  e l l i p t i c  holes :  

where $ is  a parameter i n  t h e  p o l a r  equation of t h e  contour of t h e  e l l i p t i c  
hole ;  

y i s  t h e  value of  t h e  parameter $J t h a t  de f ines  t h e  p o i n t s  of i n t e r s e c t i o n  of 
t h e  surrounding contour with' t h e  contour of t h e  holes ;  

k i s  t h e  d i s t ance  between t h e  average poin t  of t h e  smal les t  c ross  sec t ion  of 
t h e  cross  p iece  and t h e  f o c i  of t h e  e l l i p t i c  holes  nea res t  t o  i t .  

For such a determinat ion of t h e  r i g i d i t y  of a c ross  p iece ,  t h e  va lues  of 
P ca l cu la t ed  by formula (11.308) a r e  presented i n  t h e  four th  column of 

0 
Table 11.41. The values of t h e  same P" obtained by D .  I .  Sherman [3] by a 0 
more r igorous ,  but  much more complicated method, a r e  given i n  t h e  next t o  l a s t  
column of t h i s  t a b l e .  

Comparison of P and PIt i n d i c a t e s  t h a t  t h e  values of Po a r e  somewhat over- 0 0 
s t a t e d ,  p a r t i c u l a r l y  i n  t h e  case of holes  t h a t  a r e  loca ted  f a r t h e r  a p a r t .  If ,  
on t h e  o the r  hand, t h e  r i g i d i t y  of  a pr i smat ic  rod of  a rea  F = d i s  used a s  t h e  
r i g i d i t y  of a rod of  varying c ross  sec t ion ,  then,  f o r  t h e  very same region of 
contact  between t h e  c ross  p iece  and t h e  r e s t  of t h e  p l a t e ,  we f i n d  somewhat 
unders ta ted  va lues  of Po, denoted i n  Table 11.41 through ( l a s t  column). 



I t  i s  c l ea r  t ha t  the  actual  r i g i d i t y  1/EF f a l l s  somewhere between these 
two extreme cases, and there  i s  no doubt t ha t  comparison with precise  solutions - /I95 
w i l l  permit the  se lect ion of the  average r i g i d i t y  1/EF, between these extreme 
cases, which w i l l  y ie ld ,  i n  the  p r ac t i c a l  sense, su i tab le  r e su l t s .  Thus, i f  
we denote through A '  the  value yZ/EF i n  the  f i r s t  case, assuming t ha t  l/EF i s  
defined by formula (II.337), and through A;l the  value yZ/EF i n  the  second case 

(F = d) ,  and assume, f o r  instance,  

then, by formula (11.308) o r  by (II.335), we w i l l  f ind the   value^ f o r  Po t ha t  

a r e  denoted i n  Table 11.41 ( f i f t h  column) by P 1  extremely close t o  the  values 
0 ' 

of P; obtained by D. I .  Sherman [3 ] .  Comparison of the  numerical values i n  

Table 11.41 shows t ha t  the  approximate formulas derived f o r  the  resu l tan t  
pressure on the  cross pieces between the  holes a re  more precise  when the  holes 
a re  located c loser  together. 

Thus, by analyzing the  numerical examples c i t ed  i n  t h i s  sect ion,  it i s  
possible t o  derive the  following conclusions: 

the  pressure on braces with r i g i d  arc-shaped p l a t e s  on the  ends, occurring 
due t o  landing s t r e s se s ,  i s  somewhat greater  than the  pressure on braces with- 
out the  p la tes  i f  the  corresponding sections of contact of the  p l a t e s  with the  
main p l a t e  a re  l a rger  than t he  areas of contact of theabraces with the  main 
p la te ;  

the  pressure on the  braces within the  e l l i p t i c  holes is  somewhat greater  
than t ha t  on braces with the  same r i g i d i t y  within a rectangular hole with s ides  
equal t o  the  pr incipal  axes of the  e l l i p t i c  hole; 

the  most accurate t o t a l  pressure on the  cross pieces between round and 
e l l i p t i c  holes located close t o  each other can be found by the  same method as 
used f o r  finding P l i s t e d  i n  the  f i f t h  column of Table 11-41; 0' 

pressure on the  cross piece between round o r  e l l i p t i c  (di f fer ing only 
s l i g h t l y  from round) holes can be found with suf f ic ien t  accuracy by example of 
P '  i n  Table 11-41, as long as  the  holes a r e  not located too near or  far  from 0 
each other; 

i f  e l l i p t i c  holes d i f f e r  considerably from round, and i f  t h e i r  mutual 
arrangement cannot be regarded as  close,  the  most accurate pressure on the  
cross pieces between such holes can be found by the  same method as  f o r  P t ' "  
l i s t e d  i n  the  l a s t  column of Table 11.41. 0 



Concluding Comments. The solut ion f o r  a plane weakened by any f i n i t e  
nurnber of iden t ica l  round holes, d i s t r ibu ted  i n  any manner, and not having 
comon points,  was f i r s t  found by 6 .  N. Bukharinov [I].  W .  T. Koiter [1], who 
reduced the  solut ion of the  f i r s t  bas ic  problem f o r  a plane weakened by a 
doz~ble periodic system of iden t ica l  holes t o  the  solut ion of Fredholmls in te -  /I96 - 
gra l  equation of the  second kind, apparently was the  f i r s t  t o  invest igate  
dolilble periodic problems. The case of double periodic systems with a regular 
d i s t r ibu t ion  of holes,  under tension, was analyzed by Chen-Lin-Si [ I ] ,  Chou- 
Chen-Ti [PI, D .  I. Sherman [3, 71, R. Bailey, R. Hicke [ I ] ,  Lin-Chi-Bin [ I ] ,  
Sai to  Hideo El]. These authors solved t he  problems on the  bas i s  of Appells 
theory (see E.  Gursa [ l ] )  f o r  multiply-connected regions. L.  A. F i l ' sh t insk iy  
[I], 6 .  A. Van Fo Fy [ l ]  and Jan Dvorak [ l ]  solved t h e i r  problems on t he  bas i s  
of the  theory of e l l i p t i c  functions. 

Also noteworthy i s  the  a r t i c l e  of J .  W. Dally and A. I .  Durel l i  [l], a 
review, i n  which the  r e su l t s  of numerous s tudies  (over the l a s t  10 years) on 
s t r e s s  concentration near holes i n  p l a t e s  perforated by various systems of 
iden t ica l  round holes, a re  presented (with sources indicated) i n  compact form 
as simple graphs and tab les .  Also noteworthy a re  the  two a r t i c l e s  by William 
Cr i f fe l  11-31, i n  review form, i n  which data of the  concentration fac tors  near 
a s ing le  hole of various form (round, e l l i p t i c ,  square, t r i angula r ,  rectangular 
with sounded corners) under various conditions a t  i n f i n i t y  (uniaxial o r  b iax ia l  
tension,  compression, pure displacement, pure def lect ion,  e tc)  a re  presented i n  
convenient and compact form (with sources indicated) .  Presented a re  data 
concerning the  e f f ec t  of two round holes on each other;  data f o r  an i n f i n i t e  
row of equal round holes, and a l so  f o r  p l a t e s ,  perforated with various forms 
of systems of equal round holes (square, rectangular,  rhombic, t r iangular ,  e t c ) .  

The solut ions  given above f o r  s t r e s s  concentration near the  various holes 
indicate  t ha t  i n  the  uniaxial  s t r e s s  s t a t e ,  zones of the  opposite sign,  i n  
r e l a t i on  t o  s t r e s se s  i n  i n f i n i t e l y  remote points,  are  formed near the  hole, i . e . ,  
when the  p l a t e  i s  under tension i n  the  region of compressive s t resses .  In the  
case of a t h in  p la te ,  the  s t r e s se s  t ha t  occur i n  these  zones can be of such a 
magnitude t ha t  the  p l a t e  loses i t s  s t a b i l i t y  and collapses.  The s t r e s s  s t a t e  
i n  the  collapsed zones w i l l  d i f f e r  from tha t  found from the  solut ion of the  
plane problem. Such problems a re  analyzed i n  the  work of G.  P. Cherepanov [ I ] .  
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CHAPTER 111. E F F E C T  O F  A N I S O T R O P Y  O F  M A T E R I A L  ON S T R E S S  
D I S T R I B U T I O N  AROUND F R E E  AND R E I N F O R C E D  HOLES 

Abstract. This chapter deals with the anistropic elastic 
medium. Methods are given of solving the principal boun- 
dary value problems for the medium containing one or several 
elliptical holes, and for curvilinear holes discussed in 
Chapter I I ,  the method of small parameter was used. A great 
number of particular problems are given with the numerical 
results. All results are presented in the forms of tables 
and d iagrams, thus shown the effect of' an i sot ropy on 
stress concentration around holes under different kinds of 
medium loading. 

$ 1 .  Solution of First Basic Problem for Region with Ell iptic   ole' 

We will assume that an elliptic hole, around the contour of which are /209 - 
given the external forces X Y (the first basic problem) or components u and n' n 
v of displacement of its points (second basic problem), is made in an infinite 
anisotropic elastic plate. We are required to determine the stress state in 
the examined plane near the hole. We direct the Ox and Oy axes along the 
corresponding axes of the ellipse. We will denote the semiaxes of the ellipse 
through a and b. 

Along with the given plane z = x + iy we will examine the planes z and z 
which are taken from it by the affine transformation: 1 2 

where s 1 = a1 2 2 + iB1, s2 = CL + iB are the roots of equation (1.84); xl = x + 

+ sly; y1 = B y; x = x + a2y; y2 = B2y. By this transformation the given 1 2 
ellipse on plane z is converted into ellipses on planes z and z (Figure 111.1). 1 2 

Through S, s(') and s(~) we will denote the corresponding regions outside 
of these ellipses. Then we will determine the functions that conformally map 

regions S, ~ ( l )  and s(') on the interior of unit circle y. The function 

- ~ 

  he solution of this problem was found by S. G. Lekhnitskiy [S] with the aid of 
series and later by G. N. Savin, using another method 121; see also H. D. Con- 
way [I], S. G. Lekhnitskiy [7 ] ,  S. G. Lekhnitskiy, V. V. Soldatov [l] and 
V. V. Soldatov [I]. 



a - b  a f b  1 z = o(t)=- 2 5 + ,--.- 5 '  

as we know (see (1.42)) conformally maps region S on the interior of unit cir- 
cle y. 

F i  gure 111.1. 

The coordinates of the points of the contour of the ellipse of plane S, 
according to (I I I. 2) , are 

After transformation ( I I I . l ) ,  the points of contour L of plane S are 
transformed into points of the contour L1 of plane S ( l ) ,  i.e., 

21 = x + sly = a cos 6 - slb sin 6 = - a a + - + islb a - - = : [ (  j ( :)I 

Thus, the function that conformally maps region ~ ( l )  on the interior of - /210 
unit circle y is 

Analogously, we find the function that conformally maps region s ( ~ )  on the 
interior of unit circle y: 



A s  fol lows from t h e  cons t ruc t ion  of  t h e  mapping func t ions  w,(<) and w,(<) - - 

(111.4) and (111 5 )  t o  p o i n t s  A, A(') and A(2' of t h e  c o n t k s  of r e i i o n s  

S, s( ' ) ,  s ( ~ ) ,  which a r e  loca ted  i n  a f f i n e  correspondence (see Figure 111. l ) ,  
corresponds one po in t  on t h e  contour of t h e  u n i t  c i r c l e .  

We w i l l  assume t h a t  t o  contour L of reg ion  S (plane with e l l i p t i c a l  ho le)  
a r e  appl ied ex te rna l  forces  X n '  ' n ~  t h e  r e s u l t a n t  vec to r  of  which i s  equal  t o  0. 

We w i l l  f u r t h e r  assume t h a t  t h e  s t r e s s e s  a t  i n f i n i t y  a r e  a l s o  equal t o  zero1.  
In t h i s  case,  according t o  53, Chapter I ,  t h e  func t ions  $(z,) and +(z,), which 

L 

a r e  holomorphous i n  t h e i r  reg ions  ~ ( l )  and s ( ~ )  and i n  cont Aur L of  reg ion  S, 
s a t i s f y  condi t ions  (1.96): - 

- 

Instead of z  i n  equat ion ( I I I . 6 ) ,  we w i l l  s u b s t i t u t e  t h e  va lue  u l (< )  of 
1 

( I I I . 4 ) ,  and in s t ead  of z2,  t h e  value ~ ~ ( 5 )  (111.5).  By denot ing @(<) = 

= @[w  ( < ) I  and Y (<) = $[w ( < ) I ,  we f i n d  t h e  boundary condi t ions  f o r  func t ions  /211 1 2 
@(<I  and Y ( 5 ) :  

where f  (6) and f2 (9 )  a r e  t h e  va lues  of  t h e  r i g h t  hand s i d e s  of ( I I I . 6 ) ,  where 
1 

ins tead  of x and y ,  a r e  s u b s t i t u t e d  t h e i r  va lues  from ( 1 1 1 . 3 ;  o = ei9 i s  t h e  
value of  < on t h e  contour  of  u n i t  c i r c l e  y. 

To d e f i n e  func t ions  @(<) and \Y(<) ,  which a r e  holomorphous wi th in  u n i t  
c i r c l e  1 and s a t i s f y  condi t ion  (111.7) on i t s  contour ,  we w i l l  use  Schwartz 
f ormu 1 a 

where U(9) is  t h e  r e a l  p a r t  o f  t h e  func t ion  F ( < )  on t h e  contour  of  t h e  u n i t  
c i r c l e ;  a i s  some r e a l  cons tan t .  

0 

'A  more general  case  w i l l  be  considered below. 
'see N .  I .  Muskhel ishvi l i  [ I ] ,  p .  284.  



1 0-t-5 du 
We will multiply both parts of equations (111.7) by and 

integrate with respect to contour y. According to (111.8) we have1 

a + <  du @(C) -k  Y(C)= -&; fl($)- .- ' S a - i  
+ lao, 

Y 

By solving equations (111.9) relative to functions @(<) and Y (c), we 
obtain 

where, fior brevity, we write 

Returning now to variables z and z i.e., by substituting into function 1 2 ' 
a(<),  instead of <, its value2 

and in function Y ( < ) ,  instead of 5,  its value /212 

'1n formulas (111.9) the variable 5 in function should be regarded as 5 in 
(III.12), and in function Y ,  as c, of (111.13). 1 

2~unctions (111.12) and (111.13) see found by inverting formulas (111.4) and 
(111.5). 



we f i n d ,  f i n a l l y ,  t h e  func t ions  $(zl) and $(zZ) .  Since t h e  cons t an t s  X1 and 

X o f  (111.10) have no e f f e c t  on t h e  s t r e s s  s t a t e ,  they  can be d is regarded .  2 

Consider t h e  genera l  case  where t h e  main v e c t o r  of  t h e  e x t e r n a l  f o r c e s  
appl ied  t o  t h e  contour  i s  not  equal  t o  zero and a homogeneous s t r e s s  s t a t e  is 
given a t  i n f i n i t y 1 .  The func t ions  $(zl)  and +(z ) have t h e  form ( I .  124),  i . e . ,  2 

9 (zJ = B In z, + (B' * + iC1*) z, + 9, (23 ,  

where C* = 0.  The cons t an t s  B*, C f * ,  B 1 *  ( i n  t h e  given d i r e c t i o n s  a t  i n f i n i t y )  
a r e  def ined  by formulas ( I . 128) ,  and t h e  cons t an t s  A and B a r e  found from sys-  
tem ( I .  116). 

By s u b s t i t u t i n g  func t ions  (111.14) i n  t h e  boundary condi t ions  ( I I I . 6 ) ,  we 
f i n d  

2 Re [cpO (2,) + (241 = f l  - 2 Re [ A  In z1 + B*z, + Bln 22 + (B'* t iC*) z2], 

+ Bs, In z, + sr (B1* 4- iC'*) 24. 

Obviously, func t ions  $O(zl) and qO(z2) s a t i s f y  t h e  same boundary condi t ions  

( I I I . 6 ) ,  bu t  with d i f f e r e n t  r i g h t  hand s i d e s .  We w i l l  denote t h e  r i g h t  hand 
s i d e s  of (111.15) through 

and c a l l  them t h e  adduced boundary condi t ions .  We w i l l  r e c a l l  t h a t  i n  (111.16) 

z and z a r e  p o i n t s  of  contours  ~ ( l )  and L(*). Thus, t h e  boundary condi t ions  
1 2 

f o r  func t ions  $O(zl) and $ J ~ ( Z ~ )  a r e  

- 

' cases  of heterogeneous s t r e s s  s t a t e  a t  i n f i n i t y  a r e  considered l a t e r .  



Comparison of the boundary conditions (111.17) and (111.6) show that 
functions $ (z ) and $ (z ) are found from the very same formulas (111.10) by 

0 1 0 2 0 0 
substituting fl and f2 in their right hand sides by fl and f2 of (111.16) 

Thus, 

By knowing functions (5) and Y (i), and by converting to the variables z1 of 
0 0 

(111.12) and r2 of (111.13). we find the functions @ (z ) and q0(z2). By 0 1 
substituting the values found for these functions in (III.14), we find the 
final form of the desired functions $ (z  ) and $(z ) .  The stress components 

1 2 
a a T for the functions @(zl) and $(z2) that we have found, are deter; x ' XY 
mined" from (I. 90) . 

Tension of Anisotropic Plate with 
Elliptic Hole Whose Contour is Free of 
External Forces. Let the stress state at 
infinity represent tension by forces p 
that constitute angle a with the Ox axis 
(Figure 111.2). Consequently, the stress 
state in infinitely remote parts of the 
plate are 

o!"' = p cosZa; olJ") = p sin2a; TI,;) = p sin a cos a. 

We will find the right hand sides of 
the adduced contour conditions (111.17). 
Since the contour of the hole is free of 
external forces, then x = y = 0, and con- 

Figure 111.2. sequently, we may assume that f = f = 0 1 2 
(see (I .64) and (I. 116)). By substituting, 

instead of or), o(a) and r their values into formulas (I.128), we find 
Y XY ' 

'see M. M. Fridman [3], where a detailed analysis of works on elasticity 
theory of anisotropic media is given. 



[(a: - p:) - 2a,a,] sinza - ms2a - a? sin 2u B'* = p  
2 [(a, - all3 + (pi - B:)I I 

C'* - I (01 - a 3  cos2 a + [a, (a: -- p:) -al(a; - $;) J sin2 a 
-.P , 

282 [(a, - all2 + (Pi - P:)I 
+ 

[(a: - #) - (a; - $:)I sin a cas a + -- I. 
28, [(a, - alla + ($; - $:)I I 

The adduced contour conditions (111.16) in the given case are 

If we substitute into ( I 1 1 2 0  instead of zl and z2, their values through 
a from (111.4) and (III.5), and introduce the definitions 

then the adduced contour conditions (111.20) are 

0 
By substituting the values found for fy and f2 into (III.18), stipulating 

that 

we find 



- 
q r O  ( 5 )  = 

(KI  ' I ( , )  - s, (XI + ii?) 5 + X,. 
S l  - St 

After simplifying the expressions obtained, we have 

(Do (i) = - P; 
4 (S, - s?) 

lib (s, sin 2a + 2 cos2 a )  - a (2s2 sin* a f sin 2a)] -> I . , .  

(111.22) 

U', (:) = r: lib (s, sin 2a + 2 cosza) - a (227, s in2a  + sin 2a)l-i- A:- 
4 (91 - %) 

By substituting into the function Q (T) of (III.22), instead of 5, its 
0 /21s - 

value from (111.121, and by substituting into the function Y (5) its value from 
(III.13), we find 0 

ip (a - islb) b (s? sin 2a -I- 2 cos2a) io (2s,'sin% + sin 2a) \ 
To ( 2 3  = - 4 (sl - s2) + 

{ Z l + j ,  Z F ( a 2 + { b , )  z 1 + ) ' { - ( a ~ + s ~ b ~ ) ~ '  

ia (2s, sin2 a $- sin 2a) 
$0 (23) = 4 - s2) 

(111.23) 

In formulas (111.23) the nonessential constants X1 and A2 of (111.11) will be 
omitted. 

In order to find $(zl) and $(a2), it is necessary to substitute the values 

found for the functions OO(zl) and q0(z2) from (111.23) into (111.14), assuming 

in the latter that A = B = 0 (since the contour of the hole is free of external 
forces). 

Hence, final ly : 

 he solution was found by G. N. Savin [2]. For the biaxial stress state, 
where N and N are the main stresses at infinity and al is the angle between 1 2 
the main axis corresponding to N and the Ox axis, it is necessary to find 1 
two solutions for (111.23): one, for p = N1 and a = a and the other, for 1' 
p = Nt and a = a + 90". The same problem is analyzed from a different point 1 
of view by S. G. Lekhnitskiy [5, 161. 



where the values B*, B'* and C 1 *  are given by formulas (111.19). By substitu- 
ting the functions $(zl) and JI(z2) thus found into formulas (1.90) and 

simplifying, we find the formulas for the stress components 

ax p cos2 a + 2 Re [sycpi (2 , )  -!- (z,)l, 
a, = p sin2 a + 2 Re [cpi (z,) f $; (zz)l, 

= p sin a cos a - 2 Re [s,cpi (2,) + s,+i (z,)], . 

where 4 (z ) and (z ) are functions (111.23). By substituting in expressions 
0 1 0 2 

(111.23) and (111.25) p by -p, we find the solution of the same problem for the 
case where the plate is compressed by forces p at infinity. 

Let us examine a few partial cases. 

Plate under Tension along Ox Axis (see Figure 111.2 ) .  By assuming a = 0 
in formulas (III.23), we find 

ipb  
cpo (23 = - a-  is,b 

* (" - ZL + p' ,7: - (a? + 4 b 2 )  ' 

ipb 
$0 (za) == 

a - is,b -- (111.26) 
2(s1-sJ . + v4- (08  +<b2),  ' 

The stress components are found from formulas (111.25)) assuming that a = 0 in 
them. 

P 1 ate under Stress a 1 ong Oy Ax i s (see Figure 1 1 1 . 2 )  . Assuming that 
a =  IT/^ in formulas (111.23)) we obtain 

The formulas for ax, a and T will not be written, since they are found very 
Y x Y 

readily from formulas (III.25), assuming that a = n/2 in them. By superposing 



the solutions of (111.26) and (111.27) one on the other, we find the solution 
for the case of three dimensional tension (compression) of a plate at infinity 
with intensity p of forces. 

Slot of Length 2a (or 2b) along Ox Axi s (or a long Oy Axi s) . Assuming that 
b = 0 in (III.26), we obtain 

(Po (21) = 03 90 (22) = 0' (111.28) 

i.e., a rectinlinear slot in an anisotropic medium, made in the direction of 
tension, does not affect stresses in this medium. The same may be concluded 
from (111.27) , assuming a = 0- 

~oniider a slot of length 2a (or 2b) located perpendicular to the forces 
of tension at infinity. 

Assuming that a = 0 in functions (III.27), we find the functions for the 
case of a plate under stress along the Oy axis with a slot of length 2a 
located on the Ox axis: 

Assuming that a = 7~/2 in formulas (III.25), and substituting in them the 
values found for the functions 4O (2) and I) (z) of (III.29), we obtain the stress 

0 
components for the cross section y = 0 when 1x1 > a: 

ux z= - asp - lie [sIs~), 
) [ x f  -- ( x  + VXU-  a') 

It is interesting to note that 0 as seen in (III.30), does not depend on the 
Y' 

elastic constants of the material. 

If, however, a slot of length 2b is made in the same plate along the Oy /217 - 
axis and it is under tension along the Ox axis, then the stress components for 
l y l  > b are 



From (111.31) we see that stresses ax.are independent of the elastic constants 
of the material from which the plate is made. 

However, stresses a in (111.31) are not equal to the corresponding 
Y 

stresses ox in (111.30). For comparison, it is necessary to assume that a = b 

in both formulas. These stresses will be equal only in the case of an isotro- 
pic medium, where equation (1.82) is converted to a biharmonic equation, the 
roots of the characteristic equation of which, namely sl and s2, are equal to i: 

To understand the changes that occur in the distribution of stresses 
around the hole, which were caused by the anistropy of the medium, it is 
sufficient to analyze the stress state along the contour of the hole and near 
it for various anisotropic materials through a few cross sections. 

Consider a plate under tension along the Ox axis. By differentiating 
functions mO(zl) and $J~(Z~) in (111.2), it is easy to find1 that 

i 
9; (~1) = - 

" . 11-  =I 

2 (s, - s?) a + is, b  I"4 - (at + 462)  

We will calculate the stresses around an elliptical hole through certain 
cross sections, considering that the coordinate axes xOy coincide with the 
straight lines of intersection by the plane of elastic symmetry of the material. 
By substituting functions (111.32) into the first formula'of (III.27), we find2 
the stresses through the cross section x = 0 

--- 

1 See S. G. Lekhnitskiy [ 6 ] .  
'AS will be pointed out below, sl = iBl and s = iB2 for all materials examined. 2 
These values are also used in the derivation of formula (111.33). 



Assuming that y = b in formula (II1.33), we obtain 

If the medium is isotropic, then B1 = B2 = 1, 

and from formula (111.34) we find formula 
(11.65) 

We will determine a through cross sec- 
Y 

tion y = 0. By substituting in functions 
$'(z ) and $'(z ) of (III.32), zl = z2  = x 
0 1 0 2 
from the second formula of (I . 5 3 ) ,  we find 

Figure 111.3. 

for x = a, 

Assuming that B1 = B2 = 1 in (III.36), we find, in the case of an isotropic 

medium (see formula (II.66)), a = -p. 
Y 

Figures 111.3 and 111.4 represent the graphs of stresses ox through cross 

section x = 0 calculated by formula (111.33) for a/b = 3 and a/b = 1/3, 
respectively for various anisotropic materials: 



1) for oak, the elastic constants of which are1 

according to which, from equation (I.84), we find 

- - 
sl = 1.6791, s2 = O$71i, s, = s,, s, = s,; 

2) for birch 

1 10-6 a,l = - .- . 1 10-6 a:, = - -.- 1 104 I loa , a,, = -.-, a,, = - -  -.- 
1670 9.81 3400 9.81 113 981 120 9-81 ' 

3) for spruce 

Curve 1 in Figures 111.3-111.10 correspond to an isotropic plate, curve 2 
to an oak plate, curve 3, to a birch plate and curve 4, to spruce. 

Figure 111.4. 

Figures 111.5 and 111.6 represent the graphs of stresses a through cross 
X 

section x = 0, calculated by formula (111.33) for the same anisotropic materials 
as represented in Figures 111.3 and 111.4, but for the case where the Ox axis 

2  he adduced constants have the dimension m /n. 



coinc ides  with t h e  d i r e c t i o n  corresponding t o  t h e  l e a s t  e l a s t i c i t y  modulus. 
The r o o t s  o f  equat ion  (1 .83)  f o r  t h i s  ca se  a r e  d i f f e r e n t ,  s i n c e  some e l a s t i c  
cons t an t s  a r e  rep laced  by o t h e r s .  For i n s t ance :  

f o r  oak 

1 - 1 10-~ %=---. , a,, = - -u_ v = - 1 10-~ -.- 1 1 10-4  .. 
E,, 582 , all = - = -.- 

E Y  I800 9.81 Ex 219 981 ' 

f o r  b i r c h  

f o r  spruce 

0 3 6 9  

F i g u r e  111 .6 .  

Fi gure 111.7. Fi gure 111.8. 



Figure 111.9. 

Figure 111.10. 

Figures 111.7 and 111.8 represent the graphs of stresses a Y 

through cross section y = 0 calculated by formula (111.35) for a/b = 3 and 
a/b = 1/3, respectively, for the same anisotropic materials. 

Figures 111.9 and 111.10 show the graphs of the same stresses a as 
Y 

Figures 111.7 and 111.8, but for axes rotated by 90' relative to the position 
in the first case. 

We see from Figures 111.3-111.10 that the stress concentration around the 
elliptic hole, as in the case of an isotropic medium, is of a local character. 
The anisotropy of the medium involves substantial corrections in the stresses 
in an anisotropic material only in a small area around the hole. The pattern 
of perturbation of the stress state vanishes by measure of distance from the 
hole1. 

The values of ( ~ ~ / p ) ~  at point A (see Figures 111.3 and 111.4) around an 

elliptic hole for a/b = 3 and a/b = 1/3 are presented in Table 111.1 for var- 
ious anisotropic materials. It is convenient to calculate the stresses around 
an elliptic hole according to confocal ellipses 

by converting2 to a new system of stress components : a*, normal stress on 

/ 

'See A .  V. Stepanov [I] .  
2 ~ e e  S. G. Lekhnitskiy [ I ] .  



surface perpendicular to the ellipses of interest; u normal stress on surface 
n' 
7 

tangent to ellipse, and T tangential stress on these surfaces. The for- 
' 

mulas of stress components for tension along the Ox axis around the contour of 
an elliptic hole (p = 1) are 

sin2 6 k ,?-i~ e x a* = ( sin.* + k l  cmz 8 ' sin2 B + C cos* O ' [ SI - sa 

(111.38) 
in 6 + k cos 0)2 (s2 sin O + k cos 8)z - 

sin B - s,k cos 2) sin 6 - s,k cos 6 

where k = b/a. Assuming that sl = al + iB1, s = a2 + iB2 in (III.38), and by 2 
removing the real part, we find the formula for ag around the contour of the 

elliptic hole. When k = b/a = 1, we find from (111.38) the stresses around the 
contour of the round hole. 

TABLE 111. I 
Tension - / Along major modulus I Along minor modulus 

1 - -- - 
Material I I I 

O a k . .  . . . . . . . .  . I  1,883 5,875 
Birch . . . . . . . . . .  2,514 14,626 1,394 4,546 
Pine . . . . . . . . . .  1 2,522 14,698 1,395 4,5513 
Spruce . . . . . . . . . .  1 2,369 18,718 1,435 4,916 
Isotropic medium . . . .  1 1.667 7,000 1,667 7,000 

T r .  Note: Commas indicate decimal points. 

Assuming that s = s = 1 in (III.38), we find, after limit transition, 1 2 
the known formula (11.64) for Og in the case of an isotropic medium: 

Since in the general case of anisotropy, i.e., when sl = a + i@ and s = /222 
1 1 2 - 

= a2 + i@ formula (111.38) is extremely awkward, we will introduce formulas 
2 ' 

ug for the most characteristic points of the contour. Stresses ug at the 

points x = +a and y = 0, i.e., 9 = 0 and 8 = a are found from (111.38) in the 
form 



The stress in these points clearly does not depend on k = b/a, i.e. it is 
identical for all ellipses and depends only on the elastic characteristics of 
the anisotropic material. 

If the mediwn is isotropic, then al = a2 = 0, B1 = B2 = 1, and we find 

the known formula og = -p (see (11.66)). The stresses at the points y = b, 

x = 0, i. e. when 4 = +7r/2, are found from (111.38) : 

In the case of an isotropic medium B1 = B2 = 1, and we find the known 

formula u4 = p (1 + 2 b/a) (see (11.65)) . 
When an isotropic plate is under tension along the Ox axis, the greatest 

stresses og on the contour of the elliptical hole occur at the points 4 =   IT/^. 
If the medium is anisotropic, then this conclusion, generally spgaking, is not 
true. The fact is that even in the simplest case of an anisotropic material, 
particularly in the presence of three planes of elastic symmetry within the 
material and under the condition that the axes are coincident with the straight 
lines of intersection of these planes of elastic symmetry, stresses ug around 

an elliptic (in particular, round) hole for 4 = 0 and 4 = 7-r can greatly exceed 
in absolute value the stresses ag for 4 = +~r/2. This will occur, for instance, 

in the case of tension in the direction of the minor modulus E l  of a spruce 

plate weakened by a round hole, for which sl = 1.105i and s2 = O.2OOi. In t h i s  

case (04)g=0 = -4.5p, whereas (ug)4=+7r/2 = 2.3~. The same will be true in the 

case of a birch plate under tension and weakened by a round hole, specifically 
("g)b=O = -3.85~, whereas (ag)b=tn/2 = 2.18~. 

For certain anisotropic materials, stresses ag are determined along th.e 

contour of an elliptic hole for a/b = 3 and a/b = 1/3 (the semiaxis a lies on 
the Ox axis, and the semiaxis b lies on the Oy axis) for two cases: 

1) when the straight lines of intersection of the planes of elastic 
symmetry of an anisotropic material are used as the Ox and Oy axes; 

2) when the Ox and Oy axes are rotated in relation to their position in 
the first case by angle 8 = 30". 

The values of stresses og/p along the contour of an elliptic hole are 

presented in Tables 111.2 and 111.3 for a/b = 3 and a/b = 1/3, respectively, 
for the cases of plywood and spruce. 



TABLE 111 .2  

Tr. Note: Commas indicate decimal points. 

TABLE 1 1 1 . 3  

* 
I 

T r .  Note: Commas indicate decimal points. 

Anisotropic medium 
I 

VO 

0 
15 
30 
45 
60 
75 
90 

@' 

The elastic constants of plywood I in the first case (6 = 0) are: 

' Plywood I 
(El /E1=12)  

Isotro- 
pic 
med i um 

-1,WO 
-0,077 

1.000 
1,400 
1,571 
1,646 
1,667 

12 11.667 lo-' a 2 t = - -  fze6=-'- a,, = a,, =. 0; 
1.4 981 1.4 9.81' 

120 
150 
180 

I Anisotropic medium 

the roots of equation (1.84) are 

Plywood l l 
( E I / E Z  :2,1) 

6=P 1 6-30? 

1.464 
0,163 

-0,221 

lsotro-1 Plywood I 
p i  

! ( E I ~ E I - 1 2 )  

med i um 

Spruce 
( E t / E r = M . S )  

1,166 
0,im 

-0,327 

1,571 1,667 / 1.230 1.553 

) A=O I 6=30° 

-0,290 
-0,162 
. 0.282 

0,957 
1,667 
2.200 
2.400 

1.214 

Plywood I I  
{ E l / E ~ = 2 . 1 )  

-0,221 
-0,114 

0,163 
0,664 
1,464 
2,447 
2,969 

- I--~.282 0 . 6 7 2  0.523 23,077 
0,290 1-0,344 -0,689 I-0,919 I I I 

Spruce 
( E 1 / E s 4 . 5 )  

d=O I 8-30' 
-- 

0 I -1,000 

-0.327 
-1,287 

1,098 
2,519 
2,148 - 
1,556 

-0.311 / -0,689 1 -0,919 
-1,132 0,018 1 -0,763 

-0,689 
-0.354 
-0,569 - 

1,749 
3.068 
7.033 

14,171 
0.569 

-0,354 
-0,689 

-0.290 
-0,248 
-0,093 

1,449 
3,280 
8,525 

13,601 
. 0,093 
-0,218 
-0,290 

, 6 x 0  1 b S P  

30 
60 
70 
75 
80 
85 
90 

120 
I50 
180 

0,933 
2,215 
2,148 
- 

1,680 

-0,919 
-0.833 
-0,221 

1,533 
5,080 
10,835 
8,007 
4,888 
2,025 

-0,644 
-0,919 

-0.344 
-1.493 
-1.214 - 

3,999 
10,429 
10,909 
7,120 
0,945 
0,114 

-0.344 

,-0.221 
-0,175 

0,078 - 
0,991 
2,274 
6.836 

18.720 
0,078 

-0,175 
-0,221 

-0,714 
1,000 - 
3,859 
5.251 
6,484 
7,000 
1,000 

-0,714 
-1,oOO 

-0,327 
-1,200 
-1,455 

2209 
14,499 
10,679 
6,001 
1,062 
0,147 

-0,327 

0,523 1 1,482 
0,899 ' 2,159 
1,553'  1,835 
2,184 
2,463 

- 
1,432 



t h e  Ox a x i s  i s  d i r e c t e d  along t h e  major modulus E . E  = 12. When t h e  axes a r e  
1' 2 

r o t a t e d  by some angle ,  t h e  va lues  o f  t h e  e l a s t i c  cons t an t s  aik a r e  changed. 

In t h e  new system of coord ina tes ,  t h e  va lues  of a';, a r e  def ined  by t h e  known 
I R 

formulas of t ransformat ion  of t h e  e l a s t i c  cons t an t s  of an i so t rop ic  bodies1 .  /224 
The e l a s t i c  cons t an t s  f o r  plywood I i n  t h e  second case  ( 6  = 30') a r e  

The e l a s t i c  cons t an t s  of plywood I1  i n  t h e  first  case  a r e :  

1 1 0 - ~  aB6 = - ..-~ 
0.097 $81 ' 

a,, = a,, = 0; 

i n  t h e  second case :  

- - 
s1 = l.373 + i0.842, s, = s,, ' s, = s,, .s, = 0.483 + i0.451. 

The e l a s t i c  cons tan ts  of spruce i n  t h e  f i r s t  case  a r e :  

lo- a,, = 0.588 -- a,, = 12.040 - lo-' ,j' 
9.81 ' 9 8  1 

lo-= I 0-' a12 = - 4217 - as6 = 15630 - , 
9.81 ' 9 s  1 

' s ee  S. G .  Lekhnitskiy [I]. 



in the second case: 

- - 
S,  = 1,483 + i0.718 s2 = - 0,083 + i0349, s8 -3. s,, s, = s,. 

The data in Tables 111.2 and 111.3 show that when the Ox and Oy axes - /225 
coincide with the straight lines of intersection of the planes of elastic sym- 
metry of the material, the greatest and smallest stresses for the case of 
tension along the Ox axis will occur at the very same points 9 = n/2 and 9 = 0 
as for an isotropic medium. However, it cannot be verified that the greatest 
absolute value of crg will occur for 8 = ~ / 2 ,  and that the least will occur for 

8 = 0. It is necessary to calculate and compare the values of o8 at these two 
points. 

Elliptic Hole, the Edge o f  Which Is under Uniform Tangential Stress. In 
this case, 

Consequently, from (111.6) 

f~ = - 1 Y , ~ S + C ,  = - Tg + mnd. 

s 

f. - 4 X.ds + C, = Tx + const. 
0 

The right hand sides of boundary conditions ( I I I .7) ,  considering (III.3), are 
found in the form 

From equations (III.lO), recalling that 

we will find the functions 



o r ,  i n  va r i ab les  zl and z2: 

I f  i n  formulas (111.40) we assume t h a t  a = b = R and speci fy  t h a t  M = - /226 
= - ~ I T R ~ T ,  and then proceed t o  t h e  l i m i t  s o  t h a t  t h e  value of the  moment M w i l l  
not be changed, and so  t h a t  t h e  radius  of the  hole  R approaches zero, then we 
f ind  the  formulas 

1 + i s )  - i s )  1 e, (21) = - .- 
8n (s, - s,) q ' 

which express the  e f f e c t  of  a concentrated couple with moment M ,  applied a t  
t h e  o r i g i n  of the  coordinates of an i n f i n i t e  an i so t rop ic  p l a t e .  

E l l i p t i c  Hole, the  Edge of  Which Is  under Uniform Pressure p .  In t h i s  case 

Consequently, from (111.7)  f o r  t h e  given problem, we have 

By s u b s t i t u t i n g  t h e  values found f o r  fl(B) and f2 (9 )  i n t o  equations 
(111. l o ) ,  we f i n d  

i p ( b  + ias,) ip(b + ias,) t -  



Converting to variables z l  and z2, we obtain 

ip(b  + ias,) a - is,b q- (2,) = - -- -----. ---- -- 
2 (s ,  - s,) 

2, + I/3 - (aP + s?b2) 
' 

ip(b + ias,)  9 (z,,) . a - is,b 
-- 

2(s1 - Sd f2 + vzi - (a2  + s i b 2 )  ' 

Rectilinear Slit, the Edge of Which Is under Uniform Pressure p. The 
solution is found from the preceding problem, assuming that b = 0 or a = 0 in 
functions $(zl) and $(z2) of (111.41). In the first case we will have a slit 

of length 2a along the real axis, and in the second, a slit of length 2b along 
the imaginary axis. 

The functions for the slit of length 2a lying on the real axis are 

B y  comparing functions @(zl) and $(z ) of (111.42) with functions QO(zl) /227 2 
and $ (z ) of (III.29), we see that they are completely coincident. 

0 2 

The general solution of the problem of elastic 
equilibrium of an anisotropic plate with cross sec- 
tions located along a straight line is examined by 
S. G. Mikhlin [l] and, by a different method, P. A .  
Zagubizhenko [I], who also analyzed the case of com- 
pression of an anisotropic plate with a single 
rectilinear slit1. 

Elliptic Hole, Part of the Edge of Which Is under 
Normal Pressure. Case of Concentrated Forces. We 
will assume that uniform pressure p (Figure 111.11) 
is applied only to segment AB of the contour of the 
hole, and that the remaining part of the contour BCA 
is free of external forces. The stresses at infinity, 
as before, are assumed to be equal to zero. 

Since the main vector of external forces applied 
to the contour of the elliptic hole are not equal to 

Figure 111.11. 

1 See also G. P. Cherepanov [l] and I. A. Prusov [I]. 
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0 zero, it is necessary to use the adduced contour conditions fy and f2 of 

(111.16) in formulas (111.10) instead of fl and f2. 

We will first determine fl and f We will use point A as the origin and 2' 
assume that fl = f2 = 0 in it. As in the preceding example, on segment AB we 
have 

To points A and B on plane S will correspond points A' and B', i.e. u1 = e it9, 

and o = eiJ2 on the contour of unit circle . 
2 

Relative to constants C1 and C arbritrary assumptions cannot be made in 2 ' 
the given case (i.e. we cannot assume that C = C = 0), since the functions 1 2 
f and f must be continuous. 1 2 

According to definition, at point A fl = f2 = 0, i.e., pa cos a1 + C1 = 0; 

pb sin O1 + C2 = 0 or C1 = pa cos O1; C2 = -pb sin bl. Consequently, the 

functions on segment AB are 

f l =  -pa(cos6-~os6~)= 

f, = pb (sin 6 - sin 6,) == - i$ [G -y-(al-J-)l; 1 

and on segment BCA 

fl - -pa(cos6,-costf,) = - 

JZ - pb (sin 6, - sin 6,) = - iG[(%-$) -("-$)I. 
By passing one time around the contour of the hole in the positive direc- 

tion, we find that the functions fl and f2 acquire the increments 

[ f ,  1, = - pa (cos 8, - cos el), 
-. If,], - pb (sin 6, - sin 6,). 



Consequently, 

These va lues  of t h e  p r o j e c t i o n  of  t h e  r e s u l t a n t  vec to r  of e x t e r n a l  fo rces  
should be s u b s t i t u t e d  i n t o  t h e  cons tan ts  and By def ined by system (1.116). 

By de f in ing  A = A t  + i A V ,  B = B t  + i B t t ,  and by s u b s t i t u t i n g  i n t o  ( I I I . 1 4 ) ,  
i n s t ead  o f  z and z t h e i r  va lues  through a from (111.4) and ( I I I . 5 ) ,  we 
o b t a i n  

1 2 ' 

O(G)= - - ( A ' + i A N ) l n 5  +@,(5). 
Y (5) - - (B' + iB") In 5 + Yo(5). 

where 0 (5) and Y (<) a r e  func t ions  t h a t  a r e  holomorphic wi th in  y .  By s u b s t i -  0  0 
t u t i n g  t h e  va lues  of  t hese  func t ions  i n t o  t h e  contour  condi t ions  (111.6) '  we 
f ind1  

2Re [Q, (a) + Y, (o)] = f ,  + 2Re [(A' + iAW) In a + (B' + iB") In a] = (, 

hence 

From formula (111.18) we f i n d  t h e  func t ions  

 o or In a ,  it i s  necessary t o  t ake  some s i n g l e  arm of  t h i s  func t ion .  
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0 1  

P ' do P i b ) J - . - - . -  1 a + [  do\. .  --(as,- ib) a----.- -- 
2 j' u-C o 2 a u - -L : \  u I.' 

01 01 

i Yo (6) == - o a + c  do - 
4n (s, - s,) j -/?I -.7 - 

Y (111.43)  

where 

M, = 2i  [s2 ( A  .t B") - (Alpl t Anal + BIB2 -t B"a,)], 

M, = 2i [s, (A" -I- B") - (Af$, f A"a, + B'$, + BW%)]. 

I n  expressions (111.43) we encounter the integrals 



Considering the values of the latter integrals, it is easy to obtain the - /230 
final expressions for a0(5) and Yo(<). We will not write them out since they 

are quite cumbersome, but will simply point out that if we assume that a2 = al 

in them (the entire contour is under stress), we will find the simple formulas 
derived above for this case. 

B y  substituting the expressions found for 
a, (<) and Yo ( 5 )  into formulas 

0 ( 5 )  = - (A' -+ iA") In 6 + 0, (t), 

and by returning by formulas (111.12) and 
(111.13) to the variables zl and z 2 ,  we obtain 

the desired functions $(zl) and $(z2). B y  

simple limit transition in the functions ob- 
Figure 111.12. tained, it is easy to find the solution for 

the case of concentrated force P applied 
[normally) to the contour at at any of its D ints. For this purpose it is 
necessary to shorten arc AB so that gm = P. In this manner we can 

AB+O 
find the solution for several individual forces. By combining the solution, 
obviously, we find the solution for any finite number of arbitrary, but concen- 
trated forces perpendicular to the contour of the hole. For instance, the case 
of two concentrated forces P applied at points (0, -b) and (0, +b) of the con- 
tour of an elliptic hole (Figure 111.12) is found as the limit case of a 
uniformly distributed pressure p applied to the contour of an elliptic hole at 
certain of its segments, distributed symmetrically relative to the Oy axis. 

it9 i6 Through ol = e and a2 = e we will denote the points on the unit 

circle that correspond to points A and 0 of segment AB on the contour of the 
elliptic hole (see Figure 111.11, where the points A and B in the given case 
should be located symmetrically in relation to the Oy axis). Such a segment of 
the contour is under stress by uniformly distributed pressure p in the upper 
part of the contour of the hole as well (Figure 111.11). We will denote this 
through CD. The points C and D, obviously, will coincide on the unit circle to 

i9 i9 I+ 
points a = e and o4 = e , 3 

The functions a(<) and Y(<), where, on the above stated segments AB and CD 



of the contour of the elliptic hole, a uniform pressure p is applied, we find 
from formulas (111.10) : 

where 

1 K,  = (6 + ias,) a, - (6 - ias,) - 
01 ' 

1 Kp -- (b $ ias,) ad - (b - ias,) - . 
0 4  

The analogous expression for Y(<) is easily found from @(<) by substitution of 
S2 by S1 - h 

Proceeding now to the limit such that &. !p 'AB}  = and lirn ( p ' C D ) =  p. 
a + o  

we find functions a(<) and Y(c) in the case where two mutually cancelling con- 
centrated forces are applied to the contour of an elliptic hole at the points 
( 0 ,  -b) and (0, +b) (see Figure 111.12) : 

i P  
0 (6) = - 3 - i  as, In - + const, 

2~ (s, - ~ 2 )  6 + i .  

Y ( 6 )  = j p  
T,-i as, In - + const. 

2~ (SI - SS) 6 + i  

By substituting into a(<) of (III.44), instead of <, its value ir (III.12), and 
into Y ( < )  of (111.441, the value of < in (II1.13), we find the functions $(zl) 
and $ (z2 ) .  From the functions thus found we determine, by formulas (I.90), the 
stress components ax, a and T 

Y XY ' 



Of p a r t i c u l a r  i n t e r e s t  a r e  s t r e s s e s  a a t  t h e  p o i n t s  ('a; 0 ) ,  i . e . ,  a t  
Y 

t h e  p o i n t s  of  i n t e r s e c t i o n  of  t h e  contour of  t h e  ho le  wi th  t h e  Ox a x i s .  I f  we 
assume t h a t  s l  = i B 1  and s = i B 2 ,  then  a t  t h e s e  p o i n t s  

2 

I f  t h e  medium i s  i s o t r o p i c ,  then  B1 = B2 = 1, and from (111.45) we f ind1  t h e  - /232 

fol lowing s t r e s s e s ,  which a r e  independent of a :  

In  Figure 111.13 a r e  presented  t h e  curves of  var ious  an i so t rop ic  m a t e r i a l :  oak 
( s l  = 1.679i ;  s = 0.971i:; spruce ( s  = 5.0007i,  s = 0 .905 i ) ;  b i r c h  2 1 2 
( s l  = 3.416i,  s2 = 1 .126 i ) .  Curve 1 c o r r e s p ~ n d s  t o  an i s o t r o p i c  p l a t e ,  curve 

2 ,  t o  oak, curve 3, t o  spruce and curve 4 t o  b i r c h .  

S t r e s ses  Around E l l i p t i c  o r  Round Hole in 
Anisotropic  Rod  earn) under Pure ~ e f  l e c t  ion2.  
We w i l l  assume t h a t  an a n i s o t r o p i c  rod (beam) 
with an e l l i p t i c  ho le  (Figure 111.14) i s  i n  a 
s t a t e  of  pure d e f l e c t i o n .  Def lec t ing  moment 
M ,  i t s  d i r e c t i o n ,  and t h e  p o s i t i o n  of  t h e  ho le  
a r e  shown i n  Figure 111.14. We w i l l  f i n d  t h e  
s t r e s s  s t a t e  around t h e  ho le ,  assuming t h e  
contour  of t he  ho le  t o  be f r e e  of ex t e rna l  
s t r e s s e s .  The s o l u t i o n  of  t h i s  problem w i l l  be 
found under t h e  same assumptions a s  f o r  an 
i s o t r o p i c  medium, i . e . ,  we w i l l  assume t h a t  t h e  
p l a t e  i s  i n f i n i t e  and t h a t  t h e  s t r e s s  s t a t e  i n  
t h e  remote a reas  from t h e  ho le  i s  independent 
of t h e  e l l i p t i c  ho le  i n  t h e  d e f l e c t e d  beam. 
The s t r e s s  s t a t e  around t h e  ho le  w i l l  be  

Figure 111.13. represented  i n  t h e  form 

' A  complex and inconvenient  s o l u t i o n  i n  t h e  form of  i n f i n i t e  t r igonometr ic  
s e r i e s  f o r  an i s o t r o p i c  medium was found by P. S. Symonds [ I ] .  These s e r i e s  
converge very  s lowly,  and t h e  graph f o r  ug r ep re sen t s  a rough approximation. 

*The s o l u t i o n s  "as found by S. G .  Lekhnitskiy [l] and, by a d i f f e r e n t  method, by 
G .  N .  Savin [3].  See a l s o  V .  B.  Lipkin [ I ] .  



0 where ox, u0 and ro are stresses of the basic state in an anisotropic rod 
Y' x Y 

(beam) under pure deflection, not weakened by an elliptic hole, o;, o* and /233 
r* are additional stress components caused by the presence of a hole.Y Here 
x Y 

ao,-- 
I M(xsina I + ycosa +d)cos2a, 

@ = -  
Y .  

(x sin a + y cos a + d )  sin2 a, T 
M ey =T.(~sina + ycosa +d)sinacosa. 

where J is the moment of inertia of the cross section of the beam; d is the 
distance between the center of the elliptic hole and the neutral axis of the 
beam (rod); a is the angle formed by the Ox axis and the neutral line of the 
beam (rod). The corresponding function of stresses for pure deflection1 is, 

M uo (I, y) = - [g cosS a + 3xy cos2 a sin a + 3p2d cos2 a + 3 x 4  sin2 a cos a + 
-k 3xgd sin2a + 3xZd sinZa + xssin3a]; (111.47) 

where Uo(x, y) is the known function (111.47); U*(x, y) is an unknown function 

of stresses corresponding to the stress state a* a* and T* . 
x'  Y XY 

Due to the linearity of basic equation (1.82)' if we substitute in it, 
instead of the function U(x, y) , its value from (111.48)' we arrive at the case 
where the function U*(x, y) will satisfy the very same equation (1.82): /234 - 

The general integral of this equation will have the form ( 1 . 8 5 ) :  

 o or more complex forms of external load applied to an anisotropic beam on its 
upper and lower edges, the Airy function U(x, y) should be found by 
A.  A .  Ki~rdyumov's method [I]. 



By s u b s t i t u t i n g  i n t o  ( I . 9 5 ) ,  i n s t ead  of ax, a and T t h e i r  va lues  
Y XY ' 

r e c a l l i n g  t h a t  t h e  contour  of t h e  ho le  i s  f r e e  of ex t e rna l  f o r c e s ,  i . e .  assuming 
X = Y = 0, we f i n d  t h e  contour  condi t ions  f o r  t h e  func t ion  U*(x, y ) :  

n  n  
d2U* d2UV cos (n, X )  - -- ccs (n, y) = - [a: cos (n, x )  + z0xycos (n, y)]. 
dyZ dxdy 

d w *  -- azu* 
dxdy cOs (np X )  f COS (n, Y) = - [zO*y cos (n, x )  + 01 cos (n, y)]. 

Recal l ing t h a t  cos(n,  x) = dy/ds and cos(n,  y)  = -dx/ds, we f i n d  

au* - -- - - 
dx 

0" 

Introducing,  a s  before ,  t h e  d e f i n i t i o n s  

we f i n d ,  f o r  t hese  func t ions ,  t h e  contour condi t ions  i n  t h e  form 



0 0 where C1, C are arbitrary real constants, and ox, oy and rXOY are known 
2 

functions of the coordinates of the points of the contour, given by equations 
(111.46). 

Figure 111.14. 

The contour conditions for $o(~l) and $0(~2) (111.52) have the very same 

form (III.6), as for functions $(zl) and $(z2). In this manner the solution of 

the stated problem reduces to a problem that has already been solved. 

Let us return to our problem. We will determine the right hand varts of - 
(I O their values from (111.46). (111.52). By substituting, instead of ox, uy, rxy, 

we find 

+ xd sin a cos a + yd cos2 a + const. I 



By s u b s t i t u t i n g  i n t o  t h e  expressions f o r  f  and f 2 ,  i n s t ead  of  x and y ,  
t h e i r  va lues  

1 

we ob ta in  

M s i n a  
f I  = [T (a2 sin2 a - b2 cos2 a  + iab sin 2a) u2 f 

d sin a d sin a 1 
+T (asina f ibcosa)u+ T ( a ~ i n a - i b c o s a ) a  + 

sin a + -g-- (a2 sin2a - b2 cos2 a - iab sin 2a) + const. 
-- 

' I 
(a2 sin2 a - b2 cos2 a + iba sin 2a) a2 + 

d cos a d cos a 1 
+T (asina f i b c o s a ) ~  +T(asina-ibcosa)a + 

Then, by s u b s t i t u t i n g  t h e  va lues  f o r  f l  and f  i n t o  formulas ( I I I . l O ) ,  
2 

/236 - 
not ing  t h a t  

we f i n d  

@(<) = - M 
[(s? sin a - cos a) (a2 sin2 a - b?cos2a + iab sin 2a) gr + 

8J(s1- s*) 

+ 4d (s, sin a - c3s a) (a sin a -1- ib cos a) 51 + const, 
-. (111.53) 

'Y(C)= [(s, sin a - cos a) (a%in2 a  - b2 cos2 a  + iab sin 2a) 6, + 8J (SI - s*) 

+ 4d (s, sin a - cos a) (a sin a + ib cos a) 5 )  + const. 

Fur ther ,  by s u b s t i t u t i n g  i n t o  t h e  func t ions  @(<) and Y(<), i n s t ead  of  5 ,  
t h e i r  va lues  from (111.12) and (111.131, r e s p e c t i v e l y ,  we f i n d  t h e  f i n a l  form o f  



the desired functions $0(~1) and I) (z ) .  The stress components for the 
0 2 

desired functions are found from formulas 

We will not write out the functions 4 (z ) and I) (z ) in the general case, 
0 1 0 2 

since the statement of this problem is obvious, but will write them out for the 
case where a = 0 (Figure 111 .15) .  

Figure 1 1 1 . 1 5 .  

For this case 

Mdb i cp,(z,) = - --. a-lslb - 
2J s1 - s2 

Z ,  + I/ rf - (a2 + $b2) 

Mdb i q0(z2) = --.- . a - is,b 
21 sl-s, z2 + vi,-qb2) + 

Mb' 1 +-.-[ 81 sl-S, 
a - is,b 

Z2 -i- 1/2 - (a2 + 4 b 2 )  



Comparison of functions (111.55) with (111.26) shows that the first 
components in (111.55) give the solution of the problem in the case of tension 
(compression) of an isotropic rod weakened by an elliptic hole, along the Ox 
axis with intensity of forces p = -Md/J (Figure 111.15) ; the second components 
in (III.55), however, correspond to pure deflection of a beam (rod), where the /237 
neutral line coincides with the Ox axis. 

Additional stress components o* o* T* can be determined from functions 
(111.55). 

x' y' xy 

It is clear from (111.55) that the additional stress components caused by 
pure deflection of a rod (second components in (111.55)) will attenuate more 
rapidly by measure of distance from the hole than the additional stress compo- 
nents caused by tension (compression) of the rod (first components in (111.55)). 
Hence we may conclude that with pure deflection the zone of perturbation of the 
stress state around the elliptic hole when d = 0 in an anisotropic rod will be 
less than the corresponding zone when this rod is under tension. 

We will find that the values of stresses ag are the points A, B and C 

(see Figure 111.15) of an elliptic hole. We assume that s 
1 

= a1 + iB1 and 

s2 = a2 + iB2, i.e. the general case of anisotropy. 

The stress at point A is 

where k = b/a is the ratio of the semiaxes of the elliptic hole. If the medium 
is isotropic, then B1 = B = 1, and from (111.56) we have 2 

If a = 0, i.e., the center of the elliptic hole lies on the neutral line, /238 
then from (111.57) we find formula (11,102) 

The stress at point B is 



The stress at point C is 

In the case of an isotropic medium (a = a2 = 0 and = B2 = l), we obtain 1 

It follows from (111.59) that when d = 0, in the general case of anisotropy, 
the stress at point C, lying on the neutral axis of the rod, will not be equal 
to zero: 

Figure 111.16 represents the stress-strain diagrams1 for stresses ox 

through cross section x = 0 in an anisotropic beam weakened by an elliptic hole 
when a/b = 3. Three types of plywood represent the materials from which the 
beam i s  made2. 

Figure 111.16. 

'The coinciding numerical values are represented (for clarity) in Figure 111.16 
in the form of parallel curves. 
*see V. G. Chentsov [I], p. 24 and S. V. Serensen [ l ] ,  p. 187. 



Curve 1 corresponds to an isotropic plate 

Curve 2 represents the material with elastic constants 

Curve 3 represents the material with elastic constants 

Curve 4 represents the material with elastic constants 

We conclude from the stress-strain diagrams shown in Figure 111.16 that: 

1) the zone of perturbation of stresses caused by the hole is small; 

2) the perturbations vanish rapidly by measure of distance from the hole, 
and the stress state in the beam approaches the basic stress state (111.46); 

3) anisotropy in the immediate vicinity of the hole has a considerable 
effect on stresses1. 

A .  S. Dorogobed [l] examined the pattern of the stress state in an ortho- 
tropic plate with a round hole under pure displacement. 

1 The analogous pattern prevails (see G. N. Savin [ 4 ] )  in the case of an 
anisotropic beam with an elliptic or round hole under deflection by a constant 
shear force. 
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E l a s t i c  Equilibrium of Anisotropic  P l a t e  with E l l i p t i c a l  Hole under the  
Ef fec t  of Force o r  Moment Applied t o  Some Point  of the p l a t e 1 .  We w i l l  d e f i n e  
t h e  func t ions  @(z  ) and $(z ) i n  an i n f i n i t e  homogeneous a n i s o t r o p i c  p l a t e  1 2 
weakened by an e l l i p t i c  ho le  and deformed by a  f o r c e  o r  moment appl ied  a t  an 
a r b i t r a r y  po in t .  The edge of t h e  hole  is assumed t o  be under s t r e s s  by f o r c e s  
a c t i n g  i n  t h e  middle of  t h e  p l a t e ,  t h e  r e s u l t a n t  vec to r  of  which fo rces  have t he  
components X and Y.  The x  and y  axes a r e  d i r e c t e d  along t h e  corresponding 
axes o f  t h e  e l l i p s e .  We w i l l  denote through a  and b  i t s  semiaxes. The th i ck -  
ness  of an a n i s o t r o p i c ,  bu t  gene ra l ly  not  o r t h o t r o p i c ,  p l a t e  i s  assumed t o  be 
un i ty .  

The boundary condi t ions  f o r  t h e  given e x t e r n a l  fo rces  X and Y a r e  given /240 
n  n  - 

by formulas (1.961, which can be represented  i n  t h e  form 

where 

-- -- 
(1 + is,) 9 (21) + (1 + is3 9 (23 + (1 + is,) 9 (I , )  + (1 + isJ $ ( ~ a  = 

= f ,  + if2 = f' 

The cons tan t  i n  t h e  r i g h t  hand s i d e  of  r e l a t i o n  (111.62) can be assumed t o  
be  equal  t o  zero i n  t h e  cases  examined below. 

The r e s u l t s  of  t h e  given s e c t i o n  w i l l  be  used i n  93 and p a r t i a l l y  i n  55 of  
t h e  p re sen t  chapter .  

The Effec t  of Force. We w i l l  assume t h a t  a t  an a r b i t r a r y g o i n t  of  an 
a n i s o t r o p i c  p l a t e  with an e l l i p t i c  ho le ,  a  concentrated f o r c e  P(Px, P  ) i s  

Y 
appl ied  i n  i t s  plane.  We w i l l  determine t h e  form of  s t r e s s  func t ions ,  assuming 
t h a t  t h e  edge of  t h e  ho le  i s  a l s o  s t r e s s e d  by f o r c e s ,  t h e  r e s u l t a n t  v e c t o r  of 
which has t h e  components X and Y .  

The func t ions  $(z l )  and $(z2) from t h e  loading only of  t h e  edge of t h e  

e l l i p t i c  ho le  have t h e  form ( I .124) ,  where B* = B f *  = C 1 *  = C* = 0 ,  i . e .  

l ~ h e  s o l u t i o n  was found by D. V.  G r i l i t s k i y  [ I ] .  Along t h e  way we w i l l  c o r r e c t  
t h e  e r r o r s  t h a t  have c r e p t  i n  t h e r e .  For an i s o t r o p i c  medium t h e  s o l u t i o n  o f  
t h i s  problem was found by B.  Karunes [ I ] .  



Here I$ (z ) and $ (z ) a r e  holomorphic func t ions  outs ide  of t h e  e l l i p t i c  
10 1 10 2 

ho le s  i n  p lanes  r l  and z2,  r e spec t ive ly .  The cons t an t s  ~ ( l )  and a r e  

def ined  by formulas ( I .  116) . 
We w i l l  now assume t h a t  t h e  edge of t h e  hole  i s  f r e e  of f o r c e s ,  and t h a t  

a t  some p o i n t  zo = x + iyo  of  t h e  p l a t e  i s  appl ied  a  concentrated fo rce  T, 
0 

with components Px and P We w i l l  a l s o  e s t a b l i s h  t h e  form of  func t ions  
Y' 

and $1(z2) i n  t h i s  case.  

I f  t h e  concent ra ted  fo rce  i s  appl ied  a t  t h e  o r i g i n  of t h e  coord ina te  
system of  a  s o l i d  i n f i n i t e  a n i s o t r o p i c  p l a t e ,  then ,  a s  we know, 

where A ( ~ )  and B ( ~ )  a r e  def ined  by formulas ( 1 1 6 ,  hence, i n s t ead  of X and Y ,  
we must s u b s t i t u t e  Px and P r e spec t ive ly1 .  

Y '  

I t  i s  easy t o  show2 t h a t  both func t ions  f o r  an a n i s o t r o p i c  medium a r e  /241 
i n v a r i a n t  i n  t h e  case of p a r a l l e l  t r a n s l a t i o n  of t h e  o r i g i n  of  t h e  coord ina te  
system t o  a  new p o i n t .  Therefore,  i f  t h e  fo rce  i s  appl ied  a t  an a r b i t r a r y  
p o i n t ,  def ined  by coord ina tes  x 

0 ' yo, then  t h e  func t ions  a r e  

where 

a r e  p o i n t s  corresponding t o  p o i n t  z  of  a p p l i c a t i o n  of t h e  f o r c e  i n  t h e  phys ica l  
plane. 

0 

-- 

' ~ e r e ,  f o r  c o n t r a s t ,  var ious  d e f i n i t i o n s  a r e  given f o r  t h e  components of t h e  
r e s u l t a n t  v e c t o r  of e x t e r n a l  fo rces  appl ied  t o  t h e  contour of t h e  h o l e ,  and f o r  
t h e  components of t h e  concentrated fo rce  P appl ied  t o  an i n t e r n a l  p o i n t  of t h e  
p l a t e .  But i f  t h i s  is  not  necessary  he re ,  then t h e  components of  fo rce  Fwill 
a l s o  be  denoted through X and Y .  

*see D .  V .  G r i l i t s k i y  [ I ] .  



In the presence of a hole the functions are 

where $ (z ) and $20(~2) are holomorphic functions at infinity. 
20 1 

Thus, in the general case, 

We will map the exterior of the unit circle in plane 5 onto the exterior 
of elliptic holes in planes zl and z The functions that accomplish this 2 ' 
mapping have the form (111.4) and (111.5). The opposite transformations are 
given by formulas (111.12) and (111.13). 

By substituting in conditions (III.61), instead of zl and z2, their values 

from (111.4) and (1115) and by denoting @(<) = +[ul(<)], Y(<) = Y[w2(<)], we 

find the contour conditions for the functions @(C) and \Y(C): 

f is,)@(o) + ( 1  + i3 '4' (u) + ( 1  i- i<) @T) + ( 1  + i F d v a )  = f (a), 
(111.69) 

( 1  -isl)Q,(a) + (1 -- is$Y(a) + (1 -is,)-) + ( I  -i%\Ya)).=:f ). 

From (III.68), recalling formulas of transformation (111.4) and (111.5) , 
we find the functions 

where Q0(5) and YO(5) are holomorphic functions outside of unit circle y of 

plane 5; 

By substituting functions (111.70) into conditions (111.69) and by making 
certain transformations, we will have on y : .  



(a - bl0) [ (a  - islb) at,, - ( a  4- is#)] 
- ~(2_'ln - 

a f lo 

- 
s2 - s tp2)  (1  - strn) [ (a  -k i<b) cm - ( a  - i<b)-a] -- 
S1 - axm 

* 

- - s - ( 1 - or2.) [ (a  + i<b) Em - (a - is2b) - Q] + e: B'" ln 
ui* 

Then, by multiplying equations (111.72) by 1/2ni0 do/o - C, where 5 is 
located outside of circle y, and by integrating along y, we find 

where ol is an arbitrary point on y, used as the origin: 



From ( I I I . 7 0 ) ,  considering expressions ( I I I . 7 3 ) ,  we f ind  

The formulas t h a t  we have derived make it poss ib le  t o  f ind  the  so lu t ion  
f o r  seve ra l  p a r t i a l  cases: 

1) f o r  a fo rce  equal t o  zero, i n  formulas ( I I I ,74) ,  (111.75) and ( I I I . 7 6 ) ,  

we may assume t h a t  A ( ~ )  = B ( ~ )  0; 

2) f o r  a r e s u l t a n t  vector  of ex te rna l  forces  applied t o  t h e  contour of an 
e l l i p t i c  hole equal t o  zero; i n  t h i s  case,  i n  formulas (111.75) and (111.76) 

i t  i s  assumed t h a t  ~ ( l )  = 8'') = C1 = C2 5 0; 

- 
3) i f ,  moreover, the  contour of the  hole is f r e e  of  fo rces ,  then f = f O 

and the  i n t e g r a l s  i n  t h e  preceding formulas vanish; i n  t h i s  case we obta in  t h e  
simple expressions 



In particular, if the force is applied at a point on the contour of the /244 
hole, then, assuming that C10 = GZ0 = a in formulas (III.77), where % is a 

0 
point on the unit circle, we find 

@ ( 6 , )  = (A'" - A, - B,) ~n  8, - q) + (A, + B,) In c,. 
(111.78) 

Y(&) = (B'" + A ,  + B , ) I n ( L 2 - - o , ) -  ( A ,  + 8,)In t2. 

By knowing the functions and Y ( c 2 )  and by returning to the variables 

z and z2  in (111.12) and (III.13), we find the functions $(zl) and $(z2), 1 
which help us to find the stress components a a and .r by formulas (1.90). 

x' Y XY 

The normal stress along the contour of the hole is 

2 
be = a' sin2 6 + b' cosf 6 Re [ (b  cos 6 + s,a sin 19)* cp' (2,) + 

+ (6 cos 6 + sp sin 19)* g' (241. 
(111.79) 

In the case of a round hole a = b and formula (111.79) acquires the form 

a ,  = 2 Re [ ( c ~ s  6 + S, sin 6)* cp' (2 , )  + (cos 6 + s2 sin 6)2 9' (z,)]. (111.80) 

For grade I plywood, by directing the x axis along the grain, i.e., by 
making it coincide with the direction corresponding to the major modulus of 
elas'ticity, we. find the elastic constants1 

By formula (111.80) we calculate stresses a9 along the contour of the 

round hole, where the force is applied on the contour at the point of inter- 
section of the x axis with the contour. Here we examine two cases of the 
effect of the force: in the direction of the positive axis x, and in the direc- 
tion of the negative axis y. For comparison we give the corresponding data for 
an isotropic plate when v = 0.3. The results of these calculations for angle 
9 are represented in Table 111.4, where the values of stresses u9 are given in 
fractions P/R (P is the force, R is the radius of the hole). 

p- - - - - - - 

'see S. G. Lekhnitskiy [I], Chapter 11, 511, and also G. N. Savin [4], Chapter 
111, 51. 



The following conclusions can be derived from the data presented in 
Table 111.4: 

1) for a force directed along the positive x axis, the values of uo will 
be equal in absolute value and sign to the corresponding values of uo within 
the range 0-180'; 

2) for a force directed along the negative y axis, the values of uo will 

be equal in hbsolute value, but opposite in sign to the corresponding values of 
uo in the range 0-180°. 

TABLE 111.4. 

T r .  Note: Commas indicate decimal points. 

The Effect of the Moment. We will determine the functions @(zl) and $(z2) 

for an anisotropic plate with an elliptic hole, where a concentrated couple 
with moment M is applied at an arbitrary point. As before, we will assume that 
the edge of the hole is loaded by external forces with a resultant vector not 
equal t.0 zero. 

By tracing the preceding path, we establish first the form of functions - /245 
@(z,) and $(z21. 

If constant tangential forces of intensity T are applied to the contour of 
a round hole of radius R in an infinite anisotropic medium, then, as follows 
from (111.401, 



I f  we assume i n  (111.81) t h a t  

where M is  the  main moment of ex te rna l  forces  with respect  t o  the  cen te r  of t h e  
hole ,  and proceed t o  t h e  l i m i t ,  where R + 0, such t h a t  M remains constant ,  then 
we f ind  

M ( l + i s 2 ) ( l - i s , )  I .- .- ' ('1) = - gn (sl - s*) z1 l 

1 i s ) (  i s )  1 .- 
*(GI = ( s  - s )  2% . 

Functions (111.82) represent  s t r e s s  functions f o r  an i n f i n i t e  an i so t rop ic  
e l a s t i c  p l a t e  i n  the  case where a concentrated couple with moment M i s  applied 
a t  the  o r i g i n  of the  coordinates.  

On t h e  b a s i s  of the  preceding formulas it is easy t o  f ind  the  functions 
f o r  an an i so t rop ic  p l a t e  with an e l l i p t i c  hole ,  a t  the  point  (x y ) of which /246 0' 0 - 
i s  applied a concentrated moment M: 

M ( 1  + i s )  ( I  - i s )  I 
cp2(z,) = - .- 

8 s  (s1- %) z1- Z I O  
+ cp, (2,). 

where 4 (z ) and $ (z ) a r e  holomorphic functions outs ide  of t h e  hole. 
20  1 20  2 

In t h e  general  case ,  i . e . ,  where the  edge of the  hole is a l s o  loaded by 
forces ,  with a r e s u l t a n t  vector  not equal t o  zero, the  functions ~ ( z  ) and 1 
$(z2) a r e  represented by the  sum of expressions (11 I .63)  and (I1 I .  83) : 

M (1 + i s  ( I  - i s )  1 cp  (2,) = A''' In z ,  - .- 
BIZ ( ~ 1 -  %I z ,  - ?o 

t vo ( ~ , ) l  

Proceeding i n  (111.84) t o  va r i ab le  5 ,  we obtain 

M ( 1  + is2) ( I  - i s l )  I, = A"' In - 
4 ( s  - s (< - G I , )  [ ( a  - islb) G c l O  - (a + islb)] + mu K). (111.85) 

(111.85) 
M ( I  + is,) (1 - is2) 

\I! (L) = B"' I n 5 -+ C 624 

4n ( s ,  - s2) ( 6  - 5%) [(a - ~ s , b )  6C2, - ( a  + istb)l +yo (61. 



By substituting expressions (111.85) into the boundary conditions (111.69) 
we find on unit circle y: 

s, - s, - 

- 1 - is, - 
- 1 + isz 

2i ( s ,  - s,) f - 2i (sl - s,) f- (A"' - C,) In a + 
M ( 1  + is2) ( I  - isl)  

ucl" '- 4 ~ c  (sl - s2) . ( 0  - Clo) [(a - islb) ucl0 - (a + islb)l $. 
- 
s - s2  M ( 1  - G 2 ) ( l  +i;J 
+L. - - uE10 d 

S1 - S ,  I n  (sl - s2) ( I  - atl0) [(a + i$b) ilo - ( a  - i i lb) uj 

< - s2 M ( 1  - i<)(~ + i<) --. atm 
- ' 2  1n (< - <) ( 1  - u ~ , ~ )  [ (a  f i<b) - ( a  - i<b) uj ' 

- 1 - is, - - 1 f - ( ~ " '  + c l ) l n ~ -  
2i (st - 4) f 2i (sI  - $1 

- 
s - s  M ( l - i < ) ( l + i < )  -1. uE10 
1 - s 4 n  (5 - <) 

- + 
( 1  - aGO) [ (a  4- i<b) clo - (a  - islb) aj  

- 
F2-s1 ~ ( 1  - iCl)( l  +is,) "620 

+ F,' 4 n  (< <) ( 1  - u G O )  [ ( a  -f i<b) c20 - (a  - i c b )  a ]  ' 

From boundary conditions (III.86), we find the functions 

f fda Fdrs mig) = LJ- 2ni  a - c  -3J- 2ni  a - f  + ( A ( ~ )  - C 2 ) l n L  0 - 5  - 
Y Y 

S 

S fliu s - 5 +  yo(f2)=-' 2n i  - @ - + & ~ - + ( B ( ~ ' + C ~ ) I ~ ~  a- l ;  2 n i . a - l ;  

Y Y 

where C1 and C 2  are defined by formula ( 1 1 1 . 7 4 ) .  



Here we introduce the following definitions: 

On the basis of (111.85) and (III.87), we finally have 

When the contour of the elliptic hole is free of external forces, formulas - /248 
(111.89) acquire the form 

If a moment is applied to a point of the contour of the hole, then, 
- assuming in (111.88) and (111.90) that = <20 - uO, we obtain 

The values of normal stress og around the contour of a round hole in the 

same type of plywood plate, for which Table 111.4 is compiled for angle 9, which 
changes within the range 0-180°, when the moment is applied at the contour of 
hole at the point of intersection with the x axis, are presented in Table 111.5. 



The values of og within the  range of change of angle 9 from 0 t o  -180' a r e  

equal i n  absolute value, but  opposi te  i n  s ign ,  t o  the  corresponding values f o r  
change of angle 9 from 0 t o  +180°. The values of s t r e s s e s  u9 a r e  presented i n  

9 

f r a c t i o n s  M / R ~ .  

TABLE 1 1 1 . 5 .  

T r .  Note: Commas indicate decimal points .  

6' 
plywood isotropic ( *, 1 plate 1 plate I/ 

B. Karunes [ l ]  analyzes t h e  analogous problem f o r  t h e  case of an i s o t r o p i c  
p l a t e  i n  which the re  is  a hole with a f r e e  edge. Certain p a r t i a l  cases of t h e  
problem solved by B. Karunes were analyzed l a t e r  by F .  Szelagowski [ l ,  21. 

plywood lisoti-epic 
plate I plate 

92. Solution of Second Basic Problem fo r  Region with E l l i p t i c   ole' /249 

I I I1 I 

We w i l l  assume t h a t  displacements of points  of contour L of an e l l i p t i c  
hole a r e  known. The contour condit ions f o r  functions $(z l )  and $(z2) i n  t h i s  
case have t h e  form (1.97): 

We w i l l  assume t h a t  t h e  r e s u l t a n t  vector  of external  forces  which cause 
the  given displacements of t h e  po in t s  of contour L, and t h e  s t r e s s e s  a t  
i n f i n i t y ,  a r e  equal t o  zero. Then ((z ) and $(z2) a r e  holomorphic functions 

(2) 
1 

i n  regions ~ ( l )  and S 

By using the  same a t t ack  a s  i n  t h e  case of t h e  f i r s t  bas ic  problem, we 
obta in  

 he so lu t ion  i s  given by G .  N .  Savin [2] ;  t h e  so lu t ion  of t h i s  problem was 
found e a r l i e r  by S. G .  Lekhnitskiy [ l ,  51 with the  a i d  of s e r i e s .  

273 



where 

By substituting 5 in functions (111.94) by its values through z and z 1 2 ' 
respectively, by formulas (111.12) and (III.13), we find the final form of the 
desired functions 41 (zl) and $(z2) . 

Since the contour conditions (111.92) are satisfied by functions @J(z ) 1 
and $(z2), we will assume henceforth, for all X1 and X 2 ,  that they are equal to 
zero. 

The functions $J(Z ) and $(z ) are holomorphic in their regions s(') and 1 2 
s(~) (see Figure 111.1). Consequently, displacements u and v will be limited 
at infinity. 

We will return now to the general case where the resultant vector of exter- 
nal forces caused by the given displacements of the points of contour L, and the 
stresses at infinity, are not equal to zero. In this case the functions (zl) /250 - 
and (z2) will have the form (111.14). The constants A, B, B*, B1* and C 1 *  are 
defined by the same equations (1.116) and (I.127), as in the case of the first 
basic problem. 

We see, therefore, that in order to determine the solution of the second 
basic problem it is necessary to know the resultant vector of external forces 
applied to the contour L of the hole. By substituting functions @J(zl) and $(z2) 

from (111.14) into contour conditions (III.92), and by transposing the known 
functions into the right hand sides, we obtain 



Figure 111.17.  

where 

(111.97) 
g! (s) = g, (6) - 2Re [Aq, In z, + ' 

It is clear from (111.96) that if we substitute in formulas (III.94), instead 
of gl(s) and g2(s), the functions g:(s) and gl(s) of (.97), we obtain the 

desired functions QO(~) and Yo(<). Returning to the variables zl and z2 

according to formulas (111.12) and (111.13) we find the functions $O(zl) and 

I$~(Z~), and by placing them into formulas (111.14), we obtain the final form of 

functions +(zl) and &(z2) .  

Stresses in Anisotropic Plate Around Absolutely Rigld Elliptic Nucleus (or 
Ring), Under the Effect of  Couple MO. We will assume that stresses at infinity 

are equal to zero. Under the effect of couple Mo, the rigid nucleus will 

rotate only by some angle E (Figure III.17), which must be determined. Conse- 
quently, displacements of points of the contour are 

U ' -EY, V = EX, 

u = - ey, V = e x ,  

By substituting the values found for g and g into formula (III.94), we find 1 2 



By substituting here, instead of 5 ,  its values through zl and z2 from (111.12) - /251 
and (III.13), we obtain 

The functions @(zl) and $(z2) (111.99) obviously satisfy the condition $(+ = 

= $(a) = 0, and consequently, displacements at infinity are equal to zero. 

We will determine the value E from the condition of equality of moment Mo, 

applied to the nucleus, and the moment of forces transmitted from the nucleus 
to the contour of the elliptic hole. The expression for the moment is given by 
formula (I. 101). Since functions @(zl) and $(z ) are unique, then in our case 
the formula acquires the form 2 

Hence, the main moment M of forces acting from the direction of the nucleus on 
the surrounding medium will be equal to the increment of expression 

during rotation around the contour of the ellipse in the clockwise direction. 
Obviously, 

( cp (21) dzl = I D  ( 0 )  o' ( 0 )  do,  
dl) Y 

Ip (z2) dz3 = 1 Y (a) o' (a) du. 
~ ( 2 )  Y 

Moreover, 

J @ ( G ) ~ ' ( U ) ~ O  - - e(ap3 + ibqsp,) 1 [ a +:sib a - is, b 1 
2 ( P l q l  - P , ~ I )  

Y Y 

, ([e (ah  + i b l )  (a - a b ) lno] =. i- e n  (up, + ibq,) (a - islb) 
4 ( ~ 1 4 2  - P A  Y 2 ( ~ 1 q a  - Pzq,) 



Analogously, we f i n d  

Consequently, 

For b r e v i t y ,  we w i l l  denote through N t h e  expression found i n  t h e  braces  /252 
of  (111.101); then  

Mo 8=- 
R e N  ' 

By s u b s t i t u t i n g  t h e  va lue  found f o r  E from (111.102) i n t o  func t ions  ( I I I . 9 9 ) ,  
we f i n d  t h e  f i n a l  form of  func t ions  $(z l )  and $ (z2 ) .  

Anisotropic  I n f i n i t e  P l a t e  under Tension with E l l i p t i c ,  Absolutely Rigid 
Nucleus (or  Ring).  We w i l l  assume t h a t  an a n i s o t r o p i c  p l a t e  with a welded, 
abso lu t e ly  r i g i d  e l l i p t i c  nucleus i s  subjec ted  t o  t ens ion  a t  i n f i n i t y  by fo rces  
p ,  c o n s t i t u t i n g  angle  a with t h e  Ox a x i s  (Figure 111.18) .  The r i g i d  nucleus i n  

t h i s  p l a t e  can be t r a n s l a t e d  gradual ly  and it 
is  r o t a t e d  by some angle  E .  We can d i s r ega rd  
a gradual  t r a n s l a t i o n  of t h e  nucleus,  s i n c e  
i n  t h i s  case  t h e  e l a s t i c  s t a t e  of  t h e  ma te r i a l  
surrounding t h e  nucleus i s  no t  changed. Con- 
sequent ly ,  a s  i n  t h e  preceding problem, 
t r a n s l a t i o n s  of  t h e  p o i n t s  of contour a r e  

u = - e y  . O=EX.  (111.103) 

///{/// In o rde r  t o  so lve  t h e  problem a s  s t a t e d ,  i t  
P i s  necessary t o  use ,  r a t h e r  than  gl and g2 

0 from (111.98), gl and gi from ( I I I . 9 7 ) ,  
Figure 111.18. 

assuming t h a t  A = B = 0 i n  them, s i n c e  t h e  
r e s u l t a n t  vec to r  of e x t e r n a l  forces  i s  equal  t o  zero;  t h e  values B*,  B1*. 
C 1 *  a r e  given by formulas (111.19). 

Thus, 
g"=- 

1 ey - 2Re [B*p,z, + p, (B'* $- iCf*)  z,], 



eb a  + is, b a - i s , b  I g = - - - B *  a +  r)+ 

- a - i i b  1 a + i < b  + 92(Bf* - icp*) (+ - + T- a)) 
a 

By substituting into formulas ( 1 1 1 9 4 )  instead of gl(J) and g (9) the 2 
/253 

expressions found for go and go and noting that 
1 2 ' 

we obtain 

where 

Proceeding in functions Q0(5) and Y o ( < )  of (111.105) to the variables zl and 

z2' we obtain 



Consequently, the functions are 

In order to determine, finally, the functions $(") and +(z2) of (111.107), 

it is necessary also to determine the angle of rotation of the nucleus E from 
the condition of equality to zero of the moment of forces acting on the nucleus 
from the direction of the surrounding material. This moment is found from 
formula (1.101). Since functions (111.107) are unique, then we must compute 
the increment of the expression 

during revolution around the contour of the elliptic hole and equate it to zero. /254 - 
Here 

Similar expressions were computed in the preceding section. By setting the 
increment of expression (111.108) to zero, we obtain 

Solving the latter expression relative to E, we find 



By substituting the value found for E from (111.109) into functions $(z ) and 1 
$(z ) of (III.107), we find them in final form. 2 

If the nucleus is prevented from rotating, then E = 0. Assuming in func- 
tions $(") and $(z2) of (111.109) that E = 0, we obtain the solution for the 

latter case. Then, by differentiating functions (I (z ) and $ (z ) with respect 0 1 0 2 
to z and z2, respectively, for E = 0, and assuming 1 

z, = acos6 + s,b sin 6, z, = a cos 6 + s,b sin 6, 

we obtain the expressions for the functions along the contour of the weld 
between the plate and the elliptical nucleus: 

sin 6 +i cos 6 
T ; ( ' I ) = - ~ I  a s i n O - s , b c o s 6  ' 

sin 6 + i cos 6 *; ('2) = Q2 a sin +j - s,b cos fi . 

By substituting (111.110) into (111.37) for s = iB1 and s 
1 2 = iB2, and 

recalling that Q and Q are real numbers', we obtain the formulas for the 
1 2 

stress components along the contour of the weld: 

1 sin 6 +  icos 6 
ue " ~ Z s i n l ~ + b Z ~ ~ ~ 2 ~ ( ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  a s i n 6 - s z ( c ~ s , j  Q~ (as, sin 6 + 

+ cos - sin 0 + i cos 6 
a sin .if--- s,b cos 6 Q1(aslsin6 + 

- 1 
'Cpe - - a* sinP 6 + b"cos2 6 {pab sin 6 cos 6 - 2Re([Q, (sp sin 6 + b cos 0) - 

- Q1 (s,a sin 6 + b cos I?)] (sin 6 + i cos 6))). 

If the medium is isotropic, then B1 = B2 = 1; a = a = 1/E, a12 = -v/E, and /255 
11 12 

formula (111.111) will acquire the form 

'The values P1 and P (111.106) will be purely imaginary here; consequently, 
2 

E in (111.109) for these values of Q P and P will be equal to zero. 1) Q2, 1 2 



Stress Distribution in Anisotropic Plate with Welded Rigid Elliptic 
Nucleus (or ~ing) under the Effect of Force or Moment Applied at Some Point of 
the plate1. We will assume that the above stated anisotropic plate is located 
under the effect of a force or moment applied at an arbitrary point. The rigid 
nucleus can be displaced gradually and can rotate by some angle E. By abstrac- 
ting from the gradual displacement of the nucleus, the displacements of the 
contour points of the plate can be represented in the form (111.103). In order 
to solve this problem we will use the Cartesian coordinate system, as shown in 
Figure 111.17 or 111.18. 

Effect of Force. By repeating the analysis of the preceding section, we 
arrive at the following expressions for the stress functions: 

where P1 and P2 have the values (111.106); 

the value of E, as before, is found from the condition of equality of the moment 
of the forces acting on the nucleus from the direction of the elastic material 
to zero: 

- 

 he solution is given by D. V. Grilitskiy [ 2 ] .  



Effect of Moment. The functions are 

where nl and n2 have the values (111.88); 

53. Anisotropic Plate w i t h  Welded Round Isotropic ~isc' 

Anisotropic plates with elastic or rigid cores are used as construction 
elements in technology. The problem of elastic equilibrium of such a hetero- 
geneous plate has been analyzed by several authors2. S. G. Lekhnitskiy [l, 31 
found the general solution of the problem of stress distribution in an aniso- 
tropic plate with a welded or glued elliptic anisotropic core, where the plate 
is under the effect of arbitrary forces distributed along the edges. Also, 
several practical partial cases of tension, deflection, and displacement of a 
plate are analyzed in the same works. Tension of an isotropic plate with a 
welded isotropic elliptic core is examined by G. Kaiser [l] with the aid of the 
method of elliptic coordinates. M. P. Sheremet'yev [l, 21 found the solution 
for an isotropic plate with a round hole, the edge of which is reinforced by a 
thin elastic isotropic ring, for tension in two directions. 

The procedure for solving the problem of elastic equilibrium of an 
anisotropic plate with a welded round isotropic disc is outlined in this sec- 
tion for the case of concentrated loads applied at an arbitrary point of the 
plate or core. The proposed procedure is a generalization of the solution of 
analogous problems for an isotropic plate with a welded elastic core. In 
solving these problems we used the tables of integrals presented in 54, /257 - 
Chapter I. 

Force Applied to Plate. With the aid of data found in 51, Chapter 111, it 
is possible to construct the solution of the more general problem of the 

'The solution is given by G. N. Savin and D. V. Grilitskiy [ 2 ] .  
2~ee, for example, the works of J. Dundurs, M. Hetenyi [I] and M. Hetenyi, 
J. Dundurs [I]. 



interaction of a homogeneous anisotropic plate with a welded round isotropic 
core. Here we will examine the effect of a force applied at a point of the 
plate. 

The functions for the core (disc) are 

where al is a constant that requires definition; t is a point on the unit 

circle. 

The functions 4 ( z  ), ( z  ) for the plate are defined on the basis of 2 1 2 2 
formulas (111.75) and (III.76), where, in the given case, we assume 

1 " rn fd t  
ai v t - t z  +&I=. 

Y 

Here ck and 5 (k = 1, 2) are defined by formulas (III.12), (111.13) and 
k 0 

(III.71), assuming that a = b = R. 

The condition of discontinuity of the vector of displacement on the line 
of the weld is found from (I. 10) and (I .97).  This condition can be represented 
conveniently in the form of two relations: 

- - - 
[ ~ l c p l  (a) + xlTl(a) - atp; (0) - atp; (0) - $1 (0) - $l'(0)1+ = -- -- 
= ~ P I  1~102 (0) + P I T ~  (a) + P27P-2 (0) $- P2$2 (a)]- (on Y); - - - 

[x,(P,(a) - xl 01(a) - 09; (0) + 09; (0) - m, + $1 (fJ)l+ = 
-- -- 

= 4 ~ i  h1q2 (a) f qlq-2 (a) f 92% (a) $. q2q2 (a)]- (on ~ ) a  



By satisfying relations (111.121) on unit circle y, we obtain a system of - /258 
two singular integral equations for the determination of the desired functions 
f (t) and m: 

-- = FI (a) (UE~). (111.122) 

Y Y 

The following definitions are introduced in formulas (111.122): 

p l ~ ' 2 '  - kZZ +j2A1  = A,, q 1 ~ ' 2 '  - ilA2 + <,A1 = A, (111.123) 
- - - -- 

p2Bf2' - p1B z i- pa = B,, q$'2' - q,B, + @ I  = B4 ; 
- -  -- - -  -- 
~ ~ m a  - P@I - ~ 1 1 2  f ~ z l ~  = 2 4 -  q1m2 - 9 f l i  - q11, + 941 = 261, (111.124) 

--  -- 
Pima - PZl+ ~ 1 1 2  - ~ Z l l =  43% 41mz - q f l l  + 914 - 941 4; 

Equation system (111.122) can be reduced, with the help of some special 
form of the parameter N, to two independent equations. For this purpose we will 
proceed in the following manner1. 

We will multiply the second equation of system (111.122) by N and combine 
it with the first equation: 

- -- - 

'see D. V. Grilitskiy [6]. 



Since the constant N is arbitrary, we will select it in the following 1259 
manner, in order to satisfy the relation 

which leads to the following quadratic equation relative to N: 

By solving equation (III.129), we find two values for N: 

- (ad- cb - ad + cb)  + I / (ad - c6 - Zd + + 4 (cZ+cd) (a;+ Cb) (111.130) 
*I, = 2 (CZ + Fd) 

By introducing the definitions 

equation (111.127) is transformed to two independent equations: 

A is found from relation (111.128). Now, to each of equations (111.132) we k 
can apply the formula 

on the basis of which 

t+x,f= 1 
$4: t - a  (111.133) 

By solving equation (111.133) relative to f (a) and f (a) , we find the 
desired functions 



- I 
US f 

F~ ('1 + N 2 F ~  ( t )  & @- Y; 
[ Q ~  (FI (0) + N2F2 (0)) - ;;- t - a  

v 

On the basis of the known functions f(u) and 'fTcr), the stress functions 
for the disc and plate are determined1 from formulas (111.119) and (111.120) : 

H,ln(-Cl0) +H*InC-f io)+ 

1 
*I (C) = - [h, In (5  - cl0) + h2 1" (6 - CZ0) + h 3 a ~ c ~  - 

 e ere, and in the rest of this section, we will give the final results, 
omitting the cumbersome intermediate calculations. 



a is a coefficient for 5 in the expansion of the function in the 1 
vicinity of the point = 0: 

where 

h. (j = 1, 2, ..., 6) are found respectively from H assuming X I  = X2 = 1. 
J j ' 

Moment Applied to Plate. The functions $l(G), *l(c) for the disc are 

defined by formulas (111.119). The functions $2(z), I/.J~(Z~) for the plate are 

found from formulas (111.89) , assuming that A") = B'') = C, = C, - 0: 

The conditions of discontinuity of displacements on the weld (111.121) 
lead to a system of two singular integral equations (111.122) with the right 
hand sides: 



where 

f. (j = 1, 2, 3, 4) are found from the expression for Z by substituting pk by 
J j 

"k ' 

On the basis of formulas (111.134) we find the desired functions: 

- gl + gdU gg + gsU g5' + g8 
f (a) = - --- 

I (  - 
4- - (111.143) 

A, - A1 - Lm - L10 1 - taoO 

The stress functions for the disc and plate are 



The following d e f i n i t i o n s  a r e  made i n  formulas (111.143)-(111.145): 

gj (j = 1, 2, ..., 8) a r e  found respectively from ti f o r  A 2  = A = 1. 
j 1 



Force Appl ied  t o  Disc. Suppose a  concent ra ted  f o r c e  P(x,  y) i s  appl ied  
a t  an a r b i t r a r y  p o i n t  of t h e  e l a s t i c  d i s c .  

The s t r e s s  func t ions  f o r  t h e  d i s c  a r e  

- 
X, ( X -  iY) X + N  

91 (0 - 2n ( 1  + x l )  1' (5  - + + 2 ~ i  (1 4- x,) & -to 

The s t r e s s  func t ions  f o r  t h e  p l a t e  a r e  found on t h e  b a s i s  of  express ions  
(111.75) and (III.76), i n  which we must assume t h a t  

The r i g h t  hand s i d e s  of  equat ions  (111.122) have t h e  form 

+ 4plDl Ina - [ X  ') $ 4pl ( D ~  +&)I ln (o - a,). 
- ~ - - i y a ( u - b , )  X + i Y  l-Eou 

F ,  (a) = (XI 4- 1) - ala) - I -too 2 n ' ~ ( o - ~  + 



where 

We find the formulas for the functions f (o) , f (o) and (5) , (5)  : /265 



where 

r (j = 1, 2, .. ., 7) are found respectively from R for A2 = A 1  = 1. 
j j 

In formulas (111.154) we introduce the following definitions: 

Uj (j = 1, 2, ..., 7) are found respectively from W. by substituing N1 by N2. 
J 

Finally, for determining the coefficient al we have the formula 

- - - - - 
lo - '1 ifo ( X  + iY) - xlco (X - MI] (A, - - Rl) { C ~ R ~  - c0R6 ---- 

a, = - 2n (x1 + 1) - - - -- 
(I,: - Al - R , )  (A2 - I., - R l )  - (A* - All (A* - 11) 

In particular, if the force P is applied at the center of the disc and is 
directed along the Ox axis, then the first formula of (111.151) acquires the 
f o m  



For s t r e s s e s  along t h e  contour of t h e  weld i n  t h e  p o l a r  coord ina te  system /267 
( r ,  8 ) )  cons ider ing  t h e  form of t h e  func t ion  f ( a )  i n  ( I I I . 1 5 7 ) ,  we f i n d  t h e  
formulas 

By way of  example, t h e  s t r e s s e s  f o r  a b i r c h  veneer  p l a t e  with e l a s t i c  
cons t an t s  

9 
and f o r  a s t e e l  core  with e l a s t i c  cons t an t s  G = 8.1.9.81-10 , K~ = 2.125 

1 
were c a l c u l a t e d  by formulas (111.159) f o r  t h e  case  where t h e  x a x i s  i s  d i r e c t e d  
along t h e  g r a i n ,  i . e . ,  co inc ides  wi th  t h e  d i r e c t i o n  corresponding t o  t h e  
g r e a t e r  modulus of  e l a s t i c i t y .  

The va lues  of  normal a and t a n g e n t i a l  T s t r e s s e s  ( i n  f r a c t i o n s  of P) r re 
along t h e  contour of  t h e  weld a t  p o i n t s  of t h e  f i r s t  quadrant of  t h e  contour  of 
t h e  weld a r e  presented i n  Table 111.6 f o r  t h e  case  where t h e  fo rce  P i s  
d i r e c t e d  along t h e  g ra in .  The contac t  s t r e s s e s  f o r  a plywood p l a t e  and a s t e e l  
core  d i f f e r  only s l i g h t l y  from t h e  corresponding va lues  f o r  an i s o t r o p i c  p l a t e  
with an abso lu t e ly  r i g i d  core.  This  is  understandable,  s i n c e  t h e  parameter n ,  
equal  t o  t h e  r a t i o  of  t h e  modulus of  displacement o f  t h e  ma te r i a l  o f  t h e  core  
t o  t h e  modulus of displacement of  t h e  p l a t e ,  w i l l  b e  g r e a t e r  than 100 i n  t h e  
given example. We see  from Table 111.6 t h a t  t h e  an iso t ropy  of  t h e  ma te r i a l  of 
t h e  p l a t e  a l s o  has very  l i t t l e  e f f e c t  on t h e  c h a r a c t e r  of  d i s t r i b u t i o n  of con- 
t a c t  s t r e s s e s .  

Moment Applied t o  Disc. The s t r e s s  func t ions  f o r  t h e  core  (d i sc )  a r e  



TABLE 111.6. 

T r .  Note: Commas indicate decimal points. 

The stress functions for the plate are found from formulas (III.89), 

assuming that = 8'') = C1 = C2 = 0: 

By satisfying conditions (III.121), we find equations (111.122) with the right - /268 
hand sides 

i M ( x , + l )  ' a 
F7 (a) = (XI + l)(&a + a,;) - -0- 

2nR - a  

(111.161) 
F, (a) = ( x ,  + 1) (a,a - a,a) - 

Formulas (111.134) reduce to the following expressions: 

On the basis of (111.160) and (III.162), we find, finally, 



Here we introduce the following definitions: 

TI  = ),2i*bf (XI + 1) (1 + N1) - hli~M (xl + 1) (I + N,) 
2 x R  (Qi + K1) 2nR(Qa-+Kz) ' 

T2 = j V  ( 1  + 1) (1 - A') LliA4 (x, + 1) (1 - N , )  - 
2nR (QI - K1) 2nR (Qs - K2) ' 

T3 = 1.2 (XI+ 1) (1 + Nl) - A, ( x *  + I )  (I + Nt) 
QI + Y1 Qa+Ka ' 

T4 (%I + 1) (1 - Nl) - 1, (XI + 1) (1 - N*) . 
QI - YI Q I -  Kt p 

t (j = 1, 2, 3, 4) are found respectively from T for h2 = X1 = 1. 
j j 

Thus, all problems of the given section are solved in simple closed form. /269 
The final formulas for the function f(a) and stress functions in an isotropic 
core and anisotropic plate are presented for each case. 

54. Mixed Boundary Problem for Orthotropic Plate with Round   ole' 

Statement and General Solution of Problem. Suppose we have an unbounded 
homogeneous anisotropic plate with a round hole of radius R. We will assume 
the plate to be orthotropic, and that the vector components of displacement 
u = fl(t), v = f (t) are known on a part L1 of the edge of the round hole, 2 
where t are points of the contour of the round hole, and that the componets of 
external stresses, which, without limiting generality, we will assume to be 
equal to zero, are given on the remainder L of the edge. A homogeneous stress 2 
field is given at a distance from the hole. In particular, we will examine the 
case of tension of a plate in two mutually perpendicular directions by forces 
of intensity p and q, parallel to the lines of intersection with the plane of 

1 The solution is given by D. V. Grilitskiy [9 ] .  See also D. V. Grilitskiy and 
Ya. M. Kizim [I]. This problem for an isotropic plate is analyzed in the 
works of I. N. Kartsivadze, B. A .  Mintsberga [I] and N. I. Muskhelishvili [ I ] .  
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elastic symmetry. The given functions fl (t) and f2 (t) are assumed to be such 

that their first derivatives fi(t) and fi(t) satisfy Gel'der's condition on 

L1. Furthermore, we will assume as known the resultant vector of all forces 

applied to L1. In this problem we are required to determine the law of distri- 

bution of forces or and T~~ on segment L of the edge of the hole. 1 

To solve the stated mixed problem, we will use the Cartesian coordinate 
system with the origin at the center-of the hole, and for the direction of the 
x and y axes, we will use the main directions of elasticity of the material of 
the plate. We will notice that the requirement of orthotropicity of the 
material of the plate is not binding, and for simplicity, additional calcula- 
tions are made. 

The elastic state in a flat anisotropic medium is given by two functions 
$(zl) and *(z*) :  

s and s depend on the elastic properties of the medium: 
1 2 

The boundary conditions of the problem are written on the basis of 
formulas (1.93) in the form 

2 Re [(sin 6 - sl cos 6)( pt (t,) + (sin 6 - s2 cos 612 yf (/?)I = Iur On Ll* 

\ o on L,; 

2 Re [(sin 6 - s, cos 6) (cos 6 + s, sin 6) cp' (t,) + (sin 6 - s2 cos 6) (cos 8 $- (111.169) /270 

+ s, sin 8) 9' ( t ) ]  = {:' :: ;:: 
The stress functions @(zl) and +(z2), which are included in the boundary 

conditions (III.169), have the form (1.121), where the constants A and B are 
defined by formulas (I.127), and the constants B*, B; and C* are found on the 1 
basis of formulas (I. 126), from which 

We will introduce a new variable 5 by relations (111.4) and (III.5), in 
which it is assumed that a = b = R :  



Then the functions = @[q(S)] and Y(S) = $J[w~(<)], with consideration of 

formula (1.124), acquire the form 

where 

Considering 

we find boundary conditions (111.169) in variable S (a on the contour of y): 

I a 20' +['(4~') V - ~ ~ - T C  $r?] R I ( l - ~ s , ) u S - ( l +  &)I y' (0)) = 



We multiply (111.175) by 1/2~i*da/a - 5 ,  where 5 is located outside of 
the unit circle y, and we integrate with respect to y in the counter clockwise 
direction. Consequently, we have two equations: 

i(4- l)-2sl s, - i 
+ 

2 (I - iq) 
(A5 + a,? - a-I)  + -2- a,  + 2 (1 + is,) 

i(s2,- 1)-2s2 
+ 2 (1 - is,) ( ~ 6 + b l i ' - - b - 1 ) + ~ + b i +  

By solving these equations relative to functions @I(<) and '?I(<), we obtain 

="(U = (1 + PI) 6%- (1 - PI) Rb (S) ardt RMs (6)  ' r ed t  

%'A (0 ( b i  & - 6  *ni YI S t - 6  

+ f iMt(U - L2 (c)] [f, (A5 + ale* - a-I) + 1, (86 + b1C2 - b-dl 4- - - 
+ [ I ,  (+ + $) +'I. (F + $11 IiM. (0 + b (Ell - (111.176) - /272 

I 
--[(I 2 - p 3 a 1 +  ( 1  - - B ~ ) ~ J  I L ~ ( L )  + ~ M ~ ( L ) I ) :  

( I  + $,) c2 - (1 - &J '4" (5 )  = - 2EeA (6) 
Y Y 

- - 
+ [iM, (c)  - Ll(g)] [h (Ag + a f  - a-I)  4- fs(BZ + b1t2 - b-l)] +[11& +$) - 

- 1 + It (: + #)] [iM,(i) + L1 (6)) - 5 I( 1 - h) a1 + ( 1  - 8%) 41 [L (t) -4-  MI CH (111.177) 



Here we introduce the definitions: 

y is the part of the edge of the round hole of unit radius that corresponds to 1 
contour L 

1 ' 

The formulas for stress functions (111.176) and (111.177) include two 
derivatives, generally speaking, complex constants a and b-l. Since 5 is - 1 
located outside of y, expressions (111.176) and (111.177) are not completely 
equivalent to the original contour conditions (III.175), from which it was 
obtained. In order to make sure that the contour conditions are satisfied, it 
is necessary to add to formulas (111.176) and (III.177), equations obtained by 
multiplying both sides of equations (111.175) by 1/2~iedt/t and integrating 
with respect to y. As the result we arrive at a relation that connects these 
two constants: 

Thus, the derivatives of functions @ and Y are expressed through the 
desired forces or and T~~ with the aid of integrals of the Cauchy type by 

formulas (111.176) and (111.177) along with the additional relation (111.179) 

In order to determine the conditions from which it would be possible to 
determine the desired functions, we will make use of the fact that Cartesian 
components of the vector of displacements are given on part L1 of the edge of /273 - 
the hole. On the basis of formulas (I.97), 

from which, by converting to variable 5 ,  we obtain 



From conditions (III.181), as the result of differentiation with respect to 8, 
we find 

2 Re (ia [p,@' (a) -I- p,Y' (a)]} = Riuf; (Ru) 

2 Re (iu lo.@' (a) + q,Y' (a)]) = Ria& (Ru) (I 11.182) 

We will satisfy conditions (111.182) with the aid of functions (111.176) 
and (III.177), considering relation (111.179). After certain transformations 
we obtain a system of two singular integral equations with variable coefficients 

- 4xn,fr0 (01- in, (a+ 07' - n, (u - ~ ) 2 1 [  - 
t - a  

- 4-r (0) + i (n1 - n3) (aa - t - a  

where 

- - [nl ( l  + ~ ~ ) + n . ( l  - - ; i ' ) ] S Y + i [ n , ( l  +S)+ 
YI 

*rodt - + a r ( l - ~ ? - 2 ~ J ~ -  ~ r i  (nap - nd) f n~ ( n g  - n,q)] (us - 03 + 
Y 1 

+ 2n l(u2 - 1) f; (Ru) + i (aa + 1) f ;  (Ra)]; 
- F, (0) = - "1 + "a) - + ("s + "3) * + ) + (111 

R R 

5 edt - 
+n8(l  + 3)1JT -n[nl(n4~-n6q)(u-o)~+ n;(w-nn)(a+;n .. - /274 

VI 

+ 2n [i (a2 + 1) f ;  (Ra) + (0% - I) f ;  (Ra)l- 

Here X;.Y are components of the resultant vector of the desired forces acting on 
part L of the edge of the hole; p and q are the forces of tension at infinity 
of the plate in the direction of the Ox and Oy axes, respectively; 



%x - nl = all (PI +@J, n2 = a12 + - all -!- allBlh, n3 = as 8 1 + &  
PA ' 

-. (111.185) 
1 

nr = 1 $ n,, n, = - . n e  hbf i  n7 = 1 f n.. 

In the case of plane deformation, in formulas (111.185) it is necessary to 
use, instead of the elastic constants aij, the adduced elastic constants Bij, 
defined1 by relations (I. 13). 

Equation system (111.183) also represents the relations from which the 
character of distribution of normal and tangential stresses on segment L1 of 

the edge of the round hole in an orthotropic plate must be determined. 

We will notice that the requirement of a round hole, rather than, let us 
say, an elliptical hole, is also not binding, just as the requirement of 
orthotropicity of the material of the plate. These assumptions are made for 
simplicity (and brevity) in outlining the method for solving the problem, since 
as follows from 1, for an anisotropic plate with a round or elliptic hole, the 
problem is solved simultaneously and identically, which is not the case in an 
isotropic plate, where the ellipticity of the hole involves considerable 
difficulties in the solution of the problem. 

We will solve equation system (111.183). We multiply the second equation 
of (111.183) by as yet arbitrary function N(a) and combine it with the first 
equation: 

We will choose the function N(u) in such a manner that we satisfy the 
condition 

- - - [nl (a + GI2 - n,  (a - aI2] + h' (a) i (n, - n,) (ag - aZ) - 1 
- i (n, - n,) (a2 - a2) - N (a) [nl (o - ;)Z - ns (o + = N ( " ) =  hm (111,187) 

from which we obtain two values for N(u) : 

 e ere the symbols aij are used for elastic constants in the case of the gener- 
alized stress state. 

30 1 



where 

We introduce the definitions: 

- - - [n, (a + ;;)" - n3 (a - 0)" 1 N (a) i (n, - n,) (a" 02) = Kk (a), 

- 41v1,Nk (a) -; Qk (a) (k = 1,2). (111.190) 

Then, on the basis of relation (III.187), 

where 

Considering definitions (111.190) and (III.191), equation (111.186) can be 
represented in the form of two independent equations: 

We reduce the solution of equations (111.193) to the analysis of two 
Riemann-Hilbert boundary problems. We write 

Using the Sokhotskiy-Plemell formulas, from (111.194) we find 



a, (a) + A, (a) rr@ (0) = w;t (0)  - WR (0) I 

+ 
Here W (0) and W&D) are the values of functions Wk(3) (k = 1 2) approaching k 
the point 3 = a, located on contour yl, from inside and from outside, respec- 
tively circle y. 

As we see, the left hand sides of equations (111.186) can be expressed on - /276 
the basis of (111.195) through the limit values of the functions Wk(<) ( k = 
= 1, 2): 

--'* Wr (0) = q (a) (on Y J. w' ('1 + fnln, + rt, 

fix+ ' 8  
(0) = 4 (0) (on y3. w$(a) + G- n* 

@ (a) - K (a) = 0 (on yz). 

Here 

Fi (0) + NI (0) Fa (0) 
'1 (a) = i,U1 (0, + QI (a) * 

y2 is the part of circle y that complements yl to a complete circle. 

The solutions of boundary problems (111.196) and (III.197), with simple 
poles at the given points zl, -zl and z2, -z of plane , are represented by 

2 
the following formulas, respectively: 



Here G1, D l ,  . . . , E a r e  c v r ~ s ~ a l l ~ s  rnat a r e  suDject t o  de te rmina t ion;  2 

where 

a and b a r e  p o i n t s  t h a t  s epa ra t e  a r c s  y and y2; by X1(Q and X2(<)  we mean t h e  
1 

arms t h a t  a r e  holomorphic on t h e  p lane  o f  complex v a r i a b l e  5, c u t  along y 1 ' 

On t h e  bag i s  o f  t h e  f i r s t  equat ion of  ( I I I . 1 9 5 ) ,  t h e  s t r e s s e s  along /277  
contour  y (L ) a r e  found by formulas 

1 1  

h ( a )  [ ~ 2 +  ('5) - W 1  (o)1 - k2 (0 )  I W ; ~  (0 )  - W T  (a ) ]  
or (0) = (a)  - k, (a) , 

+ 
i n  which T(a) (k = 1, 2) a r e  t h e  boundary va lues  of t h e  func t ions  def ined  by 

expressions (111.199) and (111.200). 

Formulas (111.199) and (111. ZOO) f o r  func t ions  W1 (<) and W2 (<) conta in  
seven unknown cons t an t s :  

o  dt A , = S ~ ,  B I = = ~ ~ , . c ~ ,  Dl. El. C2. D, and E2. 
Y l  Y I 

Constants C and C a r e  e a s i l y  found from condi t ions  a t  i n f i n i t y .  S p e c i f i c a l l y ,  1 2 
on t h e  one hand, on t h e  b a s i s  of  ( I I I . 1 9 4 ) ,  

On t h e  o t h e r  hand, from formulas (111.199) and ( I I I . 2 0 0 ) ,  we have 



By comparing t h e  r i g h t  hand s ides  of the  l a s t  two equations,  we a r r i v e  a t  the  
r e l a t i o n  

which is  e a s i l y  transformed t o  

where X and Y a r e  components of t h e  r e s u l t a n t  vector  of forces ac t ing  on L 
1' 

From t h e  zero condit ion we obta in  t h e  two following r e l a t i o n s :  

We f i n d  the  l a s t  four  r e l a t i o n s  by comparing i n  formulas (111.194) and 1278 
( I I I .199) ,  ( I I I .200) ,  t h e  main p a r t  of  the  poles  of funct ions  Wl(<) a t  t h e  

po in t s  z  - 2  and of the  function W2(<) a t  t h e  po in t s  z2,  - z2 :  
1' 1' 

I. 2fiXl(zl) Dl = 2, 11. 2 6  (- 2,) El = - t - q '  
YD , Y1 

*,,dl 111. 2nX, (z?) D, = z, IV. 2nX2 (- z*) E2 = - 1 YI Y l  ' 

Here, by r r 0 ( t )  we mean the  expression obtained from t h e  second formula of 

(111.203) and from formulas (111.199)' (111.200); z  and z 2  a r e  po in t s  of plane 
1 

5 defined by formulas (111.189). Conditions (111.207)' (111.208) a l s o  def ine  
s i x  constants:  A1, B1, D l ,  El, D2, E2. 

We w i l l  examine two examples t h a t  a r e  of independent importance. 



Impression of a Rigid Punch in to  an E l a s t i c  Orthotropic Body. Let a  r i g i d  
punch with the  shape of  an a r c  of a hole of the  same radius  R ,  and which i s  
immovably af f ixed t o  an e l a s t i c  body, be applied t o  a r c  L = ab of a  round hole  
i n  an o r tho t rop ic  p l a t e .  The punch is  impressed i n t o  the  e l a s t i c  body by nor- 
mal fo rce  P applied symmetrically and ac t ing  i n  t h e  d i rec t ion  of the  Ox a x i s ,  

0 ' 
which passes through the  cen te r  of  a r c  ab. There a r e  no s t r e s s e s  a t  i n f i n i t y  
of  the  p l a t e .  We a r e  required t o  determine the  law of d i s t r i b u t i o n  of contact  
s t r e s s e s  o and T , ~  between the  punch and the  e l a s t i c  body. r 

In the  given case 

sl= jTf.=o 
, due t o  t h e  symmetry of t h e  problem; 

YI 

Functions (111.198) acquire the  values 

By s u b s t i t u t i n g  functions (111.211) i n t o  formulas ( I I I .199) ,  (111.200) and 
a f t e r  ca lcu la t ing  the  required i n t e g r a l s  of the  Cauchy type1, we obta in  

- -  - ----- -~ -- - 

'see t a b l e  of i n t e g r a l s  of  Cauchy type, presented i n  $ 4 ,  Chapter I .  



The components of the stresses on contour y are defined in accordance 
with formulas (111,193) 1 

0 =- V - G b  (0)  XI (0 )  i 
1 

> 
ni (vnx- n*) [L1 (a )  - & (a) ]  2 vG ( fG - VG) 

- ( 0 )  x2 (0 )  i -- 
I X ' 

xi (V  n,n, + n,) [h, (a)  - ha (a)] 2 v-< (v-<+ V-K) 

- =x, (0 )  i 1 

ni ( V G ,  + nr) [hi (a) - A, (a)] 2 ( - ' X 

The constant A found in the solution of the given problem is determined 1 
by any of formulas (111.207). By substituting expression (111.215) for T re 
into formulas (III.208), we find four conditions for the determination of the 



constants D El, D2, E2. It turns out that these conditions are interrelated 

by one relation I + I1 + z22 (111 + IV) = 0, such that there will only be three 

independent conditions. The fourth incomplete condition is found by comparing 
the right hand sides of expressions (111.207). We write the final expressions 
for the stresses in polar coordinates, i.e., related to the variable 

8 ( r = 1 ,  a =  p). 

Here 

1  sin^ (0, - 0) 
8, = 6 In 

1 
sin (00 + 0) 

z and z2 are found from formulas (III.189), and 6, from formula (111.202). 
1 

In particular, for an isotropic plate, formulas (111.216) and (111.217) 
are converted to the form 

-!L ~ n x  I % i n n  
a -  o f  c o s ( + e - - ~ ~ ) + ; ~  

4nRA (0) 

Po pTG 8 1 5 1 n x  
" 0  ('1 a 4nRA (0) [;'InX sin (t 0  - 8,) + li- P sin (+ 0 - @,)I 

Here, by 6, which goes into the expression for 0 we mean 
1 ' 



The r e s u l t s  of  c a l c u l a t i o n s  by formulas (111.216) and (111.217) f o r  a  
p l a t e  made of  plywood 11, where t h e  Ox a x i s  i s  d i r e c t e d  along t h e  g r a i n ,  a r e  
presented  i n  Table 111.7. Such a  p l a t e ,  a s  known1, has t h e  fol lowing e l a s t i c  
p r o p e r t i e s :  

1 0-9 all  = - U29 = 1 o - ~  a,, =- 0.07 1 
1.2.9.81 ' 0.6-9.81- ' 1.2-9.81. lo9 ' 

The parameters i n  (111.185) f o r  t h e  given case  a r e  

For comparison, t h e  va lues  of s t r e s s e s  or(B) of  (111.219) and ~ ~ ~ ( 0 )  of 

(111.220) a r e  a l s o  presented  i n  Table 111.7 f o r  an i s o t r o p i c  p l a t e  with K = 2 ,  
i n  f r a c t i o n s  P /R f o r  t h e  case  8 = n/4. 

0 0 

TABLE 111.7 TABLE 111.8. 

T r .  Note: Commas ind ica t e  decimal 
poin ts .  

The va lues  of contac t  s t r e s s e s  0 -  

-.-- 

plywood plate 

89 
h I 're 

r 
T r .  Note: Commas ind ica t e  decimal 
po in t s .  

o f  (111.219) and T~~ of  (111.220) a r e  

0 
5 

10 
15 
20 
25 
30 
35 
40 

Isotropic plate 

0 '  I be 

presented  i n  Table 111.8 ( i n  f r a c t i o n s  
P /R)  f o r  an i s o t r o p i c  p l a t e  with t h e  contac t  angle  €I0 = ~ / 2 .  

0  

-0,4300 
-0,4312 
-0,4351 
-0,4426 
-0,4553 
-0,4770 
-0.5157 
-0,5930 
-0,7990 
-1,1862 
-1,8167 

Comparison of  t h e  d a t a  i n  Tables 111.7 and 111.8 f o r  an i s o t r o p i c  p l a t e  
r evea l s  a  q u a l i t a t i v e  d i f f e r e n c e  i n  t h e  c h a r a c t e r  of  d i s t r i b u t i o n  of normal 
s t r e s s e s :  f o r  contac t  angle  B0 = n/4,  normal s t r e s s e s  i nc rease  gradual ly  from 

0 
0,0324 
0,0655 
0,1002 
0,1376 
0,1800 
0,2314 
0,3015 
0,4242 
0.6002 
0,7392 

-0,4237 
-0,4248 
-0.4281 
4 , 4 3 4 5  
-0.4451 
-0.4643 
-0.4981 
-0.5662 
-0.7482 

' see  S. G .  Lekhnitskiy [1] . 
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0 
0,0339 
0,0686 
0,1051 
0.1149 
0,1904 
0,2468 
0,3265 
0,4758 
0.7216 
0,9588 

43 .-1.1571 
44 -1.6476 I 



t h e  c e n t e r  of t h e  a r c  of con tac t  t o  t h e  edge, whereas f o r  con tac t  angle  
8 = n/4, normal s t r e s s e s  decrease  i n  va lue  and only near  t h e  very  edge do they  0 
begin t o  i nc rease  r a p i d l y  due t o  t h e  p a r t i c u l a r  s o l u t i o n ,  which has  a s ingu-  
l a r i t y  on t h e  ends of  t h e  a r c  of con tac t .  There a r e  no d i f f e r e n c e s  i n  t h e  
c h a r a c t e r  of  d i s t r i b u t i o n  of t a n g e n t i a l  s t r e s s e s :  i n  each case  they  inc rease  
from t h e  c e n t e r  o f  t h e  a r c  of  con tac t  t o  t h e  edge. Such a c h a r a c t e r  of d i s t r i -  
bu t ion  of  normal and t a n g e n t i a l  s t r e s s e s  f o r  t h e  case  €I0 = n/2 becomes c l e a r  

cons ider ing  t h a t  a s  t h e  po in t  approaches t h e  edge of t he  a r c  of  con tac t ,  t h e  
e l a s t i c  m a t e r i a l  experiences g radua l ly  l e s s  p re s su re  from t h e  d i r e c t i o n  of t h e  
r i g i d  punch and g radua l ly  more p re s su re  due t o  t h e  e f f e c t  of  t h e  f o r c e s  o f  
displacement.  

Uniaxial Tension of Or thot ropic  P l a t e  with Hole, t o  P a r t  of t he  Edge of 
Which is Soldered a Rigid Cover P l a t e .  To segment ab of t h e  edge of  a round 
ho le  o f  r a d i u s  R i n  an o r t h o t r o p i c  p l a t e ,  l e t  a r i g i d  cover  p l a t e  with t h e  
shape of  an a r c  of  a h o l e  of t h e  same r a d i u s  be so lde red .  Suppose t h a t  t h e  
p l a t e  wi th  t h e  so ldered  cover p l a t e  i s  subjec ted  t o  uniform t ens ion  a t  i n f i n i t y  - /282 
by f o r c e s  o f  i n t e n s i t y  p, p a r a l l e l  t o  t h e  Ox a x i s .  We a r e  requi red  t o  determine 
t h e  c h a r a c t e r  of  s t r e s s  d i s t r i b u t i o n  between t h e  cover  p l a t e  and t h e  e l a s t i c  
body. 

I t  is  obvious t h a t  p a r t  o f  t h e  contour  of  t h e  ho le  i n  con tac t  wi th  t h e  
cover p l a t e  w i l l  be  d i sp l aced  a s  a whole dur ing  deformation o f  t h e  p l a t e .  We 
w i l l  examine only such p o s i t i o n s  of  t h e  cover p l a t e  a s  when it  i s  d isp laced  
g radua l ly .  This w i l l  occur  a t  l e a s t  when t h e  middle of t h e  cover p l a t e  i s  
loca ted  a t  t h e  ends of t h e  v e r t i c a l  o r  h o r i z o n t a l  d iameters .  For i n s t ance ,  we 
w i l l  examine t h e  case  where t h e  x a x i s  passes  through t h e  c e n t e r  of  t h e  cover 
p l a t e .  In  t h i s  case  

B~ = i?!!!!. = o due t o  symmetry of  t h e  problem; 
t 

Y 1 (111.222) 
[I = e-lOe b = ,(On (20, < n), Cl = C, = 0. 

Formulas (111.198) a r e  converted t o  t h e  form 

Q, (0) = 1 pn,n, {nip [02 (n4 I/<-- n~ fi) - 
ni ()'= - n2) (k'c + vX)  (a2 - 2;) 



By substituting into formulas (111.199) and (III.200), instead of 
Rl (t) and Q (t) , their values from (III.223), we obtain the functions 2 

1 1 
- (4 - na) 41 - x1 (- Z I )  (V-C- I%)~ (5. + 21) [nip (nln, + n ~ n 5 )  - 

1 nip 
- T ( n 1 - n 3 ) A 1 ] -  G-fi e. v.; + A. 1 ' 9  cr + + XI (c) (t7 DI + tx E, 

I (111.224) wa = 2ni ( l/< + 6) ( t2 - 6)  (nip [ t2 (n ,  6- nh VG) - 

. I  1 

,Ya (- 21) ( f G  + P'GP (C + 2,) [nip (n1n4 + n3nd - y (nl - n3) A,] - 
(111.225) /283 

nip - 
- p,G+ VG 

Here 

c = - (cos 0,  - 26 sin 0,). 

d = - (COS 0,, + 26 sin 0,). 

The forces of tension along the contour of the weld are defined by formulas 
(111.203) by substituting there the values found for W1 from (111.224) and W2 
from (111.225) : 



1 1 
+ f l ~ f l l )  - -2. (fll - n,) A1 - I XI( - z d ( , G  - l/G2(lJ+ z1) X 

[ 
1 nip x nip (nlf14 + n S 5 )  - (nr - n,) A,] - VK- vG ( fl5 fi+ f l4 f i ) (a+c)  + 

+2ai Dl G s h ~  ( a )  Xt (0) 
( 0 7  +a*)) + n i ( ~ ~  + n,) [A, ( a )  - A, ( a ) ]  X 

- nip 

(111.227) 
1 

X 

1 1 
nip (n,n4 + n.n,) - ij- (n ,  - n3 A,] - ---- -- 

X I (  - G I ( ~ / < -  VG)=(a + z1) X 

I nip n4 VK + n 5 d G ( a  + c )  + 

- nip Da 
- ( f l 4  d G - n s f i ) ( a + d ) + 2 n i  - EI 

I/<+ i / n s  (a - 2, + a ? ~ j ) )  . (111.228) 

The cons t an t s  i n  t h e  s o l u t i o n  of t h e  given problem a r e  determined i n  t h e  /284 
manner analogous t o  t h a t  descr ibed  i n  t h e  preceding case ,  and t h e r e f o r e  we w i l l  
in t roduce  only t h e  f i n a l  formulas f o r  t h e  s t r e s s e s ,  w r i t t e n  i n  t h e  v a r i a b l e  0 :  

+ cz, COS (; + 8, )  + c cos (; 0  - 0 , )  + cor ( $ 0  - 0 , ) ]  + 
(111.229) 

i n4 )lK-- n5 c?-'~' 



- czi sin (+ + el) - c sin (+ 0 - 0,) - s in  (t 0 - o ~ ) ]  - 

For an isotropic plate, formulas (111.229) and (111.230) acquire the form 

In x A t n x  
cos e,, + - n sin eo) (g e - el) - r 2n x 

Here 6 is defined by formula (111.221). 

5. Pressure of a Rigid Disc on Edge of Round Hole in Orthotropic Plate - 1285 

Statement of Problem and Derivation of Integral Fredholm's Equation. We 
will analyze the problem of compression of two bodies1, one of which represents 
an unbounded homogeneous orthotropic plate with a round hole of radius R1, and 

the other, a rigid round disc of radius R2. Let R1 differ little from R2, such 

that the difference (R1 - R2) = e represents a magnitude of the order of the 

 his problem was analyzed by D. V. Grilitskiy [3-51. Contact stresses for the 
case of isotropic compressed bodies are analyzed in the works of I. Ya. Shtay- 
erman [I, 21, M. 2. Narodetskiy [I], M. P. Sheremet'yev [2-41, V. V. Panasyuk 
[ I ,  21, A.  I. Kalandiya [I, 23 and B. L. Ramalis 11, 21 .  



elastic displacements. We will assume that the force P that presses one body 
toward the other acts along the diameter of the disc and is directed along one 
of the lines of intersection of the planes of elastic symmetry of the material 
from which the plate is made. Moreover, we will assume that there are no 
forces of friction acting between the bodies. We are required to determine the 
size of the area of contact and distribution of pressure upon it. 

To solve this problem we will use a rectangular Cartesian coordinate 
system xOy with the origin at the center of the hole, and the coordinate axes 
directed along the principal directions of elasticity such that the Ox axis 
coincides with the direction of compressive force P. 

The equations of contour of the rigid disc prior to deformation and after 
deformation are, respectively, 

Ix - (R1 - R , ) I ~  + y2 = R?, [ x  - (R,  - R,) - dl2 + y2 = R:. (111.233) 

where d is displacement of the center of the disc due to deformation. 

The contour of the hole in the elastic plane prior to deformation is 
determined by the equation 

after deformation the equation of contour can be represented in the form 

where u and v are elastic displacements of the points of contour of the hole of 
the plate due to deformation. 

The coordinates 5 and n should satisfy the second equation of (111.233) on 
the arc of contact with the plate: 

By substituting into (III.236), instead of 5 and n,  their values from 
(III.235), and disregarding the values of the second order of smallness in com- 
parison with u and v, we find the condition which must be satisfied for the 
points of the area of contact: 



The radial displacement v is expressed with the aid of two functions of /286 r - 
complex variable, through the first formula of (I.94), on the basis of which 
the boundary condition of problem (111.237) acquires the form 

Vr = 2Re I(P, cos Q + q, sin 8) cp(t,) + ( p ,  cos 9 + 9, sin 9) g(t2)] = 
(111.238) 

= dc0s6 - e ( l  -cos9). 

Earlier, by formula (III.78), we established the form of the stress 
functions for the case where a concentrated force F(x, y) is applied to the 
point a of the contour of the hole: 

0 

where Ak and Bk (k = 1, 2) are expressed on the basis of formulas (I11 -74)  ; 

A ( ~ )  and B(*) are determined according to formulas (1127, and c1 and c2, by 
formulas (111.12) and (111.13) for a = b = Rl. 

When force P is applied normally to the contour of the hole at angle a to 

the Ox axis, the determination of A(~) and B(~) requires the use of expression 
(I. 128) . In this case formulas (111.239) acquire the form 

P ( c o s a + i f l , s i n a )  -ao 
'P (23 = A'" In t + 2n (PI - R) In ' 

f;l ' 

P  ( C O S  ct + ifl; sin a )  6 - a 
Ip (22) = 8") In 5 2  - 2n (p, - R) 

In'". 61 

If, into the left hand side of the boundary condition (III.238), we 
substitute formulas (111.240) and separate the real part, we find an expression 
for radial displacement of the point of the contour of the round hole defined 
by the coordinate 8, due to the effect of the normal concentrated force applied 
to the edge of the hole at the point defined by the coordinate a: 

Here, the symbols used in formula (111.185) are taken for the constants n 
(k = 1, 2, 3 ) .  

k 



In the following, we will make no distinction between the radii of the 
hole Rl and disc R so that we can use R1 = R2 = R, preserving, however, the 2 
difference E = R1 - R in boundary condition (111.238). 2 

If p(8) is normal pressure on the arc of contact, then upon element Rda 
of the arc will act a force p(a)Rda. We will use this force as a concentrated /287 - 
force applied on element Rda of the arc. This force, at the point defined by 
coordinate 0 ,  will cause radial displacement. 

P (a) R n~ d v , = T [ T ( ~ ~ - e ~ - n ) s i n ~ 8 - a l - ( n ,  cos8cosa + 
le-al]da. -!- n, sin 8 sin a) In 2 sin -7 (111.242) 

If to the area of contact there corresponds a change in angle 8 within the 
range -0 to +go, then the total radial displacement of the point is 

0 
@* 

= f ~p(a)[~(~~-~~-n)sin~8--o~--(n,cos8cosa+ 
-00 (111.243) 

le-al + n, sin 8 sin a) In 2 sin da. 

By substituting (111.243) into boundary condition (III.238), we find an 
integral Fredholmts equation of the first kind: 

R - -Jp(a) (n, cos 0 cos a + n3sin 8 sin a) In 2 sin da + n 
- 01 

;- % p ( a ) ( 1 0 - a / - n ) s i n ! O - a I d a ; -  dcos8-e(1  -cosO] (111.244) 
2s 

which, with the condition 

0. 
P .= R ) p (a) cos ada 

determines pressure p(0) and the area of contact. 

For an isotropic plate (n = n3) equation (111.244) acquires the form 1 



where 

8. 

-*I lO-al p (a) cos (8 - a) In 2sin da + 
-80 (111.246) 

8 a 
Rn, +- z p ( a ) ( ~ B - a ~ - r r ) s i n ~ 8 - a ~ d a = d e o s B - ~ ( l - c o s B )  

- 6 0  

E is Young's modulus; v is Poisson's ratio. 

Integral equation (III.246), for E = 0, is equivalent to an integral- /288 
differential equation of the Prandtl type, and one can be transformed into the 
other1. 

In view of the great complexity of integral equation (III.244), its 
precise solution cannot be assured at any given moment. Therefore, we give 
below the approximate solution of the above equation, reducing it to the solu- 
tion of a linear system of algebraic equations that is convenient for use by 
modern computer technology. In doing this we will use, as did I. Ya. Shtayer- 
man [2], the method of finite differences, which boils down to the fact that 
the range of change of the desired function (area of contact) is broken down 
into n equal parts, and in each part obtained, the desired function is assumed 
to be constant. In solving the solution in this manner, we will replace the 
continuous function p(8) by a piece-wise continuous (piece-wise constant) func- 
tion that changes in jumps during transition from one section to the next. 

Approximate Solution of l ntegral Equation ( 1  1 1.244). From equation 
(111,244) we will exclude the known constant d. For this purpose we will assume 
that 8 = 0. Consequently, we have 

d = - -  Rn2 
X 

p ( a )  m s  a in 2 sin da + ;;-.(a) (I a I - n) sin I a I da. 
(111.248) 

-00 -0. 

After substitution of (111.248) into (III.244), we arrive at an integral equa- 
tion that contains no d: 

'see D. V. Grilitskiy [a]. 



1 . 1  1 2 T -n,cos0cosaln2sinT da-- p(a)[(lO - a I - n) sin 1 0 -a 1 - (111.249) 
-k 

which, together with condition (III.245), solves the  s t a t e d  problem. 

From t h e  condit ion of evenness of the  function p(8)  i n  the  area  of contact ,  
we have t h e  r e l a t i o n  

a 
l 0 - a l  S p @)[(n1 cos 0 cm a + ha sin e sin a) In 2 sin - - 

2 
-@* 

R 10 +a1 - JT) ws 9 sin I a [ j  da = -ji- p (a)  [(nl cos 0 cos a -ns sin 0 sin a) In 2 sin -2- 
i, 

- P (a )  I(l0 + a I - n) sin 1 0 + a 1 - (a  - n )  cos 0 sin u ]  da. 
0 

with considerat ion of which i n t e g r a l  equation (111.249) acquires the  form 

n ' e - a l + ( n , m s ~  m s a -  ? / [inl cos 8 ms a + n, sin B sin a)  ln 2 sin 7 
i 

-n, sin 0 sin a)  In 2 sin -2n1 cos 0 cos a In2  sin^ da - 
a I 

(111.250) 
P (a)[(j0 - a I - n) sin 10 - a (+ (1 0 + a I - n) sin I 0 + a( - 

- 2 ( a - n ) c o s B s i n a ] d c r = e ( l - c o s 0 )  

(- '30 < 0 < 00) .  

We w i l l  d iv ide  t h e  i n t e r v a l  (0, 8 ) i n t o  n equal p a r t s  and assume t h a t  i n  0 
each p a r t  obtained the  function p(9) i s  constant:  



00 
p ( e ) & p ,  and ( k - 1 ) 6 < 0 < & . 6  ( 1 ,  2 . )  6=-  n ' (111.251) 

By substituting p(0)  from (111.251) into (III.250), assuming 9 = 20 (2  = 
= 1, 2, ..., n), we obtain the following equation system 

+ (n, ca 16 m s  a - na sin 1 8 sin a) In 2 sin I It) $ a I - 2nl coslbcos o in 2 sin 

(111.252) 

-2(a-n)cos16sinalda=c(l-cosl6) (1 = I ,  2, ... n). 

Omitting the intermediate calculations, we will give the values of the 
integrals in equation (111.252): 

116 -:a1 
(n, cos 16 cos a + n, sin I6 sin a) In 2 sin & = 

1 1 - k + 1 ) 6  " [n, sin 1 8  cos (A - 1) 6 - n, cos 1 6  sin (k - 1) 61 In 2 sin - 

I f - - & I * +  - (n, sin I @ cos k6- n, cos I t )  sin k 6 )  In 2 sin 

+ (n, - n8) sin 16 cos 16 ( I - k + 1  ( 6  - In sin I l - k l e  
2 2 - 

x [ s in ( l -k )6-s in (1-k+ 1)6-61 ;  

(16 + a) ~ ~ ~ s l ~ c ~ a - ~ s i n 1 6 a i n a ~ I n % i n  da- 

(.c--I)Q 
(1 + k) 8 =(n, sin 16 cos kd + n, cos 1 6  sin 18) In %in - 

- [ n 8 ~ i n l B c a s ( k -  I ) 6 + n l c o s 1 6 s i n ( k -  l ) % ] l n 2 ~ i n ( I + ~ ~  I)'+ 

(1 + 4 6 + (n, - n,) sin 1 6  cos I 6  In sin - In sin (I  + k -  1 ) 6  
2 - 

1 . - sin sin ( I  -I- * - ;) e] - 3 (q ms2 10 + na sin' lb) x 

x [sin (1 + k) 6 - sin (I + k - 1) 6 + 61; 



a k 6  ( k -  1 )  6 
cos a In 2 sin y da = sin kt? In 2 sin 2 - sin ( k  - 1 )  6 In 2 sin - 

(&-I)* 
(111.255) 

1 6 
- y [sin k6  - sin ( k  - 1 )  61 - - . 2 ' 

[( I 117 - a I - n) sin116 - a1 + (16 + a - n)  sin (16 + a) - 
(k-l)Q 

- 2 ( a  - n) cos 18 sin a] d a  = T ( I  - k)[( l l  - k 1 6 - n )  cos ( 1  - k )  6 - 
~ ( 1 1 - k + l I 6 - n ) c o s ( l - - k +  1 ) 6 ] + [ ( 1 + k - 1 ) 6 - n ] c o s ( 1 + k - 1 ) 6 -  

- [ ( I  -+ k )  6 - n] cos (1 + k )  6 + sin (1 - k + 1 )  t? - sin ( 1  - k )  6 + sin (1 + k) 6 - 
-sin ( 1  + k - 1 )  6 - 2 cos 16 ( [ ( k  - 1) 6 - ..I] cos ( k  - 1)'6 - ( k 6  - n) cos kb -i (111.256) 

+ sin kt? - sin(k - I )  6). ' 

where 

1 - I  for (1-k)>O, 

% ( I -  k )  = - 1 for (1- k)<- I .  

By substituting (111.253)-(111.256) into (III.252), introducing the 
definitions 

AkBl = (nlsin(k+l)6-(n,-n,)sin16[cos(1-k - 1 )  6 - cos 161) x 

I k + 1 1 6  X In 2 sin - Inl sin k 6  - (n, - n,) sin 181 cos ( I  - k )  6 - 
l k l 6  6 - cos 161) In 2 sin ---;i-- - (n,  coss 16 + n, sinZ 16) + n,s ( k )  x 

( k -  1)6 
A,,[ = (n, - n,) sin 21 6 [cos (1  - k + 1 )  6 - cos 161 In 2 sin - 

k 6  6 
- [ c o s ( ~ - k ) O - ~ o s l 6 ] I n 2 s i n ~ + ~ s i n 1 ~ )  k.1. la1 

recalling that 

1 - 1 - I  for k > l ;  1 3 0 ,  

as follows from (III.257), we find the basic system of equations: 

n 

( 1  = 1,  2 , .  . . , n). 



We will simplify this system. When k 2 0, Z > 0, we have from (111.258) 

Ahel = {nl sin (k + 1) 6 - (nl - n,) sin 16 [cos [l  - k - 1 )  6  - cos 16)) x 

(k+ 116 X In 2sin - fn ,  sin k6 - (n,  - n,) sin 18[cos ( I  - k )  6 - cos 161) x 

k6 O (111.260) 
X In 2  sin T -  (n, coos 16 + n, sina 18) + n, [ ( ( &  +21) - $) cos (k  + 1 )  8 - 

From (111,258) we also have 

( k  - 1 )  6 ( k  - 1 )  6 
*-k.l = = 2  (nl - nJ  sin 218 [sing In 2  sin , - 

If we introduce the definition 

k 6  k 6  k6  
sin 16 In 2  sin - T )  + n* (T - 3) cOs k6 + 

+ ( n l - n 3 r l n l b  ~ i ~ 1 b - ~ c o . ( l - k ) 6 - c 0 ~ 1 6 ~ i n 2 s i n ~ ]  

for. k>O; 1>0, 

then (111.260) can be represented in the form 

A k l = F ( k +  1.1)-F(k,l) for k,O; l > O *  

The function (111.262) is represented in the form 

1 
F (k,  1) = - - 2 n J ( k * l )  for k,0; l > O ,  

where 

( k )  = ( k )  - 9. ( k  1 for k  3 0; 1  > 0; 
kf3 

cp,(k)=CI(n-k6)coskfi  + k 8 - 2 s i n k t 3 I n 2 s i n ~  

for k>o; 



If we assume that 

we will have 

~ , , , = f ( k + 1 , 1 ) - 1 ( k , l )  for k > O ;  1,o;  

k 6  k 6  ( k -  1) 6 
S-k,l = dR1,' + 4C,sin 216  sins^ In 2sin - sin2 In &in (k- 1)81 

for k )  1; z>o. 
1 

Finally, if we introduce the definition 

then equation system (111.259) can be represented in final form: 

For an isotropic plate, n = n and consequently, C2 = 0. The relationship 3 ' 
between compressive force P and the contact angle Bo is given by formula 

(III.245), which, assuming p(6) = pk, when (k - 1) 9 < €I < k9 (k = 1, 2, ..., n), 
can be reduced to the form 

2R 2: pk[sin kB - sin ( k -  1) d] = P. 

Equations (111.263) and formula (111.264) can be used for determining 
pressure in the are of contact (the unknown p 

1' P2' ..., p ) and the relation- 
n 

ship between angle €I0 and force P. 

The solutions of equation system (111.263) as obtained with the Ural-1 
computer are presented below for n = 10 for five angles go: 30, 40, 50, 60 and 

- 
70". The calculations were made for an orthotropic plate1made of plywood I, 
and also for an orthotropic plate for v = 0.3 and E = 2.1 -9.819 10' O .  

Tables 111.9-111.11 show the effect of anisotropy of an elastic material 
on the size and character of distribution of contact stresses between a disc 

'see S. G. Lekhnitskiy [ I ] .  
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and a plate, as well 
force. The pressure 
fractions of 9.81°10' 
cerning distribution 

as the relationship between the contact angle and acting /293 
is given in fractions of 9.81e10' E/R  n/m2; the force in 

E n/m2. Tables 111.9 and 111.10 also include data con- 
of pressure in plywood I, where the x axis is directed. 

respectively, with and against the grain for C = 0.7118, C2 = -2.4496, nl = 1 
= 3.0001 10-'/9.81 (Table 111.9) and C1 = 0.2037, C2 = 0.7152, nl = 10.3714 x 

x 10-~/9.81 (Table 111.10). Table 111.11 includes the results of calculations 
for an isotropic plate when C1 = 0.3500, C2 = 0, nl = 0.09524 10-~/9.81. 

TABLE 111.9 
The relationship between 

the applied force P and angle 
8 for known pressure p is 0 k 
given by formula (111.264). 

By analyzing the data in 
Tables 111.9 and 111.11, we see 
that the contact stresses, after 
reaching maximum values at the 
center of the area of contact, 
gradually diminish toward the 
edges. At the edges of the area 
of contact, due to discontinuity, 
they acquire zero values. For 
only one of the given cases 
(Table 111.10) is the character 
of distribution of the contact 

Tr .  Note: Comas indicate decimal points. stresses somewhat different: for 
contact angles 100°, 120° and /294 
140°, the points at which the 

TABLE 111.10 pressure is maximum are dis- 
placed closer to the edge. For 
the given anisotropic materials, 
the compressive force that 
corresponds to a given angle of 
rotation is only one-tenth as 
great as that for an isotropic 
plate. It can be reasoned that 
the contact stresses are limited 
to about the same quantitative 
ratio. Consequently, the aniso- 
tropy of the body that encompasses 
the disc has a considerable 
effect on both the magnitude and 
the character of distribution of 
pressure in the contact area. 

The approximate value of 
Tr. Note: Commas indicate decimal points. the desired function is given in 

Tables 111.9-111.11 in the form 



TABLE 111.11 of a piece-wise constant func- 
tion that changes in jumps at 
the points of separation of the 
range of integration. The data 
in these tables make it 
possible to construct step-by- 
step pressure graphs for the 
five respective angles 0 By 0 ' 
smoothing off the jumps we can 
obtain a smooth curve that 
expresses the approximate solu- 
tion of integral equation 
(111.244). By constructing the 
graph for ar in this manner, we 

can revresent the character of 
distribution for the 

Tr. Note: Commas indicate decimal points. case where the x axis is di- 
rected along and against the 

grain. For comparison (by the data in Table 111.11) it is interesting to 
construct the corresponding curves that characterize the pressure distribution 
for an isotropic plate. By using formula (111.264) it is possible to construct 
the curves that express the relationship between angle O0 and the ratio P/E. 

These curves make it possible to determine angle 8 , i.e., the sizes of the 
area of contact, on the basis of the given differeke in radii E and amount of 
force P applied. 

56. Solution of First Basic Problem for Area with Nearly Ell lptical   ole' 

We will examine an infinite anisotropic plate with a hole, the contour of 
which is nearly elliptical. The equation of this contour is taken in the form 

Here x and y are rectangular Cartesian coordinates; E is a small parameter; %? 
6 are constants; t.9 is an angle which, in passing around the contour, changes k 
from zero to 2 ~ ;  c = b/a (a = R), where a and b are the semiaxes of the ellipse; 
N is any whole number. 

 he approximate solution of this problem was first found by S. G. Lekhnitskiy 
[2].  Another approximation method for the solution of the analogous problem 
was proposed by A. S. Kosmodamianskiy [8]. 
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A s  i n  31, we w i l l  assume t h a t  fo rces  X and Yn, t h e  r e s u l t a n t  v e c t o r  of which n 
i s  equal  t o  zero,  a r e  appl ied  t o  t h e  examined contour  of  t h e  ho le .  The problem 
of t h e  s t r e s s  s t a t e  of  such a p l a t e  is reduced t o  t h e  determinat ion o f  func- 
t i o n s  $(zl) and $(z2) from boundary condi t ions  (111 .6) .  

We w i l l  map conformally t h e  i n t e r i o r  of t h e  u n i t  c i r c l e  on an i n f i n i t e  
a r e a  with a ho le  of t h e  type  (111.265):  

where 

i o On t h e  contour  o f  t h e  u n i t  c i r c l e ,  = a = e , 

By t r a c i n g  S. G .  Lekhni t sk iy ' s  method [2],  we r ep resen t  t h e  func t ions  
$ (z l )  and $(z2)  i n  t h e  form 

Here 

- 1 + is, 
zp = z + hpz, hp =-a 

1 - i s  ' 
P 

f (< ) (k = 0,  1, 2, ...; p = 1, 2) a r e  a n a l y t i c a l  func t ions  of  arguments; 
pk P 

Functions f  (< ) a r e  def ined  i n  reg ions  S which r ep resen t  i n f i n i t e  p lanes  
pk P P ' 

with e l l i p t i c a l  ho le s .  



We will assume that the forces applied to the contour of the hole can be /296 - 
expanded into series by degress of small parameter E: 

Here plk and pZk are known functions defined for each partial case. 

We will substitute expressions (111.268) and (111.271) into boundary con- 
ditions (111.6) and equate the terms for identical degrees of &. Then, for 
the determination of functions f (< ), we obtain the boundary conditions 

pk P 

Since the functions f 
Pk(6p) 

are defined, as mentioned above, in planes 

with elliptical holes, they can be found by the same method1 as in 91, 

We will map conformally the interior of unit circle y onto the exterior of 
the above stated elliptical holes: 

1 To determine the functions f 
pk(6p) 

, L. G. Lekhnitskiy [2] used the method of 

series. For this purpose, A. S. Kosmodamianskiy [l] used integrals of the 
Cauchy type. Here, for the determination of the above stated functions, we 
use Schwartz' formula (111.8). 



We introduce the definitions 

Now the boundary conditions (111.272) and (111.273) acquire the form 

2Re [ + I ,  (0) + $20 (41 == flo (6)s 

2Re [s1+,, (0) + s2%0 (41 = f m  (0); (111.276) 
. . . . . . . . . . . . . . -  

where 

Here 

and therefore, in differentiating the functions 3, with respect to a it is 
necessary to use the formula pk P ' 



where 

To determine the functions $ 
Pk(5p) 

that are holomorphic within unit 

circle y and which satisfy on y the boundary conditions (111.276) and (III.277), 
we will use, as earlier, Schwartz's formula. Then, on the basis of formulas 
(111.9) and (III.10), we will have 

i a -J- 5 .  du 
9~ (0 = 4, (sl - SJ IsJli (6) - fir (6)I ,.j .kt *<- + 111. 

Y 

We will return now to the variables 5 and C2. From the expression 
(111.274) we have 

1 

We will substitute the expression for <, for p = 1, into the function 
Jllk(5) and for p = 2, into the function IVZk(<). Then we find, respectively, the 

expressions for f (5 ) and f2k(S2), the knowledge of which, on the basis of lk 1 
formulas (III.268), enable us to find the functions $(zl) and $(z2). After 

finding them, the stresses in the plate can be found by formulas (1.90). 

In analyzing the problem of stress concentration near a hole in a plate, 
the determination of normal stress a*, which acts on the surfaces normal'to 

the contour of the hole, is quite important1: 

57. Tension of Anisotropic Plate with Common Curvilinear Hole 

We will analyze an infinite homogeneous anisotropic plate weakened by a 
hole, the contour of which is given by equations 

- -  - 

'see S. G. Lekhnitskiy [ 2 ] .  



The function t h a t  conformally maps the  i n t e r i o r  of the  u n i t  c i r c l e  on an 
i n f i n i t e  a rea  with t h e  examined hole (111.285) cons i s t s  of s i x  terms and has 
t h e  form 

The choice of the  mapping functions (111.286) permits us t o  obta in  q u i t e  
e a s i l y  t h e  formulas f o r  determining t h e  s t r e s s  s t a t e  i n  a p l a t e  with various 
holes. 

Let t h e  contour of a hole  be  f r e e  of external  forces ,  and l e t ,  a t  i n f i n i t y ,  
uniformly d i s t r i b u t e d  forces  of tension p, p a r a l l e l  t o  t h e  Ox ax i s ,  and forces  - /299 
q, p a r a l l e l  t o  t h e  Oy ax i s ,  a c t  on t h e  p l a t e  (Figure 111.19). 

The so lu t ion  of  t h e  problem of t h e  stress 

f f I I 1 ~  s t a t e  of a p l a t e  i s  found by combining two 
s t r e s s  f i e l d s :  

1) t h e  stress f i e l d  t h a t  develops i n  a 
P -  th ick  p l a t e  

Figure 1 1  1.19. 
i n  t h i s  case t h e  projec t ions  of t h e  forces  

ac t ing  on the  contour of  t h e  assumed hole have the  form 

2) the  s t r e s s  f i e l d  occurring i n  a p l a t e  with a hole,  t o  t h e  contour of 
which a r e  applied t h e  forces 

- 

0 dy X n = - X n = P x s  



there being no forces at infinity. 

We will determine the stress state of a plate when forces Xn, Yn act on 
the contour. 

The boundary values (111.271) are represented in the form 

where 

In solving this problem we will confine ourselves to the second approxi- 
mation. We will preserve in expressions (111.268) the terms that contain E in 
the second power, discarding those that contain E in powers > 3. We will assume 
that,the complex parameters for an orthotropic plate are purely imaginary 
(sl = iB1, s2 = iBZ) We will confine ourselves to the determination of the 

functions 4(zl) and $(z2) for the points of the contour of the given hole. 

By using the theory outlined above, after several transformations we - /300 
obtain 

Here we introduce the definitions: 



N4 = 
1 1 

PI - A a4n1, N 5  = -- PI - f& "A; 

RI = 61 [- 3a5N, - 2 a,N, - (a, + xlaJ N, + 
6, 

+ $1 - 8 2  
(a; f 4xla2a, t 2x1a,2 + 7x:a,a5 + 4%:~: + 6xia3 m,], 

Thus 

The coefficients B-k and Bk are found from A-k and Ak if, in the latter, we 

substitute B1, 61, K ~ ,  ml, nl, respectively, by f3 2, 62, K2, m2, n2, and con- 
versely. 

The function @(a) is found from (III.291), if, in the expressions of 
coefficients (111.292) and (111.293) we perform circular permutation of the 
subscript i in B i, 6i, K ~ ,  m n (i = 1, 2). i' i 

The expression for the normal stress acting on the areas normal to the 
contour of the hole acquire the form 



Here we introduce the following definitions: 

5 

A'= - C C O S ~  -C e x  ~ o ~ c o s ~ ~ ,  
h=2 

5 

B - sin 6 3- e d kak sin k0; 
k=2 

7 

- e' k ( 6 t ~ ~ ~ v .  - 6 i ~ , k )  cos kB ; 
b l  I 

p* = - B 4- &-[ex k ( ~ I M ~ -  6 ~ k )  sin kb - e3 i (&?Azk - 63*,) 
k=l h-1 

Hence 



The coefficients pk, Blk, BZk are found from the expressions for hi,, Alk, 1303 

A2k by substitution of el, B2, 61, 62, K ~ ,  K~~ respectively, by 62, el, 62, 61 , 

In the examples given below, the stresses that occur on the contour of the 
hole are determined for the case where the plate is made of aviation plywood1: 

1) elastic constants 

'see S. G. Lekhnitskiy [I], p. 54. 
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and complex parameters 

if the x axis is directed with the grain (Ex = Emax); 

2) elastic constants 

lo-" a,, = 1.66667. - I o - ~  
9.81 ' a,, = - 0.05917. - 

981 ' 

1 o - ~  an = 0.83333. - a,, = 14.2857. - lo-9 
9.81 

and complex parameters 

if the x axis is directed against the grain (Ex = Emin). 

The results of calculations for plywood and isotropic plates are illustrated 
by the graphs presented below. The heavy lines on these figures correspond to 
the case where Ex = Emax, the dot-dash lines correspond to the case Ex = Emin, 

and the dotted line pertains to an isotropic plate. 

The formula for stress ad in the case of an isotropic plate can be found 
from approximation formula (111.295) by way of limit transition, assuming that 
6, = B2 = 1. However, this problem also has a precise solution1. 

Hole w i t h  the  Shape of a Right  T r i a n g l e 2 .  The contour is given by the 
equations 

x = R (COS 6 + e cos 26), 
y = R (- sin 6 $- e sin 2e). 

Equations (111.302) are found from equations (III.285), assuming in the latter 
that c = 1, a2 = 1, a3 = a4 = as = 0. When E = 0.25 we obtain a hole which 

differs only slightly from an equilateral triangle with rounded corners. Hence 
the curvature at the center of the sides of the triangle is equal to zero3. 

We will consider two partial cases. 

'see Ye. F. Burmistrov [I]. 
*see S. G. Lekhnitskiy [I], p. 220. 
3 ~ e e  M. I. Nayman [I]. 



Tension of Plate by Uniformly Distributed Force p Acting Along the Ox Axis /304 - 
(~igure 111.20). Assuming that q = 0 in formula (III.295), we obtain 

where 

= - B + 2 sin rP + --?EL- e2 '8; - a-a 1 

2 The values C , L are defined by formulas (III.297), in which it is necessary to 
assume that 

B =- sin 6 f 2e sin 2.6. (111.305) 

Expressions (111.304) and (111.305) are found from (III.296), (111.297) and 
(III.300), assuming in the latter that c = 1, a2 = 1 and a3 = a4 = a5 = 0. 

Figure 111.20. Figure 111.21. 

Tension of Plate by Uniformly Distributed Forces q Acting Along the Oy Axis  
(Figure 1 1 1.21). The formula for the determination of stress % is found from 
(III.295), assuming in the latter that p = 0: 



where 

t2 - A + 2 cos 0 4- 2 P ~  - e2 (6: - 6; k) cos 6. 81 - 8 2  81 

2 
The coefficients C , L, A and B are defined, as before, by formulas (111.297) - /305 
and (111.305). 

Figure 111.22 illustrates the graphs of distribution of stresses u8 along 
the contour of the triangular hole. 

Figure 111.22. 



Hole w i t h  the Shape of an Isosceles Triangle1, We have an or thot ropic  
p l a t e  weakened by a hole,  t h e  contour of which i s  defined by the  equation 

x = R [ c o s ~  + e(a,cos26 + a,cos36)], 

y = R [- c sin .6+ e (a, sin 26 +- a, sin 36)]. (I1 I. 308) 

With t h e  appropriate se lec t ion  of constants  c ,  a*,  ag and the  parameter E ,  we 

obtain a hole  t h a t  d i f f e r s  but  l i t t l e  from an i sosce les  t r i a n g l e  with rounded 
corners. The formula f o r  s t r e s s  erg i s  found from expressions (111.295) - (111.300) 

assuming i n  the  l a t t e r  t h a t  a4 = as = 0. 

We w i l l  consider two p a r t i a l  cases. 

S t ress  of P la te  i n  Direction Perpendicular t o  Base of Isosceles Triangle 
( ~ i g u r e  1 1  1.23). S t r e s s  u8 on t h e  contour of the  hole i s  found from formula 
(I1 I .  303) . Hence 

A = - c cos % + e (2a, cos 26 -+ 3a, cos 36), 

B - sin 6 + e (2a, sin 24 + 3a3 sin 36); 

2 
C and L a r e  defined by formula (111.297) ; 

- t2 [(b: - 9 (3a: sin 30 + 4ap3 sin 28) + 
(111.310) 

2 
$1 = A + -p?$ { E  (61-03 as cos 13 - s [(d? - 6;) (3ag cm 38 + 

4- 4ap, cos 2.6) + ( d ? ~ , ,  - d;~ ,3  cos 6ij. 

Here 

- 

 h he problem of the stress s ta te  of a plate with a hole close i n  shape t o  an 
i sosce les  t r i a n g l e  i s  examined i n  t h e  work of A.  S. Kosmodamianskiy, V .  V.  
Meglinskiy and V. A.  Shvetsov [ I ] .  



The expression for Bll is found from (111.311) by substituting K ~ ,  B1, by 

K B2, 62 and conversely. 2 ' 

Figure 111.23. Figure 111.24. 

Stress of Plate in Direction Parallel to Base of Isosceles Triangle - / 307 
(~i~ure 1 1  1.24). The stress ob on the contour of the hole is defined by formula 
(III.306), where 

28 = - B + - - '- - {e (d1-h2) a, sin 6- e2 [(b: - 6;) (3a: sin 9 6  f 4a,a, sin 26)+ 
$1 - $1 

$2 = A  + (1 + C)COSB- ( a ( 6 1 - - 4 p :  a3cos6-- "') 
(111.312) 

PI - 8 r  
2 

- ' [p - b: k) ( 3 d  ~ 0 s  36 + 4a#, eos 26) + (:A,, - 6; !L B~ cos 6 ( 1 1)- 
Hence 

m e  expression for BZ1 is found from (111.313) by substituting Kl, Dl, 61, by 

K2* D2, €i2 and conversely. 

We will examine the following holes: a) a hole that differs slightly from 
an isosceles right triangle, for which c = 2; E = 0.44; a = 1; a3 = 0.168; 2 
b) a hole that differs slightly from an isosceles triangle with a vertex angle 
n/6, for which c = 0.4; E = 0.1905; a2 = 1; a = -0.2143. To the first case 

3 
correspond the graphs in Figure 111.25, and to the second, the graphs in 
Figure 111.26. 



Figure 111.25. 

Square  ole', Let the equation of contour of the hole have the form 

x = R (COS f) + 8 cos 38), 
y = R (- sin 6 $ 8 sin 36), 

where E = +1/9. This hole differs but little from a square with rounded corners. 
For negative c, the sides of the square are parallel to the coordinate axes. and 
for positive E, the corners of the square lie on the coordinate axes ( ~ i ~ u r d  /308 
111.27). 

- 

l ~ e e  S. G. Lekhnitskiy [ I ] ,  p. 235. 
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We will assume that at infinity the plate is subjected to tension by 
uniformly distributed forces p, parallel to the Ox axis (see Figure 111.27). 

Figure 111.26. 

F igure 111.27. 

Stresses ug along the contour of the hole 
are defined by formula (III.303), whence 

A = - cos 6 + 3~ cos 36, B = sin 6 + & sin 36, 

8,) s i n e -  

3 sin 38  + ( ~ T A ~ ,  - GB,,) sln el) ,('I1 .315) 
\ 

a s 2  $,=A+ -=;(qh-ej x 

x cos 6 - e2 [(8:-di)3 cos 36+ 

t- (b:All-dB,~) cos 61). 
where 

and the expression for Bll is found from 

(111.316) by substituting K ~ ,  B1, 61 by u2, 

e2, 6*, and conversely. The stresses (in 

fractions of p), calculated by formulas 
(III.303), (111.315) and (III.316), are pre- 
sented in Figure 111.28. 



Figure 111.28. 

Rectangular Hole with Ratio of Sides a/b = 2. Such a contour (Figure 
111.29) is found by assuming in formulas (111.285) that 

By formulas (111.295) - (111.300), we calculate1 the 
stresses a, near the contour of the hole, when the plate is 

V 

made of aviation plywood, the elastic constants of which /310 
are shown above, and also for an isotropic plate. Here we [-h examine the cases where the forces of tension act in the - direction of the large or small sides of the rectangle. 
The values ag (in fractions of p and q) are shown in 

Figure 111.29. Figure 111.30, where the solid lines correspond to the case 
- 

Ex - Emax' the dot-dash lines, to the case Ex = Emin, and 

the broken lines, to an isotropic plate. 

Trapezoidal Hole. A hole with the shape of an equilateral trapezoid 
(Figure 111.31) is found2 by assuming in formulas (111.285) that 

'see A. S. Kosmodamianskiy [7 ] .  
2 ~ e e  A. S. Kosmodamianskiy, V. V. Meglinskiy, V. A.  Shvetsov [ 3 ] .  



Figure 111.30. 

The function $(a) is given by formulas (111.291) - 
(111.294) ; the function $(a) is found from the expression 
for $(a), if for the values Bi, 6i, K ~ ,  mi, ni we carry out 

circular permutation of the subscript i (i = 1, 2). 

Stress og is defined by formulas (111.295)- (111.301). 
Fi gure 111.31 . 

The values u8/p and u8/q are given in Figure 111.32, 

respectively, for the case where the forces p are applied - /312 



both i n  t h e  d i r e c t i o n  of  t h e  Ox a x i s  (perpendicular t o  the  base of t h e  trapezoid)  
and i n  t h e  d i r e c t i o n  of  t h e  Oy ax i s  ( p a r a l l e l  t o  the  base of t h e  t rapezoid) .  

Hole i n  the Shape of an Arch1. A 
p l a t e  is  weakened by a hole,  the  shape of 
is given by equations ( I I I .285) ,  where 

c -- 0,752035; a, = 1; 
a, = - 1.4908; a, = 0,56998; 

(111.319) 
a, = 0.02855; e = 0,059525. 

For these  parameters2 we f ind  an arch- 
shaped hole (Figure 111.33). 

The normal s t r e s s e s  ug a r e  ca lcula ted  

f o r  plywood and i s o t r o p i c  p l a t e s .  Figure 
111.34 gives the  values ug/p and ug/q, 

respect ive ly ,  f o r  t h e  case where forces  p 
a r e  applied i n  the  d i r e c t i o n  of the  Ox 
a x i s ,  and forces  q, i n  the  d i r e c t i o n  of  
the  Oy ax i s .  The concentrat ion of s t r e s s e s  
is  g rea t  i f  t h e  p l a t e  is  under tens ion with 
the  gra in ;  when the    late i s  under tens ion 
agains t  t h e  gra in ,  the  s t r e s s  d i s t r i b u t i o n  - /313 
of o, i s  more uniform along t h e  contour of 

t h e  hole.  Moreover, t h e  concentrat ion of  
s t r e s s e s  i n  an an i so t rop ic  p l a t e  is  much 
g r e a t e r  than i n  an i s o t r o p i c  p l a t e .  

Figure 111.32 .  

58. Pure Deflection of Anisotropic P la te  
wi th  Curvil inear  Hole 

We w i l l  assume t h a t  fo rces  t h a t  
produce de f l ec t ing  moment M a c t  on a rec-  
tangular  an i so t rop ic  p l a t e  with a hole  
the  contour of which is  given by equations 
(111.285). The dimensions of the  hole a r e  
small i n  comparison with t h e  dimensions of 
t h e  p l a t e ,  and it is  located s o  f a r  from 
t h e  edge t h a t  i n  t h e  so lu t ion  of the  prob- 
lem we may assume t h a t  the  p l a t e  i s  i n f i -  

F i  gure 1 1 1 . 3 3 .  n i t e .  

- -  - 

lSee A. S. Kosmodamianskiy, V.  V.  Meglinskiy, V. A .  Shvetsov [ Z ] .  
2See I .  S. Khara [I] .  



Figure 111.34. 

We will consider two cases. In the first case the deflecting moments are 
applied as indicated in Figure 111.35.  Then 

The other coefficients p2k and all p are equal to zero. Here J is the moment /314 
lk 

of inertia of the cross section of the plate, normal to the Ox axis. 

The functions $(zl) and +(z2) for the points of the contour of the hole 

have the form 



Here we introduce the following definitions: 

61 6a4a6, A_,, = - - 3ag, PI - P a  

A - f i ~ ' + B s ~  2Pa 
lk- PI-p, - ~ k - p ~ - p ~ B - ~ ~  ( k = l ,  ..., 6); 

mu = %a, . m,, = 2a3, m,, = - 2(a, - ad), 
m14 = - 2 (a3 - a,), mil = - 2a4, m, = - 2a,, 

The coefficients Mlk, M-lk, Blk, B-lk are found from Nlk, N-lk, Alk, A-lk, 

if, in the latter, we substitute B1, K ~ ,  respectively, by B2, 6*, u2 and 
conversely. 



F i g u r e  111.35. F i g u r e  111.36. 

The stresses along the contour of the hole are 

MR c, +-.- 
21 LC' [- A'P~P,+ A'B'( 1 - 2s1$, - B ~ P ; )  + B' (2 - B,$~-P~-$: ) I  + 

(111.324) 

where 

6 10 
1 + '' [z ( P I A -  I &  + $2B-1k) " + CO' " 9 

k=-1 h=l I (111.325) 
2 6 

9;'' = e C (N- , ,  + ~ - ~ d  R s i n  RO + ca C (A_,,  + B-,,I R sin RO, 
&=I &=I 

6 

9:' = s i n  2 8  + km,,  sin k 6  + 
2c 4 

knlk s i n  kit: 
&=I k= 1 

2 A, B, C , L are defined by formulas (111.296) and (111.297). In the second 
case, the deflecting moments are applied as indicated in Figure 111.36. Then /316 - 



Here J i s  t h e  moment of i n e r t i a  of t h e  cross  sec t ion  of the  p l a t e  normal t o  
t h e  Oy ax i s .  

Further, we obta in  

hence 
28261 N-,, = - - - 2824 
h- ps O4' N-22 - - - B l + B s N  . 2 b  N -- 

PI- p. as* 2k - pl- & -2" fjx M-2, 

/317 - 
= 2as. = 2%. m, = 2 (a, f a,), mr4 = 2 (as -/- 

m, = 2a4, m,, = 2as, (111.329) 

nZ8 = a: + 2a3as, n,, = 2a,a,, n , , ,  = a:. 



The coefficients M-2k, MZk, B-Zk and B2k are found from N-2k, Nqk, A-Zk 

and after circular substitution of the subscript i in the values $i, 6is 
and K. (i = 1, 2). 

1 

The stresses along the contour of the hole are 

where 

9ia-= sin t) + ; muk sin ke 4- $ 
k-1 k==l (111.331) 

+ I 

Hole with the Shape of a Right Triangle1, An orthotropic plate is weakened 
by a hole, the contour of which is given by equations (111.302). 

In the case where the forces are applied on the sides of the plate parallel 
to the Oy axis (see Figure III.35), the stresses are 

MR 13% MR 1 ~ , , = ~ ( - s i n 6  + e ~ i n 2 8 ) ~  + 5 - m ( ~ [ - ~ 4 A A +  

+ W ( 1  - 2$,p2 - ~$3:) + B4 (2 - f3,4 - $:-@ [sin 26+e  (sin 8-3 sin 38)+ ( 111.332) 

+ 2ea sin 461 + BC4 ($, + $*) [COS 26  + e (cos 6 - 3 cos 36) + 2e2 cos 4611. 

'See S. G. Lekhnitskiy [I], p. 224. 
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Figure 111.38.  

Figure 111 .33 .  



If the forces are applied on the sides of the plate that are parallel to - /320 
the Ox axis (see Figure III.36), then the stress is 

2 2  2 2  - PIP2 - Pi) + A B (BIB2 - 2B1S2 - 1) - B' ($,$JI [sin 26 + 
+ e (s,n 6 -+ 3 sin 36) + 2e2 sin 48) + AC4B1p2 (pl + p2) [cos 26 + 

+ e (cos 6 + 3 cos 36) + 2e2 cos 461). 

The stresses o4 calculated by formula (II1.332a) are presented in Figure 

111.37 and pertain to a plate made of aviation plywood, the elastic constants 
of which were given earlier. 

Square Hole1. The contour of the hole is given by equations (111.314). 

In the first case, 

62- 4 + 28 (sin 26 - 2 sin 46) + 3e2sin 661 + 6eaACa (B, + $,) --sin26 + (I I I .333) PI- 
+ BCa ($, + $,) cos 26 + 2e (cos 26 - 2 cos 46) + [ 

I3 ti2 I3,a: 2 2  2 2 -  
+ 3 e (  A-BS cos 26 + cos 68)) . 

In the second case, 

MR A V R  1 
a,= - ( C O S ~  J + e c 0 ~ 3 8 ) ~  + T-cT(B~~4(2$~$~-$~-h$r-f l~)  T 

+ A's2 (B;$: - 2$,B2 - 1) - B~$ ,$~]  [sin 26 + 
a; - a; + 2e(sin 26 + 2 sin 46) + 3e2sin66] - 6e2BCa($, + fi2)$J3, -=sin 20 -- (111 334) - 

+ AC4 (8, + $2) $A [fDS 26  + 2e (cos 26 + 2 eos 46) + 
f 3e2((2 '16' cos 26 + cos 66)]) . 

B1- P a  

'see S. G. Lekhnitskiy [I ] ,  p. 238. 



The results of calculations for the above-described plywood and isotropic 
plates are presented in Figure 111.38. 

Rectangular Hole with Ratio of Sides a/b = 2. The contour is given by - /321 
equations (III.285), in which the constants acquire the values of (111.317). 
In the case where the forces are applied on the sides of the plate that are 
parallel to the Oy axis, stresses 0 on the contour of the hole are determined 

9 
by formulas (111.324) and (111.325). If the forces are applied on the sides 
parallel to the Ox axis, then the stresses are determined by formulas (111.330) 
and (111,331). The results of calculations1 are presented in Figure 111.39. 
The principles outlined in the preceding section remain in force in the case of 
deflection of a plate. 

59. Solution of Second Basic Problem for Region with Nearly Elliptical Hole 

As in the case of the first basic problem, we will examine2 an infinite 
anisotropic plate with a hole whose contour is given by equations (111.265). 

Let the displacements of points of the contour of the hole be known. We 
will also assume that the resultant vector of external forces causing the given 
displacements of the points of the contour are equal to zero, and that there 
are no forces at infinity. 

The functions $(\)  and $(z2) through which the stresses are expressed are 

found from boundary conditions (III.92), the right hand sides of which can be 
expanded by degrees of the small parameter E: 

where tlk, t2k are known functions. 

Then, using reasoning analogous to that used in 96, we determine the 
functions $ (< ) (p = 1, 2) that are holomorphic within unit circle y and 

pk P 
which satisfy the boundary conditions on the contour of y: 

'see A. S. Kosmodamianskiy, V. V. Meglinskiy, V. A. Shvetsov [4 ] .  
 h he solution was found by A .  S. Kosmodamianskiy [2]. 



where 

g,, (6) = f ,,. g, (6) = fm, 

- d'b1.k-I 
g,, (6) = t , ,  - 2Re { p, (x + ~,x)F 

&*lo +. .. +%(X +kl$-- 
b: 

f 

- d 2 k -  + , . . + (X + A2ji). %}, + P, ( X  + A*x) d., 
do2 

From boundary conditions (111.336)-(111.3381, a s  before, we f ind a f t e r  simple 
transformations, 

On the  bas i s  of f o m l a  (111.283) i n  expressions (111.339) we convert from 
the  var iable  5 t o  GI and G2, respectively.  Using fu r ther  formulas (111.2681, we 

f ind f i n a l l y  functions @(zl)  and $(z2) .  

The s t r e s s  s t a t e  i n  the  p l a t e  near t he  contour of the  hole i s  defined by 
formulas1 

- - - - - - - - 

'see S. G. Lekhnitskiy [2] .  



510. Tension of Anisotropic Plate with Curvilinear Hole Reinforced by Rigid Ring - /323 

We will examine a homogeneous anisotropic plate with a hole, the contour 
of which is given by equations (111.285). In the hole of the plate is soldered 
a rigid ring. The plate at infinity is under tension by uniformly distributed 
forces p parallel to the Ox axis and by forces q parallel to the Oy axis 
(Figure 111.40). 

f t t i t I I 9  The solution of the problem, as in 57, will 
- A - be found by superposing (combining two stress - - fields)'. The stress state of a thick plate is 

P -  - P  characterized by stress field (111.287); the pro- - - jections of displacements are 

20 = (alg + a d )  Y- 
Figure 111.40. 

We will determine the stress state of the plate for the case when 
displacements -uO, -vO on the contour of the hole are given, but when there are 
no forces at infinity. This problem reduces to the determination of functions 
4 (5) and $ (z from boundary conditions (I1 I. 92) . 

We will expand the right hand sides of the boundary conditions by degrees 
of small parameter E: 

where 

'see A .  S. Kosmodamianskiy, V. V. Meglinskiy, V. A. Shvetsov [ I ] ,  

354 



Then, on the basis of (111.339) 

The expressions for JIZO, and JIZZ are found from (111.344) by 

substituting pl, ql, A ,  ul, qlk by pr, q2, A2, u2, JIZk, respectively, and con- 

versely. 

Proceeding as in 96, we find 

where 

No = - klml, N-, - k,6, (a, + x,aJm,, 

N-2 = k161a4ml, N-g -== k161a5ml. N-( = N4 = 0, 

N l  = k: [2~$?;6, + x2a5) m2 - (pIqi + p2q;) (a3 f ' l a , )  m l l p  



Hence 

m1 = P (al,qi - aI2cp2) + q (al& - 422cP2)+ 

m2 = p(a,,g; - al2cpI) + 9 (a12q; - a22c~l)v 

n, = p(a,,q,' + a , , ~ , )  + q(a,,qi + 422P2)* 

n2 = P (a1 ,  9; + a, ,P,) + q (al2$ + a22p1)7 

9; = - iq,, q; = - iq2, kl = (plq; - p29;)-lV 

1 -Po 1 - cP', 
4=- , X - -  

- 1 + ce, 
( e=  1. 2). 

The function @(a) is found from (111.345) by substituting in the latter Nk and 

Ak, respectively, by Y, and Bk (k = 0, tl, ..., t7), where % and Bk are found 
from Nk and \ by substituting pl, q i ,  61, r1 by p2, q;, 62, K and conversely. 

2 

We introduce the following definitions: 

Then, recalling (111.349), we find the stresses 



where 

ql = bk sin k8. 9, = c, cos ke. 
h a 1  k=l 

Here 

b, =.-- nee (A ,  -A_,) (n =; 6,  7), 

cm = m [e-(N,,, - N-,) + e2 (A, - A_,)] (m = 2, 3, 4, 5), 

c,, = ne2 (A, - A_,) (n = 6 ,  7). 

The expressions for $2, $2 are found from (111.352) and (111.353) by 

substituting in the latter Nk, \ by %, Bk, respectively. 
By way of example, consider the stress state along the contour of the seam 

of a rigid ring and plate made of aviation plywood (all= 0.83333*10-39.81, all = 

= -0.05917-10-~/9.81, a22 = 1.66667-10-'/9.81, a66 = 14.2857-10-'/9.81) ; for 

comparison, the corresponding data for an isotropic plate are also given1. For 
holes in the form of a right triangle, square and rectangle, Young's modulus and 
Poisson's ratio for an isotropic plate were assumed to be equal to the arith- 
metic mean of these values for plywood. In other cases v = 0.3. 

'The formulas for an isotropic plate are given by Ye. F. Burmistrov [I]. 
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Right Tr iangular  Hole. An orthotropic plate is weakened by a hole, the 
contour of which is given by equations (111.302). The function $(<) on the 
contour of the hole has the form1 

The expression for the function $(<) is found from (111.354) by substituting 
ml, nl, pl, q;, x ~ ,  kl by m2, n2, p2, q;, h 2 ,  -kl, respectively, and conversely. 

The values of stresses o /p and cj, lq along the seam of the ring and plate 
P 

are presented in Figure 111.41~ for cases where the forces are applied in the 
direction of the Ox axis (q = 0) and along the Oy axis (p = O), respectively. 

Figure 111.41. 

Hole w i t h  the Shape of an Isosceles 
f r  jangle3. The contour of the hole is 
given by equations (111.308). The expres- 
sion for the function $(<) is found from 
(111.345)-(III.347), where a4 = as = 0: 

, = I  

where 

'see A. S. Kosmodamianskiy [8 ] .  
2The symbols are the same as those used for the graphs presented in 57. 
3See A .  S. Kosmodamianskiy, V. V. Meglinskiy, V. A.  Shvetsov [I].  



We will examine the following holes: a) hole with the shape of an isosceles 
right triangle (c = 2, E = 0.44, a2 = 1, a3 = 0.168); b) hole with the shape of 

an isosceles triangle with the vertex angle  IT/^ (c = 0.4, E = 0.1905, a = 1, 
a3 = -0.2143). 2 

The stresses 5 along the seam of the ring and plate, when the forces of 
D 

tension are parallel to one of the axes, are defined. The results of these cal- 
culations for the first and second cases are presented in Figures 111.42 and 
111.43, respectively. 

Square  ole'. By taking the equations of the contour of the hole in the 
form (111.314) and assuming in (111.355) and (111.354) that c = 1, a2 = 0, a3 = 

= 1, we obtain the function $(<) on the contour of the hole: 

Here 

The expression for the function $(<) on the contour of the hole, as before, 
is found from formula (111.357) by substituting in it A ,  pl, q i ,  kl, ml, nl by 

A2, pZ, q;, k ,  m2, n2, respectively, and conversely. 

Stresses ap, rsg, 
T@ 

are defined by formulas (111.350). 

In Figure 111.44 are presented the values of stresses 5 /p along the seam 
P 

for the cases where the forces of tension p are applied in the direction of the 
side of the square, and in the direction of the diagonal of the square. 

Rectangular Hole with Side Ratio a/b = 2. The contour of the hole is 
determined by equations (III.285), in which the constants acquire the values 
(111.317) . The function $(<) is found from (111.345) assuming that a2 = a4 = 0 
in expressions (111.346) and (111.347) . 

'see A .  S. Kosmodarnianskiy [ 8 ] .  



'F igure 111.42. 

The results of calculations1 are presented in Figure 111.45, where the 
distribution of stresses 0 along the contour of the seam of the rigid ring 

P 
with the anisotropic plate is show.. 

Trapezoidal Hole2. In equations (III.285), as before, c = 1.04380, a2 = 1, 
a = -1.47619, a4 = 0.25867, a5 = -0.019698, E = 0.10428. 

3 

'see A. S. Kosmodamianskiy [8] . 
2See A. S. Kosmodamianskiy, V. V. Meglinskiy, V. A .  Shvetsov [3] .  





Figure 111.45. 

The graphs characterizing the distribution of stresses a (in fractions of 
P 

p and q) along the contour of the seam are shown in Figure 111.46. 

Arch-Shaped  ole'. In this case c = 0.752035, a2 = 1, a3 = -1.4908, a4 = 

= 0.56998, as = 0.02855, E = 0.059525. 

Stresses u /p and u /q along the contour of the seam of the plate with 
P P 

the ring are given in Figure 111.47. 

' see  A. S. Kosmodamianskiy, V. V. Meglinskiy, V. A. Shvetsov [Z] . 
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Figure 111.46. Figure 111.47. 

Thus, the cited analyses show that a rigid ring in a hole sharply decreases 
the concentration of stresses near its contour. The stress concentration in an 
anisotropic plate is less than in an isotropic plate, whereas in the case of an 
arch-shaped hole, the opposite is true. 

5 1 1 .  Pure Deflectlon of Anisotropic Plate with Curvilinear Hole Reinforced by a 1332 
Rigid ~ing' - 

We will assume that an anisotropic plate with a curvilinear hole, the 
contour of which is given by equations (III.285), is in the state of pure 

'see A. S. Kosmodamianskiy, V. V. Meglinskiy, V. A .  Shvetsov [ 4 ] .  



deflection. Deflecting moments M1 and M act as illustrated in Figure 111.48. 
2 

A rigid ring is affixed in the hole. We will analyze the stress state in the 
plate near the contour of the given hole, and we will assume (theoretically), 
as before, that the plate is unbounded. 

We will examine two cases. 
AL- 

Moments Act on the Sides of the Plate Parallel to the 
Oy Axis (M, # 0, M, = 0). The stress field in a heavy 

Mt 
plate is 

4 - 
M $=f Y ,  d=$,=O. Y 

Figure 111.48. 

and the projections of displacements are 

M 
u0 = 2 alIXy, J 

Ml VO = 2-j (a1d2 - allx2). 

The solution of the problem of the stress state of the plate for the case 
0 where displacements -u , -vo on the contour of the hole are given, there being 

no forces at infinity, reduces, as we know, to the determination of the func- 
tions $(zl) and J l ( z  ) from boundary conditions (111.92). By expanding the right 

2 
hand sides of these equations into series by degrees of small parameter E, we 
find the functions tlx, t2k: 



By substituting functions (111,337) into (III.338), and the latter into 
(111.339) and then integrating, we obtain the expressions for the functions 
'b,, ts) 

Further, by the method given in 96, we obtain 

where 



P, = 2r1 (a2a5 + a3a4), P, = r ,  (a: + 2a3a5), P, = 2r,a4a5, P, ,  = rl$. 

The function $ is found from expressions (111.362)-(111.365) by substituting in 
them pl, qf ,  rl, 61, kl, respectively, by p *, q;, K ~ ,  62, -k and conversely. 

1 

We will denote 

Then the stress components are 

M , R  1 
roe = --.- c2 (AD + A (el + v2) - B (B,v, + fi2q2)] . (111.368) 

MIR 1 
Oe = T ' F  pz 5 + A l l ~ l  + A 1 2 ~ 2  f A13ql + AI~(PI)  9 



where the coefficients A, B, c', A12' *13 
and A are defined by formulas 

(111.328) and (111.330). 14 

Moments Act on Sides of  Plate Parallel to Ox Axis (MI = 0, Mt # 0 ) .  The /335 - 
stress field in a dense plate is 

and the projections of displacements are 

M2 uO = - (a,.g2 - a,,y"), 2 J 

Mt vO = -5-a&y. 

The functions tlk and tZk in this case are 

M3R2 - tlo = - - 8J [(al2 + a d 2 )  

f ,  = -- 2: a2ic ( u 2  - $1 , 

M9R2 t , = - 7 ( ( a 1 2 - a ~ ) a ~  +(a12--a2#)a4(o'+$)+ 

+ [(alt - a d )  as + (al,+ a2#) a61 C+ + 2 + [(a12 - a224 a2 + ( 
.-(an+w).41 + +) + (a12 + .&)at + (a12 + w) a2 (0 + +)] . 

I==  - y i a .  I ) ~ ~ ( U ~ - & )  + 

+ [ ( c -  l)a,-(C + l)a,l 

MsRt ((a,, + a,) kt (010 + $1 + 2a4a5 (09 + $1 -)t t,, = - - 8J 



F i g u r e  1 1  1.49. 
- 

Figure  1 1  1 .SO. 



Proceeding f u r t h e r  a s  i n  the  preceding case,  we obta in  

The c o e f f i c i e n t s  N 0' Ntk. *tk a r e  defined by formulas (111.363) and 

(111.364). Hence t h e  values ml ,  n l ,  dl ,  rl, hl t h a t  a r e  e s s e n t i a l  f o r  calcu- 

l a t i n g  the  c o e f f i c i e n t  Pk must be taken i n  t h e  following form: 

The function can be found from expression (111.372) j u s t  a s  i n  t h e  
preceding case.  

Recall ing ( I I I .367) ,  we f ind  such expressions f o r  t h e  s t r e s s e s :  

Figures 111.49-111.54 show s t r e s s e s  a and ag (Tpe were considerably l e s s  
P 

than a %) along the  contour of  t h e  seam of t h e  p l a t e  and r i n g  f o r  t h e  very 
P *  

same plywood and i s o t r o p i c  (V = 1/31 p l a t e s  a s  i n  97. 

512. S t res s  S t a t e  of Anisotropic P l a t e  Near Curvil inear  Hole with E l a s t i c  core1 

We w i l l  analyze an i n f i n i t e  an i so t rop ic  p l a t e  with a hole t h a t  d i f f e r s  but  
l i t t l e  from a round o r  e l l i p t i c  hole,  i n t o  which i s  sea led  an e l a s t i c  core made 
of some o the r  an i so t rop ic  mater ia l .  The s t r e s s e s  t h a t  occur i n  such a p l a t e  
under the  e f f e c t  of  external  fo rces  w i l l  be found, a s  e a r l i e r ,  i n  t h e  form of 
the  sum of s t r e s s e s  i n  a homogeneous th ick  p l a t e  and addi t ional  s t r e s s e s  caused 
by the  core. 

0 S t resses  ox, oo r0 i n  t h e  t h i c k  p l a t e  a r e  defined through s t r e s s  funct ion  
0 Y' XY U (x, y) by formulas (1.81). 

"I'he problem was solved by A.  S. Kosmodamianskiy [6] . 



I F igure 111.51. 

v- 

F igure 111.53. 

' igure  111.52. 

F igure 111.54. 



From the conjugate conditions of the plate and core, we find the functions - /339 
$(z ) and $(z ), through which the additional stresses occurring within the 1 2 
plate are determined. Since by definition the core is sealed in the hole of 
the plate, then displacements of the plate and core at the points of contact 
are identical. Moreover, to insure that elastic equilibrium is not disrupted, 
the conditions in the contiguous points of the core and plate should be equal 
and opposite in direction. Therefore the boundary conditions are 

U = ul,  v = v'. 

These conditions can be represented1 in the form 

The terms -y y + a and yox + BO in (111.377) characterize rigid displace- 0 0 
ments that have no effect on the stress distribution in the plate. We will 
disregard them in the following. 

We will take the function Ut(x, y) in the form of the sum-of polynomials 
with undefined coefficients from the second to the k-th powers (the magnitude of 
k depends on the form of contour of the hole and form of the function U0 (x, y ) .  
Considering the above coefficients as known, we find from conditions (111.376) 
the functions $(z ) and $(z2), in the same manner as in 16. The coefficients 1 
in the polynomials are found from conditions (III.377), considering that the 
function U1(x, y) must satisfy2 the equation 

'see S. G. Lekhnitskiy [3]. 
2~ere, and in the following, the shaded areas will denote values pertaining to 
the core. 



We will assume that the elastic core is sealed in a hole of a finite 
orthotropic' plate, the contour of which is defined by the equations 

When E = +1/9, this contour, as we pointed out earlier, is similar to a square - /340 
with rounded corners. For simplicity we will assume that the core is also made 
of an orthotropic material. At infinity let the plate be under tension by 
forces p parallel to the Ox axis (Figure 111.55). 

P -- Stress distribution in a dense plate - - -- in the given case is characterized by the 

- stress function 
- P U" = -#, (111.380) 

Figure 111.55. 
which corresponds to elastic displacements 

Limiting calculations to the second approximation, we assume 

and we take the expression for the function Ut(x, y) in the form 

For projections of the elastic displacements that correspond to the function 
(III.383), we find the expressions 

- - 

 o or this plate, with the appropriate selection of the coordinate axes, the 
complex parameters sl and s will be purely imaginary, i.e. s = iBi (i = 1, 2) .  2 i 



Then, from condition (III.376), by the method outlined in 56, limiting 
ourselves to the first approximation1, we find 

R cp (a) = k0a- Re 
2 (PI- P*) ( k J 1  (A - 8 2 )  $ + Ikoh  ($1 + $2) + 2Moh2B2 + B I B 2  - 

-4  + 2 k 1 ( $ , -  1) + 12(&1fh-R1)10 +[ko(Bl-?2) + 2 $ 2 B o - 2 k l ( l +  P A +  

2 
Here the constant a /4  is introduced into the coefficients kl, cl, R1, and 

The expression for the function $(a) is found from formula (111.385) by 
substituting in it kg, Mo, el, B2, XI, A2, respectively, by Mo, kg, B2, el, A2, 

XI. The constants Ao, Bo, A1, B1, kl, R are found from conditions (I11 1 
(III.377), and also from the condition that the function UT(x, y) satisfies 
equation (111.378). In this manner we obtain the following systems of 
algebraic equations: 

lThe expression for the function $(z l )  in the second approximation will not be 

written out due to the great complexity of the system for the determination of 
the coefficients A2, B2, . .. , D2, R2- 



Here 

S t resses  ag, a and T on t h e  contour of  t h e  seam a r e  found from formulas 
P PO 

( I I I .350) ,  where d e f i n i t i o n s  (111.349) are used. The formulas f o r  f inding t h e  
s t r e s s e s  i n  a p l a t e  with an absolute ly  r i g i d  ( a i j  = 0) o r  absolute f l e x i b l e  

core (no core, a t  -t a), can be obtained i n  the  form of p a r t i a l  cases .  
i j 

Figures 111.56 and 111.57 show the  values of s t r e s s e s  up, ab ( i n  f r a c t i o n s  /343 - 
of  p on t h e  contour of  t h e  seam of t h e  core with t h e  p l a t e  f o r  t h e  case where 
t h e  e l a s t i c  constants  of t h e  o r tho t rop ic  p l a t e  a r e  



10-9 a,, = 0.83333 m, I o - ~  all  = - 0.05917 -9d1 

and the complex parameters are 

s, = 4.1 li, s, = 0.3431. 

The elastic constants of the core are aij = 0.5aij, 

Figure 111.56. Figure  111.57. 

These figures show, for comparison, the values of stresses for an absolutely 
rigid and an absolutely flexible core. The stresses oa and T for a plate with ps 
an elastic core were much smaller than a and therefore the numerical values of 

P ' 
Tm9 are not included. The solid lines in Figures 111.56 and 111.57 correspond 
r 

to an elastic core, the dot-dash line in Figure 111.56 corresponds to an 
absolutely flexible core, i.e., to a free hole, and the dotted line in Figure 
111.57 corresponds to a rigid core. 



913.  St re s ses  i n  E l a s t i c  Anisotropic  P l a t e  Weakened by  Several E l l i p t i c  Holes 

Analysis of  t h e  s t r e s s  s t a t e  of  e l a s t i c  a n i s o t r o p i c  multiply-connected media 
involves s p e c i f i c  d i f f i c u l t i e s  a t t r i b u t e d  t o  t h e  n e c e s s i t y  of analyzing two 
addf t iona l  s u r f a c e s  t h a t  a r e  r e l a t e d  t o  t h e  o r i g i n a l  su r f ace  by t h e  a f f i n e  
r e l a t i o n s  d iscussed  e a r l i e r .  Other ho le s  a r e  found i n  t hese  reg ions  in s t ead  
of t h e  given ho le s ;  here  d i s t ances  between t h e  holes  change, depending on t h e  
type  of  an iso t ropy  of t h e  medium. I f  t h e  d i s t ance  between t h e  holes  i n  t h e  
wayside a reas  a r e  increased ,  t h e  e f f e c t i v e  cons t ruc t ion  of t h e  s o l u t i o n  of  t h e  
problem concerning t h e  s t r e s s  s t a t e  of such a  medium can be found q u i t e  e a s i l y .  
In t h e  oppos i te  case ,  cons iderable  d i f f i c u l t i e s  a r i s e  i n  t he  s o l u t i o n  of t h e  
prob 1 em. 

D. I .  Sherman [l] reduced t h e  problem of t h e  s t r e s s  s t a t e  of an a n i s o t r o p i c  
multiply-connected medium t o  t h e  s o l u t i o n  of an i n t e g r a l  Fredholm's equat ion.  
L.  N. Nagibin [ l ,  21, us ing  D .  I .  Sherman's method, solved t h e  problem of t h e  
s t r e s s  s t a t e  of  a  heavy a n i s o t r o p i c  h a l f  p lane  with two i d e n t i c a l  and two 
unequal round ho le s .  The analogous problem f o r  a  beam with two round holes  was 
solved by Hayashi Takuo [ I ] .  Using t h e  known method of  R .  C .  J .  Howzand [ I ] ,  
Kubo Toshihiko [I]  analyzed t h e  p e r i o d i c  problem f o r  an a n i s o t r o p i c  medium 
with an i n f i n i t e  row of  round h o l e s ,  A. S. Kosmodamianskiy solved t h e  problem 
of t h e  s t r e s s  s t a t e  of an a n i s o t r o p i c  medium f o r  t h e  case  where t h e  l a t t e r  i s  /344 
weakened by a  f i n i t e  number of e l l i p t i c  ho les  [I-31,  a s  wel l  a s  by one o r  two 
rows of i d e n t i c a l  e l l i p t i c  ho les  [4] .  In t h e  l a t t e r  work, t h e  method f o r  
analyzing a  medium weakened by s t rong  an iso t ropy  i s  descr ibed .  The case  where 
e l l i p t i c  ho le s  a r e  r e in fo rced  by abso lu t e ly  r i g i d  r i n g s  i s  examined by 
A. S. Kosmodamianskiy and V.  V .  Meglinskiy [ I ] .  

Tension o f  Anisotropic  Medium w i t h  I n f i n i t e  Row o f  E l l i p t i c a l  ~oles'. Let 
an e l a s t i c  a n i s o t r o p i c  medium be weakened by an i n f i n i t e  row of  i d e n t i c a l  
e l l i p t i c a l  ho le s ,  i n t o  which a r e  so ldered  o r  glued abso lu t e ly  r i g i d  r i n g s  
(Figure 111.58). The d i s t ances  between t h e  holes  a r e  i d e n t i c a l  and equal t o  
2 .  The semiaxes of t h e  e l l i p t i c a l  ho le s  a r e  denoted through a  and b .  A t  

b3 
i n f i n i t y  i s  given a  homogeneous s t r e s s  s t a t e  G = p along t h e  c e n t e r  l i n e  of t h e  

X - ~ 

ho le s  and om = q t r a n s v e r s e  t o  t h e  c e n t e r  l i n e ,  i . e . ,  
Y 

The complex p o t e n t i a l s  cha rac t e r i z ing  t h e  s t r e s s  s t a t e  of a  heavy medium, 
a s  fol lows from formulas ( I .  go), a r e  

'The s o l u t i o n  of problems der ived  i n  t h i s  and t h e  fol lowing sec t ions  were found 
by A. S. Kosmodamianskiy and V .  V .  Meglinskiy [ I ] .  In t h e  case  of  an i s o t r o p i c  
medium, t h i s  problem was examined f o r  round f r e e  holes  by R .  C .  J .  Howland [ I ] ;  
f o r  an o r t h o t r o p i c  medium, by Kubo Toshihiko [ I ] .  



To determine these functions it is assumed that the complex parameters s are 
purely imaginary (sl = iB1, sZ = iB2). k 

Figure 111.58. 

In order to determine the stress field occuring in the medium after the /345 - 
formation within it of elliptical holes, it is necessary to determine, as 
follows from Chapter I, the functions $(z  ) and Jt(z ) from the following boun- 1 2 
dary conditions on the contours of the holes: 

In connection with the fact that the given problem is periodic, the func- 
tions $(zl) and $(z2) can be represented in the form 

The * in the second sums of IIII.393) denotes the lack of the term corresponding 
to the value n = 0. 



We will expand the second sums of (111.393) into series by degrees of 

small parameter E = 2 ,  confining ourselves in the expansions to the terms con- 
taining E in powers not exceeding six. Then, from the boundary,condition on 
the contour of the hole, in the center of which is located the origin of the 
coordinate system (this hole will be called the basic hole; it can be any hole 
desired), to determine the unknown coefficients $k and qk, we find by the usual 

method of series the following algebraic system: 

Here 

a,, = - 6rn;e4 (a,  + 15a,momle2); a,, = - 10a,mk6; (111.395) 

= - 2m0d(a, + 1 5a6momle2); a,, = - 20adn$'; 

The coefficients b are found from the expressions for a by substituting i j i j 
m and ml in them by no and nl, respectively. 0 

After determining the coefficients $k and $k from system (III.394), we 

determine on the basis of (111.393) the functions @(zl )  and $(z2) through which 

the stresses occurring in the medium are expressed by formulas 



The s t r e s se s  act ing on the  areas normal and tangent ia l  t o  the  contour of 
the  bas ic  hole1 are  defined by formulas 

where 

- 
T; = x 5 kqk 4- C, sin kt, 0;-= k (YI, L- E ~ $ ~ J  sin k6, 

h=l k= 1 

00 00 (111.399) /347 
q; = k (q,, - &A,) cos kB.  9; = k ($,, - clhBkt) COS ke. - 

k 5  1 k= l 

In the  case where the  holes of the  p la tes  a r e  not reinforced by r i g i d  r ings  
and are  f r ee  of external  forces,  t he  formulas obtained remain i n  force.  I t  i s  
necessary only t o  assume formally t ha t  pl = p2 = 1, ql = s 

1' 42 
= s2 i n  them. 

'we have t he  iden t ica l  p ic tu re  near the  other  holes.  



The r e s u l t s  of ca lcu la t ions  f o r  s t r e s s e s  occurring near  a f r e e  hole a r e  
presented i n  Table 111.12 f o r  the  case where c = 0.5, E = 1/3 ( the  d is tance  
between the  holes  i s  equal t o  one-half the  la rge  a x i s  of  one of  t h e  e l l i p s e s ) .  
The p l a t e  i s  made of SVAM [Anisotropic g l a s s - f i b e r  mater ia l ] ,  f o r  which 

In the  case where the  holes  a r e  re inforced by r i g i d  r ings ,  the  s t r e s s e s  a 
P 

g r e a t l y  exceed the  s t r e s s e s  ag and T ps .  Therefore,, Table 111.12 includes only 

the  values of a f o r  p l a t e s  with reinforced holes .  I f ,  on the  o the r  hand, the  
P 

holes a r e  not  re inforced but  a r e  f r e e  of external  forces ,  t h e  s t r e s s e s  a 
P = =lr9 

= 0, and Table 111.12 includes t h e  values of  ug. Moreover, f o r  comparison, 

t h i s  t a b l e  a l s o  includes t h e  values a* and n;, which pe r t a in  t o  a medium with 
one e l l i p t i c a l  hole .  P 

TABLE 111.12 

- -- * 
Pla te  w i t h  reinforced holes -- / Pla te  w i t h  f r e e  holes - 

/ ~ a l p  I ad' I a > / ~  1 a%/' r, U ~ P  I I 0 ; l ~  I 02' , 

Tr. Note: C m a s  indica te  decimal points .  

Figures 111.59 and 111.60 show the  graphs charac ter iz ing  the  s t r e s s  d i s t r i -  /348 - 
bution of a around re inforced holes.  The shaded areas  correspond t o  t h e  case 

0 
where t h e  is  weakened by one re inforced hole .  Figures 111.61 and 111.62 
represent  t h e  analogous graphs f o r  the  case where the  holes  i n  the  p l a t e  a r e  not 
re inforced and a r e  f r e e  of external  forces .  

Tension of Anisotropic Medium w i t h  Two Identical  E l l i p t i c a l  Holes. Let 
the re  be an e l a s t i c  an i so t rop ic  p l a t e  t h a t  i s  weakened by two e l l i p t i c a l  holes ,  
re inforced by r i g i d  r ings  (Figure 111.63). The d is tance  between t h e  centers  
of  t h e  holes is 22. The bas ic  s t r e s s  s t a t e  of the  p l a t e  and the  s i z e s  of t h e  
holes  remain t h e  same as  i n  t h e  preceding case.  



.* 

F i g u r e  111.59. 

F i g u r e  111.60. Figure  111.61. 

F i g u r e  111.62. F i g u r e  111.63. 



The functions $(zl) and $(z2) can be represented in the following form 

where zf = zl - I ,  z; = z2 - 2 .  

The coefficients $k and qk, due to geometric and force symmetry, can be 

determined from the boundary conditions (111.392) on the contour of the right 
hole. The boundary conditions on the contour of the left hole will be satis- 
fied automatically. 

Proceeding just as in the preceding case, we expand the second sums of 
expression (111.401) into series with respect to the small parameter 
E = 1/2 Z and terminate these expansions, preserving the terms containing E in 
powers not exceeding four. Then, from boundary conditions (III.392), we obtain 
for the determination of coefficients $ J ~  and JCI,, the following algebraic system: 

PI i- TI a1292 a im1  4- Pr [ ( I  f brl) tp, + b1,rp2 - bls$s] = 
= -- (PIAO + pzB0), 

Pl [ ~ l f l z l ~ ~  + (1 + c12a22) ( ~ 2 1  4- Po I~r&zl91+ (1 + cZ2b21) 9 . ~  = 0, (I 11.402) 
PI (c13a31Tl 4 %) S PZ (c&,$l+ 11,) = 0, 

q; I( - c ; ~ a ~ i )  91 - c y 1 a 1 2 ~ 2  crla13931 -b qi f ( 1  - ~ l ~ 8 ~ ~ )  9, - ~ i ~ b , ~ $ ~  

- c;lbI3lCI,I = c (4;B,Ao + q;B,R,), 
4; 1- ~ L ~ 2 1 ~ 1  4- ( 1  - cita22) (PZ] 4- 4; 1- c&$l$l + ( 1  - cLbZ2) $2] = 0, 

where q: (- c;sa3191 + ( P J )  f 9; (- ~ j b ~ , l P ,  + $J = 0, 

all = - moe2 (1  + 6m,m,ez), a,, = m,e3, a,, = - moea, 
2 3 2 4 3 4 a12 = 2m& , a:, = - 3nz& , a,, = - 3m& . (111.403) 

The coefficients bij are found from expressions for aij after substituting - /350 

in the latter m and m by n and n respectively. The other symbols remain 
0 1 0 1 ' 

the same as in the preceding case. 

After find the coefficients $k and qk, the stresses can be found from 

formulas (111.397) and (111.399). 



From Table 111.13 we see that the 
character of distribution of the stresses 

1 1 1 1 1 1 4  occurring near the right hand hole is the 
same as in the case where the plate is 

- tq;- weakened by an infinite row of these holes. 
P -  - P  Stresses in Anisotropic Plate w i t h  T w o  - 0 6  - Nonidentical Holes1. Let an elastic aniso- 

tropic plate be weakened by one round and 
one elliptical hole. The distance between 

1 1 1 1 1 1 ~  the centers of the holes is I .  The radius 
of the round hole is r = 1, and the semi- 
axes of the ellipse are a and b. To the 

Fiaure  111.64. contour of the elliptical hole are applied 
u 

0 0 forces Xn and Yn, and to the contour of the 

round hole, forces Xtn and Yvn. Moreover, at infinity there are forces of ten- 

sion p = const and q = const (Figure 111.64). 

TABLE 111.13 

Tr. Note: Comas indicate decimal points. 

To determine stresses 0 
p' 79 and we will use Schwartzl method of series 

approximations. Pi+ 

We will assume that the stress field occurring in the plate with one 
elliptical hole is characterized by the functions of complex variables 40(zl) 

and $0(z2). When the round hole is made in the medium, a second stress field 
- - 

occurs that is characterized by functions and q1(z2), which are found 

from the following conditions on the contour of the round hole 

- - 

 he solution of this problem was found by A. S. Kosmodamianskiy [3] .  



If the large axis of the elliptical hole is much greater than the radius of - /351 
the round hole, then we simply determine the functions 4 ,, $O and dl to 
find the approximate solution of the problem, if the distance between the holes 
exceeds two diameters of the round hole1. 

In the case where the holes in the medium are free of external forces, 

P + 48: 16 - ~ B I  L h ~ .  " = ncp: - z2 + 2(p, - p?) - 

m e  functions Ek (k = 1, 2) are related to zk by the relation 

where 

We will expand functions 5;' into Taylor's series by powers of zk and 

limit ourselves in these expansions, for instance, to four terms: 

where 

'see A. S. Kosmodamianskiy [3] .  

384 



Here 

From boundary conditions (111.404) we find, by the method outlined earlier, 

, 1;fi; , 1-s; s; + s;-, 
mok = - , mlk = - n l k  = .- r 

2 2 Br - h-r 

28;-, 
n2k = . , Aio = A,, (i = 1,2,3), s; - sr-1 

and the function is related to zk by the relation 

After finding functions $(zl) = $0(~1) + (zl) and JI(z2) = q0(z2) + JI1 (z2), we 
can find the stresses by formulas (111.397). The results of calculations of 
stresses occurring in a plate made of SVAM with constants (III.400), for various 
dimensions of the holes, are presented in Table 111.14 (a/,b = 20, b/r = 1, 
Z/r = 26) and 111.15 (b/a = 20, a/r = 1, Z/r = 7). Figure 111.65 (for p # 0; 
q = 0) and Figure 111.66 (for p = 0; q # 0) show the graphs corresponding to 
the data in Tables 111.14 and 111.15, which characterize the stress state in a 
plate between holes. 

Concluding Comments. If the number of identical holes in an anisotropic 
plate is increased, the concentration of stresses when the plate is under 



tension t ransverse  t o  the  center  l i n e  of the  holes increases ,  but decreases - /353 
when the  p l a t e  i s  under tension i n  the  d i rec t ion  of the  center  l i n e .  

TABLE 111.14 

Tr. Note: Commas indicate decimal points .  

B a s i c s t r e s s -  s t a t e  1 i 1 1 i I , 1 1 

Figure 111.65.  Figure 111.66. 

I f ,  on t h e  o ther  hand, an anisot ropic  p l a t e  i s  weakened by two nonidentical  
holes,  then t h e  small hole has only a s l i g h t  e f f e c t  on the  s t r e s s  s t a t e  near t h e  
large  one. A s  concerns the  e f f e c t  of  t h e  l a rge  hole on the  s t r e s s  s t a t e  of t h e  
medium near t h e  small one, it i s  very s l i g h t  when the  p l a t e  i s  under tension 
i n  t h e  d i rec t ion  of the  center  l i n e  of t h e  holes (b/a s r )  and when the  medium 
i s  under tension t ransverse  t o  t h e  center  l i n e  of the  holes (b/a 4 r ) .  The 
same pr inc ip les  a l s o  hold t r u e  f o r  an i so t rop ic  medium with.holes.  
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TABLE 111.15 

Tr. Note: Commas indica te  decimal points .  
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CHAPTER IV. EFFECT OF PHYSICAL NONLINEARITY OF MATERIAL 
ON STRESS DISTRIBUTION NEAR HOLES 

Abstract. Chapter IV deals with the basic equations of the 
plane problem of the theory of elasticity for physically non- 
linear materials slightly deviating from Hooke's law. Complex 
representation of the principal problems are obtained and 
the nature of complex potentials for the multiply-connected region 
is investigated. Two methods are suggesed for solving non- 
linear problems: 1) the method of conformal mappings combined 
with the iteration method; 2) the method of "boundary form 
perturbation." Examples are discussed on the stress distri- 
bution near the circular, elliptical, and square with 
rounded corners, holes under different types of loads. 

The construction of classical elasticity theory is based on three /358 - 
assumptions: deformation components are expressed through derivatives of dis- 
placements by linear homogeneous Cauchyls formulas; in the formulation of the 
conditions of equilibrium of a small element of a body, geometrical changes 
that occur with the element during transition of the body from the initial 
state into the deformed state are ignored; the ratios between the component 
stresses and deformations are linear. Hence the basic equations of elasticity 
theory for the statement of problems in displacements or in stresses will be 
linear. The disregarding of any of the above assumptions will result in non- 
linearity of the basic equations and additional mathematical complications in 
the solution of the problems. 

Many nonferrous metals and plastics experience deviations from the linear 
law of relationship between stresses and deformations, even though deformation 
remains elastic and reversible, while the magnitudes of displacements and de- 
formations are rather small. By departing from linearity of the relationships 
between the stresses and deformations, but retaining the assumption of smallness 
of deformations and displacements, it is possible to obtain a variant of the 
nonlinear statement of problems of elasticity theory, which is known as physi- 
cally nonlinear elasticity theory. Because of nonlinearity of the law of 
elasticity, the basic equations of the problem, as a rule, will be nonlinear, 
permitting only an approximate solution. 

Recently, plastic materials with high strength properties and great 
deformation capability in the range of elastic deformations have found ever 
increasing application in various branches of technology. For ma.Ty of them 
the relationships between the principal stresses and elongations can be assumed 
to be linear in a great range of variation. With regard to such physically 
linear materials, it is very interesting to examine problems of stress concen- 
tration near holes with consideration of great deformations, i.e. to solve the 



problem of stress concentration near holes in a geometrically nonlinear, but 
physically linear statement ' . 

Also of particular importance are the solutions of problems obtained with 
the simultaneous consideration of both physical and geometrical nonlinearity. 
Examples of solutions of problems in such a statement are presented in Chapter 
IX. However, tremendous computational difficulties compel the use and analysis 
of the solution with differentiation between physical and geometrical factors - /359 
of nonlinearity. 

Below we will examine problems of stress concentration around holes in one 
of these two partial statements, specifically, we will find the solutions of 
plane (both for plane deformation and for plane stress state) problems for the 
physically nonlinear problem only. Two approximate methods are proposed for 
the solution of these problems: series approximations (51, 2) and perturbation 
of boundary shape (53). 

51. Basic Equations of Plane Problem of Physically Nonlinear Elasticity Theory 

Relationship Between Stresses and Deformations. For many physically 
nonlinear elastic materials, the relationship between stresses and deformations 
can be represented in the form2 

(i, j = 1. 2, 3), (IV .l) 

where K and G are the moduli of three-dimensional deformation and displacement, 
respectively, in the case of vanishing small deformations; k(so) and g(tt) are 

the functions of average stress s and intensity of tangential stresses t2 0 0 ' 
respectively, which can be represented by the power series 

(IV. 2) 

The presentation of the law of shape change, i.e., of the function g(ti), 

in the form (IV.2) will facilitate in the following the solution of partial 
problems, since it does not involve the irrationalities related to the calcula- 
tion of intensity. The use of this method in the general nonlinear statement 
of problems can involve erroneous conclusions and over estimation of geometrical 
nonlinearity in comparison with physical nonlinearity. 

'The approximation method for the solution of such problems, for the case of 
plane deformation, developed in the works of I. N. Slezinger [I, 21, I. N. 
Slezinger and S. Ya. Barskaya [l-41, in our opinion, requires additional analysis 
of the starting positions. 
2See G. Kauderer [I] , p. 37. 



Experimental data show that the relationship between the average stress and 
the average deformation, for most materials, is close to linear, and therefore 
we will assume in the following that 

k(s,,) = 1. (IV. 3) 

In this section we will solve the corresponding problems of stress concen- 
tration near curvilinear holes for materials of which the uniaxial stress-strain /360 - 
diagram can be represented schematically as shown in Figure IV.1, where curves 

1 and 2, for small deformations, deviate slightly 
from Hookels straight (stress-strain) line. Curve 
1, which lies below Hookels line, characterizes 
the so-called 'lsoft" nonlinearity, while curve 2, 
which is located above Hookels line, characterizes 
"hardu nonlinearity (see 93, Chapter IX). We 
will assume that these curves can be approximated 
with sufficient accuracy by retaining in the 
expansion of (IV.2) of the intensity function of 
tangential stresses, only two terms: 

0 
/ /. 4 g (1'1, = 1 + g4:. (IV .4) 

/ 

// 

In this case we will have a physically nonlinear 
theory with three elastic constants: K, G, g2. 

Figure I V .  I .  The order of magnitudes of these constants can 
be judged on the basis of experimental data1 of 
tension of samples of pure copper: 

(IV .5) 

Basic Equations of Plane Problem. In contrast to linear (classical) 
theory, in physically nonlinear elasticity theory different equation systems 
correspond to the plane stress state and plane deformation. However, in the 
case of small deviation from Hooke's la&, it is possible, with the same degree 
of accuracy, to derive equations for both the plane stress state and plane defor- 
mation in the very same form. These equations will differ only in relation to 
the constants which they contain. Actually, in the case of plane stress state, 
the stress-deformation relations, as indicated by (IV. I),  (IV.3) and (IV.4), 
will be of the form 

(IV. 6) 

'see G. Kauderer [I], p. 78. 



where 

( J I I  = ox' 0, = a,, a,, = t ry ,  

e , ,=e , ,  e , = e  ,* e12 = ex',- 

(IV. 7) 

In the case of plane deformation, by ignoring powers of t higher than two, /361 0 - 
we find from relations (IV. 1) , (IV. 3) and (IV.4) 

(IV .8) 

Consequently, the stress-deformation relations for both cases can be 
written in the form 

1 2 = 
fail - adk~',~ -?- gZfO (aii - b5cbii) lv  (Iv .9) 

where, in the case of plane deformation, 

If in (IV.9) and (IV.lO) we assume 

(IV. 10) 

(IV. 11) 

we find relations (IV.6) and (IV.7) which correspond to the plane stress state. 

The plane static problem of physically nonlinear elasticity theory, in the 
absence of mass forces, reduces, as in the case of linear theory, to the solu- 
tion of equilibrium equations 

(IV. 12) 



and equations of deformation compatibility 

d'e, d * ~ ,  

dy2 
- -$--~;;2-=2-  dxdy (IV. 13) 

under the corresponding law of elasticity. 

In the variant of nonlinear theory of interest to us, Hookets law is 
replaced by the nonlinear law of elasticity [IV.9). Thus, the problem reduces 
to the joint solution of equations (IV.9), (IV.12) and (IV.13). This equation 
system, generally speaking, is nonlinear. It is convenient to introduce the 
following stress functions: 

dZU = -  dZU 
x d Y 2 #  a = -  - d9U 

y '3%' I Zxy - - - dxdy ' (IV. 14) 

then the problem reduces to the solution of a nonlinear equation of the fourth 
power in partial derivatives under the corresponding boundary conditions and in 
the given stress state Itat infinity," i.e., at sufficiently distant points of - /362 
the elastic plane. However, nonlinear equation system (IV.9), (IV.12) and 
(IV.13) can be reduced to the solution of a series of boundary problems of the 
theory of complex variable functions'. G. N. Savin's solution and L. P. 
Khoroshun's solution [I], which differs somewhat from G. N. Savin's solution 
[2, 31, are presented in 51 and 2 of this chapter. 

Complex Potentials. We proceed from the variables x, y to new independent 
variables 

The form of z and 7 in the new variables3 is given by formulas (IV. 14) : 

(IV. 15) 

- - - - - - -  - -  - -  - - 

'see G. N. Savin [2, 31 . 
2 ~ e  cite also the work of L. P. Khoroshun [l] in which the complex representa- 
tion of the plane problem of nonlinear creep is given. 
3 ~ n  deriving the complex representations of the basic equations of the problem, 
we will follow the method of Stevenson (See I. N. Sneddon, D. S. Berri [ I ] ) ,  in 
which the equation of deformation compatibility (IV.13) will be satisfied 
automatically. 



From relations (9) and (15) we obtain expressions for deformations sX, E: and 
through stress function U: Y 

XY 

(IV. 16) 

We integrate the second equation in (IV.16), recalling the identity 

d 2  -= (U -I- iv) = E, - eu + 2iexy, 
dz (IV. 17) 

where u and v are components of the displacement vector: 

au 
2G(u f iv) = -2- -+ f (z) - 2g, 

az 

where f (z) is a function only of variable z. 

We will differentiate (IV.18) with respect to z: 

On the other hand, by using the identity 

and the first expression of (IV.16), we find 

(IV. 18) 

(IV. 19) 

(IV. 20) 

2 d'U * ; r @ ~ = 2 ( 1 - - 2 a ) ~ + ~ i ( $ - - $ . ) + 2 ( 1  R azd; + 2 b ) g J O y .  dzdz (IV. 21) 

By excluding from (IV.15) and (IV.21) the sfunction a(u + iv)/az, we find 

(IV. 22) 

where, for brevity, we denote 



After integrating (IV.22), we obtain 

dU - - 
2 - = 9 (2) i 19' (2) + 9 (z) + 1 A (2, i) dz. 

dz 

From (IV.15), (IV. 16), (IV. 18) and (IV.24) it follows that 

- - " dA 
ax - 0, + 2 i rx ,  = - ~[zT'' (1) + 4)' (2) + 3 , dz] . 

d A 
0 , - u x - 2 i h  = 2[icpw(z)  + ~ ' ( z )  + j' 

- - 
2G (u + iv )  = xcp (z)  - zcp' ( z )  - 1C, (z)  + 2B (2, 31, 

where 

(IV. 23) 

(IV. 24) 

(IV. 25) 

(IV. 26) 

The expressions for components X, Y on the coordinate axes of the resultant 
force and for the resultant pair M acting from some side on arc s s, taken 0 
within the region, will have the form 

(IV. 27) 

In the case of the first problem, where conditions X (s) and Yn(s) on con- 
tour L are given, the boundary condition is n 

+ 4' ( I )  + 9 ( t )  + Adz = i (X. f iy,,) ds + const = f,(s) + if&) + const. (IV .29)  - 1  0 S 
In the case of the second problem, where on contour L are given the vector - /364 

1 2 
components of displacement g (s) and g (s) ,  the boundary condition is 



- -- 
xgj ( t )  - tgj' ( t )  - $ ( t )  +- 2B (1, 4 ;= 2G lg(')(s) ; ig") (s)]. (IV. 30) 

In this section we will solve the problem of stress concentration near 
curvilinear holes by the method of series approximations, using, as the first 
approximation, the solution of the corresponding problem of linear (classical) 
plane elasticity theory. By this method, the stresses and displacements in 
the n-th (n = 1, 2) approximation1 are defined by formulas 

(IV. 31) 

(n) !n)  - - 
2G (u + la )  = xqAn) (z )  - zcp'"J ' (z)  - $(")(t) -j - 28'"-" ( 2 . 4 .  

where the complex potentials $(")(z) and $(")(z) in the case of the first prob- 
lem are determined from boundary condition (IV.29): 

-- 
9'") ( t )  i tp'")'  ( t )  + I+~)( ' )  = / I  (s) i i f 2  (s) - j ~ ' ~ - ' ) d z  + eonrt, (IV. 32) 

and in the case of the second problem, from boundary condition (IV.30): 

-- 
xp(")  (f) - t ~ ( " ) '  (t)- $(")!f) = 2G (g(1) + ig(2)) - 25'"-') (t ,  i). (IV. 33) 

General Formulas for Multiply-connected Region. Case of Infinite Region. We 
will examine a region bounded by simple closed contours L I' 5 ,  . . ., Lm9 Lm+l, 
of which the latter encompasses all the preceding, and we will analyze the 
character of multiformity of complex potentials $ (n) ( z )  , (z )  . 

Since the stresses are identical, in passing around closed contour L 
- j ' 

ambiguity of the function A(z, z) from (IV.23) can occur only as the result of 
the integration of the expression 

(IV. 34) 

'strictly speaking, in the given statement of the problem, it is necessary to 
determine only the first and second approximations, since the original assump- 
tions are limited by such a degree of accuracy. 



- 
Consequently, the function ~("'(2, a) can be represented in the form 

m 

(n) g, -- 
A = 2 ( 1 - 4  C 1919' (2) ~n (z  - + q ~ ~ ' ( z )  in (z  - zk)l + R:)(Z, i). 

k=1 
(IV. 35) 

Here zk is a point within contour Lk; ql(:)(z) is a holomorphic function, and /365 
- 

R(z, 3 and Rl(z, z) are unique functions in the region of interest. 

As a consequence of (IV.35), we have 

+ qg(z) ~n (Z - zk )  1 + RY) (2, i), (IV. 36) 

- - 
where qi:)(z) is holomorphic, and R?)(Z, z) and R?)(Z, z) are unique functions 

in the examined region. 

From the condition of uniqueness of stresses (IV.31) in passing along each 
contour Lk, recalling relations (IV.35) and (IV.36), we obtain 

(IV .37) 

where @?)(z) and Y!") (a) are holworphic functions in the given region. 

Consequently, the complex potentials are 

m rn 
(IV. 38) 

gz 
*̂ I(') )= ~ ( 1 -  a) C (2) (2 - zk )  + Y;(* In (Z - zk)  + *:)(z)). 

6-1 &=I- 

where +in) (r), +?) (z) are functions that are holonorphic in the  region of 
interest. 



Complex constants y(n) and y k are determined from the condition of k 
uniqueness of displacements (IV.31) and from the expression for the resultant 
vector (IV. 27) in passing around each contour. 

(IV. 39) 

From (IV.39) we see that these complex constants are independent of the order 
of approximation. 

Consider the case of an infinite region, where contour L extends to m+ 1 /366 

infinity. From the origin of the coordinate system we construct circle L.. 
K 

of radius R, which contains all contours L Is 5 ,  . - - ,  LmS 

From the condition of boundedness of stresses ax, a and .r through the 
Y XY 

entire region, we know that the functions A(") and a / a z  I A(")~T are also 
bounded. Hence functions q::) (r) and q;:)(z) will be holomorphic outside of 

LR, including the infinitely distant point, i.e., for rather large 1 z l  we have 

the following expansions: 

Functions (IV.38) in this case are 

(IV. 40) 

(IV. 41) 

Thus, as follows from (IV.40) and (IV.41), complex potentials (IV.38), for 
rather large 1 z 1 , have the form 

.- 

(P (n )  (z) = \'I ( a ( ~ - ' )  + y,) lnz + rnz -t (P&") (2). - k, 
k=l 

(IV. 42) 



Here $r)(z) and $An) (z) are functions that are holomorphic outside of L R ' 
including the infinitely distant point, whereupon, as in the case of the linear 
problem, without changing the stress state, we may assume: 

cp!' (a) = gf) ((, = 0, Im r, = 0. (IV. 43) 

The constants rn and r; are found from the conditions of the stress state 

at infinity. 

We introduce the following definitions 

then, from (IV.31), (IV.42) and (IV.44), we find 

(IV. 44) 

/367 - 

(IV. 45) 

52. Method of Series Approximations 

General Formulas. Statement of Problem1. We will assume that the basic 
stress state in an infinite elastic plane is characterized by components u* x ' 
a* and r* which, according to (IV.22) and (IV.25), can be represented in the 
Y XY ' 
form 

- 
0: + 0; = a9;.  (2) + 9;. (1) -!- A,. (z.31. 

(IV. 46) 

If, in this plane, we make a hole of some shape, then around the hole there will 
be a new distribution of stresses, which in the n-th approximation, according to 
(IV. 31) , can be determined by formulas 

'see G. N. Savin and L. P. Khoroshun [I]. 

403 



(IV. 47) 

and at infinity the components o p ) ,  0'") and r(") acquire assigned values 
u* o* and T* Y X Y 
x' Y XY' 

Recalling (IV.44), we will represent the potentials as follows: 

I op) (2) = e.12 (4 + 9,. (2) + (Q, - QltAl) 2, 

d"' (I) = 4);:) (4 + o,. (4 + (Q; - Q;-,, 2. 

(IV. 48) 

where $(n) (z) and 11:;) (z) are holornorphic functions that are converted to zero 
10 

at infinity. 

In this manner the stated problem reduces to the determination of functions /368 - 
(L) and (z) that satisfy, on the contour of the hole, the condition 

- - 
(n) t - 1'"-0 + 

(Ti;) ( t)  + t ~ ; ; ) '  (4 -k ( ) - 1, (4 8 (IV. 49)  

where the function that represents the adduced contour load acquires the form 

(n-1) 
- 

(n-1) 
i l l  (4 + i f 1 2  (4 = f l l  (4 + i l l *  (s) - [(PI. (4 + tv;. (4 + , 

(IV. 50) + 0,. (0 + t (Q. - g,) + f c ~ i  - Q;-,) + A:"-')&. 

Let the function 

i a,6 + . . . + antn) (IV. 51) 

map conformally the examined region, i.e., the surface outside of the hole onto 
the interior of the unit circle. Then, converting to the variable 5 = peld, we 
obtain the expressions for stresses and displacements: 



Complex potentials (IV.48) and the conditions on the contour of the hole (IV.49) 
and (IV.50) in the transformed region, i.e., in variable <, acquire, accord- 
ingly, the form 

q1 (5 )  = @) (6) + y (GI + ; (Q, - Qn-,I a (5); (IV. 53) 

qn) (0 = 9t)  ( 0  + 9 R) + (Q: - &,) 0 (5); 
o(a) 7 --- q ~ f )  (a) + _;,(pg) (0) + $c' (a) = fr-') (u) + if:-" (a); 
6) (0) 

(IV. 54) 

( - 1 )  (0 (0) - r, (0) + if:-" (0) = 1, (a) + i f ,  (01 - (01 + , V;(O} + ~ i +  
(a) 

+ a(.) (Qa - Qn-,) + ~ T ( Q :  - Q:,) + S A("-') (5. '5) coo. (6)df] - (IV. 55) 

Here we make the following definitions: 

q1 [a (611 = 9 (5); $ (5) = 61 (C)I; 

Al[~(6)]==A(5); f l ~ [ ~ ( ~ ) I ~ f l ( a ) ;  
ie f12 [-a (s)] == f2 (a); a = e . 

(IV. 56) 

As in the linear problem, boundary condition (IV.54) can be substituted by 
two equivalent functional equations: 

(C) = - 
I o(a) d')' (0) do--S-. 2ni ol(o) a - I; da. 2x1 

(IV. 57) 



Thus, the problem of determining the stress concentration around a 
curvilinear hole in the n-th approximation is reduced to determining the func- 

tions OCn) (5) and $An) ( 5 )  from functional equations (IV.57). 
0 

(n) (n) (n) 
Stresses ox , o and r in the n-th approximation, according to the 

Y x Y 
functions (5) and $hn) (5) that we have found, are defined by formulas 

(IV.52) and (IV.53). 

If the contour of the hole is free of external forces, then, for stresses 
(n) 

along the contour of the hole (since 0 = 0), from the first formula of (IV.52) 
we obtain P 

Hole Reinforced by E l a s t i c  Ring. We will assume that a wide elastic ring 
of a different material, with nonlinear elasticity, i.e. the elastic properties 
of this material also deviate only slightly from Hooke's law, is sealed into a 
curvilinear hole. 

The solution of the problem of stress concentration near the hole rein- 
forced by the elastic ring reduces to the determination of complex potentials 
(n) 010 (z) and I)::) (z) in the plane outside of the hole and ring, and also the 

determination of the potentials $I:;) (E) and $:;) (r) within the ring1. 

The boundary conditions for $(")(a) and @l(yl(z) on the contour of hole L 11 
will have the form (IV.29) or (IV.30), depending on whether the stresses or 
displacements are given on the contour. 

If the ring is soldered to the plate, then on contour L1 of the seam of the /370 - 
ring and plate, the following conjugation conditions must be satisfied: 

----  
cpg "do + 0, (2) + 2 [(PI!' ' (2) + 9;. (a1 + $12 (2) + 9,. (2) + 
+ 2 (Q. - Q,,J + ;(Q: - Q:-,) -I- J AY-l'dz = pfi) (2) + 

(IV. 59) 

- 

''The values pertaining to the ring are denoted by an additional subscript 1. 



which express equality of displacements of the points of the seam of the ring 
and plate and equality of the forces applied to the plate and ring along the 
contour of the seam. 

Three-Dimensional Tension of Elastic Plate with Round Hole with Simulta- 
neous' Uniform Pressure on the Contour of the Hole. Let an elastic plate with 
a round hole be subjected at infinity to multifold tension: 

and let uniform normal pressure 

be given on the contour of the hole. 

We are required to determine the stress state in the elastic plane near 
the hole. The functions $ (2) and ql,(z) in this case are 1 * 

(IV. 60) 

while the function that conformally maps the region outside a hole of radius R 
on the unit circle is 

In the first approximation, i.e. for the linear problem, 

RP 1 cp(1) (c) = -. - v ql)(U = - R ( P ~ + P ) ~ -  (IV. 62) 

'1n nonlinear problems, as we know, the principle of superposing does not apply. 
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Using functions (IV.62)' we find the values A '  Q1, Q i  and fl(l) + if2 1' /371 

for the determination of the second approximation: 

(IV. 63) 

On the basis of relations (IV.54), (IV.57) and (IV.63)' we find the func- 
tions in the second approximation: 

(IV. 64) 
g,R V (5)  = - @o + P)'RC - 9 ( 1  - a) 6 2  [3( 1 - 26) P @u -1- P)' i - (PO + /I)']. 

Stresses in the second approximation are 
(2) 

ga [ 3 ( 1 - 2 b ) p ( ~ , + ~ ) ~ ( ~ ~ - e ~ ) . + ( ~ ~ + ~ ) ~ ( ~ ~ - e ~ ) 1 ~  c,=P-(P,,+P) e' - ( l  a) G. 

(2) ga 13 ( 1  - 26) p (p, I -  P ) ~  (3e4 - e2) -1- % = P + (po t P) eL g,(,-,,,2 (IV. 65) 
+ @, + P ) ~  ( 5 ~ '  - e2)1- 

On the contour of the hole the stress is1 

(2) 2g, ‘5, = 2p + Po- g ( 1 -  a )  6 2  13 ( 1  - 26) P (PO -k P ) ~  f 2 (P,  + P)']. (IV. 66) 

After substituting in (IV.66) the values of constants a and b from (IV.lO) and 
(2) 

(IV.ll), we obtain the formulas for stresses o8 both for plane deformation: 

(2) 
+ v)'g2 [ ( I  - 2 q 2 p  ( p o +  p)P + 2 (PO + P ) ~ I .  G = ~ P + P , - ~ , ~ - ~ ) . -  (IV. 67) 

'we will recall that the superscript above the stress component indicates the 
order of approximation. 
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and a l s o  f o r  t h e  plane s t r e s s  s t a t e :  

(2) 
a* = 2~ + P o -  "' + 9E4 " pa [P ( P O  f P)' + 2 (po + P)". (IV. 68) 

Here e l a s t i c  constants  K and G a r e  expressed through Young's modulus E and /372 
Poisson's r a t i o  V. 

We see  from (IV.67) and (IV.68) t h a t  i n  the  case of a f r e e  contour, i . e .  
(2) 

when po = 0, s t r e s s e s  o8 f o r  plane deformation a r e  g rea te r  than i n  the  case of 

the  plane s t r e s s  s t a t e  f o r  a l l  v > 0. They w i l l  coincide f o r  v = 0. The maxi- 
mum d i f ference  between them w i l l  occur when v = 0.5 and i s  equal t o  q 2 p 3 / ~ 2 .  

Uniaxial Tension of E las t i c  P la te  w i t h  Free Round Hole. Let an e l a s t i c  
p l a t e  with a round hole of radius R ,  f r e e  of external  forces ,  be subjected a t  
i n f i n i t y  t o  uniaxia l  tension:  

In  t h e  manner analogous t o  t h e  above, we f ind  i n  the  second approximation 
( 2 )  

s t r e s s e s  o4 on the  contour of the  hole a t  t h e  point  8 = n/2, both f o r  plane 

deformation : 

(2) 
a, = 3p- ( I  + g4 [8683 - 16807v (1 +v) + 5880va (1 - v)f) .  I 945 (1 - v) El (IV. 69) 

and f o r  the  plane stress s t a t e :  

(IV .70) 

Pure Displacement. Let t h e  bas ic  s t r e s s  s t a t e  of an e l a s t i c e p l a t e  with a 
round hole  of radius  R be characterized by s t r e s s  components 

( 2 )  
Stresses  ag on the  contour of t h e  hole a t  t h e  point  8 = s / 2 ,  i n  the  second 

approximation f o r  plane deformation and f o r  the  plane s t r e s s  s t a t e ,  a re ,  
respect ively  



(2) 440 ( 1 4 v)' g,P u,,=~P--.- 21E' (Iv. 72) 

Multifold Tension of Elastic Plate w i t h  Elliptical Hole. Let an elastic 
plate with a free elliptical hole be subjected at infinity to multifold ten- 
sion: 

The mapping function is 

The basic stress state is characterized by the functions 

(IV. 73) 

(IV .74) 

The complex potentials in the first approximation, corresponding to the 
classical linear problem, are, as we know1, 

pR 1 - rnc2 q,'" (C) = -. gel) (5)  z - PR(I + m2) 5 
2 5 '  l - m t  (IV .75) 

Parameter m, which is the eccentricity of the elliptical hole, is assumed to be 
so small that we can disregard its powers above two. 

Retaining the stated accuracy, we find from (IV.58) the stresses on the 
contour of the hole in the second approximation, both for plane deformation: 

40 + ms[f (1 -2v) (5+6va - 6 ~ ) + ~ ( l - - v - t  v y +  (IV. 76) 

'see 92, Chapter 11. 
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and for the plane stress state: 

(2) 
a, = 2p (1 + 2m cos 26  +2ma cos 48) - 8 (1 + V ) ~ ~ S  P' 

9E9 
[3 + g m  cos 26  + 

(IV. 77) 

By assuming in (IV.76) and (IV.77) that m = 0, we obtain, respectively, 
formulas (IV.67) and (IV.68) for po = 0, as we expected. 

53. Method of Perturbation of Shape of Boundary 

Basic Equations of Problem In Polar Coordinates. The approximation 
method developed in this section for the solution of the problem1 requires the 
representation of the corresponding basic equations of 51 in the polar coordi- 
nate system. 

We will write these equations of the plane problem in a "dimensionless" - / 374 
polar coordinate system r = r*/R, 0. Hence, for definition, we will analyze the 
case of the plane stress state2, i.e. we will represent the law of elasticity 
in the form3 (IV.6) and (IV.7) in coordinates r and 8: 

(IV. 78) 

where E ~ ,  E~ and and also or, oe and T~~ are components of deformations 

and stresses, respectively, in the polar coordinate system (r, 0). 

The dimensionless values are expressed through the invariants: 

(IV. 79)  

'see A. N. Guzf , G. N. Savin, I. A. Tsurpal [I]. The method of perturbation of 
shape of boundary is outlined in greater detail in application to problems of 
stress concentration around holes in Chapter VI (for the case of the plane 
problem with an asymmetrical stress tensor), and in Chapter X (for the case of 
thin elastic shells weakened by holes). 
2The law of elasticity for plane deformation must be taken intthe form (IV.9) 
and (IV. 10). 
3 ~ e e  G. Kauderer [I], p. 117. 



As in 51, we will assume that small deviations from the linear relationship 
between stresses and deformations in the elasticity relations (IV.79) can be 
expressed with a sufficient degree of accuracy by the function g(t2) = 1 + g t2. 0 2 0 ~. 

Therefore, in the following we will assume in the elasticity relations (IV.79) 
that 

k (30) f 1, (t3 = 1 + &,f;, (IV .80) 

where g2 is a dimensionless constant. 

After such a selection of nonlinear elasticity law (IV.78), and under 
conditions (IV.80), the problem of the stress state of a thin plate is reduced 
to the determination of stress function U(r, 8) from a nonlinear equation1 of 
the fourth power: 

(IV. 81) 

under the corresponding boundary conditions on the contour of the hole and at /375 - 
infinity. If the function U(r, 0) is known, then the stress components are 

(IV .82) 

In equation (IV.81) and relation (IV.82), r is a dimensionless ooordinate 
pertaining to R, which characterizes the absolute dimensions of the hole; A is 
Laplace's operator, which, in dimensionless polar coordinates, has the form 

The constant X of the material and the function T(r, 8) have the form 

(IV. 83) 

1 See G. Kauderer [I], p. 116. 
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9 T (r, 6) = . c2tf; 
(IV. 84) 

p = l/g is a small dimensionless value: 2 

2 
t is given by expression (IV.79), and the components ar, a8 and are related 

0 
to stress function U(r, 8) by relations (IV.82). The small parameter A ,  which 
characterizes deviation of the nonlinear law of elasticity from Hookels law, 

has the dimension m4/n2 and the order of magnitude 1 0 - ~ ~ - 1 0 - ~ ~ .  

The equations for the determination of displacement components u(r, 8) and 
v(r, 8) for the nonlinear elasticity law (IV.78), under condition (IV.80), are 
found by substituting in relation (IV.78), instead of or, o8 and 'rr8, their 

values from (IV.82), and instead of E ~ ,  ce and their values: 

(IV. 85) 

Since we are interested in the effect of physical nonlinearity of a 
material on stress concentration near holes, we will analyze in the following 
the first basic problem with the condition that the contour of the hole is free 
of external forces and the stress state at infinity is given. - /376 

Method of Solution for Arbitrary Curvilinear Hole. Consider a hole 
possessing a shape such that the function 

' i( ' - R [c(+;ef.(c)] (2' = r e , r = R~;z = re", t = pet? (IV. 86) 

sccomplishes conformal mapping of an infinite plate with a round hole of unit 
radius onto an infinite plate with a hole of the above described shape. In 
the function (IV.86) R is a real constant, characterizing the dimensions of the 
hole; the function f(<) depends on the shape of the hole; E is a small parameter, 
a real value, which satisfies the condition, 1 ~ 1  9 1, and the roots of the equa- 
tion l + eft(<) = 0 should lie within the circle of unit radius iii the plane <. 



We will represent the solution of equation (IV.81) and of the systems 
V.78), (IV.82), (IV.85) in a form expanded with respect to small parameters 
and E (IV. 84) 

k-o /lo 

~ 3 '  where the constant H is selected from the condition T- O - 1. Hence 

(IV. 87) 

(IV. 88) 

(IV. 89) 

The components of the stress and deformation states in the coordinate 
system (p, 9 )  are represented in the form of series with respect to P and E: 

(IV. 90) 

w o o  W O O  

k i (k.1) k i (k l )  
u Q = 1 C ~ a u , ,  9 U * = C C P ~ U @  

(IV. 91) 
r 

k=O j-0 k - 0  1 4  

By substituting the function U(r, 8; IJ; E) in (IV.87) into basic equation 
(IV.81) and equating to zero the coefficients for identical powers of 

P ~ E ~ ,  we obtain an equation for the determination of the function ~ ( ~ ' j )  in the 
form 

We introduce the explicit expressions for the right hand sides of equation / 377 - 
(IV.92) for certain values of k and j: 

(IV. 93) 



f o r  k  = 1, j = 0 

T(O.o)u(O.O) -, 2 ( ~ ( 0 . 0 ) ~ ( 0 . 0 )  1. ~ ( 0 . ~ ) ( 1 1 0  0) 
L(l.0) = -;T .# .O I - 6  , f a  8 .re .i + 

(IV. 94) 

+ T(:.O)U!:;O)) - Z A ( ~ ~ O . O ) A ~ ( O . O ) ) ;  
3 

f o r k = 2 ,  j = O  

2 
L, , .~ ,  = A ( T ( O * O ) A U ( O ~ ~ )  + T ( ~ J ) ~ ( O . O )  ( 0 0 )  1 ( 0 1 )  I - 1T.r; (7 U.io + 7 Uf?') 

+ F,":) (k (I!$:) + f ~ ! ) , o ) )  .+ ~ $ 1 )  i 
4- u ~ ; O )  1 (0 1) ( 9 4- T:?))] + 2 [(f T((0) - f T ! : ~ ) )  x (IV. 95) 

i 

where (0.0) 2 - (0 0) (0 0) 1 (0 0) 2 - u(O,O)u(O 0) ~!:9{ = (u . r r  ) U,r ;  U , r S  + l (u ,r '  ) r r  , i c  + 3 (U,ri (0 0) ) 2 I t 

(IV. 96a) 



Proceeding as before, we can write the explicit,expressions for operators L 
( k , j )  

for all (k > 1, j > 1) values of k and j. 

The solution of equation (IV.92) is found in the form of the Fourier 
series : 

. - 

UIHI 6 )  - C {fl;ri, (r) cos me + gig\) ( r )  sin me). 
m=o (IV.97) 

To determine stress components a ug and -r and displacement components 
P' PO 

u and uO in curvilinear orthogonal coordinate system1 ( p ,  a), as given by the 
13 
function (IV.86), we will use the corresponding formulas2 of transition from 
polar coordinates (r, 8) to the curvilinear orthogonal coordinate system 
(p, a), related by mapping function (IV.86). 

After combining the expressions thus found for stress components op, ug 

and t and displacement components u and ug into series with respect to 11 and 
P 

E, recalling the form of functions (IV.86), we obtain 

, - 
I a 2  \ a 1 a" + F.  -) u(~"*." (e. 6) + Ho [LI'-~' + 7 .3*) i 

m=O 

 he coordinate line p = 1 coincides with the contour of the given hole. 
2 ~ e e  Chapter VI and X, and also the work of G. N. Savin, A. N. Guzl [I], where 
the analogous transformations are made in the problem of stress concentration 
around holes in the case of the plane problem of moment elasticity theory, 
as well as in shells. 



By substituting functions IICr, 8, p, E) from (IV.87) and u(r, 6) from 

(IV.88) into (IV.85) and equating to zero the coefficients for identical powers 

of 2 ,  we find the equation system for the determination of u ( r  e), 

v j )  (r, 8) , which are included in (IV.99). 

Functions U (knj)( P, 9) in (IV.98) represent the solutions of equations 
(IV.92) in the form (IV.97), in which the variables r and 8 are formally1 re- 
placed by pand 9, respectively. Hence the arbitrary constants in 

f ("I (r) and g 
(k,j) 

(m) (I) of (IV.97) are found from the corresponding boundary 
( k , j )  

conditions for U ( a), which are obtained from the expansions into double 
series with respect to )I and E, analogous to the expansions of (IV.87) and 
(IV.88) of the given conditions on the given contour. 

The components of the stress and deformation states on the contour of the 
given hole are found from (IV. 90) and (IV.97) for p = 1. 

Consider the problem where, on contour r of the hole, we have the stresses 

UQ lr = 91 ( r ,  6, p), T ~ Q I I -  = % ( r ,  6, p). (IV. 100) 

For generality we will assume that in (IV.100) and $2 depend on u.  The 

equation of the contour of the hole is defined in parametric form by the func- 
tion (IV.86) and can be represented in the form 

r = r ( p ,  6), 0=0(p, .6) for p = l .  (IV. 101) 

Making use of (IV.86) and (IV.lOl), we represent the right hand sides of 
(IV.lOO) in the form of double series with respect to )I and E: 

OD JD 0 0 

4 l r  = 2: pkeilpvJ) (8), r,, 1, = pkei$&k.fi (6). 
b 0  j=O- 

(IV. 102) 
-1 -0  

-- - - 

'1n other words, in the function U(r, 9) found, r and e are substituted by the 
variables p and 9 .  



After substituting expressions (IV.90) into (IV.102), assuming that p = 1 
in the latter, and comparing the coefficients for identical powers, we obtain 
the relations 

(IV. 103) 

From (IV.98), recalling (IV.103), we obtain the boundary conditions for the - /380 

determination of the function U (k'j) in the form 
(r,e) 

(IV .104) 

i-1 
1 a' 

@ I u(k. i )  (p, 8) = - - lpik.i) (0) I,, - (x [ (L! ' -~)  - 2 ~ i ' - ) -  
d x :  a HO 

m-0 
ws 

According to (IV.87), as the solution obtained in the n-th approximation 
we will use the function 

(IV. 105) 

Functions U ( r ,  0)  are the solutions of equations (IV.92) in the form 

of Fourier series (IV.97). However, functions U (k'j) (p, 9) are the solctions 
of these equations in which the variables r and 8 are formaZly substituted by 
p and 9, respectively. 

(j -m) , L i j  -m) In (IV.98) and (IV.99), L1 , ..., (j-m) are differential L6 
operators, the form of which depends on the function f(<) of (IV.86). 

The expanded expressions of these operators for the first through third 
approximations are presented below: 



where the following definitions are given 

(IV. 106) 

Stress Distribution Near Round ~olel, The solution of the problem of 
elastic equilibrium of a physically nonlinear elastic unbounded plate with a 
round hole of radius R, along the contour of which are given external forces, 
and "at infinity," any stress field, reduces to the integration, in the first 
approximation, of biharmonic equation (IV.92) (under condition (IV.93)) under the 
given boundary conditions on the contour of the hole and at "infinity;" in sub- 
sequent approximations 2 ,  to integration of the heterogeneous differential 

'~tress concentration near a round hole under elasticity law (IV.6) for the 
case of simple tension of a plate was first analyzed by F. Jindra [I]; by 
I. A. Tsurpal [l-121 for other cases of stress state "at infinity." 
2~ince the problem is nonlinear, the principle of superposing does not apply. 



equation (IV.92) corresponding to the given approximation for the right hand 
sides of (IV.94)-(IV.96) and for homogeneous boundary conditions on the contour' 
of the hole 

and conditions "at infinityf1 

1 ~ ( i  0) 1 u('J"J = 0 for r = a; 7 . i c  +, .. 
~ ( 1 . 0 )  - 1 ~ ( i . 0 )  -. u ( i . 0 )  0. 

,rr - 0, - .O J8 

We will analyze certain partial cases. 

Multifold Uniform Tension: 

- . - 
r -  ( - p, z!?' = 0. 

(IV .107) 

(IV. 108) 

(IV. 109) 

The stress function of the first approximation is given by linear classical 
theory : 

where Ho is defined by formula (IV.89). 

The desired complete stress components must satisfy conditions 

(a,),,~ = 0, (ur)r=a = (uo)r=m = P- (IV. 111) 

On the basis of the known stress function (IV.l10), we find the right hand side 

of equation (IV.92), thus determining the equation for the function U (1,o). 

which must be integrated under conditions (IV.107) and (IV.108). 

(IV. 112) 

The solution of equation (IV.112) which satisfies conditions (IV.107) and 
(IV.108) is 



(IV. 113) 

Introducing functions U (oso) (IV.110) and U (190)(IV.113) into (IV.105, we 
find the stress function in the second approximation1: 

U2 (r, p) = H o  [ u ( ~ , ~ )  (r) + p ~ ( l , O )  (r)]. (IV. 114) 

From (IV.82) and (IV.114) it is easy to find (in the second approximation) the 
formulas for stress components a a0 and T rJ re ' 

The stress concentration factor for the given problem, according to linear 
theory, reaches its greatest value on the contour of the hole and is equal to 
two. In our case, i.e. with consideration of physical nonlinearity of the 
material, the concentration factor will depend on the magnitude of external 
load and mechanical properties of the material in the second approximation2 as 
well, as seen from (IV.82) and (IV.105): 

and in the third approximation 

(IV. 115) 

(3) us 
k = (-) p 1-1 = 2 (1 - 1.5001p2 + 1 0*605A2p'). (IV. 116) 

(2) 
The graphs of stress concentration factor k of (IV.115) as a function of 

external load and elastic properties of the material are presented in Figure 
IV. 2: 

Curve 1 corresponds to copper with the following elastic properties 

(IV. 117) 

'Indeed, the function U2(r, 0, 11, E) (IV.105) for any curvilinear hole will have 

the form U2(rJ 8, 11, E) = HO(U (0~0) + IIU (1,o) + EU(O,l) + PEU ' I ) )  . However, 

for a round hole E = 0, and we will arrive at U2(r, p) (IV.114). 
2 ~ n  formulas (IV. 115) and (IV. 116) the superscript indicates the order of 
approximation. 



Curve 2 corresponds to the copper with the 
following pjroperties 

K = 1.343.ge81. 1010 n/m2, 
G =.0.451.9.81 101° n/m2, 

gt = Oe18O.1O6, (IV. 118) 

Curve 3 corresponds to an aluminum-bronze 
alloy, for which 

0855 gs=0.040.106, 1 =-=X3==- 1 
9.8 r a ,=2 ; IV. 119) 

Curve 4 corresponds to open-hearth steel, 
for which 

K = 1.786-9.81 - 1010 nn/m2,~ 1; 0e853.9.81. 1010 n/m2, 
. - 

g, = 0.085~10d, A = h, = - 1 
Om 931' 10-14 v2s  

(IV. 120) 
n m )  

Data for a material with elastic properties (IV.117) are presented in 
Table IV.l, which shows the effect of the magnitude of external load on the 
stress concentration factor found in the first, second and third approximations, 
and also on the magnitude of corrections to the first and second approximations, 
introduced into stress functions (IV.105) by the following terms. 

TABLE I V . 1  

I Stress concentratb~l factor (k--a,lp) for X,=1.019.10-5 

~ / 9 . 8 1 ~ 1 0  

(linear 
theory) tion 

40 2,000 
I 

1.953 1 1,895 
0.006 

60 2,ooo 0,023 
1,959 
1,918 

80 2,000 -0,188 , 1.811 0,078 1 ,889 

Tr. Note: Commas indicate decimal points. 



The calculations of stresses for the above materials with elastic /384 - 
properties (IV.117)-(IV.120) show that for axisymmetrical problems1, in the 
case of slight deviation of the law of elasticity from Hookers law, we may 
limit ourselves for engineering calculations to the second approximation. 

Un iax ia l  Tension: O ~ a ~ = p ,  ~ ( m ) = ~ ( m l = O  
X Y XY 

(Figure IV.3, where curve 1 corresponds to 
open-hearth steel, curve 2, to aluminum- 
bronze alloy, curve 3, to pure copper). 
In the first approximation the stress func- 
tion, according to linear theory, is 

(0 0) P u . (r, 6) = K p - 2 ~ n r  + 
+ (2 -P-$)cos26]. (IV. 121) 

Figure IV.3. By knowing the function U (0*0) from 
(IV.93)-(IV.97), we can find the explicit 

expressions for the right hand sides of equation (IV.92), which, together with 
boundary conditions (IV.107) and conditions "at infinityu (IV.108), defines 

the functions U (k,j)  (k, j = 0, 1, 2 . . .) which go into stress function 
Un(r, 0) of (IV.105) in the n-th approximation. After determining the function 

Un(r, 8), we can find the stress components by formulas (IV.82). 

The function U (0'0) has the form2 

(1 0)  p3 1 I 1 U . (r. 6) = - [ - 0 . 5 2 9 2 1 n r - 0 , 0 3 1 2 ~ - 0 . 1 5 1 0 ~ ~ + 0 . 1 3 5 4 ~ -  
H: 

'See I. A. Tsurpal's work [ Z ]  , where the axisymmetrical problem of stresses in a 
thin-wall tube is examined (the Lame problem). 
2 ~ e e  F. Jindra [1] or G. Kauderer [I], p. 126, 127. 



Analogously, we can calculate the functions U , u After finding 

stress function U (r, 8, p, E) in the n-th approximation, the stress components 
(n) (n) (n) 

or , o8 and rre (in the same approximation) can be found from formulas (IV.82). 

Since we are interested in the effect of the physical nonlinearity of the 
material of the plate on the stress concentration factor, we will introduce 
the formula for the calculation of stresses og along the contour of a hole: 

(2) ag 

k = (-) = 1 - (2 - 4.388Lp2) cos 26 - 
p r=I (IV. 123) 

- Ip3  (3,066 4- 2.107 cos $6 - 0,775 cos 66). 

( 2 )  
The graphs of change of the stress concentration factor k (IV.123) as a 

function o f  the magnitude of external load p are presented  i n  Figure IV.4 
(symbols are the same as in Figure IV.3) for materials with elastic properties 
(IV.117)-(IV.120) at points of the contour 8 = ?r/4 and 8 = ~/2. 

Figure IV.4. Figure IV.5. 

Figures IV.5 and IV.6 show the graphs of change of the stress concentration 
( 2 )  

factor k (IV.123) along the contour of a hole for the same materials (solid 
lines correspond to linear theory, broken lines - -  to nonlinear). 

Pure D i  splacementl: T = T = T (Figure I V .  7). In the first approximation /386 
XY YX 

the stress function according to linear theory is 

- - -  

'see I. A. Tsurpal [4] for greater detail. 



(0 0) T I 
U (r ,  6) =. - 2Ho (2 - r2 - -) r 2  sin 28. 

(IV. 124) 

Figure 1 v . 6 .  Figure IV.7. 

We will determine the function u(~'~) and the following in accordance with 
the method described above: 

(1 0) 1 1 .17 1 61 1 
" [ / ~ + 3 , 6 4 7 - 1 2 F ~ n r - -  U * (r, 6) - - -+--- 
H: , \  2 ' f '  2 0 ' r r  

1 61 1 23 1 41 1 (IV .125) -%r_t-- m . r 8  ~ . ~ ) ~ i n 2 8 + ( ~ - ~ . ~ + ~ . ~ - ~ . ~ s i n 6 8 .  

The stress concentration factor along the contour of a hole in the second 
approximation is 

(2) k = (!8 ) =-- (4 - 17.3801r7 sin 28 - 6.200he sin 68. 
% r-l * 

(IV .126) 

The change of the concentration factor k (IV.126) is illustrated in Figure 
IV.7 for two cases: = , r = 70*9.81*10' n/m2 and A = As, r = 700*9.81*10' 

n/m2. The solid lines represent data of nonlinear theory and the broken lines, 
data of linear theory. 

Pure Deflection of Rod by Pa i rs  M. The stress function according to 
linear theory for the first approximation is 



By substituting the function (IV.127) and its derivatives into (IV.94), we find - /387 

the differential equation for functions U (1'0), the integration of which yields1 

1 1  1 1 5  1 1  1 1 1  sin36 + T ( i 2 .  Fi-- (IV. 128) 
5 6 . p r + g j - ~ + a . F -  

The stress concentration factor on the contour of a round hole is 

a Mf 
s (&),=I = -sinO+sin3B -i- h p  (1.453sinB- 

- 2.363 sin 38 $: 0.02 1 sin 59 - 0,228 sin 79 + 0,096 sin 96). (IV. 129) 

EllJptical Hole. Multifold Uniform Tension-Compression. Let us examine 
the simple case of multifold uniform tension by forces p of an infinite iso- 
tropic plate made of a physically nonlinear material (Figure IV.8), subordinate 
to elasticity law (IV.78) under conditions (IV.80), with an elliptical hole. 

The function that maps the exterior of the elliptical hole (IV.86) on the 
exterior of the unit circle for this case, as we know, has the form 

2 * = ~ ( 6 + + ) ,  (IV. 130) 

'see I. A. Tsurpal [12] and his other works [6-91 in which the effect of a 
round hole reinforced by an elastic (linear or nonlinear) ring is analyzed. 



where 

a + b  R = -  a - b  2 .  e = -  a + , 5 == >* = Rrei@; 
(IV. 131) 

a and b are the semiaxes of the ellipse (see Figure IV.8). The function f(<) 
in (IV. 8 6 ) ,  as we can see, is f ( 5 )  = l/< in the given case1. 

The approximate solution of this problem - /388 
with consideration of three approximations 
reduces to series integration of equations 
(IV.92) with consideration of the form of 
operators (IV. 93) - (IV. 96). The stress func- 
tions of the first through third approxima- 
tions for multifold tension of a physically 
nonlinear elastic plate with a round hole 
are known : 

Figure 1v.8. 

~ ' 0 . 0 '  = -P- 
2Ho 

(r2 - 2 In r); 
(IV. 132) 

~ ( ' ' 0 )  = -- PI x 
H: 

(IV. 134) 

The stress function for a linear-elastic plate with an elliptical hole3 is 

(IV .135) 

By substituting functions (IV.132) into (IV.96a), we find the function 

T(O*~)(~, 9) in the form 

(IV .136) 

'For square and triangular holes with rounded corners, the functions f(<) are 
f(<) = '/c3 and f(<) = '/r2, .respectively (see Chapter I). 
2See I. A .  Tsurpal [9] . 
3 ~ e e  A. N. Guzl [Z]. 



If we know functions (IV. 132) and (IV. 135), we can find, from (IV.96a), 
the function 

(0  1 )  p2 1 1 1 T . ( r . 0 )  = 4-, H o  - ;i(~ - -3F  +gF)cos2o. 
(IV. 137) 

After substituting functions (IV.132), (IV.135)-(IV.137) and their 
derivatives into (19), we find an expanded expression for operator L 

tlJ1). 

Differential equation (IV.60) for the function U ( r ,  8) will have 
the form 

(IV. 138) 

The partial integral of equation (IV.138) is 

1 6  (r, 0) = -- + ;) cos 28. 
(IV .139) 

The general integral of homogeneous equation (IV.138) is - /389 

(1,l) 
00 

"horn (r 0) = (Cmg-mf2 + c,J-") cos me. (IV. 140) 

Integration constants Cmj and Crn4 in (IV.140) are determined from boundary 

conditions (IV .104) : 

l a  l a 2  (T . % + , . u"." (p, + R = 0. 

a t  1 (IV. 141) = ' a  u"'" (Q. 6) I Q= I -- R [2 sin 26 (& - 
We will omit the intermediate calculations and present the final expression 

for the function U (19')(r, 0 ) :  

(IV. 142) 

Stress function (IV.105) in the third approximation is 



+ & 2 ~ ( 0 . 2 ) $  p E ~ ( l o I ) I .  U, (r,  0,  p, e) =H,  [ u ( O . O '  + p l / ( ' * O )  + p , 2 ~ ( 2 ~ 0 ) + E l j ( 0 , ' ) '  

(IV. 143) 

According to formulas (IV.90), recalling the values of stress components 
(IV. 98), and also of functions (IV. 132) - (IV. 137), (IV. 142) and (IV. 143), we can 
find the stress state in a physically nonlinear thin plate weakened by an 
elliptical hole, in the third approximation. The stress concentration factor 
on the contour of the hole will be 

+ 2e2 cos 46 - 10, 660Aep2 cos 261. (IV. 144) 

We see from (IV.144) that the stress concentration factor with consideratkon 
of the physical nonlinearity of the material, satisfying elasticity relations 
(IV.78) under conditions (IV.803, depends nonlinearly both on the magnitude of 
the forces of tension p (see Figure IV.8), parameter A, which characterizes the 
mechanical properties of the plate, as well as on the ellipticity of the hole, 
characterized by parameter E (IV.131). Assuming in (IV.144) that E = 0, we 
obtain the values of k for a round hole. Assuming in (IV.144) that h = 0, we 
find the values of k found by A. N. Guz' in [Z], by the approximation method 
described above for an elliptical hole for the case where the material from 
which the plate is made obeys Hooke's law. However, for the latter case there 
is a rigorous solution1. By comparing the appropriate values of k found from 
the accurate solution with the approximate solutions given. above, we can find 
a clear representation of the rate of convergence of the approximate solution 
of problems of stress concentration near curvilinear holes for which there are /390 1 - 
no rigorous solutions. Such a comparison is presented in the first two rows 
of Tables IV.2 and IV.3. The third approximation, even for a strongly elonga- 
ted ellipse a/b = 1.6, yields for k (IV.144) very good agreement with the 
precise value (the difference does not exceed 2.5-3.0%). The values of k 
(IV.144) calculated for two two points A and B (see Figure IV.8) of the contour 
of the hole are presented in the tables. The values of k at the point A(9 = 0) 
are in the numerator, and the values of k at the point B(9 = n/2) are in the 
denominator for various values of a/b, p and A. The values Al(IV.117), X 3 
(IV.119) and h4 (IV.120) were used for A.  These data indicate the following: 

a) the ellipticity of a hole, as in the classical case, i.e. when the material 
of the plate obeys Hooke's law, has a considerable effect on the magnitude of 
the stress concentration factor k; b) as the forces of tension p are increased 
(see Figure IV.8) the magnitude of factor k at point A decreases, but increases 
at point B. Hence as the values of parameters p and X increase, the "soft" 
(see Figure IV.l) physical nonlinearity, as a rule, results in a more uniform 
distribution of stresses around the contour of the holes. 

'~ae 52, Chapter 11. 
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TABLE I V . 2  

Theory 

Linear 
I. 

Rigorous 2 2,101 
solution - - 

2 1,904 
Approximate 2 2,097 
solution 

- 
2 1.904 

I 
P I In linear theory k is independent of p 

Nonl i near 
I.1 

Tr. Note: Commas indicate decimal points. 

80 

90 

The approximation method proposed above for the solution of problems of 
an arbitrary curvilinear hole was based on the formal expansion of the desired 
functions into double series with respect to small parameters IA and E without 
consideration of the convergence of the examined series. An idea of the rate 
of convergence of the proposed method can be obtained in the general case by 

calculating the magnitudes of concentration factors k (n-2) , k(n-l), k(n) on the 
basis of formulas analogous to (IV.144), corresponding to stress functions 
un-29 Un-l' Un for the preceding approximations. 

Uniaxial Tension. The stress functions of the first and second approxima- - /391 
tions in the case of the nonlinear problem for a round hole were found on the 
basis of formulas (IV.121) and (IV.122). 

1,895 - 
1,895 

1,868 

The functions U ( (r, 8) and u (O ' 2, (r, 0) , however, have the form1 

(IV. 145) 

1,962 - 
1,832 
1,954 

3 3 '  ~ 0 ~ 6 8  . +(-;+;.$)WVIO+ ( 5  - . ---  1 ] (Iv. 146) 

1,868 1,841 1,794 1,718 

'see A. N. Guz' [2 ] .  

2,301 
1,777 

2,014 
1,662 

2,170 
1,686 

2,138 
1,593 

2,310 - - - -  
1,616 
2,264 - 

1,966 

2,587 
3,522 

2.517 

2.414 
me: 
2??150 



TABLE I V  ..3 

- 

P In linear theory k i s  independent of p 

-- 

Theory I u /b  1 1.00 1 1.05 1 1.10 I o / 1.30 / I.SO I 1.60 

Nonl i near 

T r  Note: Commas indicate decimal points. 

By substituting functions (IV.121), (IV.122), (IV.145), (IV.146) and the /392 
derivatives corresponding to them into equation (IV.92) for k = 1 and f = 1, 

- --  

Linear 
3.0000 - 
1,3333 

2.'6CO 

- 

we obtain the equation for the determination of function U ' , the integra- 
tion of which, under conditions (IV. 104), yields1 

- 

2.2120 
1,8182 
2.1980 

3.2006 -- 
1,2509 

3,1360 

'see I. A. Tsurpal [14] .  

Rigorous 
so'uti0n 

Approximate 

2.4440 
1:6?&7 

2.4350 ------- 
solution 

2,6160 
1,5387 
2.5370 

2,0000 
=O 

2,0000 
1,3600 

2.1010 
m i  
2.0970 

1,2896 2,0000 1,8188 1,9018 1,6696 1.5460 



(IV. 147) 

0. 1562 
-- ) c o s 6 6 + ( - 0 . 1 8 7 5 ~ + ~  1 1.2321 - 2,0955 - 

P + 
+ y) cos 88. 

By substituting the functions found (IV.121), (IV.122), (IV.145)-(IV.147), 
in which the variables r and 8 should be substituted by p and 9, respectively, 

into formulas (IV.98), we find the stress components o (k,j) (k,j) and (k,j) 
p '59 PO 

(k, j = 0, 1, 2). In this case the function f(<) in differential operators 
L(j-ml, $-m) 
1 J a - . ,  ('-'I (IV. 106) should be taken from (IV. 86), which, in L6 

the case of an elliptical hole, will have the form f(5) = I/<. 

We will write the formula for the calculation of the stress concentration 
factor along the contour of an elliptical hole in the third approximation: 

( 5 )  

k = iPpbjQll = 1 - 2 cos 26 + 215 (COS 26  - cos 46) 4- 

+ c2 (2 cos 46 - cos 2 6  - cos 66) + hp2 (- 3.0680 + 
+ 4,2922 cos 211. - 2.1076 cos 4 6  + 0.7738 cos 66) + (IV. 148) 
-b h p 2 & ( l ,  2977- 1 1 , 5 5 1 7 ~ 0 ~ 2 0 i -  8 ,9039~0~46-  

- 5,3963 cos 66 + 2,2834 cos 86). 

The concentration factors k (IV.148) for various values of a/b and external 
load p are presented in Tables IV.4 and IV.5 for a copper plate A = Al (IV.117) - /393 

and open-hearth steel A = A 4 ,  respectively. For comparison, the corresponding 

data of linear theory are also ?resented. 



TABLE 1V.4 

Tr. Note: Commas indicate decimal points. 

Theory 

h 

TABLE IV.5 

Theory 

I - o/b  

Nonl inear 

4 

i near 1 3,M)O 1 2.817 1 2,517 1 2,360 j 3.201 

L i near 

p I 'lrn I '.lo / 1 1 1 1 

3,397 3,587 3,960 I I 

T r .  Note: Commas indicate decimal points. 

%. 

1.30 

Figure IV.9 shows the change of concentration 
factor k (IV.148) at the point of contour 9 = ~ / 2  
as a function of the magnitude of external load p 
and ratio a/b for a copper plate A = Al (IV.117) 

and a plate made of open-hearth steel X = h4 

(IV.120), and Figures IV.10 and IV.11 show the 
graphs characterizing the change of concentration 
factor k (IV.148) as a function of the magnitude 
of the force of tension p for various physically 
nonlinear materials with elastic characteristics 
(IV.117)-(IV.120) for a/b = 1.5 at the same point 

Figure IV.9. of the contour of the hole 6 = ~ / 2 .  

3,362 
3.230 
3,095 
2,912 

40 
50 
60 
70 

3.015 
2,921 
2,793 
2,642 

3,702 
3.573 
3,395 
3.186 

2,676 
2,605 
2,508 
2.393 

2,836 
2,754 
2,642 
2.508 

3,190 
3,087 
2,945 
2,777 

2,445 
2,393 
2,323 
2,240 



F igure  I V .  10. F igure  I V . 1 1 .  

Square Hole w i t h  Rounded Corners. We will examine the stress state near 
a square hole with rounded corners1, the contour of which is defined by the 
function 

(IV. 149) 

e i9 
where p = 1, (< = p , E = 1/9) in the case of multifold tension of a phys- 
ically nonlinear plate by forces p at infinity, i.e. for 

= = p, r;y' = 0. (IV. 150) 

The approximate solution of this problem will be found with consideration 
of three approximations, i.e. we will search for stress function (IV.105) in 
the form 

Us ( r  , 8 ,  p ,  e) = H, [U(O.O) + eu(' , ' )  + $ 1 / ( O v 2 )  4- 
+ pu(l"a + p2C'(2"3 + C L e ~ ' " " ] .  (IV. 151) 

- -- -- 

'~or a square hole with sharper corners, it is necessary to retain a larger num- 
ber of terms in the function f(<) (IV.86) (see 92, Chapter 11). 



The functions U (080)3 u(~,O) and u ( ~ J ~ )  in (IV.151) were found from /394 - 
formulas (IV.132)-(IV.134). They yield the solution for a physically nonlinear 
plate with a round hole. 

Stress functions U (0'1) and u(~'~) in (IV. 151), which corres ond to a 
linear-elastic plate with a square hole (IV. 149), were determinedP with an 

2 accuracy up to E and E , and have the form 

~ ( o J )  ( r ,  e )  = - E. ( \ f ) COJPO; Ho r- - -  
(IV. 152) 

cm89-31nr]. (IV. 153) 

By substituting the corresponding functions from (IV.132)-(IV.134) and /395 

(IV.152) into the right hand side of equation (IV.92), we find for the func- 

tion U (1~1)3 the equation 

1 I AAU"'" = 96PS (28 - 135 -+) cos 48. 
H: (IV. 154) 

By integrating equation (IV.154) under boundary conditions (IV.104), we 
obtain2 

(IV. 155) 

By substituting in functions U (OSo)  u("~l) u(".2) u(l,o) u(2,0) and 

u"~') (found in the function U (IV.151)) r and 0 by p and 19, respectively, 3 
and by substituting them into formulas (1~.98), recalling the form of function 

(IV.149) for the established form of operators L (j -m) , Lij -m) , ..., L ( j -m) 
1 

(IV.106), we find the expressions for stress components a (k,j) ( k , j f  and 
p s a g  

T ( )  (k, j = 0, 1 2). By substituting them into formulas (IV.90), we ob- 
PO 
tain the final (with the given degree of accuracy) expressions for the 
desired stress components in a curvilinear orthogonal coordinate system de- 
scribed by mapping function (IV.149). We will not write these expressions for 
a and a19 due to their awkwardness, but will present only the formula for the 

P 
concentration factor along the contour of the hole: 

'see G. N. Savin and A. N. Guz' [I]. 
2 ~ o r  more detail see I. A. Tsurpal [Ill. 



- 1,500hpa - 3, 152hp2 cos 48 f 10. 608h2p0). (IV .156) 

(3) 
The values of k (IV.156) calculated for aluminum bronze alloy A = hg 

- 

(IV.119) for p = 11-9.8l010' n/m2, and for pure copper h = A2 (IV.118) when 

p = 6-9.81*10~ n/m2, are presented in Figure IV. 12. The solid lines correspond 
to linear theory, and the broken lines correspond to the mentioned physically 
nonlinear materials. 

(3) 
The values of k (IV.156) for copper 

h = h4 (IV. 117) at the points 8 = 0 and 

8 = ~ / 4  of the contour of the hole are pre- 
sented in Table IV.6. 

Concluding Comments. By comparing the - /396 
solutions derived in 53 with the correspon- 
ding results of the linear theory, we can 
make the following additional conclusions: 

a) if in classical linear elasticity 
theory the stress concentration factor (in 
these problems) is independent of the mag- 
nitude of the external load and elastic 
properties of the material, then, in con- 
sideration of the physical nonlinearity of 
the material (IV.l) (under the condition that 
deformations are small, i.e. such that the Fi gure IV. 12. coordinates of the deformed and nondeformed 
state of the body can be assumed to be equal) 

this stress concentration factor actually (nonlinearlly) depends on the elas- 
tic properties of the material and the magnitude of external load; 

TABLE I V . 6 .  

Tr. Note: Commas Indicate decimal points. 

6. 

0 
O 

I Nonlinear theory Linear - 
theory[ ZCQ 

3,278 
1.307 

3,424 
1,204 

3,726 
1,062 

3,000 
1.375 

3,705 3,645 3,550 
1 , 0 6 9  1 , 0 9 2  1,135 



b) consideration of the physical nonlinearity of a material in the form 
(IV. 1) leads to a decrease1 in the concentration factor in the most stressed 
points of the contour of the hole and to a more uniform distribution of 
stresses around the hole in comparison with linear theory; 

c) the ellipticity of the hole, as in classical theory, has a considerable 
effect on the magnitude of the stress concentration factor around the hole; 

d) the nonlinearity of the material, even in the case of great deviation 
from Hooke's law, can reduce considerably the peaks of stresses in the weak 
point around the hole. 
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CHAPTER V .  FORMATION OF PLASTIC ZONES OR EQUILIBRIUM 
CRACKS AROUND HOLES 

Abstract. This chapter investigates stresses beyond the 
elastic limit. Problems of the determination of plastic 
strain zones arising near holes, lines of sliding and of 
critical loads at the cracks are considered. Solutions are 
given of the elasto-plastic problems for a plane with a 
circular hole in the case of normal and tangential forces 
applied at the hole contour; an effect is shown for the 
nonuniform stressed field on the size and configuration 
of the plastic strain zone and also the distribution of 
the plastic zones in a plate with an infinite series of 
identical circular holes. 

51. Statement of Problem 

The results of the analyses presented in the preceding chapters show that /399 
a zone of increased stresses, the so-called "stress concentration" zone, is 
formed around a hole. It is clear that if this zone achieves a certain size, 
the given material can no longer be elastic near the hole and will pass into 
a state which we will call the "state beyond the limit of elasticity." We will 
assume that this state will occur in some range near the examined hole1 . The 
stress and deformation states beyond the limit of elasticity are defined by 
the relations of plasticity theory. 

Two types of materials are distinguished in plasticity theory: "ideally 
plastic" and "reinforcing" materials. 

An ideally plastic material is characterized by the fact that it cannot 
endure stresses exceeding a definite yield point. In other words, for ideally 
plastic materials there is a completely defined function 

called the condition of plasticity or yield function. 

When equation (V.l) is satisfied at a given point of the body, plastic 
deformations can occur. In the elastic range 

'1n the case of the heterogeneous stress state, we will limit the dimensions of 
the plate such that the stress state beyond the "concentration zone" will be 
elastic. 



In contrast to an ideally plastic material, in order to obtain increments 
of plastic deformations in a reinforcing material it is necessary to increase 
the stresses beyond the limit of elasticity. 

One feature of the relations of plasticity theory is their nonholonomic 
(do not yield to integration) character. The plastic state of a material, in 
contrast to the elastic state, depends not only on the final magnitudes of 
loads, but also on the character of loading of the body (history of the load). 

The increments of the total deformation in the plastic range are composed 
respectively of the increments of elastic and plastic deformations: 

It is assumed that elastic deformations in the plastic range are related /400 
to the stresses by Hookels law 

where E, G, v are, respectively, Young's modulus, shear modulus, and 
Poisson's ratio; 6ij is Kroneckerls symbol; o is average pressure. 

Increments of plastic deformations are defined by the relations of the 
associated yield law. For an ideally plastic material, 

where dp = 0 if f < 0. 

The plane problem of ideal plasticity theory has the following feature: 
three equations -- two equilibrium equations plus plasticity equation (V.l) -- 
relative to three stress components ax, a 

Y' T x ~  
define a closed equation system. 

Therefore the plane problem of ideal plasticity theory is often called 
"statically defined," which refers to the closure of the equation system for 
stresses. However, only those problems whose boundary conditions are also 
given only in stresses (contour of a hole is free of loads or is loaded by given 
forces) can be related to statistically defined problems. 

The condition of plasticity for an anisotropic (metallic) body has the form 



where C C are the second and third invariants, respectively, of the stress 2' 3 
deviator (volumetric deformation in metals is elastic within sufficient limits, 
and therefore plasticity condition (V.5) is independent of the first invariant 
of tensor of stresses a).  

If for plane deformation we have from the condition e = 0 z 

then the third invariant of the deviator of stresses C is equal to zero, and 3 
plasticity condition (V.5) reduces to the form 

For the Mises plasticity condition (C2 = const), relation (V.6) will occur 

only in the case where the material is incompressible (V = 1/2). Consideration 
of elastic compressibility of a material under the Mises plasticity condition 
requires the joint analysis of stress fields and deformation rate. In other 
words, the problem in this case is not statically defined. This fact is the 
outcome of examination of the Mises plasticity condition and relations 
(V.2)-(V.4) undertheconditione = e  = e  = O .  

Z xz yz 

For the Tresca plasticity condition (condition of maximum tangential /401 
stress), plasticity condition (V.7) can also be valid when v # 1/2. However, 
certain limitations1 are involved here when using plasticity condition (V.5). 

Generally speaking, in solving statically defined elasto-plastic problems 
it is possible to limit the analysis to the assumption of incompressibility of 
the material required for the determination of displacements. As the solutions 
of problems show2, this assumption of incompressibility of a material through- 
out the elastic and plastic zones has a considerable effect on the magnitude 
of component oz. However, the latter is usually unimportant. 

The equation system of the plane deformation state of an ideally plastic 
body, according to (V. 2) - (V .  4) and (V. 7) when v = 1/2, can be represented in 
the form 

- - -- 

'see V. V. Sokolovskiy [I]. 
2 ~ e e  L. M. Kachanov [I]. 



where u u are displacement components along the x and y axes. 
x' Y 

To the contour of the given hole, let normal and tangential forces 

be applied, and at infinity, the stresses in the elastic state 

07 = PI (x ,  y ,  A), U: = P2 ( x ,  y ,  A), r; = - p 3 ( ~ .  y ,  A),  

where X is the stress parameter. 

We will assume that stress function U (x, y, A )  in the plastic range 
1 

satisfies some hyperbolic equation 

(V. 11) 

i.e., satisfies the condition of plasticity and boundary conditions (V.10). 

The problem of determining the stresses boils down to the determination of 
biharmonic function U (x, y, A) outside of some unknown contour L which /402 2 - 
encompasses the hole, under the condition that the following relations are valid 
on contour L: 

and if x + cr, and y + a, 

(V. 12) 

(V. 13) 

The basic difficulty of this problem is the determination of contour L which 
separates the "plastic" zone from the elastic zone. If this contour is known, 



t h e  determination o f  function UZ(x, y) i s  equivalent  t o  t h e  so lu t ion  of  t h e  

e l a s t i c  problem f o r  a plane with hole  L under known condit ions,  both on t h i s  
contour L, and a t  i n f i n i t y .  So f a r ,  no general method f o r  solving t h e  formu- 
l a t e d  problem has been found. However, when the  s t r e s s  components i n  t h e  
p l a s t i c  range a r e  known 

a2u, - -  (1)  3x1 - 0(1)  a2u, - t(l) 
dy% - O X ,  a x 2  - u * dxdy - - XU* (V. 14) 

the  so lu t ion  of t h e  s t a t e d  problem can be found i n  some cases by a compara- 
t i v e l y  simple method. 

The problem of determining displacements i n  t h e  p l a s t i c  range i s  solved 
a f t e r  t h e  s t r e s s e s  a r e  found, and reduces t o  the  so lu t ion  of equation system 
(V.9), of t h e  hyperbolic type. Displacements on contour L ,  known from t h e  
so lu t ion  of t h e  problem i n  the  e l a s t i c  range, play the  p a r t  of  t h e  i n i t i a l  
Cauchy da ta  f o r  equation system (V.9). 

In solving e l a s t o - p l a s t i c  problems of s t r e s s  concentrat ion near  holes ,  it 
i s  e s s e n t i a l  t o  def ine  the  range of  poss ib le  change of external  stresses such 
t h a t  r e l axa t ion  zones w i l l  not  occur i n  t h e  p l a s t i c  ranges under s t r e s s .  Equa- 
t i o n  systems (V.8), (V.9) a r e  no longer v a l i d  i n  t h e  case of r e l axa t ion .  

92 .  Elas to-Plas t ic  Problem f o r  i n f i n i t e  P l a t e  with Round Hole (plane 
~ e f o r m a t  ion) 

Case of Normal Pressure on Contour of Round Hole1. The o r i g i n  of t h e  
coordinate system i s  placed a t  the  cen te r  of  a round hole of radius  R 
(Figure V .  1)  . 

Figure V . 1 .  

Equation (V.3), which def ines  s t r e s s e s  
i n  the  p l a s t i c  range, i . e .  t h e  " p l a s t i c i t y  
condition," i s  represented2 i n  the  form 

where k i s  a constant of  the  ma te r i a l ,  equal 
t o :  

a )  according t o  the  theory of  g r e a t e s t  
t angen t i a l  s t r e s s e s  

"The so lu t ion  of  t h i s  problem was f i r s t  found by L. A .  Galin El], and l a t e r  by 
0. S. Parasyuk [ I ]  by a d i f f e r e n t  method. 

2 ~ e e  A .  Nadai [ I ] .  
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b) according to the theory of octrahedral tangential stresses 

where os is the yield point of the material under unilateral tension. 

Let only one normal force be applied to the contour of the hole, i.e. when 
r = R: 

and let stresses 

be given at infinity. 

The solution of equation (V.15) under boundary condition (V.16) has the 
form 

(V. 17) 

(1) On the basis of stress function (V.17) we find the stress components a, 

which are conveniently represented in the following combinations: T x y 9  Y 

(V. 18) 

The problem boils down to the determination of the function U2(x ,  y) and 

contour L that separates the plastic and elastic zones, under the following 
conditions : - 

(V. 19) 



*Us d2Ut - *i ax1 = I 2kf on L, 
ax1 aya axar B - A  for z - t a o .  

For any biharmonic function U (x, y) in range S (beyond contour L), there /404 
2 - 

are always two holomorphic Muskhelishvili [I] functions within it, namely 
(2) and Y; (z) , such that 

(V. 21) 

Thus, the problem can be formulated as follows: to find contour L that 
bounds the plastic range, and two functions 3 * ( z )  and Y * ( z )  that are holomor- 2 2 
phic within.the entire plate beyond contour L and continuous all the wayto 
L, according to the following conditions: 

- 
4 b 6 ( 2 )  = 12k-2p+2k In$ on L, 

IA + B for r -r co; 

2k-f .  on L, 2 1 ; i d ' ( z ) + ~ l ; ( z ) ] =  

B - A  for Z-+CO. 

(V. 22) 

(V. 23) 

To solve this problem we will map the exterior of contour L onto the 
exterior of unit circle y of plane < using the function 

Then, assuming 

conditions (V.22) and (V.23) acquire the form 
- 

4 Re @, (5 )  = 
2k - 2p + 2k ln Ww) on y, 

for 5 + CO; 

- 

(V. 25) 

(V. 26) 

(V. 27) 



The functions a*(<) and Y2(<) are sought in the form 

We will assume that the function z = LO(<) is of the form 

Recalling that on the contour of unit circle y 

we rewrite the first condition (V.27) in the form 

Simple calculation shows that 

where M(a) is a function that is holomorphic outside of y and MCm) = 0. 

Analogously, 

where N(u) is a function that is holomorphic outside of y and N(-) = 0. 

(V. 28) 

(V. 2 9 )  

(V. 31) 

(V. 32) 

We multiply equation (V.30) by 1/21~i*da/a - 5 ,  where 5 is a point within 
y, and then we integrate with respect to y: 



According to Garnak's theorem1, (V.33) is the outcome of condition (V.30). 
From (V.33), because of the known properties of the Cauchy integral, recalling 
relations (V.31) and (V.32) and the second condition of (V.27), we obtain 

- B-A c1 =.- c - 
2k 

- C1 = 4. 

where 

B - A  $--- 
2k 

Thus, the function w(<) (V.29) should have the form 

(V. 34) 

where c is as yet an undefined constant, which can be found from conditions 
(V. 26) . 

The first of conditions (V.26) will be satisfied if 

(V. 35) 

The second condition of (V.26) will be satisfied if the constant is 
determined from equation 

- - --- 

'see N. I. Muskhelishvili [I]. 



Hence 

After  we have found functions (V.34) and (V.35), we f ind  the  function 
Y2(5) from the  f i r s t  condit ion of (V.27) : 

Thus, t h e  s t a t e d  problem i s  solved. Contour L, i . e . ,  t he  boundary o f  t h e  
p l a s t i c  range, w i l l  be an e l l i p s e  with t h e  semiaxes a = c ( 1  + B), b = c ( l  - B ) ,  
where f3 = B - A/2k, and t h e  constant  c i s  defined by formula (V.36). I f  
A = B # 0, then, a s  follows from (V.34) and (V.36), the  boundary of the  p l a s t i c  
range w i l l  be a c i r c l e  of radius  

I f ,  i n  t h e  p a r t i a l  case A = B = 0, i . e .  t he re  a re  no s t r e s s e s  a t  i n f i n i t y ,  
then 

I f  the  contour of the  round hole  R i s  f r e e  of ex te rna l  s t r e s s e s ,  and t h e  
stresses a t  i n f i n i t y  a r e  A = B # 0, t h e  boundary of  t h e  p l a s t i c  range w i l l  a l s o  
be a c i r c l e  of radius  

By comparing (V.39) and (V.40), we s e e  t h a t  i f  A = p, then, a p l a s t i c  zone - /407 
of the  same magnitude i s  formed near  t h e  round hole .  

The s t r e s s e s  i n  the  p l a s t i c  zone a r e  defined by formulas (1.27) i f  we 
s u b s t i t u t e  i n  them t h e  values we have found f o r  the  functions w(<) (V.34), 
a2(G) (V.35) and Y2(c) (V.37). The s t r e s s e s  i n  t h e  p l a s t i c  range a r e  defined,  

however, by s t r e s s  function (V.17). 



From t h e  so lu t ion  we have obtained, we may der ive  an important p r a c t i c a l  
conclusion: s ince  the  form of functions Q2(<) and y2(<) ,  which s a t i s f y  only the  

f i r s t  condit ion of (V.26) and the  f i r s t  condit ion of (V.27), i s  independent of 
the  spec ia l  s e l e c t i o n  of w(<), and t h e  function z = w(<) (V.34), which def ines  
the  boundary of the  p l a s t i c  zone, i s  completely defined from the  second condi- 
t i o n  of (V.26) and the  second condition of  (V.27), then we may use any func- 
t i o n  w(<), i . e .  def ine  the  boundary of t h e  p l a s t i c  zone i n  advance, and 
proceeding i n  the  opposi te  manner, we can f ind  the  s t r e s s  s t a t e  a t  i n f i n i t y  
f o r  which the  function w(<) i f  I r;l = 1, w i l l  def ine  t h e  boundary of t h e  p l a s t i c  
zone, i . e .  t he  contour L. Let us take ,  f o r  ins tance ,  the  function 

where c ,  $ and 6 a r e  constants .  

Then, on t h e  b a s i s  of (V.35), 

and on t h e  b a s i s  of (V.37) 

(V. 42) 

Using r e l a t i o n s  (V.221, (V.23) and formulas (V.21), we f ind  the  s t r e s s e s  
a t  i n f i n i t y :  

k l n c -  k I n R  f 

a(") - o(") + 2itL;) = 2kB (x  + iy) + 2ko. (V .44) 
Y 

Thus, i f  i n  s u f f i c i e n t l y  remote po in t s  of the  plane (a t  i n f i n i t y ) ,  we 
know s t r e s s e s  (V.44), and i f  we know forces  (V.16) on the  contour of  a round 
hole of radius  R ,  t he  boundary of the  p l a s t i c  zone t h a t  surrounds t h e  hole 
w i l l  be contour L,  t he  equation of which i s  given by the  function w(5) (V.41) 
i f  ( 5 1  = 1. 

We w i l l  now t h e  d iscuss  t h e  l imi ta t ions  imposed on s t r e s s .  In order  t o  
avoid re l axa t ion ,  which i s  i n t o l e r a b l e  under t h e  condit ions of the  given prob- 
lem, it i s  e s s e n t i a l  t h a t  t h e  p l a s t i c  zone, a t  any moment of  s t r e s s ,  completely 
encompass the  p l a s t i c  zone a t  any preceding moment of s t r e s s .  



The boundary of t h e  p l a s t i c  range i s  an e l l i p s e  with semiaxes /408 
a = c ( l  + B), b = c ( l  - B). We w i l l  denote the  values i n  t h e  preceding moment 
of s t r e s s  through t h e  subscr ip t  1, and i n  the  following moment of s t r e s s ,  
through t h e  subsc r ip t  2: 

ca( l+Bz)>c1( l+$1) ,  ~ ~ ( l - $ ~ ) > c ~ ( I - $ 3 .  (v. 45) 

The values c ,  6 a r e  defined by t h e  magnitudes of loads A(X), B(h), P(X). 
Therefore i n e q u a l i t i e s  (V.45) give us the  poss ib le  boundaries of change of t h e  
loads. 

I t  should a l s o  be noted t h a t  t h e  so lu t ion  obtained i s  v a l i d  only i n  t h e  
case where any point  i n  the  p l a s t i c  range can be connected t o  the  contour of 
the  hole by two s l i p  l i n e s  t h a t  l i e  e n t i r e l y  within the  p l a s t i c  range. For 
t h i s  purpose it i s  necessary t h a t  t h e  semiaxes of t h e  e l l i p s e  t h a t  def ines  the  
boundary of t h e  p l a s t i c  zone not  exceed a(@ < 0.171) .  Otherwise the  problem 
becomes s t a t i c a l l y  undefinable. 

Let us examine t h e  equations f o r  the  so lu t ion  of displacements (V.23). 
In the  po la r  coordinate system they acquire the  form 

o -ar  9 o r - u @  e = e p +  - 're er = e; + 4 G o  @ 4G e r , = e ; , + ~  

where u r ' ue a r e  displacement components along t h e  r ,  0 axes. 

From the  assumption o f  incompress ib i l i ty  o f  the  mater ia l  we have 

(V. 47) 

(V. 48) 

In the  p l a s t i c  range rre = 0 and the re fo re  from (V.47) it follows t h a t  

e = e  Further,  from (V.46) we know t h a t  i n  the  p l a s t i c  range re re '  

de,, = 0. (V .49) 

Equation (V.49) def ines  t h e  increment of deformation a t  a point  of the  
body a s  the  load parameter changes, and therefore  in teg ra t ion  of r e l a t i o n  (V.49) 
y ie lds  



ere = f (f , 6)- (V. 50) 

We will show that the constant in the right hand side of equation (V.50) 
is equal to zero at any point. We will analyze the deformation process. All 
stress components and deformations on the boundary of plastic zone L are con- 
tinuous, and therefore, from condition T = 0 and Hookets law, we know that 

r, 0 
e = 0 on contour L. Consequently, after the subsequent extension of the 
r,e 
plastic zone to any fixed point at the moment the boundary of the plastic range - /409 
passes through it, e = 0. And since at any subsequent moment in the plastic 

re 
zone relation (V.49) is valid, then, consequently, deformation e in the 

r, 0 
plastic range will always be equal to zero, i.e. f(r, 0 )  = 0. 

Therefore, for the determination of displacements in the plastic range, 
we have the equations 

or in the components of displacements: 

du, u I . a ~  drr I au, -+f  +- .'=O, --- r'@ + - . - = 0. 
dr r a0 dr r r de 

(V. 51) 

(V. 52) 

Equation system (V.52) is of the hyperbolic type, and its characteristics 
coincide with those of the equation system for stresses. Equations (V.52) can 
be solved numerically. The solution of equation system (V.52) by the small 
parameter method is presented in 55 for the examined problem. 

The solution of the problem presented in this section was extended by 
V. L. Fomin [l, 21 to the case of a stationary thermal field for p = 0, 

're 
= 0 (no external forces are applied to the contour of a round hole). It 

is assumed that the field is thermally insulated and that the plastic zone 
completely encompasses the round hole. 

The boundary L that separates the plastic zone (which encompasses the 
hole) from the elastic zone is also an ellipse in this case, although its cen- 
ter is displaced in relation to the center of the hole; the effect of the 
above displacement is determined by the temperature field. Here, instead of 
mapping functions (V.343, we will use the function 

where y is a constant, defined by the temperature field; 



(q 2) A - B .  
c = Re ; I 3 - T '  

A and B a r e  t h e  va lues  o f  s t r e s s e s  ox and a at i n f i n i t y .  The func t ion  w(q) 
Y 

maps t h e  e x t e r i o r  of  t h e  u n i t  c i r c l e  onto t h e  e x t e r i o r  of t h e  e l l i p s e  with 
thk c e n t e r  a t  t h e  p o i n t  y/k = x + iyo  and with t h e  semiaxes a = c ( l  + B ) ,  
b = c ( 1  - f3). 0 

The case  where k i s  a  func t ion  o f  r a d i u s  r, i . e .  k  = k ( r ) ,  i s  analyzed by 
A. I. Kuznetsov [ I ] .  

The a n a l y s i s  of t h e  e l a s t o - p l a s t i c  problem f o r  a  ma te r i a l  with l i n e a r  
reinforcement i n  t h e  p a r t i c u l a r  case  where a  s i n g l e  normal fo rce  i s  given on 
t h e  contour  of  t h e  ho le ,  with no s t r e s s e s  a t  i n f i n i t y ,  i s  given by K .  N .  
Shevchenko [ I ] .  The a n a l y s i s  of t h i s  problem f o r  a  ma te r i a l  wi th  gradual  
reinforcement  i s  presented  by 0. I.  Mangasarian [ I ] .  I t  is shown i n  t h e  l a t t e r  
work t h a t  t h e  d i f f e r e n c e  i n  t h e  r e s u l t s  obtained by t h e  theory  of smal l  e l a s t o -  - /410 
p l a s t i c  deformations and by t h e  theory  of  flow i s  s l i g h t .  

Case o f  Normal and Tangential  Forces Appl ied  t o  Contour o f  Round Hole1. We 
w i l l  examine t h e  genera l  case  where both normal and t a n g e n t i a l  fo rces  a r e  
appl ied  t o  t h e  contour  of  a  round ho le  of r a d i u s  R ,  i . e .  when r = R 

and a t  i n f i n i t y ,  a s  i n  t h e  preceding case ,  t h e  s t r e s s e s  

The s o l u t i o n  of equat ion (V.15) under condi t ion  (V.53) was found by 
S. G .  Mikhlin [l] 

where 

(V. 55) 

lThe s o l u t i o n  i s  given by 0 .  S. Parasyuk [ I ] .  



r, 0 are polar coordinates. 

For our purposes it will be convenient to change to Cartesian coordinates 
and write the stresses in the following combinations: 

(V. 56) 

The problem involves the determination of contour L and such functions 
@$ (z) and Y$(z) , l~olomorphic beyond L, that satisfy the following relations : 

4~eCbi  (2 )  = { 2ek 12 In (l/= + C'I/'r'L+)] + 2kD on L, 
A + B  for z - t c o ;  

(V. 58) 

The rigorous solution is very difficult. However, considering that the - /411 
plastic zone will be quite large, we may disregard in the first boundary con- 
dition (V.58) the value C/r2 and replace it with the following: 

2 [&;' (z) f Y; (z ) ]  -  eke-^". (V. 59) 

We will map the exterior of contour L onto the exterior of unit circle y of 
plane using the function 

and assume, as before, 

G I 2 t 'Y; [a (t)l =v, ( I ) .  

(V. 60) 

We will substitute relations (V.57)-(V.59) with the following 



2ek (2 In ( 1 ' " ~  (2)  03 - C + I'm (5) a) 4- C ) 4- 2kD on y. 

- (V. 61) ] = {2.9k*) ~ ( 5 )  dn y, 
(V .62) 

B - A  f o r  c +  OD. 

From here t h e  ana lys i s  is  the  same a s  i n  the  preceding case. Taking 

we mult iply the  f i r s t  condit ion (V.62) by 1/21~i*da/o - <, where < i s  a point  
wi th in  y, and i n t e g r a t e  with respect  t o  y: 

- 
B - A  = C1-2ke 

C 
(V.  64) 

- .  B - A  
cl= - c  =PC =c,. 

2ke 

where 

B - A  g = - 
2ke ' e = + l .  

Thus, from the  f irst  condit ion of (V.62), the  function i s  found i n  t h e  form 

We w i l l  determine the  constant c  from the  second condit ion o f  (V.61). If /412 - 
A = B # 0 o r  A = B = 0, then it is easy t o  see  from (V.65) and (V.66) t h a t  
f3 = 0 and t h e  boundary of the  p l a s t i c  zone w i l l  be  a c i r c l e .  

We w i l l  examine severa l  examples, the  so lu t ions  o f  which a r e  presented i n  
the  t ab le .  

Comparison of examples 1 and 2 shows t h a t  with t h e  addi t ion  of  t angen t i a l  
s t r e s s  T = const,  t h e  p l a s t i c  zone increases .  The graphs of  contours L t h a t  r e  
separa te  the  p l a s t i c  zone from t h e  e l a s t i c  zone f o r  examples 1 and 2 (curves 1 
and 2, respect ive ly)  a r e  shown i n  Figure V . 2  by way of graphical  i l l u s t r a t i o n .  
Comparison of examples 3 and 4, 3 and 6 shows how normal pressure and tangen- 
t i a l  s t r e s s ,  when applied t o  the  contour of the  hole ,  a f f e c t  the  p l a s t i c  zone, 



and specifically, from the point of view of the magnitude of the plastic zone, 
the application of normal pressure of a certain magnitude is equivalent to a 
decrease in stresses at infinity by the same magnitude, and the application of 
tangential stress is also equivalent to some decrease in stresses at infinity. 

Tr. Note: Commas indicate decimal points. 

53. Effect of Heterogeneity of  Stress Field 
on P l a s t i c  Zone Near Round   ole' 

P 
!111111!111 Suppose forces 

Or = P. ~~8 = 0. V. 67) 

are applied to the contour of a round hole 
of radius R. 

If the material around the hole is /413 - 
converted to the plastic state, the stress 
function U,(x ,  y) will acquire the form 

I 
I Stresses a t  infinity l ~ r r e u e r  on coptour 

Figure V.2. 

c 

3 
2,8513 
1,5 
1,5 
1.5 
1,5 

1 (V. 17) : 

r p - k  ( )  k - . (V.68) 
R 2 

I 
No. o f ,  
exampl " : " I T  o:") 

k 

Function (V.68) possesses and important property, such that it satisfies 
simultaneously two equations: plasticity condition (V.15) and biharmonic equa- 
tion (V.l). This fact, first proposed by L. A .  Galin [I], makes it possible to 
solve the elasto-plastic problem for more general conditions at infinity than 
was done in preceding sections, where only tension was analyzed. 

b 

I /3  
113 
0.2 
0.2 

113 

of hole 

k h - 1 "  

We will examine the elasto-plastic problem for the case where the stresses 
at infinity are expressed by polynomials. 

R 

I 
1 
1 
I 
I 
1 

0.5 
0 
0,s 
0.5 
0.5 
0 

-0,57102 
-0,57102 

1,89650 
1,89650 
1,11965 
1,14425 

1 
2 
3 
4 
5 
6 

- - 

'The case of pure deflection is analyzed by L. A .  Galin [I]. G. N. Savin and 
0. S. Parasyuk [I, 21 give the solutions for more complex cases of the basic 
stress state. 

-4 
-4 

0 
-1  
-1 
-1 

-1,23769 
-1,23769 

1 ,49650 
0,49650 
0,45299 
0,47759 



We will find the biharmonic function U (x, y) outside of some unknown 2 
contour L which bounds the plastic range, under the following conditions: 

1) at infinity (when z + w) 

= - % - 2i % = 2 c&$' (2)  + \Y; (~11, 
ax1 ayS . axay 

where 

and m is a whole real number; 

2) along unknown smooth contour L, bounding the plastic range, 

(V. 70) 

(V. 71) 

(V. 72) 

where Ul (x, y) is function (V. 68) . 
Considering that Ul(x, y) and U2(x, y) are biharmonic functions, we intro- 

duce the biharmonic function 

(V. 73) 

and represent it through two holomorphic functions $* (z) and X* (z) according 
to the formula of E. Gurs: 3 3 

(xl Y) = Re [icp: ( 2 )  + (41. (v .  74) 

We introduce the definitions tp:(z) = 0; (z), X;,(Z) = (2). 

Now the problem can be formulated as follows: to find two functions @ ; ( a )  /414 - 
and y*(z),holomorphic outside of contour L, under conditions 

3 

(V. 75) 



0 on L, 
& (2) + ~ ; ( t )  - e-2'o for -+ w , (V. 76) 

where 8 = arg z, L is an unknown contour separating the elastic range from the 
plastic range. 

We will map region S of plane xOy, which is external in relation to L, 
onto the exterior of unit circle y of plane SOrl using the function 

(V. 77) 

We introduce the definitions 

On the basis of (V. 75) and (V. 76) 

I 
0 on y, 

R e  [as (6) 1 = Re a, + Re [alcC + a&' + . . . + amcmCml + (V .78) 

f k I n R - - -  k l n l c l - k l n c  for t-OD: 2 

0 on y, ( v .  79) 
26 (0 + Y~ (CL) - ke-2i'a for C+OO, 

where = arg 5 ;  ao, al, . . . , am are coefficients of functions @;(z). From 

relations (V.78) and (V. 79) we must determine functions a 3 ( ~ ) ,  Y 3 ( ~ ) ,  w(E). 
Obviously, conditions (V.78) will be satisfied if 

whereupon the constant c is defined such that 



(V. 81) 

Since when < -+ w, 

then on the basis of the second condition of (V.79), 

'4'3 (5)  " 'q (cC) -I- M (c), (V. 82) 

where M(5) is a function that is regular outside of y and M(w) = O d  

The first condition of (V.79) can be represented in the form 

- 
(0 mi (5)  = - ~ ' ( 5 )  ys (5 )  on Y. (V. 83) 

This is the basic functional equation by which we determine the function ~ ( 5 ) .  

Assuming that it is possible to expand O(S) int0.a series of the form 
(V.77), we obtain, on the basis of (V.83), 

The function Y (<) is known with an accuracy up to the regular part outside 3 
of y, and therefore, to determine the coefficients of the function u(C) of 
(V.77) from relation (V.84), it is sufficient to compare the terms with the 
positive powers of 5 .  Consequently, we obtain an infinite equation system from 
which it is necessary also to determine the values of the coefficients of func- 
tion w(c),  such that series (V.77) converges everywhere 0utsid.e of y. By 
selecting polynomials (V.70) and (V.71) of a certain form, we obtain the solu- 
tions of several important practical problems. 

Pure Deflect ion o f  Rod (Beam) . In this case, as we know1, polynomials 
(V.70) and (V.71) acquire the form 

'see Formulas (I I .  95) and (I  I .  96) . 
459 



M . M ( z )  = i - z, Y;(z) = - 1-2, 4 J 4J 

where M is the magnitude of the deflecting moment; J is the moment of inertia 
of the cross section of the beam. 

On the basis of (V.80) and (V.82), 

Mc 
a3(f) = - i - i~-  C + N (f), 

where N(5) is a function that is holomorphic outside of y , and N (a) = 0. 

The basic relation (V.84) acquires the form 

Mc Introducing the definition and comparing the coefficients 
4J 

for positive powers of <, we obtain the following system of equations for the 
determination of the coefficients ck of the function L O ( < ) :  

- - - 
ac, - kc, - ac, = ca, 
- - - 

ac*-kc,- ac, = 0. 

For the solution of this system we will note that, beginning with the third 
equation, we will have the difference equation 



the general solution of which, as we know, is of the form 

c, = Av; + Bv!, 

where v and v are the roots of the characteristic equation 1 2 

k v ~ + , v - l  = 0  

respectively, 

The root of V ,  with respect to the modulus is greater than unity, and therefore 
2 n we discard it; then Fn = Avl when n 2. 

From the first two equations of our system we determine and A: 1 

- ca 1 kac 
c1= ----- A = A 

a* + kz + a k v ,  ' (a2+k2)v:+kav: ' 

Finally, by summing the series for w(<),  we find 

(V. 8 5 )  

Thus, the problem of determining the boundary of the plastic range in the - /417 
case of pure deflection can be considered as solved. 

3 Let M/J = 28.8 kg/cm , R = 5 cm, 2h = 100 cm, p = 3k be given. Function 
(V.85) is 

P-A - In Figure V.3 curve 1 ,  a circle of radius 2L , is the boundary of 
the plastic zone around a round hole of radius R = 5 cm, on the contour of which 
is applied force p = 3k in the case where the stresses at infinity are equal to 
zero; curve 2 is the boundary of the plastic zone around the same hole, on the 



contour of which is applied the force1 p = 3k 
for the stress state at infinity corresponding 
to pure deflection by moment M. 

Deflection of Rod under Constant Shear 
Force. If polynomials (V.70) and (V.71) are 
represented in the form 

= i A L z z -  i Q ( ' - 0 )  
8J 45 " 

Q Y2(z) = - i Z z a  + i  Q ( I - a )  4J 2 - 1 -  . QV 
25 ' 

then the stress state in the parts of the rod 
that are quite distant from the hole will 

Figure V . 3 .  correspond to deflection of a cantilever by 
constant shear force Q. 

We introduce the definitions: 

whereupon the equation system obtained from (V.84) will acquire the form 

To solve equation system (V.86) we will examine the equation in finite 
differences 

'since it is necessary to determine the effect deflecting moment M on the size 
of the plastic zone near the round hole, we will select the value of p at 
which the plastic zone will occur around the hole. 



the general solution of which is of the form 

- 
c, = k,v; + k,v; + k,v; + k , q ,  (V. 87) 

where k k are arbitrary constants; vl, v2, v3, v4 are the roots of 
1' k ~ '  k3' 4 

the characteristic equation 

dv4 + BvS +lkv2 - $V -16 = 0.1 (V. 88) 

It can be proved that under certain conditions imposed on the coefficients 
of equation (V.88), the latter will have roots that satisfy the following 
inequalities: 

) v l l  < 1; J v 2 J  ; 1; 

I % I >  1; Iv4I > 1. 

Indeed, we write equation (V.88) in the form 

and assume B/6 = a, k/6 = ib. We obtain 

v4 + av3 + ibv2 - av - 1 .= 0. 

We write the expansion 

Comparing the coefficients, we obtain 

P - l - P 1 = a ,  9 1 p - I - q p 1 = - - a ,  

q41=--11 q , + q + p p , = i b .  

Hence we obtain the following equation for q: 

Assuming now that 



we obtain 

By denoting the real root of the last equation through yo, we readily see that - /419 

roots of equation (V. 88) are 

but since y can be quite large, we readily see that v and v fall within, 
0 1 2 

while v and v4 fall outside of the unit circle. 
3 

Assuming in (V.87) that kg = k4 = 0 (otherwise the series for a(<) in 

(V.77) would be divergent) we will have 

(V. 89) 

By substituting (V.89) into the second and third conditions of (V.86), we 
obtain - 

C, - C +--, 
v* - "1 



Then, by substituting (V.89) and (V.90) into the first condition of (V.86) 
we obtain the equation for the determination of cl: 

- 
- c, [k + $ (v, + vJ + 6 (v: + VlV2 + ~ 2 2 ) l  = 

= c (a -- 6 - [$ (v' + vJ + 6 (v: + viv2+ vi)]). 

Consequently, the function is - /420 

We will examine deflection of a rod (beam) by constant shear force Q. Let 
Z - a = 300 cm, 2h = 100 cm, p = 3k, R = 5 cm. 

When Q = 400 kg the equation of the contour separating the plastic zone 
from the. elastic zone will have the form 

where 

a = cos 20 + 0.05 sin 8; $ = sin 20 - 085 cos 0. 

When Q = 600 kg the equation of contour L will have the form 

0.73a + 1.92$ 
x 13.45 cos 0 + 5.23 sin 0 - +B1 , 

1.92a - 0.738 
Y 13.75 sin 0 + 5.23 cos 0 - at  + $1 ' 

where 

a = cos 20 + 0.14 sin 0; $ = sin0 - 0.14 cos 0. 

P-k - 
In Figure V.4 curve 1, a circle of radius co=Re 2k , is a boundary of the 

plastic zone near a round hole, upon the contour,of which is applied force 
p = 3k and the stresses at infinity are equal to zero; curves 2 and 3 corres- 
pond to the boundaries of the plastic zone near a round hole, to the contour of 
which is applied force p = 3k and the stresses at infinity correspond to deflec- 
tion of a cantilever beam (plane deformation) by constant shear force Q, equal 
to 4,000 and 6,000 kg, respectively. 



The case of normal and tangential forces applied to the contour of a 
round hole for given complex potentials (V.70) and (V.71) is presented here by 
the method described by I. Yu. Khoma [I]. 

Figure V . 4 .  

Inverse Elasto-Plastic Problem1. We 
will assume that an infinite plane under the 
conditions of plane deformation is 
weakened by a hole on the contour L of which 
are applied constant normal and tangential 
forces, and the stresses at infinity are 
nonlinear functions of the coordinates. The 
problem consists of the determination of the 
contour of the hole L under the condition 
that the plastic zone at the moment of origin 
encompasses immediately the entire hole L 
without penetrating into the interior of the 
body, i.e. only the contour of hole L is in 
the plastic state. 

On an unknown contour L let normal and 
tangential forces 

On = p, Ttn K (v. 92) 

where t and n are the directions of the lines tangent and normal to L. 

We will assume that in the plastic zone the plasticity condition2 

which can be written as 

(V. 93) 

(V. 94) 

is valid. Since the magnitude of the left hand side of (V.94) is invariant 
relative to the coordinate axes at the given point of the body, from condition 
(V.93), with consideration of (V.92), we have the relation 

which is valid for all points of the contour L. The "plus" or llminus" sign in 
front of the radical in (V.94) is selected from physical considerations. 

 h he solution is given by G. P. Cherepanov [I]. 
*See L. M. Kachanov [I] . 



The stress components in elastic region S (outside of contour L) are 
expressed through two analytical functions of N. I. Muskhelishvili @*(z ) ,  
Y* (2) according to formulas 

The functions at infinity are 

a* (z) = a, +. a,z, 

'P* (2) = 6" -!- b,z, 

(V. 96) 

(V. 97) 

where a a bo, b are known complex constants. 
0' 1' 1 

We will map*tl~e interior of contour L onto the exterior of unit circle y 
of plane 5 with the aid of the function 

If we assume that 

then function (V.97)' with consideration of (V.98) when < -+ * acquire the form 

(V .99) 

(V. 100) 

We will make use of the following formulas: /422 - 

(V. 101) 

From relation (V.lO1) with consideration of cofiditions (V.92) and (V.96), 
we obtain the boundary conditions on the contour of the unit circle: 

R e  @(6) = a for lCl = 1; (V. 102) 

(V. 103) 



where 

(V. 104) 

Thus, the solution of the problem con'sists in the determination of 
functions 4(<) and Y(c) on the basis of boundary conditions (V.102) and (V.103) 
with consideration of relations (V.99) and (V.lOO). 

Conditions (V.102) and (V.99) will be satisfied if the function is 

(V. 105) 

Then the equality 

a = a  
0 (V. 106) 

will be valid. 

Consequently, the forces on the contour of the hole and at infinity cannot 
be assigned arbitrarily; they must be related by relations (V.106). 

Recalling that on the contour of the unit circle 

we rewrite condition (V.103) as follows: 

We denote the left hand side of equation (V.107) through 

(V. 107) 

(V. 108) 

Then, on the basis of formulas (V.98) and (V.105), it is easy to see that 
the function F+(&) will be analytic inside of the circle < 1 except for the 
point 5 = 0, at which it will have a pole with the principal part -alc2<-'. 

If the function Y(<)  is represented in the form 

(V. 109) 



in accordance with condition (V.100), and if we denote the right hand side of /423 
equation (V. 107) through 

(V. 110) 

then the function F-(<) will be analytic outside of the circle I <I  > 1, except 
at an infinitely remote point, at which 

F (5 )  = blcaCa + b&C2 + c (b-1 - blcl) C + cb-2 - 2b1ccz - bocl + 0 (5-I) .  (V. 111) 

Thus the funcitons F + ( < )  and F-(T:I, on the basis of !)oundary condition 
(V.107), are the analytical extension of each other through the unit circle: 

(V.  112) 

Hence according to J. Liouville's theorem, we have the single analytical func- 
tion 

- 
F (C) = - alc25-I + cb-8 - 2b,cc2 - boc, + c (6-1 - blc,) 5 + bocC2 + b1~253 .  (V. 113) 

From condition (V. 110), according to (V. 113), we obtain the function 

y (5)  = la- c2 0' ( 5 )  ' (V. 114) 

To determine the function w(<), we expand relation (V.108) with considera- 
tion of (V.113) into a series and compare the coefficients for identical posi- 
tive powers of 5. We obtain an infinite system of linear algebraic equations 
relative to coefficients c k : 

(V. 115) 



In t h e  p a r t i c u l a r  case ,  where cons tan t  fo rces  a r e  given a t  i n f i n i t y ,  i . e .  /424 - 
a l  = bl = 0,  t h e  s o l u t i o n  of  system (V.115) w i l l  be of t h e  form 

(V. 116) 

where t h e  cons tan t  c i s  a r b i t r a r y .  Hence, according t o  (V.98), (V. 105) and 
(V. 1141, 

(V. 117) 

where a = a A s  seen from (V.117), t h e  des i r ed  contours  of  t h e  ho le  r ep re sen t  
0 ' 

a s e t  o f  e l l i p s e s .  

In  t h e  case  where a l  # 0 o r  bl # 0,  t h e  s o l u t i o n  of i n f i n i t e  equat ion 

system (V.115) i s  equiva len t  t o  t h e  s o l u t i o n  of t h e  equat ion i n  f i n i t e  d i f f e r -  
ences' .  A s  shown by G .  P.  Cherepanov [ I ] ,  t h e  contours  of  t h e  ho le  i n  t h i s  
case  t o o  w i l l  r ep re sen t  a s e t  o f  e l l i p s e s .  

In t h e  usua l  d i r e c t  s ta tement ,  t h e  s o l u t i o n s  of  e l a s t o - p l a s t i c  problems 
( see  91-3) b o i l  down t o  t h e  determinat ion of  t h e  boundary of t h e  p l a s t i c  zone 
and t h e  s t r e s s  component i n  t h e  e l a s t i c  range on t h e  b a s i s  of known f o r c e s  on 
t h e  contour  of  t h e  ho le  and a t  i n f i n i t y :  = A, = B. By a l t e r i n g  

X Y 
t h e s e  va lues  i n  a c e r t a i n  manner, i t  is  poss ib l e  t o  f i n d  two paramet r ic  s e t s  of 
contours  L, s epa ra t ing  t h e  p l a s t i c  and e l a s t i c  zones. Thus, f o r  two, gene ra l ly  
speaking, d i f f e r e n t  p o i n t s  on t h e  e x t e r i o r  o f  t h e  ho le ,  t h e r e  a r e  s t r e s s e s  a t  
i n f i n i t y  such t h a t  boundary L def ined  by them w i l l  p a s s  through t h e s e  p o i n t s .  
Noting t h i s ,  P .  I .  P e r l i n  [ l ,  21 proposed an approximation method f o r  t h e  
s o l u t i o n  of  e l a s t o - p l a s t i c  problems i n  such a round about s ta tement ,  t h e  essence 
of  which i s  t h a t  t h e  p o s i t i o n  of  some two p o i n t s  of  boundary L a r e  assumed t o  
be known, and t h a t  t h e  s t r e s s e s  a t  i n f i n i t y  and contour L i t s e l f  a r e  determined 
during t h e  process  of  t h e  s o l u t i o n  o f  t h e  problem. On t h e  b a s i s  of  t h i s  pro-  
cedure Yu. I.  Solodi lov [ l ]  analyzed t h e  e l a s t o - p l a s t i c  problem f o r  a p l a t e  
with an e l l i p t i c a l  ho le .  V.  S. Sazhin [l ,  21, u s ing  t h i s  method, attempted t o  
determine t h e  boundaries  of  t h e  p l a s t i c  zone occurr ing  around a square (with 
rounded co rne r s ) ,  oval  and arch-shaped ho le s .  



$4 .  P l a s t i c  Zones near Round Hole i n  P l a t e  under Biaxial Tension ( ~ i g o r o u s  /425  
~ o l u t  ion ' )  

We w i l l  examine an i n f i n i t e  t h i n  p l a t e  i n  a p lane  s t r e s s  s t a t e ,  with a 
round ho le  of r a d i u s  R .  We w i l l  p l ace  t h e  o r i g i n  of coord ina te  system xOy 
(Figure V.5) a t  t h e  c e n t e r  of  t h e  round ho le ,  u s ing  t h e  middle su r f ace  of t h e  
p l a t e  a s  t h e  xOy plane .  

Let a cons tan t  normal load be appled t o  
t h e  contour of  t h e  ho le ,  i . e .  f o r  r = R 

0, = P' 

and l e t  t h e  s t r e s s e s  

(V. 118) 

I l l l l l l l l l J  dfa) ;= A, a(") = B. 
Y 

(V. 119) 
6'"' 

Y 
be known a t  i n f i n i t y .  I t  i s  assumed t h a t  i n  t h e  

Figure V . 5 .  given system of  e x t e r n a l  f o r c e s  (V.118) and 
(V.119), t h e  p l a s t i c  zone encompasses t h e  e n t i r e  

h o l e ,  and t h e  s t r e s s e s  i n  t h e  p l a s t i c  range a r e  determined by t h e  shape of t h e  
contour  of  t h e  hole  and t h e  boundary of  t h e  load,  and do not  depend on t h e  
s t r e s s  s t a t e  i n  t h e  e l a s t i c  range. Then, t h e  s t r e s s  components i n  t h e  p l a s t i c  
range a r e  found from equi l ibr ium equat ions 

(V. 120) 

and from t h e  p l a s t i c i t y  cond i t i on2 .  A s  t h e  p l a s t i c i t y  condi t ion  we w i l l  use  

U( =- us. (V. 121) 

where oS is  t h e  y i e l d  p o i n t  of t h e  ma te r i a l  under s imple t ens ion .  

We f u r t h e r  assume t h a t  t h e  i n e q u a l i t y  og(l)> C T ' ~ )  > 0 i s  i n  e f f e c t  i n  t h e  r 
p l a s t i c  zone. 

I t  i s  easy t o  check t h a t  equi l ibr ium equat ions  (V.120) and p l a s t i c i t y  con- 
d i t i o n  (V.121) under boundary condi t ions  (V.118) w i l l  be s a t i s f i e d  i f  t h e  s t r e s s  
components a r e  taken i n  t h e  form 

'The s o l u t i o n  of t h e  problem i s  given by G .  P . Cherepanov [2 ]  . 
2 ~ e e  V .  V. Sokolovskiy [ I ] .  



R Q! l )=os+@-~r)T,  $)=us, r$)=O. (v. 122) 

It is clear from the solution of (V.122) that in order for the inequality /426 - 
(1) > 0 to be satisfied, load p must satisfy condition p C oS. uo 2 ur 

For convenience we will change from polar coordinates to Cartesian coordi- 
nates, writing the stress components (V.122) in the following combinations: 

(V. 123) 

The stress components in the elastic range are expressed through two holo- 
morphic functions of N. I. Muskhelishvili , o* ( 2 )  and Y ( 2 )  , on the basis of 
formulas (V.96). Then, on contour L, which divides the elastic and plastic 
zones, we will have the following boundary conditions: 

( P  - o,)R 
4 R e @ * ( z ) = 2 4 $  . 

(V. 124) 
(0, - P)R -21) 

2 [&*' (2) + Y* (z ) ]  - e .  r 

We will map the exterior of contour L onto the exterior of unit circle y 
of plane < with the aid of function w(<) of (V.129). After introducing the 
definitions 

we represent boundary conditions (V.124) in the following form: 

In accordance with (V.119) the functions at infinity are 

(V. 125) 

(V. 126) 

(V. 127) 



Thus, the problem reduces to the determination, on the basis of boundary 
conditions (V.125) and (V.126) with consideration of relations (V.127), of 
functions @(<), Y (<) and w(Z;). 

From conditions (V.126) it follows that the solution of the problem 
requires analysis of auxiliary functional equation 

- 
a, (+) (us - PI R= (+) 
0' ( 5 )  0' (0 + 'F ( 5 )  - (! c ;  > 1). 

(V. 128) 

the solution of which (relative to function ~ ( 5 ) )  will be found in the form - /427 

(V. 129) 

where pn is a polynomial of the n-th power with as yet undefined coefficients. 
By substituting the solution of (V.129) into equation (V.128) and combining all 
functions into a series in the vicinity of an infinitely remote point, we see 
that n = 3. Consequently, the function is 

From the conditions of symmetry we know that the constant c2 is equal to 

zero, and the other constants are real. Consequently, the functions are 

(V. 131) 

Obviously, the function &I(<) has four zeros, located within the unit cir- 
cle, whereas the function w(1/<) has four zeros located outside of the unit 
circle. The constants c, cl and c3 can be selected such that the right hand 

side.of the functional equation (V.128) will be analytical outside of the unit 
circle, and for this purpose it is necessary and sufficient to require that 
the zeros of function 0(1/~) coincide in pairs. For the latter condition it is 
sufficient that the discriminant of the biquadratic equation be equal to zero: 

Hence < = 4cc3. 
(V. 132) 

473 



Then functions (V.131), under condition (V.132), can be written in the form 

On the basis of functions (V.133), boundary condition (V.125) is 

We will introduce the function 

(V. 133) 

(V. 134) 

(V. 135) 

which, as is obvious, will be analytic within unit circle I < 1; however, the 1428 
function 

- 

(V. 136) 

will be analytic universally outside of unit circle 1 > 1. 

It is not difficult to see that boundary condition (V.134) with considera- 
tion of relations (V.135) and (V.136) can be represented in the form 

F+ (c) - F- (5) on y. (V. 137) 

Thus, functions F' ( 5 )  and F - ( < )  are analytic extensions of each other 
through the unit circle. According to J. Liouville's theory they are identi- 
cally equal to the same constant. Hence, and also from the conditions at 
infinity (V.127), 

(V. 138) 

So that conditions (V.127) that go into (V.138) will be satisfied, the constants 
must satisfy the relation 

(V. 139) 



From functional equation (V.128) we find the function 

(V. 140, 

By substituting into (V.140) the values of the futlctions (V.133) and @(<) 
(V. 138) and also considering the conditions at infinity (V.127), we find the 
following relationship between the coefficients 

(V. 141) 

Thus, coefficients c, cl, c are found from a system of three equations, 
(V. 132), (V. 139) and (V. 141, an3 functions @ (<) , Y (<) and w(<) are defined by 
formulas (V. 138), (V. 140) and (V. 133), respectively. ' 

The solution of equation system (V. 132), (V. 139), (V. 141) can be 
represented in the form 

where a = a is real root of cubic equation 
'Js - P 

Here 

Thus, considering (V.142), we find the functions 

(V. 142) 

/429 

(V. 143) 

(V. 144) 



The solution of the problem can be regarded as complete. However, for 
thoroughness, we will determine the intervals of the known external forces for 
which the solutions we have obtained are valid. For definition, we will assume 
that B 2 A d  0 and moreover, that B <aS must be satisfied. Hence 

Tangency of the hole by the plastic zone will occur at the points +i and 
-i. Thus, for the total enclosure of the round hole by the plastic zone, it 
is necessary that inequality iR < w(i) be satisfied. Therefore parameter a 
should satisfy the inequality 

Then 

l+a O < ~ i 2 ~ ,  --1<a<O (O<a<r). (v. 14s) 

In order that the function w(S) map conformally the exterior of contour L 
onto the exterior of unit circle y, it is necessary that the derivative 

(V. 146) 

not be equal to zero anywhere. Consequently, as seen from (V.146), the para- 
meter a should satisfy inequality 0 < a < 2/3.  Hence, and from (V.146), we 
obtain -1 < a <  -1/2. In the particular case, where A = B, the analysis of this 
elasto-plastic problem is given by G. Yu. Dzhanelidze [l] for two cases: when /430 - 
either the Mises or Saint Venant plasticity conditions occur in the plastic 
zone. 

On the basis of V. V. Sokolovskiy's elementary solution [I] for an 
axisymetric infinite plate with a round hole, V. Pane [l] analyzes the distri- 
bution of stresses and deformations for various stages of loading. 

3 5 .  Plastic Zones near Curvilinear Holes (~pproximate solution) 

As we have learned from preceding sections, the solutions of plane elasto- 
plastic problems in closed form pertain basically to ranges with a round hole. 
As concerns ranges with nonround holes, no general methods for the solution of 
problems in closed form have yet been developed. There are several approxima- 
tion methods, one of which is the small parametet method1. 

'see D. D. Ivlev [l-41. 



We will represent stress components and static boundary conditions in the 
form of series by degrees of a small parameter: 

(V. 147) 

where E is a dimensionless small parameter characterizing deviation of contour 
of a hole from round. 

Stress components or, ue, T~~ (for convenience we will use polar coordi- 

nates) in the entire range, i.e. in both the elastic and in the plastic ranges, 
should satisfy equilibrium equations (V.120). Moreover, they should satisfy 
the compatibility condition in the elastic range and the plasticity condition 
in the plastic range. As the plasticity condition for plane deformation, we 
will use the condition 

(V. 148) 

Here and in the following stress components pertain to the constant in the 
right hand side of the plasticity condition. For the plane stress state, the 
plasticity condition will be written in the form 

1 
T (ar - a,)' + 2:0 = 1 for ope  < T;,; (v. 149) 

(V.  150) 

We will consider that the inequality oe > or > 0 corresponds to condition /431 

(V.150) in the plastic range. 

By substitut 

and equating the 
obtain 

ing the expansions of (V.14.7) into plasticity condition (V.148) 

('1 = 0, we terms for identical powers of parameter E for 

a!0' - *(,O) = ~ C L *  
($1) - (.,(l). e =O, 

(0j2' - at)) p + Z;lg)2 = 0, 

- $- 2~!lg)~5;) = 0, 
1 

(o$4) - $4)) p 4- (~$2) - ~ ( 2 ) ) '  j 2r!lg)r!",) + ~ ( 2 1 2  , 0, 
0 re 

(V. 151) 



(0 where P = sing (ar - og (O)). For the plane stress state, plasticity condition 

(V. 149) is written in the form (V.151), and condition (V.150) for r!:) = 0 
acquires the following form: 

(V. 152) 

Analogously, we may linearize the Mises plasticity condition as follows: 

1 
$(a: - U,U@ a:) + T:, = 1. (V. 153) 

On contour of hole L let normal and tangential forces 

(V. 154) 

be given, where t and n are directions of the lines tangent and normal, 
respectively, to contour L. We will represent the equation of contour L in 
the form 

B 

, = C (8) (ro = const). 
I -0 (V. 155) 

We will assume that the expansions 

(V. 156) 

are valid for stress components u and T 
tn' 

Boundary conditions (V.154), after /432 
n - 

the substitution in them of expansions (V.155) and (V.156), can be represented 
in the form 

00 00 0 

r+mdma?' (rl  + er2 + .. .)'" dmp ( r l +  erz +. .Irn . (V. 157) 
rnl m ! * 

4 4  m 4  m d  



00 00 0 

dm? ( r ,  + er, + . . .)"' ( r ~ + e r a + - - - ) ~  _ x e m -  
m ! drrn ml 

k-o tn-0 m = ~  ( V .  158) 

From condition (V.157), after equating the terms for identical powers of para- 
meter &, we obtain 

( I )  do;' dp 
an  + 7 r1 =- r1; 

(2) 4ai1) d*a(,') 4 d o t )  d2p ': dp 
On + ~ f l + ~ . ~ + - f  & 2 -  drx 2 & f a i  

(3) do!,*) d ~ a i ' )  r: daajp) r: d o t )  u,, + - - & - - r 1  4- -*- dra 2! + T X  + 7''' 
da?) +-  - r 2 + -  dr 

(V. 159) 

Analogously, we find the linearized boundary con- 
ditions (V.154) for an and T on the basis of the tn 

Y formulas of elasticity theory 

an = ar cosa 6* + 08 sin2 6* + 2rr8 sin 8* cos e*, 
(V. 160) 

q n = ( u &  - or)  sin Of cos b*+r , ,  (cosz8*- sin2 e*), 

o x 
where e* = el - 8 is the angle shown in Figure V.6. 

As a result of transformations, the linearized 
Figure V . 6 .  boundary conditions will acquire the form 

11)  d a y  dp 
0, + rl = z f l ;  

C O ) - ( O ) '  'f* 
T!;)-(U@ 0, ) e l = F r l ;  

2' 
d2p dp 

-2fr0 el =- -- ( I ) .  *. 
2 1 + z f 2 ;  

( 1 )  d (1) - 4 - (u? - U P )  - el;,)- (0: )  - or ) el + [bm 

- (a:) - a:')) rl = - dr2 - 21 



. . 
- 2rji@ - (or) - or)) q - e,e, + #Q, - e,h - $) - (v. 161) /433 

- (.:) - .:l) (e, - - (.r) - OF) p, d [z:~~) - .. ('a ) 

Here pi = r./r and the dot overhead, i.e. p = dp/dO, denotes differentiation 
1 0' 

with respect to 8. 

From the continuity of stress components on the common boundary L which s ' 
divides the elastic and plastic zones, we have 

[%I = [a01 =-. Iz,,J = 0 on L, , (v. 162) 

where the increments of the respective components enclosed in the brackets, 
during transition through boundary L are denoted through [ . . . I .  If the con- s ' 
tour equation is represented in the form 

(V. 163) 

then, to find the conjugation conditions it is necessary to substitute in 
(k) (k) (k) , respectively, and r by rks, and to enclose CV.1591, an by or . no , T~~ k 

them within the brackets and equate them to zero. When r$i) - 0, from equili- 
brium conditions (V.120) and conjugation conditions (V.162), it follows that 

[%I = 0 on LS. Hence conjugation conditions and T(~) will not contain r re 
terms r in the k-th approximation. We determine rks from conjugation condi- k s 

tion oik), and 0:) and r:;) plays a part of boundary conditions for the deter- 

mination of stresses in the elastic range. 



Equilibrium equations (V.120) will be satisfied if the stress components 
are expressed through the stress function 

(V. 164) 

By substituting (V.164) into linearized plasticity conditions (V.151) and - /434 
(V.152), we obtain a series of linear equations which enable us to determine 

stress function u(~), and consequently, the stress components. 

The determination of the boundary of plastic zone LS is very important. 
Let us consider several examples. 

1st approximati 

0 

Y t  1st approximation 
/ 

Figure V . 7 .  

Biaxial Tension of Plate Weakened by Round Hole for the Case of Plane 
Deformation. Let a plane weakened by a round hole of radius R be subjected to 
tension by constant forces A and B at infinity. Omitting the calculations, we 
find the formula for the contour of the boundary of the plastic zone 

7 4- cos66) + =e4(- 1 -4cos48 + 5cos88) + . . . , (V. 165) 

where 

B - A  e-- 
2k ' 

It is easy to check that expansion (V.165) coincides with the expansion of 
the equation of an ellipse with semiaxes 1 + E and 1 - E,  which yields the 
rigorous solution of this problem (see 52). 



Figure V . 7  i l l u s t r a t e s  graphs of t h e  boundary o f  t h e  p l a s t i c  zone f o r  two 
va lues  o f  t h e  parameter E = 1/3 and E = 1/2, from which it i s  obvious t h a t  t h e  
obta ined  approximations a r e  convergent.  

The small  parameter method g ives  approximate a n a l y t i c a l  express ions1  f o r  
displacements .  By ass igning  t o  t h e  components t h a t  p e r t a i n  t o  t h e  e l a s t i c  
range, t h e  s u p e r s c r i p t  e ,  and t o  components pe r t a in ing  t o  t h e  p l a s t i c  range, 
t h e  s u p e r s c r i p t  p, we ob ta in  

4Guf 2 --- 1 I 2es 
cos ( V S l n  r )  + --= sin ( ] / 3  1n r )  cos 20 + y - 

v 3  

3 
- 2e3 ([cos ( v h ~ n  r )  - -7 sin (,/Tin r )  cos M + 

t '3  I 

4Gut 1 
= 2e [ 2  cos ( Y 3 1 n  r )  + (- - 1/5) sin ( v g l n  r)]   in 20 + 

k' iT 

1 3  sin (1'Tln r )  sin 20 + 2. cos (l/% ln r) + +(A+] 1' 3 -) I [ 3  

)1') sin ((% in r )  sin 68 + . . . I .  I 
The approximations thus  found y i e l d  good convergence. The c a l c u l a t i o n s  

show t h a t  i n  t h e  case  of  b i a x i a l  t ens ion ,  t h e  contour  of  t h e  hole  expands, 
being elongated i n  t h e  d i r e c t i o n  of  t h e  g r e a t e s t  o f  t h e  fo rces  a c t i n g  upon i t .  

B i a x i a l  Tension of Thin  P l a t e  w i t h  Round Hole o f  Radius R by Forces A and 
B (p lane2  S t ress  s t a t e ) .  The boundary LS o f  t h e  p l a s t i c  zone i s  found by t h e  
formula 

' see  D .  D .  I v l ev  [3,  41. 
2i'he s o l u t i o n  o f  t h i s  problem was f i r s t  given by A .  P .  Sokolov [I!. The so luc  
t i o n  of  t h e  given problem i s  a l s o  found i n  94, chapter '  IV of  G. N. Savin [I]  . 



rs = 1 + 4eC cos 28 - 8eL* (1  - 2 cos 40) - 80eC3 (cos 28 - cos 68) + 
+ 32eC4 ( I  - 16 cos 48 + 14 cos 80) + . . . , 

(V. 167) 

where 

A - B  
e* = - 

2ak . 

0 
Here a = R/r (R is the radius of the hole; ro is the dimension radius of the 

S S 
plastic zone when E* = 0). Figure V.8 (a, b) illustrates the graphs of the 
boundary of the plastic zone for two values of the parameter E * ,  0.05 and 0.10. 

Biaxial Tension of Thin Plate wit;? Elliptical Hole. Let a thin plate with 
an elliptical hole be under tension at infinity by mutually perpendicular 
forces A* = const and B* = const, directed at some angle to the principal axes 
of the ellipse. It is assumed that A*> B* and force A* is directed at angle 
€lo to the large axis of the ellipse. The forces are 

A - B  A - B  B . = - -  
2 ( V .  168) 

where d is some parameter. 
2 

I 1st approximation 

Figure V.8. 

We will represent the contour equation of the elliptical hole in the form /436 - 

(V. 169) 

0 where E = A - B/2k, a = R / r  (R is the radius of the original round hole; r: is 
S 

the dimension radius of the plastic zone of zero approximation); d is a para- 
meter. 1 



The equation of contour L i . e .  the  boundary of the  p l a s t i c  zone, s ' 
assuming t h a t  the  contour o f  t h e  hole is  f r e e  of external  forces ,  is 

r ,  = 1 + E* [4d, cos (0 - 0,) + 3adl cos 20) + e*L d2 - - 8a4 - 14: 
3 - (18d,d2a cos 20, + 8di) + 

4.4) + 
( V .  170) 

+ (18dldp rm 28, + 16di ros 40.) ms 40 + [18d,d,a sin 20. + 16di sin 48.1 sin 401 + . . .. 
e A - B  e*---- 7 

a - 2ak ' 

By changing i n  (V.170) the  parameters d l ,  d2 and B o ,  we obta in  t h e  solu-  

t i o n  f o r  severa l  important p a r t i c u l a r  cases .  Thus, when dl = 0, d2 = 1 and 

8 = 0 ,  we w i l l  have the  case of b i a x i a l  tens ion of  a  p l a t e  with a  round hole  
0 

by forces  A and B a t  i n f i n i t y ;  when d2 = 0  and dl = 1, t h e  case of uniform 

tens ion of t h e  p l a t e  with an e l l i p t i c a l  hole A* = B* = A + B/2 a t  i n f i n i t y .  
In the  l a t t e r  case the  boundary of the  p l a s t i c  zone i s  

(V. 171) 

Figure V.9 i l l u s t r a t e s  the  graphs of  the  boundary of the  p l a s t i c  zone i n  
the  case of b i a x i a l  tens ion of a t h i n  p l a t e  with an e l l i p t i c a l  hole  by fo rces  
A and B ,  d i rec ted  a t  an angle of 45' t o  the  p r inc ipa l  axes of the  e l l i p s e ,  
when the  values of t h e  parameters a r e  E = 0.20 and E* = 0.05. The boundary of 
the  p l a s t i c  zone i n  the  case of b i a x i a l  tens ion of a  p l a t e  with a round hole  
by the  same forces  i s  denoted by t h e  broken l i n e .  

The graph of uniform tens ion of a  p l a t e  with an e l l i p t i c a l  hole  by forces  
A* = B* = (A + B ) / 2  when E = 0.166, a = 0.500 i s  i l l u s t r a t e d  i n  Figure V . l O .  

Figure V . l O .  

\ A  

Figure V.9. 



The p l a s t i c  zone near  a round hole  i n  a  p l a t e  loca ted  i n  t h e  s t a t e  of /437  
plane  deformation, when t o  t h e  contour of t h e  ho le  i s  appl ied  normal p re s su re ,  
d i s t r i b u t e d  by t h e  law of  r e c t i l i n e a r  e q u i l a t e r a l  t r apezo id ,  i s  analyzed by 
A. P .  Sokolov [2 ] .  A. I .  D u r e l l i ,  C .  A. Sc iamare l la  [ l ]  determined t h e  d i s t r i -  
bu t ion  of  e l a s t o - p l a s t i c  s t r e s s e s  and deformations near  a  round hole  i n  a  
f i n i t e  aluminum p l a t e  during l a rge  p l a s t i c  deformations by an experimental 
method. I .  S. Tuba [1] analyzes s t r e s s  concent ra t ion  near  a  round ho le  dur ing  
e l a s t o - p l a s t i c  deformation i n  a  uniformly s t r e s s e d  p l a t e  made of a  l i n e a r l l y  
r e in fo rced  ma te r i a l  ( a l s o  s e e  I .  S. Tuba [ 2 ] ) .  The p l a s t i c  zone i n  a  
phys i ca l ly  non l inea r  p l a t e  i s  analyzed by I .  Yu. Khoma [ 3 ] .  

56. E l a s t o - P l a s t i c  Problem f o r  a  P l a t e  Weakened by an I n f i n i t e  Row o f  Ident ica l  
Round ~ o l e s '  

We w i l l  analyze a  p l a t e  loca ted  i n  t h e  plane deformation s t a t e ,  with an 
i n f i n i t e  row of i d e n t i c a l  round ho le s ,  t h e  c e n t e r s  of  which a r e  loca ted  on t h e  
Ox a x i s  a t  a  d i s t a n c e  2 from each o the r .  We w i l l  assume t h a t  t o  t h e  contours  
of  t h e  ho le s ,  o f  r ad ius  R ( f o r  s i m p l i c i t y  we w i l l  assume t h a t  R = 1) a r e  
app l i ed  normal fo rces  p ,  and a t  i n f i n i t y  a r e  given cons tan t  f o r c e s  A and B 
(Figure V.  11) .  

Figure V . l l .  

Let p l a s t i c  zones occur under t h e  e f f e c t  of  t h e  given system of ex t e rna l  
f o r c e s  near  t h e  ho le s ,  completely surrounding t h e  ho le s  but  no t  overlapping 
each o the r .  The problem now amounts t o  f i nd ing  t h e  boundary l i n e s  between t h e  
e l a s t i c  and p l a s t i c  zones, and a l s o  t h e  s t r e s s  s t a t e  of  t h e  p l a t e .  Through Ls 

we w i l l  denote t h e  boundary of t h e  p l a s t i c  zone encompassing t h e  round ho le ,  i n  
t h e  c e n t e r  of which t h e  o r i g i n  o f  t h e  coord ina te  system i s  p laced .  This ho le  
w i l l  be c a l l e d  t h e  b a s i c  hole .  

'The s o l u t i o n  of t h e  problem i s  found by A.  S .  Kosmodamianskiy [ I ] .  



Due t o  t h e  geometr ical  and f o r c e  symmetry, t h e  shape of  l i n e s  Ls o f  t h e  

boundary between t h e  zones nea r  each ho le  w i l l  be  t h e  same a s  nea r  t h e  b a s i c  
ho le .  Since t h e  s t r e s s e s  i n  t h e  p l a s t i c  range a r e  determined only by t h e  
formula of  t h e  contour  of  t h e  ho le  and boundary o f  t h e  h a d ,  they  w i l l  be t h e  
same i n  each p l a s t i c  zone a s  n e a r  t h e  b a s i c  ho le .  Consequently, i n  t h e  given /438 - 
case  they  w i l l  s a t i s f y  r e l a t i o n s  (V.16). These s t r e s s e s  do not  depend on t h e  
f o r c e s  a t  i n f i n i t y ,  nor  on t h e  e f f e c t  of t h e  ad jacent  ho le s .  The l a t t e r  can 
have an e f f e c t  on changes of  l i n e  L of t h e  boundary of  t h e  zones and on t h e  

S 

s t r e s s  s t a t e  i n  t h e  e l a s t i c  range. 

Addit ional  s t r e s s  components appear i n  t h e  e l a s t i c  range due t o  t h e  
presence of  ho le s ;  we w i l l  express  t h e s e ,  i n  accordance with formulas (V.96), 
through two holomorphic func t ions  0*(z) and Y*(z). From t h e  condi t ions  o f  con- 
t i n u i t y  o f  s t r e s s  components i n  t h e  e l a s t i c  and p l a s t i c  zones on t h e  common 
boundary L s epa ra t ing  t h e s e  zones, we o b t a i n  

S 

(V. 172) 
2 I;@*' (2) ; y* (Z)] = 2& - (B --A). 

Z 

The func t ion  @*(z ) ,  which is d i r e c t l y  r e l a t e d  t o  s t r e s s  components, i s  p e r i o d i c  
i n  t h e  d i r e c t i o n  of  t h e  Ox a x i s .  Using S. G .  Mikhl in 's  approach [2 ] ,  we i n t r o -  
duce t h e  p e r i o d i c  func t ion  

(V. 173) 

By s u b s t i t u t i n g  t h e  va lue  of Y * ( z )  from (V.173) i n t o  (V.172), we ob ta in  
t h e  condi t ions  on contour  Ls: 

The a n a l y t i c a l  func t ions  t h a t  vanish a t  i n f i n i t y  a r e  represented1 i n  t h e  /439 - 
form 

00 01 01 

=& 

a* (2) xh + r* C ( i - n r ) l *  * 
k=l  n=-00 k = l  

(V. 175) 

'see I .  I .  Vorovich, A. S. Kosmodamianskiy [I].  
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where t h e  * denotes  t h e  absence o f  terms with t h e  number n  = 0 i n  t h e  sums. 

The v a r i a b l e  5  i s  r e l a t e d  t o  z by t h e  r e l a t i o n  

(V. 176) 

The f i r s t  sums i n  (V.175) a r e  a n a l y t i c a l  func t ions  ou t s ide  of  contour L . We 
S 

w i l l  denote them i n  t h e  transformed (with t h e  a i d  of  func t ion  w(<) (V.176)) 
plane < through Q2(5) and Y2(<),  i . e .  

(V. 177) 

The second sums i n  (V. 175) w i l l  be  holomorphic func t ions  wi th in  contour Ls. 

They a l s o  depend on small parameter E = 1 / Z .  By expanding them i n t o  a s e r i e s  
by degrees o f  t h i s  parameter ,  and r e t a i n i n g  t h e  terms t h a t  conta in ,  f o r  

i n s t ance ,  c2,  we ob ta in  

N 1 I a2 (f;) = 7 ag2n2e2 - - 3 a 1 c2 X " o ( 5 ) '  2 

(V. 178) 

Boundary condi t ions  (V.1743, according t o  (V.177) and (V.1781, can be 
w r i t t e n  i n  t h e  form 

(V. 179) 

By N .  I .  Muskhe l i shv i l i l s  method1, we f i n d  from boundary condi t ions  (V. 179) - /440 
t h e  func t ions  

' see  5 1 ,  Chapter I .  



where 

w (5)  =- c; + 5 . ' 6 
(V. 181) 

The constants in formulas (V.180) are found from the following equation system: 

A f B  2 
+ H a Z ~ " e  2 ) 1  , 

(V. 182) 

-. - 
After determining the functions @ ( 5 )  , '4 ( 5 )  and a2(<) , Y2(r,), we find 2 2 

the stress components in the elastic range: 

(V. 183) 
0 1 2 )  - 0 ( 2 )  + 2 i T t 2 i  = B A + 2 (GI-+. Y (B] Y XY 

Thus, the stated problem is solved. 

We will consider the case where p = 3k,  A = B = 0 ,  E = 1/1 = 0.1. From 
the solution of system (V.182), we find c = 2.85 R, cl = 0.499 R. Then lines 

L of the boundary will be ellipses with semiaxes a = 3.35 R, b = 2.35 R. In 
S 
this case, for a range with one hole (see 52), the boundary of the plastic 
range will be a circle of radius r = 2.72 R. 



07. P l a s t i c  Zones near Round Hole i n  P la t e  under Uniaxial Tension 

When a p l a t e  i s  under b i a x i a l  tens ion by c e r t a i n  external  forces  a t  
i n f i n i t y ,  a  p l a s t i c  zone is formed near  a  hole t h a t  w i l l  p a r t i a l l y  o r  complete- 
l y  surround it. With tension,  however, along only one coordinate a x i s ,  the  
p l a s t i c  zone w i l l  begin t o  develop i n  the  v i c i n i t y  of po in t s  A and B (Figure 
V.12), and may not  completely surround the  hole,  but  w i l l  acquire the  form 
indica ted  by t h e  shaded areas .  We w i l l  assume t h a t  a  t h i n  p l a t e  of th ickness  
2h and width b, with a round hole  of radius  R,  t h e  edge of which i s  f r e e  of 
external  forces  i s  under tens ion along the  Oy a x i s  by forces  

plo") = p = Peho,, (V.  184) 

where E is  a dimensionless parameter (0 < € 4  1 ) .  We w i l l  f u r t h e r  assume t h a t  
the  hole  i s  small ,  i . e .  b/2R> 4. Under t h i s  assumption, f o r  E >  1/3, the  
p l a s t i c  zones w i l l  occur a t  po in t s  A and B near  the  hole .  The r igorous solu-  
t i o n  of t h i s  problem has not  ye t  been found, and the re fo re  we w i l l  introduce 
t h e  bas ic  r e s u l t s  o f  an approximation method proposed by I. I .  Fayerberg [ I ] ,  
based on t h e  theory of e l a s t o - p l a s t i c  de f l ec t ion  of  a  curved beam. 

Figure V . 1 3 .  

Figure V .  12. 

I .  I .  Fayerberg [l] constructed the  graphs1 f o r  a  duralumin p l a t e  D = 16T 
with a round hole  f o r  n = b/2R = 7 and n = 6 .  The tens ion diagram of t h e  
mater ia l  from which the  p l a t e  i s  made, i . e .  duralumin, i s  shown i n  Figure V.13. 
For the  ca lcu la t ions ,  a  diagram consis t ing  of two r e c t i l i n e a r  segments OA and /442 - 
AB was used ins tead  of  the  ac tua l  diagram. A s  shown i n  Figure V.13, E = E/60 

P 1 
and k 7 Epl/E = 0.0167 f o r  duralumin. 

'kigures V.  13-V. 18 a r e  borrowed from the  work of I .  I .  Fayerberg [ l ]  . 



Figures V.14 and V.15 show the curves that represent the boundaries 
between the elastic and plastic ranges for various values of e .  These curves 
also show that the plastic zone, occurring at the points A and B (see Figure 
V.12) when s = 1/3 and for further increase of e from 1/3 to 0.65, rapidly 
spreads along the contour of the hole. When E > 0.65, the plastic zones 
extend outward in the direction perpendicular to the direction of the forces 
of tension, decreasing near the hole itself. Figures V.16 and V.17 show the 
curves of distribution of deformations through cross section aA (see Figure 
V.12) as a function of n for certain values of e .  As E increases, or, by the 
same token, as the force of tension p = 2hsa increases, deformations near the 

S 
hole increase much more rapidly than on the outer edges of the plate. 

Figure V . 1 4 .  Figure V . 1 5 .  

Figure V .  16. Figure V . 1 7 .  

The point curve on Figure V.18 represents the relationship between e/e 
S 

(eS is deformation at the moment of formation of the plastic zone) for point A 

(see Figure V.12) and the parameter E found by I. I. Fayerberg [l] experimen- 
tally with the aid of the tensometers of Gugenberg with a base of 2 mm. The 
solid curve, which represents the theoretical relationship between c and e/es - /443 

is presented in the same figure for comparison. The parameter e was measured 
at point A in the direction of tension of a duralumin plate measuring 
800 x 180 x 5 mm containing a hole of radius R = 15 mm. As we see, the experi- 
mental data coincide almost exactly with the theoretical data for e < 0.5, but 



deviate somewhat for E > 0.5. Thus, the solution of the stated problem yields 
good approximation. 0. G. Rybakina [I], using this method, generalizes the 
case of large plastic deformations with consideration of the true law of 
strengthening. 

Using the variation methods in combina- 
tion with the method of Reyleigh-Ritz, the 
investigators B. Budiansky and R. Vidensek [I] 
found the approximate solution of the problem 
in the given statement of stresses near a 
round hole in an infinite plate located under 
uniaxial tension. R. Yu. Kerimov and L. P. 
Khoroshun [I] and R. Yu. Kerimov [l] analyzed 
the elasto-plastic problem for the case of 
gradual strengthening of the material1 . 
E. G. Marcetos [l] analyzed the development of 
the plastic zone near a round hole in a rod 
under tension on the basis of the method of 
optically active coatings. 

Figure V .  18. 

58. Slip Zones near E l l i p t i c a l  Hole 

So far in this chapter we have examined rather thoroughly the development 
of plastic deformations that occupy much of the area near a hole. Experiments 
show that plastic deformations, during the first stages of their development, 
are often localized in a few thin layers (slip zones), which occupy an 
insignificant part of the volume of the body in comparison with its elastic 
part. Such a development of plastic deformations is particularly characteris- 
tic of materials possessing (during usual tests) a clearly defined area of 
yield, and also in the presence of a sufficiently heterogeneous field, i.e. 
stress field with a rather large stress gradient. 

In this section we will analyze the simplest cases of the occurrence and /444 - 
development of layers (zones) of slip in thin plates, which occur around an 
elliptical hole when b = 0 and a = b, i.e. in two extreme cases: around a slit, 
and around a round hole (a and b are the semiaxes of an ellipse. 

 he problem (plane deformation) of the change of radius, in time, of the plas- 
tic zone near a round hole in a plate made of a linearlly strengthening and 
relaxing material (A. Yu. Ishlinskiy's model [I]) is investigated in the work 
of M. I. Rozovskiy [I]. It is shown in this work that in the presence of 
relaxation, strengthening has not only a quantitative, but also a qualitative 
effect on the process of change of the plastic zone. 



For our analytical investigation of the occurrence and development of 
slip zones, we can use the following method1. In view of the thinness of 
these zones, plastic deformation is considered to be concentrated along certain 
lines, i.e. the zone is replaced by its median line. Hence it is necessary to 
assume the presence of a discontinuity of displacements on such lines. These 
assumed discontinuities of displacements should not contradict the kinematically 
possible pattern of plastic flow and should not denote the presence of friction 
(voids) in the body, if the latter are not formed as the result of plastic 
deformation, i.e. if the material remains solid. In thin plates, such require- 
ments can be satisfied by discontinuities that are both tangential and normal 
to the line of discontinuity. In the case of normal discontinuity, disruption 
of the solidity of the material can be excluded due to the possibility of 
local thinning or thickening of the plate. 

Thus, due to local carrier of the development of slip zones, the problem 
of elasto-plastic deformation in a plate can be reduced to the problem of the 
deformation of a linearly elastic plate, displacements of which along certain 
lines experience a discontinuity. The actual forces along these lines should 
satisfy the assumed plasticity condition. The shape and length of the lines 
of discontinuity (slip) should be defined during the process of the solution of 
the problem. In the general case this is a *ther difficult problem, particu- 
larly as regards the determination of the shape of the lines of discontinuity. 
However, in several particular cases the form of the slip lines can be predic- 
ted. Then the solution of the problem is greatly simplified. 

We will examine2 the problem of the development of the first slip zones 
due to uniaxial tension of thin plates containing a slit or a round hole. The 
size of the slit and hole will be assumed small, and the plates will be made of 
isotropic, elastically ideally plastic material. We will use the Tresa-Saint 
Venant condition as the plasticity condition: 

(V. 185) 

The complex potentials in the presence of slip zones are represented in 
the form 

(V. 186) 

'see P. M. Vitvitskiy, M. Ya. Leonov [3 ] ,  where the stated approach to the solu- 
tion of the problems of the development of slip zones in thin plates is clearly 
formulated. Essentially, this method, although it is not clearly formulated, 
is used in the work of D. S. Dugdale [l]. The analogous method of the analysis 
of the simplest cases of plastic deformation of plates is used by A.  R. 
Rzhanitsin [l] . 
*see I. M. Vitvitskiy, M. Ya. Leonov [3]. The dependence of the length of slip 
zones on the forces of tension for the case of a plate with a slit is also 
found by D. S. Dugdale [l]. 



where the functions 4 (z) and $J (z) define the stress and deformation fields ,'445 0 0 - 
under the assumption that the plate is always deformed elastically (basic 
field); by additional functions 4, (z) and $,(z) we will consider the presence 

of slip bands (discontinuities of displacements). 

Tension of Plate Containing Slit. Let a thin infinite plate containing a 
rectilinear slit of length 22 be subjected to tension perpendicular to the 

slit by forces a ("I = p (Figure V. 19) . 
Y 

l l l f t t l l l t l f l p  
As follows from 92, Chapter 11, the mag- 

nitude of forces p would not be small, the 
elasticity condition would not be satisfied 
on the ends of a narrow slit, and either plas- 
tic deformations or cracks due to the brittle 
destruction of the material may occur here. 

The maximum stresses in the plate occur 
on the line of extension of the slit (on the 
line y = 0 when 1x1 > Z), whereupon 

Figure V . 1 9 .  
a, ( x ,  0) > 0, (x, 0) '- az (x ,  y) = 0, (V. 187) 

.rxu ( x ,  0) = 0. 

Therefore plasticity condition (V.185) on the abscissa acquires the form 

U# (x ,  0) = a,. 
(V. 188) 

The slip zones coincide with the Ox axis and are inclined to the plane of 
the plate at angle +7~/4 .  The first slip zones thus extend along the abscissa1. 
We will assume that they occupy segments Z 6 1 xl < a under some load. During 
displacements along the slip zones, local thinning of the plate occurs in 
these segments, which is the result of discontinuity of the component v(x, 0) 
of the displacement vector that is normal to the Ox axis. 

Since a narrow slit can also be regarded as a line of discontinuity of 
displacements v(x 0), we will assume that such discontinuity occurs in the 
entire segment 1 x( < a, whereupon, in this segment, we will have 

.r,,(x,O)=O; o,(x,O)- 0 for I x l < l ,  
9 for l < ( x l < a .  

(V. 189) 

'~fter the first elementary plastic displacements, the stress field, generally 
speaking, changes somewhat, although (as we will see later), relation (V.187) 
is satisfied. This insures the development of the first slip zones along the 
abscissa. 



Then, as the functions corresponding to tension of a heavy plate by forces 

u = p, we should use 
Y 

(V. 190) 

The functions 4,(z) and +,(z) which take into account the presence of 

discontinuity of displacements can be found by solving the following auxiliary 
problem. In an isotropic elastic plate, on segment 1x1 G a of the abscissa, 
let displacements v(t, 0) experience a discontinuity of the magnitude X(t), 
and let displacements u(t, 0) and stresses a and T be continuous, i.e. 

Y x Y 

[U (0 f iv (t)l+ - IU ( I )  + iv(t)l- = i1(07 for 1 1 = I 1 a,  (V. 191) [X, (t)  + iY, (t)]+ - [ X n  ft.) -I- iYn ( f ) l - =  0 

where + and - denote the left hand and right hand boundary values, respectively, 
We will assume that the function X(t) satisfies Gellder's condition and 
A(a) = A(-a) = 0. 

On the basis of formulas (I.9), (1.10) and relations (V.191) we have 

*' i A  (t) .  cp;t (t)  - y- (f) = yqri 
for I t J < a .  

2p i [ A  ( t )  - t ~ '  (t)j y- (0 - *; U) = q 
(V. 192) 

Thus, we have arrived at the problem of linear conjugation (Hilbert's 
problem) for functions $,(z) and $,(z) that are piece-wise holomorphic on the 

entire plane. The solution of this problem is known1: 

q* (2) = D 1 ?.@ 
t - z  ' 

A (f) - tk' ( t )  
* * ( z ) = D S  dt . 

where 

(V. 193) 

'see N. I. Muskhelishvili [I]. 
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h e  derivatives of these functions, through which we determine the stresses, 
can be represented in the form 

(V. 194) 

Let us return now tb the basic problem of slip zones. In order to solve /447 
this problem we must'determine the function Xt(t) and parameter a such that 
condition (V.189) be satisfied and the boundedness and continuity of stresses 
at points z = +a be preserved. Recalling formulas (I. 2) , (I .9), (I .6) and 
(I.13), we find from condition (V.189) the equation for the determination of 
the function Xt(t) and parameter a: 

-a for 1 : :  / x i  < a .  (V. 195) 

It is easy to prove that only the solution of equation (V.195), which is 
equal to zero at the points 1x1 = a, insures continuity of stresses in the 
latter. Such a solution, as we know', exists under the condition 

and is given by the formula 

Jfa=2 nr ( t )  = li 
va9_XI x - t  ' 

(V. 196) 

(V. 197) 

By substituting into (V.197) the value f(x) and calculating the integrals, 
we find the function 

Or 1 l / a T 2  - t ] f a *  - 12 1 A' ( t )  = - , ( I t !  < a) 
2n*D1"1 + I 

and the parameter which defines the length of the slip zone: 

(V. 198) 

(V. 199) 

'see N. I. Muskhelishvili [ 2 ] .  



From (V. 198) and (V.194) we f i n d  t h e  func t ions  

(V. 200) 

Here, i n  t h e  express ion  4 2 2  - a 2 ,  we t ake  t h e  branch t h a t  i s  holomorphic on 
lane z ,  with d i s c o n t i n u i t y  along segment I xl a ,  such t h a t  JzZ - a 2 +  z when 

7 2  I +m; i n  t h e  logar i thmic  func t ion  we w i l l  t ake  t h e  branch t h a t  i s  holomor- 
p h i c  on t h e  p l ane  wi th  t h e  same segment, wi th  t h e  except ion of t h e  p o i n t s  
z = '2 and which acqu i r e s  a zero va lue  a t  i n f i n i t y .  

The s t r e s s e s  i n  a p l a t e  with a s l i t  a r e  

(V. 201) 

Figure V.20 shows t h e  graphs of  s t r e s s e s  ox and u through c ros s  s e c t i o n s  
Y 

Ox and Oy f o r  p = 1/2 oT ( t h e  length  of  t h e  s l i p  zone i s  b = a - I = (JS - 1 ) Z a  
= 0.41  2 ) .  

The s o l u t i o n  thus  found p e r t a i n s  t o  t h e  f i r s t  s t age  of e l a s t o - p l a s t i c  
equi l ibr ium of  t h e  p l a t e ,  where t h e  s l i p  zones extend along t h e  absc i s sa .  
However, new s l i p  zones occur  under some load,  which a r e  i nc l ined  a t  angle  a t o  
t h e  f i r s t  (shown i n  Figure V.19-by broken l i n e ) .  This i s  t h e  second s t a g e  of  
e l a s t o - p l a s t i c  equi l ibr ium of  t h e  p l a t e .  The new s l i p  zones a r e  generated when 

1 
t h e  maximum t a n g e n t i a l  s t r e s s e s  Tmar = - 1 %-ox+ 2irxv 1 . which a c t  i n  t h e  2 
s u r f a c e s  perpendicular  t o  t h e  p lane  of  t h e  p l a t e ,  achieve t h e  y i e l d  p o i n t s  i n  
t h e  v i c i n i t y  of  t h e  ends of t h e  s l i t .  These s t r e s s e s  a r e  found from formulas 
(V.  201), assuming z = 2 + rei9 and a f t e r  determining t h e i r  maximum value as h 
func t ion  of  9 when r + 0:  

(V. 202) 

On t h e  b a s i s  of  formulas (11.23) and ( I I . 201) ,  we can show t h a t  t hese  s t r e s s e s  
a c t  i n  t h e  su r f aces  whose s lope  a t o  t h e  absc i s sa  s a t i s f i e s  t h e  r e l a t i o n  

t a n  2a=-n-  n q < a 6 -%-I. 
0, in 



On t h e  b a s i s  of  p l a s t i c i t y  condi t ion  (V.185) we f i n d  from (V.202) t h a t  
t h e  new s l i p  zones a r e  generated under load 

(V. 204) 

From formulas (V.203) and (V.204) we know t h a t  t h e  i n i t i a l  s lope  of  t h e  
new s l i p  zones i s  

(V. 205) 

Thus, experiments with tens ion  of p l a t e s  made of s o f t  s t e e l  with a  s l i t  
v e r i f y  t h e  c h a r a c t e r  of  development of  p l a s t i c  deformations,  which is t h e  out -  
come of  t h e  a n a l y t i c a l  so lu t ion :  a t  f i r s t ,  s l i p  zones always appear  on t h e  /449 - 
l i n e s  of  ex tens ion  of t h e  s l i t ,  and then,  under a  c e r t a i n  load new s l i p  zones 
develop a t  some angle t o  t h e  f i r s t .  The r e l a t i o n s h i p  found between t h e  length  
of  t h e  f i r s t  s l i p  zones and t h e  load s a t i s f a c t o r i l y  agrees  with t h e  t h e o r e t i c a l  
r e l a t i o n s h i p 1 .  

Figure V.21. 

Figure V.20. 

Tension of P l a t e  w i t h  Round Hole. Let a  t i n  i n f i n i t e  p l a t e  with a  round 
ho le  of  r ad ius  R be under t ens ion  by f o r c e s  a = p  (Figure V .  21).  Analysis 

Y 
o f  t h e  f i e l d  of e l a s t i c  s t r e s s e s  ( see  92, Chapter 11) shows t h a t  i n  t he  v i c i -  
n i t y  of p o i n t s  z  = kR, where t h e  s t r e s s e s  a r e  maximum, r e l a t i o n  (V.187) i s  
v a l i d ,  and consequently,  t h e  e l a s t i c i t y  condi t ion  has t h e  form (V.188). 

' s ee  M. Ya. Leonov, P .  M.  V i t v i t s k i y ,  S. Ya. Yarema [ l ]  and a l s o  D .  S .  Dugdale 
[ I ] .  
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Therefore the slip zones that occur when p 1/3 uT are distributed on the 

abscissa and the displacements in them occur in the same manner as in the first 
slip zones in a plate with a slit. 

We will determine the functions @,(z) and Y,(z) for a plane containing a 

round hole in the presence, on segments R g 1x1 a, of discontinuity of dis- 
+ 

placements v (t, 0) - v- (t , 0) = A (t) , whereupon A (+a) = 0. For this purpose 
we will represent them in the form 

where the functions @il)(z) and ylil)(z) correspond to the above-stated discon- 

tinuity of displacements in a plane without a hole (they are given by formulas 

(V. 194)), and the presence of the hole is taken into account by @L2) (z) and 
Y'L2) (z), i.e. the; absence of external stresses on the contour of the hole is 

insured. 

The functions mi2) (x) and yli2) (x) are found from the known formulas ' by /450 

solving the problem for an infinite plane with a hole of radius R, on the con- 
tour of which are applied normal and tangential stress N + iT that are oppo- 
site in sign to stresses a + i~ which are caused on the contour of the r 1.0 ' 
hole 1 zl = R by discontinuity of displacements on the above-mentioned segments 
in the plane without a hole. Stresses or + i~ are easy to find by substitu- 

re 
ting the functions $,(z) and $,(z) from (V. 193) into formula (1.18) for 

i e z = R e  . 
By combining, respectively, the functions @il) (x) , Y!') (z) and @i2) (z) , 

te-,  

Y'tLJ (z), we obtain 

y* (2) = - - D [ ~ ( R ) - A ( - R ) ]  (+ + 2 $.) + (V. 207) 

where the integrals are taken along the line L = [-a, -R] + [R, a]. If we know 

'see N. I. Muskhelishvili [I]. 
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these functions, then it is easy to determine by formulas (1.13) the stresses 
O* = (x, 0) caused by the discontinuity of displacements. After combining 
Y 
the latter stress with stress oo (x, 0) of the basic field (it is given by the 

Y 
appropriate formulas of 52, chapter 11), then, on the basis of plasticity con- 
dition (V.188) we find the integral equation for the determination of the 
function A' (t) and parameter a: 

The conditions A(t) = A(-t), and A' (t) = -A1 (-t) , which obviously occur 
due to the symmetry of the problem, are taken into account,in equation (V.208). 

2 2 -  After substituting x2/R2 = 6 ,  t2/lI2 = TI, A'(t) = Af(RJri) = X;I(n), a /R - 
= a, equation (V.208) is converted to the form 

The approximate solution of equation (V.209) will be found in the form of - /451 
a polynomial with unknown coefficients a : n 

(V. 210) 

To insure the boundedness and continuity of stresses at the points z = +a, 
it is necessary to assume X;(a) = 0. By substituting (V.210) into (V.209), we 
obtain 

where 

(V. 211) 



Figure V.22. Figure V.23. 

In order to determine the coefficients a we will require that equation 
n ' 

(V.211) be satisfied at the given points 1 <  E i 4  a (i = 0, 1, ..., m). Conse- 

quently, we obtain a system of m + 1 equations. From this system and from 
condition h;(a) = 0, if the various values a >  1 are given, we find an and the 

ratio p/aT. In this manner we can find the approximate relationship between 

the length of the slip zones b = a - R = R V ~  - 1) and load p, and also the 
approxiiate value of ;he function hA(n ) .  Then we can deteiine the stress 
field. 

Figure V.22 illustrates the relationship 
between the length of slip zones b/R and load 
p/oT, and Figure V.23 shows the graphs1 of 

stresses a y1 Ox on the abscissa; Figure V.24 

illustrates the graphs of stresses ag on the 
contour of the hole for the case where b = R, 
i.e. p = 0.66 oT. The graphs are constructed 

for the three-place approximation of the value 
Figure V.24.  hi(1-l) (V.210) and for E0 = 1, C1 = (1 + a)/2, 

2 2 C 2 = a = a / R .  

  he graphs of stresses for the basic field, under the assumption that the 
plate is deformed constantly (even when p > oT/3) elastically, are represented 

by the broken lines; the dot-dash lines represent stresses caused by the slip 
zones (discontinuity of displacements); the solid lines represent total 
stresses. 



59. Critical Loads Caused by the Beginning of the Development of Cracks Around 
a Hole 

We will assume that a body behaves elastically all the way up to 
destruction. In this case the destruction of the body will occur after the 
development of equilibrium cracks of brittle destruction in the zone of higher 
stresses1. 

We will analyze the stress state in an infinite elastic plate, weakened 
by a curvilinear hole or by two cracks (cross sections) of length I ,  when the 
contour L of the hole and of the cracks is free of external loads, and where, 
at sufficiently distant points from the hole and cracks, i.e. at infinity, are 

applied constant forces of tension CJ = p (uniaxial or multifold tension), as 
illustrated in Figure V.25. Y 

In the following we will analyze holes 
with smooth contours, for which the Ox axis 
will be the axis of symmetry and the 
equations of these contours will have the 
f o m  

Cc I 

c N 

i I i I i 1  I I I I I I  ! x -= R /COST + C o,cosnpj~ 
P P n-1 

Figure V.25.  y = R  sincp- I C a, sin nq]. 
( V .  212) 

where R, a are real parameters; N and n are whole positive numbers. 
n 

Through k we will denote the number of cracks. For the case of k = 2 we 
will analyze contour equations (V.212) with odd n. 

Boundary condition (1.11) and the condition conjugate to it are, in the 
given case 

'~nal~sis of the stress state around variously oriented, both rectilinear and 
curvilinear, cracks is given in Chapter VIII. 
2 ~ h e  solution of this problem was found by A .  A .  Kaminskiy [I]. For the parti- 
cular case of a round hole, the solution was obtained earlier by 0.  L. Bowie -[l].  
See also 55, Chapter VIII, where the solutions of other authors are presented. 



The function w(5)  which maps the exterior of contour (V.212) with one and 
two equal rectilinear cross sections of length 2 in plane z, on the exterior 
of unit circle y in plane < will have the form 

(V. 214) 

where when k = 1 

when k = 2 

1 1 '  
Here LO = f 10 + =); , 2 is a real parameter. 0 

In the case of an elliptical hole with semiaxes a, b, the mapping function 
(V. 214) will have the following form: 

when k = 1 

Here 

when k = 2 

a + b  a - b  R = -  m = -  
a + b  ' 

(V. 215) 

(V. 216) 



Mapping function (V.214) can be expanded into a series and represented in 
the form 

(V. 217) 

where R E are real parameters. 1' n 

Series (V. 217) and expansion w' (5) converge everywhere to I 5 1 > 1, with 
the exception of points bk of contour y, which correspond to the points of 

intersection of the edges of the cracks with the contour of the hole. The 
edges of the equilibrium cracks should come together smoothly1, and therefore 
we cannot approximate the mapping function (V.214) by the methods outlined in 
92, Chapter I, since by such approximation the ends of the cracks will be 
rounded. 

By maintaining in (V.217) N + 1 first terms of the series, we substitute 
coefficients T by certain similar coefficients c such that for the new n n 
mapping function 

the condition 

(V. 218) 

(V. 219) 

will be satisfied, where QN is a polynomial with respect to negative powers of 

5, all roots of which lie within the unit circle in plane 5 .  In constructing 
function (V.218) it is also required that + @(5), $(a + u' (5) for 
N + w everywhere in 151 2 1, with the of points bk of contour y. 

Function (V.218) thus constructed will map the exterior of some new contour 
L' onto the exterior of contour y, upon which are preserved the points of 
regression in the edges of the cracks, and only the angles at the intersection 
of the edges of the cracks with the contour of the hole are rounded off. Stress 
functions corresponding to %(<) will be denoted in the form 9N(<), QN(5). 

'see G. I. Barenblatt [l, 21. 



A singularity of the solution, occurring due to the presence of angular 
points of regression of the contour, can be explained by function I) (c,) and has 

N 
no effect on the other function $N(C), hence the function ~$~(g), at the points 

y corresponding to the points of regression of contour L ' ,  has a pole of the 
first power'. 

In the case of multifold tension "at infinity" by forces p, we will /455 
determine the function 

N 

(V. 220) 

Here a are real coefficients. The second boundary condition of (V.213) for n 
functions a(<) and aN(5) are represented in the form 

By equating the coefficients for identical powers of a in the expansion 
of the right and left hand sides of (V.221), we obtain a system of linear 
algebraic equations for the determination of a : n 

N-P N-P 
C 

a, + ~ a . + , c ,  (1 - kn) + yep+,a, (1 - kn) + 2 = 0. 
3 2 

A= I n= I (V. 222) 

By multiplying both sides of (V.221) by 1/2~ri*l/o - <, where 5 is a point 
outside of y, and integrating with respect to y, we obtain 

Since ~ ~ ( 5 )  + w(<) and w);(<) -+ w'  (5) , we may assume2 that when 
N - 4N(S) -+ O(5); 4lj(5) + + t  (5); (1 - C-~)I$,(<) -+ (1 - c-~)$(s) everywhere 
in 1 < (  > 1, with the exception of points b which correspond to the angular k ' 
points of contour L, which differ from the points of regression. 

'see S. M. Belonosov [ I ] .  
*see N. I. Muskhelishvili [I]. 



Transitioning to the limit in the right hand and left hand sides of 
(V.223) for N + 03 for real t (on the extension of the cracks), we obtain 

(V. 224) 

For the case when forces of tension p are applied Ifat infinityff in the 
direction perpendicular to the surfaces of the cracks, the stress function can 
be represented in the form . 

(V. 225) 

where a are real coefficients. 
Repeating all calculations and considerations given above, we find that 

$(<) for real z (on the extension of the cracks) also are expressed by 
formula (V.224), and coefficients an of function ON(<) are defined by alge- /456 
braic equation systems: 

when k = 1 

N-P N-P 

+ C + C -n) + 2 -- 4 - -- 
n==l -1 I" 2 I"" * p = 2 :  (V. 226) 

when k = 2 

After substituting the variable z by w(<), formulas (1.13) are transformed 
to the form 

(V. 228) 

Due to the total symmetry of the problem we may confine our analysis to 
the right hand crack alone (if there are two of them). 



The s t r e s s e s  near  the  end of the  crack a r e  found from (V.228), r e c a l l i n g  
r e l a t i o n s  (V. 214) and (V. 224) : 

where 

s i s  a  small d is tance  from t h e  examined point  on t h e  x a x i s  t o  the  end of the  
crack (see Figure V.25) and f ( 2 ,  rk) is  a  known function of the  length of t h e  

crack Z and c h a r a c t e r i s t i c  parameters of hole rk. 

Elliptical Hole. Relation (V.229) is  converted t o  the  following form: 

when k  = 1 

when k = 2 - /457 

1 - 7- 
TnF 

nl' I---- (V. 231) 
( 1  + 

where 

The load w i l l  be c r i t i c a l  i f  the  following condi t ion  is s a t i s f i e d 1  : 

K 
0" (x ,  0) = -- + 0 (I), ( V .  232) 

nv s 

where K i s  t h e  coupling modulus. 

'see G .  I .  Barenblatt  [2] . 
506 



From (V.230)-(V.232) we find the expressions for the determinatcon of the 
critical load required for the beginning of the development of cracks near an 
elliptical hole: 

when k = 1 

(V. 233) 

when k = 2 

(V. 234) 

Since the functions $' (z;) and $I;(<) at the point 5 = 1 do not have 

singularities and when N + +;(I) + $'(I), then by taking N sufficiently large, 

we can make the difference between $;(I) and $'(I) as small as we like. There- 
* 

fore, for rather large N, by substituting in (V.233) and (V.234) @'(I) by 
$;(l) = ( 1 ) R l p  we obtain approximate formulas which enable us with a 

sufficient degree of accuracy to calculate the critical load. 

Figure V.26 shows the curves 5, = n p , / K  a as a function of A = Z / R  for 

various m = (a - b)/(a + b) in the case of multifold tension  hen k = 2, con- 
structed by formulas (V. 233) and (V. 234) , where the function $ ' (1) was 
approximated by function @k(l). Hence, mapping function (V.218) retains 34 /458 

terms. Figure V.27 represents the analogous curves for the case of uniaxial 
tension of a 

The data presented show that in the case of multifold tension for all 
0 < m < 1 even when 2 > R/2, the function $i(1) differs from unity by the 
order of magnitude of 5%, and as A increases this difference diminishes. Thus, 
in the given case, by substituting $'(I) by one, we obtain simple approximate 
formulas : 

'AS s h o w n  by A .  A .  Kaminskiy [l] when k = 1 the curves of the dependence of 
$, on h correspond qualitatively to the curves shown in Figures V.26 and V.27. 



when k = 1 

when k = 2 

(V. 235) 

(V. 236) 

From relations (V.233) and (V.234) when m = 1, i.e. in the case of a 
rectilinear insulated crack, we obtain the known Griffith's formula1 : 

(V.237) /459 - 

where 

1 c=.+.-fork= 1 and c = a + l  for k = 2 .  

Also examined2 is the limiting case of an elliptical hole when b > a and 
a -+ 0, i.e. when m + -1. Here it is assumed that the edges of a vertical slit, 
which are parallel to forces of tension p, do not come into contact with each 
other. 

Figure V.26. F i g u r e  V.27.  

lSee Griffith [l, 21.  
2 ~ e e  A. A. Kaminskiy [I, 21, I. Yu. Babich, A .  A. Kaminskiy [I]. 



The c r i t i c a l  load f o r  a cross-shaped crack formed a t  t h e  l i m i t  by an 
e l l i p t i c a l  ho le  and two h o r i z o n t a l  c racks ,  extending t o  t h e  contour  of t h e  
ho le  f o r  m -t -1, d i f f e r  from t h e  c r i t i c a l  load (V.237) f o r  a r e c t i l i n e a r  crack 
by t h e  o rde r  of  magnitude of l o%,  which i s  evidence of  t h e  s l i g h t  e f f e c t  t h a t  
t h e  v e r t i c a l  s l i t  has  on t h e  development of  a ho r i zon ta l  c rack .  

Analyses conducted with t h e  he lp  of  t h e  computer have shown t h a t  f o r  
c racks  o f  g r e a t  length ,  it i s  necessary  t o  r e t a i n  a comparatively small number 
of terms i n  t h e  mapping func t ion  (V.218) i n  o rde r  t o  o b t a i n  t h e  r equ i r ed  
accuracy (of t h e  o rde r  of  5%) o f  r e s u l t s ;  a s  t h e  length  of  t h e  crack decreases ,  
it i s  necessary  t o  r e t a i n  i n  mapping func t ion  (V.218) a r a t h e r  l a r g e  number of 
terms, 24 and 34, i n  o rde r  t o  ob ta in  t h e  same degree of  accuracy.  A s  shown by 
c a l c u l a t i o n s ,  an inc rease  i n  t h e  number of  terms i n  mapping func t ion  (V.218) 
by 10 r e s u l t s  i n  a compari t ively small  dev ia t ion  i n  t h e  magnitude of t h e  
c r i t i c a l  load. 

Round   ole'. I f  i n  r e l a t i o n s  (V. 233) and (V. 234) we assume t h a t  m = 0 ,  
we o b t a i n  t h e  c r i t i c a l  load f o r  a round hole  of  r ad ius  R .  In t h e  case of  
mu l t i fo ld  t ens ion ,  from (V.233) and (V .234 ) ,  f o r  m = 0, we o b t a i n  f o r  a l l  
va lues  of A ,  s imple formulas2: 

f o r  k = 1 

f o r  k = 2 

( V .  238) 

(V.  239) 

Formulas (V.238) and (V. 239) and t h e  curves of t h e  dependence of 5 on 
(see Figures  V.26 and V.27), ob ta ined  by A.  A.  Kaminskiy [I] ,  a r e  i n  good agree-  
ment with t h e  r e s u l t s  of 0. L.  Bowie [ I ] ,  obtained by a more d i f f i c u l t  method /460 
with t h e  a i d  of  G r i f f i t h ' s  method. 

E f fec t  of  Local S t r e s s  Field near Hole on Development o f  Cracks. In t h e  
l i m i t i n g  case  f o r  A -t 0,. 

 he problem of t h e  development of c racks  near  a round ho le ,  i n  a s ta tement  
d i f f e r e n t  from t h e  one presented  he re  i s  examined i n  t h e  works of  H.  F .  Bueck- 
n e r  [ I ] ,  P .  M. V i t v i t s k i y  and M. Ya. Leonov [l] by d i f f e r e n t  mctnods. The 
s o l u t i o n  of P .  M .  V i t v i t s k i y  and M. Ya. Leonov i s  given i n  55, Chapter VIII. 

2 ~ e e  A.  A .  Kaminskiy [ I ] .  



where the case of uniaxial tension is denoted by two asterisks, multifold ten- 
sion, by one asterisk and k** and k* denote, respectively, stress concentration 
factors on the contour of the hole at the points of intersection of the con- 
tour of the hole with the Ox axis. This fact is evidence of the considerable 
effect that the local stress field has on the development of small cracks. 

As follows from 52,  Chapter 11, a slit that coincides with the direction 
of the forces of tension p has no effect on the stress state of the plane. 
Hence ' 

Calculations show that in all examined cases, as the length of the crack 
increases 

in the case of a round hole with cracks, even when 2 > R, the stress field near 
the hole, for all practical purposes, has little effect (about 5%) on the 
magnitude of the critical load: 

In the case of an elliptical hole, the zone of influence of the hole on 
the development of a crack becomes smaller, where m +  1, i.e. when the 
ellipse is converted into a horizontal slit. 

'see Griffith [I]. 
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CHAPTER VI. EFFECT OF ASYMMETRY OF STRESS TENSOR ON 
STRESS DISTRIBUTION NEAR HOLES 

Abstract. This chapter discusses the influence of the couple- 
stresses of the theory of elasticity on the stress concentra- 
tion near holes. Closed solutions are given of the plane 
boundary value problems of the couple stresses of the theory 
of elasticity for the domain with circular hole both free and 
rei nforced. The "boundary form perturbat ion" method was 
applied to solve the problems on stress concentration near 
curvilinear holes such as elliptic, square and triangular. 

§ 1 . Genera 1 Comments 

Classical elasticity theory explains quite satisfactorily the behavior of /464 
real solid bodies located under various loads, in all cases where the "grain" 
of the structure of the bodies under examination is not characteristic for 
these phenomena. However, classical elasticity theory cannot satisfactorily 
explain certain phenomena which can be observed in real elastic bodies. In 
particular, from the point of view of theoretical solutions of problems of 
classical elasticity theory, it is not possible to explain and predict the laws 
of propagation of short sound waves in crystalline solid bodies, polycrystalline 
metals, and high polymers. 

Nor does classical elasticity theory explain the effect of the stress 
gradient on the fatigue characteristics of polycrystalline materials. 

The cause of the above discrepancies obviously can be attributed primarily 
to the fact that the solid model of a rigid body upon which classicial elasti- 
city theory is based cannot reproduce the elastic properties of real bodies, 
which are determined by their specific structure. 

Obviously, in order to explain these phenomena, dense medium mechanics 
requires a new model of the solid body, in which the properties attributed to 
the specific structure of real bodies can be reproduced accurately. 

We will examine one of the possible approaches to the construction of such 
a model. 

Thus, we will assume that small displacements of material points in a 
dense elastic medium are defined by two vector fields: 

(VI .l) 



-% 
The first vector u characterizes the small displacements, and the second 

+ -t 
vector w, the small rotations. The vector w, generally speaking, can be regar- 

-h 
ded as kinematically independent of the vector u. 

The stress state at each point of this dense medium in any plane charac- 
-% 

terized by the perpendicular line n, will be determined by the vectors of 

ordinary and moment stresses. The mass forces in this medium will 
+ -+ 

also be of two forms: ordinary F and.moment M. 
-% 

We know from the dense medium theory that vector u defines simultaneously - /465 
both deformation 

(VI - 2 )  

of an infinitely small vicinity of the examined point of the dense medium and 
rotation (as a rigid whole) 

(VI .3) 

of the examined vicinity of the point of the dense medium. 

If to this model external forces are applied, or if the corresponding 
displacements are imparted to the surface points of the model, then, under the 
corresponding conditions, a stress state will occur within it, characterized 
by an asymmetric stress tensor, i.e. stresses will occur for which the law of 
conjugation of tangential stresses will not be satisifed. 

W. Voigt [l] first examined in 1887 a model of a mediwn with rotational 
interaction of its particles for the analysis of the elastic properties of 
crystals. 

The first attempt to construct elasticity theory with an asymmetric stress 
tensor was undertaken in 1909 by E. and G. Cosserat [I]. They based this 
branch of elasticity theory on the aforementioned model of a dense elastic' 
medium with rotational interaction of the particles. 

There are different approaches to the description of displacements of 
particles of the new dense medium model. 

In the works of E. L. Aero and Ye. V. Kuvshinskiy [l, 21, R. D. Mindlin 
and G. F. Tirsten [ I ] ,  Yu. N. Nemish [I-41, Khartrenft and Si [I], Khopmen and 
Shouena [I], Veytsman [I], V. T. Koyter [I] and M. Misicu [I-31, the conception 
of classical elasticity theory is retained, i.e. it is felt that displacements 



-b + 
u of the points of this medium and their rigid small rotations w are completely 

-b + + 
defined by the vector u(x, y, z )  for w = 1/2 rot u. We will call this variant 
of elasticity theory with an asymmetric stress tensor variant one. 

V. A.  Pal'mov [l, 21, V. Novatskiy [l] and N. Neuber [l] for the 
description of displacements of particles of the examined medium introduced 

+ 
along with the ordinary stress field u(x, y, z), a kinematically independent 

field of vectors $(x, y, z) which characterize small rotations of the parti- 
cles of the medium. This variant of moment elasticity theory will be referred 
to as variant two. 

It is easy to see that general rotation of the particles of the medium in 
variant two of this theory will consist of the sum of two independent terms: 

-b -b + 
rotation w = 1/2 rot u, produced by vector u, and rotation produced by the vec- /466 

+- 
tor @. Naturally, these variants, i.e. different assumptions concerning the 
nature of deformation of the new dense medium model, lead to different numbers 
of elastic constants. Thus, in variant one of moment elasticity theory, for 
an ideally isotropic medium, the elastic behavior of the new model is charac- 
terized by four elastic constants: E, V, 2 and q, of which E is Young's modulus, 
v is Poissons's ratio, 2 and 0 are new material constants ( I  is length and q is 
a dimensionless constant of the Poisson type). In variant two the elastic 
behavior of the new isotropic model is characterized by six elastic constants: 
E, v, 2 ,  nl, 9,  5, of which E and v are, respectively, Young's modulus and 
Poisson's ratio, 2 is a new constant denoting length, nl, n2 and 0 are new 3 
dimensionless constants. The elastic behavior of the new anisotropic (in the 
same general case of anisotropy) model of moment elasticity theory in variant 
two will be characterized' by 171 elastic constants2. 

Below we will examine a plane problem of elasticity theory with an 
asymmetric stress tensor, assuming th3t deformation of th$.ri!edium is completely 
characterized by displacement vector u, while the vector w, which defines 
"rigid" rotation of the particles of this medium, is expressed by formula 
(VI.3). We will assume the medium to be ideally elastic and isotropic. 

The most significant corrections to the solutions of problems of classical 
elasticity theory should be anticipated for those cases where the stress state 
has the greatest stress gradient. This class of problems will include, in 
particular the problems of stress concentration near holes. 

We know that by selecting the appropriate shape of the hole and orienta- 
tion in relation to external forces, we can determine the large stress gradient 

'see H. Neuber [I]. 
2 ~ n  classical elasticity theory the general case of anisotropy of a medium 
requires the knowledge of 21 elastic constants. 



near the hole. Therefore it is very important to analyze the effect of the 
asymmetry of the stress tensor on stress concentration around holes. 

The results derived in this chapter for the plane problem, applicable to 
variant one of moment theory, will be valid1 also for asymmetric elasticity 
theory in variant two, since the basic equations for the plane problem, in 
particular for plane deformation, in these variants, as indicated by V. A. 
Pallmov [ 1 , , 2 ] ,  coincide with an accuracy up to constant factors. 

2. Plane Problem of Moment Elasticity Theory of Isotropic Medium 

Basic Equations and Relations. The plane problem of moment elasticity 
theory in the absence of three dimensional forces and moments reduces to the 
integration of a system of equilibrium equations2 in stresses and moment 
stresses 

and compatibility conditions 

(VI . 4 )  

(VI .5) 

under the corresponding boundary conditions. 

In the case of plane deformation for an isotropic elastic medium, the 
elasticity relations are of the form 

'see G. N. Savin [Z]. 
2 ~ e e  R. D. Mindlin [I]. 



(VI .6) 

where E is Young's modulus; V is Poisson's ratio. 

Following the general' trend of linear elasticity theory, we assume that 
the curvatures K and K of the fibers are directly proportional to moment 

X Y 
stresses L.I and L.I i.e. 

X Y' 

(VI .7) 

where q is a new constant of the material (deflection-torsion modulus). 

The connection between stresses a a -r T and moment stresses L.I 
x' y' xy' y: 

X 
/468 - 

and L.I is accomplished with the aid of the relations 
Y 

(VI .8) 

hence 

It is easy to see from formulas (VI.7) and (VI.8) that the deflection-tor- 
sion modulus q has the dimension of force, and in view of the fact that 
displacement modulus G has the dimension of force divided hy the square of the 
length, the constant Z has the dimension of length, which can be used, instead 
of the constant q, as the new material constant. 

Stress Functions.  If stress functions U and F are given by relations2 

- - - - -- - - - 

'see H. Schaefer [I], R. D. Mindlin [I]. 
2 ~ z e  H. Neuber [ I ] ,  R. D. Mindlin [I]. 



(VI . l o )  

then ,  i n  t h e  absence of  f o r c e s  and t h r e e  dimensional moment', t h e  p lane  problem 
of moment e l a s t i c i t y  theory  reduces t o  t h e  s o l u t i o n  of t h e  equat ions  

under c e r t a i n  boundary cond i t i ons .  

S t r e s s  func t ions  U and F a r e  no t  independent;  they  a r e  r e l a t e d  by 
condi t ions  

where 

(VI. 11) 

(VI . 12 )  

( V I  .13) 

T ur and pe i n  p o l a r  S t r e s s e s  and moment s t r e s s e s  or, ue, T ~ ~ ,  

T p  and coord ina tes  ( r ,  8) a r e  expressed through t h e  va lues  ox,  uy, T ~ ~ ,  
yx, 

corresponding t o  them i n  Car tes ian  coord ina tes :  
Y 

a, = ox cos2 0 + a, sin2 8 + (t,, $ tux) sin 8 cos 0, 

a( = a, sin2 8 + a, cos2 8 - (t,, + z,,) sin 6 cos 8, 

t r c  = (a, - a,) sin 8 cos 0 $- t,, cos" - rz,, sina 8, 

tar = (0, - a,) sin 6 cos 8 - t,, sin2 8 $ r,, cos2 8 ,  

p, = px cos 6 + p, sin 8, 

= -pxsin8 + p,cosY, 

(VI. 14) 



where 

- Y r =; VX' -i- $, 8 = arctan-; . (VI. 15) 

If relat ions  (VI.10) are substituted into  formulas (VI.14) considering the 
form o f  operators 

then, by formulas (VI.14) we can prescribe the form 

In polar coordinates conditions (VI.12) w i l l  acquire the form 

where 

Basic Boundary Problems o f  Stat ica l  l y  E las t ic  ~ o d ~ ' .  

(VI .16) 

(VI .17) 

(VI .18) 

(VI .19) 

F i r s t  Basic Boundary Problem. The first basic boundary problem i s  defined 
e l a s t i c  equilibrium o f  a body if the components of  external forces (s tresses  

'See G .  N .  Savin [2] ,  $3 ,  p .  7. 
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Y and moment stresses Mn) acting on the surface S of the examined body 
'n' n 
are known. 

The boundary conditions in the case of the plane problem, i.e. on the 
contour L, have the form 

x, = a, cos (n, X )  + T " ~  cos (n, y), 

Yn = .r,, cm (n, x) + a, cos (n, y), 
Mn = PZ cos (n. x) + p, cos (n, y). 

(VI .20) 

+ 
Here n is the unit perpendicular to contour L at the given point. 

Boundary conditions (V1.20) are readily expressed through stress functions 
U and F: 

where we recall that 

(VI .21) 

(VI .22) 

Second Basic Boundary Problem. The second basic boundary problem is to 
find elastic equilibrium of a body if the components of displacement vector 
+ + 
u and the component of rotation vector w = 1/2 rot ;, which lies in the plane 
tangent to surface S at the examined point, are known on its surface S. 

The boundary conditions on contour L have the form 

u = f l  (x.  Y), v = f s  (4 #)t - a = f s  (XI !l)* (VI .23) 

where fl (x, y )  , fZ (x, y) and f (x, y) are the given functions on the boundary 3 
of the examined range, i.e. on contour L. 

Thi rd  (~fxed) Boundary Problem. The third boundary problem is to find the 
stress components as functions of the coordinates in accordance with the given 
external forces Xn, Yn and Mn on part S1 of the surface and according to the 



given displacements and rotations on the remaining part S2 = S - S1 of the 
surface. For the plane problem, the role of surface S will be played by con- 
tour L which bounds the given range. 

Thus, in the case of the mixed plane boundary problem, the boundary 
conditions on part L1 of the contour have the form (VI.20), and on the remain- 

der L2 = L - L1 of the contour, the boundary conditions have the form (VI.23). 

53. Application of Theory of Complex Variable Functions to Solution of /471 - 
Boundary Problems of Moment Elasticity Theory 

Certain Relations in Complex Variables. Turning in formulas (VI.17) to 
complex variables z = x + iy and z = x - iy, we obtain 

(VI .24) 

We will take the general solution of the second equation of system (VI.ll) 
in the form 

i~ = f ( z ) - f a - i - i S Z ,  (VI .25) 

where f(z) is some harmonic function and Q is the solution of equation 

8 - Pv2S2 = 0. (VI .26) 

The biharmonic function can be represented by E. Gurst formula 

U = Re [tcp ( 2 )  + x @ ) I ,  (VI .27) 

where $(z), ~ ( z )  are functions that are holomorphic in a singly-connected range, 

By substituting expressions (VI.25) and (VI.26) into conditions (VI.18), 
we obtain 

f (2) = 4 (1 - Y) /=ql (2) .  (VI .28) 



If functions (VI.25) and (VI.27) are substituted into (V1.24), recalling 
condition (VI.28), then, after certain transformations, we obtain the formulas 
for stress components1 : 

where 

u, = Re [2@ (I) - H (2, ;)I. 

a, = Re [2cD(z) 4- H (z.31. 
1 - 

.r,, - v2R -t. ImH (2, z), 

1 r,, = Pv2S2 + l rn~(z , ; ) ,  

- 1 
a, -- ir,, = @ (2) + @(z) + ip iiP - H (z.;). 

p = e L (z, ) p, = - Im L (2.3, 

a (2) - .  = cpl (t) ,  '4' (2) = 4)' (I), $ (2) = X I  (4. 

From (VI.29) it is easy to find 

(VI .30) 

(VI .31)  

From elasticity equations (VI.6), recalling the representation of func- 
tions (VI. 27) and (VI .28), we find 

- - 
21~ (U + iv) = (3 - 4v) (P (z) - Z(P' (2) - 8 (1 - v )  IP(P" (2) - 

- 4K2 - g (2 )  + 2i = . (VI .32) 
dz 

By representing rotation in the form 

(VI .33) 

'see Yu. N. Nemish [ I ] .  



and substituting here the values u + iv and u - iv from (VI.321, we obtain 
- 

4qo = Q - 4i (1 - v )  1? [cp' ( 2 )  - cp' (z)]. (VI .34) 

Boundary conditions (VI. 201, (VI .21) and (VI .23) of the basic problems of 
moment elasticity theory can be represented in the following form: 

for the first basic problem 

i 
@ ( z )  + a 5  + , ~ - - - e ~ "  ;@'(I) + 8 ( 1  - V ) ~ W ( Z )  + ~ ( z ) ) t -  

d=Q 
4- 2i - = N - iT, (VI .35) 

Re PI'[- 4i ( I  - v )  1 2 0 '  (2) 

for the second basic problem 

- - - dQ (3 - 4v) cp (2) - z cp' (2 )  -- 8 ( 1  - v )  la cp" (2) - $ (2) + 2i - = 2p (ql + iq,), 
dr (VI . 3 6 )  

st + 8 (1  -- v )  l2 Irn [q' (z)] r= rlrtq,, 

where M, N, T, ql, q2, q are the given functions on boundary L of the examined 
range. 3 

In solving specific problems, complex potentials @(z) and $(z) will be 
taken in the same general form1 as for the corresponding problems of classical 
elasticity theory. 

The total solution of Helmholtz1 equation (VI.26) has the form2 

00 

52 = c0& (rll) + (c, cos nb $- d, sin nb) i(, (rll) + 
n i l  

00 (VI .37) 
-+ &Io (rll) + (h, cos nb + t, sin nb) I, (rll). 

n= l 

Here In(r/Z) (n = 0, 1, ...) are modified Bessel functions of kind I; Kn(r/l) 
are modified Bessel functions of kind I1 (Macdonald's functions). 

'see N. I. Muskhelishvili [I], G. N. Savin [l]. 
*see G. N. Vatson [I]. 



In solving s p e c i f i c  problems of s t r e s s  concentrat ion f o r  i n f i n i t e  ranges 
with holes ,  it i s  necessary t o  r e t a i n  i n  equation (VI.37) t h e  f i r s t  p a r t  only, 
s ince  funct ions  I (r/Z) when r + =, increase  without bounds. Analogously i n  n 
examining f i n i t e  ranges t h a t  contain t h e  point  r = 0, i n  solving the  problem 
of s t r e s s  concentrat ion,  i t  is  necessary t o  r e t a i n  i n  equation (VI.37) only 
i t s  second p a r t .  

Statement of Problem of S t ress  Concentration near Holes. We w i l l  examine 
an e l a s t i c  i s o t r o p i c  p l a t e  (plane deformation) o r  t h i n  p l a t e  (plane s t r e s s  
s t a t e ) ,  where, under the  corresponding condit ions,  a s t r e s s  s t a t e  t h a t  i s  
charac ter ized  by an asymmetric s t r e s s  tensor  can occur1. 

We w i l l  assume t h a t  i n  an e l a s t i c  p l a t e  t h a t  i s  i n  an unstressed s t a t e  
charac ter ized  by components 

(VI .38) 

a hole  of a r b i t r a r y  shape is  made, t h e  contour of which has no angular points .  
The hole ,  genera l ly  speaking, causes c e r t a i n  r e d i s t r i b u t i o n s  of s t r e s s e s  i n  
t h i s  p l a t e ,  p a r t i c u l a r l y  i n  t h e  range d i r e c t l y  adjacent  t o  t h e  hole ,  and 
ins tead  of s t r e s s  s t a t e  (VI.38), we w i l l  have a new s t r e s s  d i s t r i b u t i o n :  

Due t o  the  l i n e a r i t y  of t h e  problem, s t r e s s  s t a t e  (VI.39) can be 
represented i n  the  form 

(VI .39) 

(VI .40) 

where 

a,, a,, , Tux* V x *  P u n  (VI .41) 

a r e  moments of an addi t ional  s t r e s s  s t a t e  caused by the  hole .  

To t h e  bas ic  s t r e s s  s t a t e  (VI.38), and a l s o  t o  s t r e s s  s t a t e s  (VI.39) and 

(:\;'I. 41),  a s  follows from ( V I .  11) , v i l l  correspond two s t r e s s  functions each: 

- - - 

'AS seen from r e l a t i o n s  (VI .8), moment s t r e s s e s  ux and u w i l l  not d i f f e r  from 
Y 

zero i n  j u s t  any s t r e s s  s t a t e .  



0 0 
U (x, y) and F (x, y) ;  U*(x, y) and F*(x, y ) ;  U(x, y) and F(x, y ) ,  wh ichdue  
t o  (VI..40) w i l l  b e  i n t e r e l a t e d  by r e l a t i o n s  

u' (x*  Y) /)= u0 ( x ,  Y) f u ( x ,  Y), F* ( x ,  y) = F'(x,  y) + F (x ,  y). (VI .42) 

We know t h a t  t h e  e f f e c t  of t h e  ho le  on t h e  s t r e s s  s t a t e  i n  t h e  examined 
range has a l o c a l  cha rac t e r ,  and t h e r e f o r e  s t r e s s  components (VI.41), by 
measure of d i s t ance  from t h e  ho le ,  w i l l  van ish  r a p i d l y .  Hence, and a l s o  from 
(VI.40), (VI .42) and (VI. 101, we s e e  t h a t  s t r e s s  func t ions  U(x, y) and F(x, y ) ,  
a t  s u f f i c i e n t l y  d i s t a n t  p o i n t s  of t h e  p lane  from t h e  ho le ,  should s a t i s f y  t h e  
condi t ions  

(VI .43) 

Conditions (VI.43) w i l l  a l s o  be t h e  condi t ions  a t  " i n f i n i t y "  f o r  t h e  d e s i r e d  
func t ions  U(x, y) and F(x, y ) .  From (VI.lO) it i s  a l s o  c l e a r  t h a t  t h e  func- 
t i o n  U(x, y) i s  a l s o  def ined  by t h e  given s t r e s s  components with an accuracy 
up t o  an expression of t h e  form C x + C y + C and t h e  func t ion  F(x, y ) ,  wi th  1 2 3 ' 
an accuracy up t o  t h e  cons tan t  C where C1, C2,  C3, C a r e  a r b i t r a r y  ( rea l )& 
cons t an t s .  

4 ' 4 

In  t h e  fol lowing d i scuss ion  we w i l l  cons ider  t h e  e f f e c t  of t h e  asymmetry 
of  t h e  s t r e s s  t e n s o r  on s t r e s s  concent ra t ion  near  ho le s ,  i . e .  t h e  e f f e c t  of  /475 - 
moment s t r e s s e s  on t h e  magnitudes of concent ra t ion  c o e f f i c i e n t s  

0: 

. 
O8 5 9  ~ ; r  r k - - .  kl = - k2 = -0 9 k~ = -ii- * k 4 = ~ ,  k s = < ,  6 -  0 

Pr P e (VI .44)  
a: ' "0 Tr e Tar 

On t h e  contour  of a ho le  t h a t  is  f r e e  o f  e x t e r n a l  f o r c e s  it i s  obvious 
t h a t  a; = T;, = p; = 0; consequently k = kg = k = 0 and only t h e  c o e f f i c i e n t s  1 5 
k2 ,  k and k of  which concent ra t ion  c o e f f i c i e n t  k w i l l  be of  g r e a t e s t  i n t e r e s t  4 6' 2 
t o  u s ,  w i l l  be  nonzero va lues .  

I t  fol lows from formula (VI.8) t h a t  i f  t h e  b a s i c  s t r e s s  s t a t e  i s  homo- 
0 0 

geneous, i . e .  oo = cons t  o = cons t ,  TO = const  and r = cons t ,  t h e r e  w i l l  be  
X Y x Y YX 

no moment s t r e s s e s ,  i . e .  

(VI .45) 

527 



If, however, the basic stress state depends linearly on the x and y 

coordinates, then components ~1: and p0 will be constants, i.e. 
Y 

p: = const, pi  = const. (VI .46) 

Since p = aF/ax and p = aF/ay, then in the cases (VI.45) and (VI.46) we 
X Y 

will have 

(VI .47) 

0 and consequently, stress function F (x, y) in these cases will have the form 
0 F (x, y) = C1x + C2y + C3. 

From (VI.10 and (VI.47) we find that for the case (VI.45) the basic stress 
state (VI. 38) will be characterized by only one stress function u0(x, y) . This 
enables us to assume that, in these cases, the moment stresses p and p that 

X Y 
occur in the immediate vicinity of the hole do not alter the qualitative char- 
acter of stress distribution near the examined hole in comparison with the 
analogous problem of classical elasticity theory, but affect only the dimen- 
sions of the zone of perturbations near the hole and the magnitude of stress 
concentration coefficients within it. 

By integrating the second equation of system (VI.11), we find 

F - 12v2F = Q ( x ,  y), 

where 

(VI .48) 

(VI. 49) 

It follows from equation system (VI.ll) that Q(x, y) is a harmonic func- - /476 
tion which represents the right hand side of differential equation (VI.48), 
and simultaneously represents the partial solution of this equation. 



54. Stress Concentration near Round Hole 

Solution of First Basic Problem. Uniaxial Tension of Plate with Round 
 ole'. We will examine the stress state near a round hole of radius a 

0 
(Figure VI.1). We will analyze the case of tension of g plane "at infinity" 
by forces p = const along the Ox axis, i.e. we will assume that 

Complex Kolosov-Muskhelishvili potentials for this case, which are given 
by classical elasticity theory, have the form2 

(VI .51) 

Figure VI.1. 

Since the basic stress state (VI.50) 
satisfies condition (VI.46), then according 
to the above statements, the complex 
potentials for the stated problem in moment 
elasticity theory will be taken in the form 

The first terms in (VI.52) characterize 
the basic stress state (VI.50), and the 
following characterize the perturbed stress 
state occurring due to the presence of the 
hole. 

From (VI .52) we obtain 

P B f ( z )  = J rp * ( z )dz  +const = - - z 2 + ~ l n z +  - ;const. 
4 22  (VI .53) 

If the functions $*(z) and x*(z) are known, then, from E. Gurs' formula 
(VI. 2 7 ) ,  we obtain 

U* (r,  (I) = (1 - cos 211) + A In r + 4 
(VI .54) 

'see G. N. Savin [2]. This problem was first solved by R. D. Mindlin [I] and 
later by a somewhat different method by Yu. N. Nemish [I]. 
2 ~ e e  N. I. Muskhelishvili [I]. 



In the case under examination the terms in formula (VI . 42 )  will have the form - /477 

Since 

we find from conditions (VI. 18) 

(VI .55) 

(VI .56) 

(VI .57) 

According to previous considerations, the right hand side of equation (VI.57) 
is a harmonic function, and consequently 

1 Fpart ( r .  8) = 8C (1 - v) F :sin 2:. rJ (VI .58) 

The total solution of equation (VI.57) can be represented in the form 

(VI .59) 

where !d is the solution of Helmholtz equation (VI.26). 

The form of the partial solution of (VI.58) and the general considerations 
demonstrate that the solution of equation (VI.26) should be found in the form 

Q(r ,  6) = R(rl1) sin 25. (VI .60) 

By substituting the function (VI.60) into equation (VI.26) considering 
that of the two modified functions 12(r/Z) and K (r/Z), only the latter satis- 

2 
fies the conditions "at infinity," we obtain 

(VI .61) 

where D is a real constant. 



Considering formulas (VI .59)- (VI .61), we obtain1 

Thus functions (VI. 54) and (VI .62) are determined with an accuracy up to 
constant coefficients A, B, C and D, which should be determined from boundary 
condition (VI.20). However, if the contour of the hole is free of external /478 - 
forces, then instead of condition (VI.20) the boundary conditions should be 
taken in the form 

0; = f;, = p; = 0. (VI .63) 

We will note that if in formulas (VI.14) and (VI.17) the stress components 
ox, uy, . . ., vy, q, o,, . . ., and stress functions U and F are substituted 

respectively by the values o:, o* . . . , v;; a;, 06, . . . , ~ 3 ;  U* and F*, we 
Y' 

obtain the relations required for the general desired stress state (VI.39). 
If we use in the expressions obtained, instead of stress functions U*(r, 8) and 
F* (r , 8), their values from (V1.54) and (VI .62), recalling recurrent re tat ions 

2mt 
Km+l (r11) = Km ( r j 4  4- K,,,-, ( r l l )s  

(VI .64) 
rn 1 ( 0  = - K ( 1 )  - K ( 1 )  (m = 0. 1. 2. . . .) 

between the three functions K (r/Z), Km(r/Z) and Km+l (r/Z), we will find, m- 1 
finally, the formulas for stress components in polar coordinates for the given 
case : 

'we will recall that in the examined case of the basic stress state (VI .SO) ,  
the function F O  (r, 8) : 0. 
2 ~ e e  G. N. Vatson [I]. 



(VI -65) 

2 8  p;=-- r s sin 20 - - 1 [2 f KO ( r l l )  + ( I  + 4 $1 K1 ( r l l ) ]  sin 2fi; (VI .66) 

2 8  20 1 p; = ;F cos 26 +- - r [K, ( r i l )  +- 2 7 K~ QII) ]  29. 

where, for convenience, we introduce the definition 

By substituting from (VI.65) the expressions for o;, rFe and p* r when r = a. 

into boundary condition (VI.63), equating to zero the coefficients for identi- 
cal sins-and cosines, we find the following equation system 

By solving system (VI .67) , we obtain 

(VI .68) 



where 

In  view of t h e  f a c t  t h a t  

i t  i s  easy t o  f i n d  from (VI.65) t h e  known s o l u t i o n  of  G .  Kirsch. 

S t r e s s e s  (VI.65) on t h e  contour  o f  t h e  hole  a r e  

2 cos 28 
0; = P ( I  --J. 

(VI .69) 

(VI .70) 

(VI .71) 

The maximal o* will occur  ( see  Figure VI.1) a t  t h e  p o i n t s  8 = tn /2  
8 

/480 - 

(VI .72) 

Since f o r  t h e  given Poisson ' s  r a t i o  v t h e  va lue  H depends on t h e  new 
1 

e l a s t i c  cons tan t  Z of  t h e  ma te r i a l  and t h e  r ad ius  of  t h e  ho le  a then  0 ' 

- (a;. max)max 3 
( kmax)mx  - P (VI. 73) 

when Z = 0, i . e . ,  when HI = 0. 

However, (Hl)min w i l l  be  achieved when ao / l  = 3,  i . e . ,  

= 0.44 ( 1 - v), 

and consequently 

(VI .74) 

(VI .75) 

~ - - - -. - - - - - 

R. D. Mindlin [ I ]  s p e c i f i e s  t h e  range of change of  t h e  r a t i o  aO/Z t h a t  i s  

equal  t o  3 4  ao/Z < a. 



Since 0 < ' V  < 0.5, then 

(VI .76) 

which i s  considerably l e s s  than k = 3 obtained by the  c l a s s i c a l ' .  e l a s t i c i t y  
theory. 

In order  t o  explain the  e f fec t  of t h e  asymmetry of the  s t r e s s  tensor  on 
the  magnitude of the  perturbed zone near  t h e  hole ,  we have ca lcu la ted  the  
s t r e s s e s  o; and o* (VI. 65), respect ive ly ,  through cross  sec t ions  0 = n/2 and 
8 = O  r 

A '  C B - 8 ,  2D I ( ~ f ) ~ , ~  = p I -- -- 4 - - (VI .77) 
I r2 ,, 6 7 7 7 [3 ; KO ( I I ~ )  + ( I  t 6 ::-) K1 ( r / l ) ]  . 

The s o l i d  curves i n  Figure VI.2 correspond t o  the  values o; and o; (V1.77) 

when v = 0.25, a O / l  = 3 and a. = 30 cm, and the  broken curves correspond t o  

t h e  values a and a through the  same c ross  sec t ions  according t o  c l a s s i c a l  0 r 
e l a s t i c i t y  theory.  From these  graphs we see  t h a t  the  moment s t r e s s e s  when 
ao/L = 3 decrease t h e  perturbed zone near  t h e  hole by a f a c t o r  of about 1 .3 .  

Pure Deflection of P la te  Weakened by ~ o u n d l ~ o l e ' .  We w i l l  f i nd  the  
e l a s t i c  equil ibrium of an i n f i n i t e  p l a t e  weakened by a round hole of radius  a 

0 ' 
f r e e  of  ex te rna l  fo rces ,  located i n  a f i e l d  of pure de f l ec t ion  by forces  py 
(Figure VI .3 ) ,  i . e .  , "a t  i n f i n i t y "  

From r e l a t i o n s  (VI.8) 

(VI .78) 

(VI .79) 

To the  bas ic  s t r e s s  s t a t e  (VI.78) and (VI.79) w i l l  correspond s t r e s s  /481 
functions 

1 U O =  @;d3, P = -2p( l  -v) lSx.  (VI. 80) 

"The so lu t ion  of t h i s  problem was f i r s t  found by Yu. N .  Nemish [ I ] .  
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Figure VI.2. Figure VI.3. 

The so lu t ion  of t h i s  problem could be obtained by the  method described 
above, but  we w i l l  use a  d i f f e r e n t  approach t o  the  so lu t ion  of such problems; 
here we w i l l  follow the  d i rec t ions  out l ined i n  N. I .  Muskhelishvil i ' s  mono- 
graph [ I ] .  For t h i s  purpose we w i l l  use boundary condit ion (VI.35). We w i l l  
assume t h a t  the  funct ions  M and N - iT  given on t h e  contour of  a  round hole 
a re  expanded i n t o  convergent complex Fourier s e r i e s :  

(VI. 81) 

Since, by d e f i n i t i o n  of the  problem, t h e  contour of  t h e  hole is f r e e  of 
external  forces ,  then i n  (VI.81) we w i l l  assume t h a t  An = Bn = 0 f o r  a l l  n.  

According t o  the  foregoing (see 53) t h e  funct ions  a r e  

OD 00 

@(z) =-- -%z +T - Y (z) = -$ z + b,,z-"'v 
n-I n-1 

(VI .82) 

where the  c o e f f i c i e n t s  an and bn (n = 1, 2, 3 ...), general ly speaking, a r e  

complex constants:  

' . ia*- a,, = a,, 7 np b, = bi + ib i .  
(VI .83)  

The so lu t ion  of Helmholtz equation (VI.26) w i l l  be found i n  the  form 



0 

= coKo (r l l )  + (en cos no + dn sin no) K n  (r jf) ,  
n=l 

(VI .84) 

where c d are real constants. 
n' n 

Now, by substituting the expansions of (VI.81), (VI.82) and (VI.84) into 
boundary condition (VI.35), considering recurrent relation (VI.64) for 
McDonald's functions, after equating to zero the coefficients for identical 
sins and cosines, we obtain an equation system, from which we find 

where 

(VI .85) 

(VI . 8 6 )  

In the case at hand 

0 ) ( . z ) = i ( f z + $ ) ;  y ( z )= i  
(VI .87) 

Q = clKl ( r l l )  cos 8 + c3K3 ( r l l )  cos 38. 

Functions (VI.87) give us the desired stress state. On the basis of formulas 
(VI .31) 



(VI .88) 

Stresses ag and pe when Z # 0, r = a. and 0 =  IT/^ will have the form 

(VI .89) 

Recalling (VI.85) and condition (VI.70) it easy to find from (VI.88) the 
solution of the corresponding problem of classical elasticity theory. 

Solut ion o f  Second Basic Problem o f  Moment E l a s t i c i t y  Theory. Uniax ia l  
Tension. Suppose we are required to determine the stress state of an infinite 
isotropic weakeried by a round hole of radius ao, in which is fixed an 

absolutely rigid disc (see Figure VI.l). At infinity the plate is under the 
effect of forces ax = p, i.e., the basic stress state is characterized by 

formulas (VI.50). The problem amounts to the solution of differential equation 
system (VI -11) for boundary conditions (VI .36) . 

We will assume that the functions 2p(q1 + iq ) and 4nq given on contour 2 3 
L are expanded into convergent complex Fourier series: 

2p (q, + iq2) = Q,,dng: 

B - 
e (P,, == p-,). 4w3= , 

(VI .90) 

'The basic equations for plane stress state during uniaxial tension are presen- 
ted by G. N. Savin [ 2 ] ,  93, p. 13.  In the present work are presented the 
analogous equations for the case of pure deflection (see below). 



Wewil l  note t h a t  i n  t h e c a s e  o f a n a b s o l u t e l y r i g i d d i s c t h e  c o e f f i c i e n t s  of  /484 - 
the  s e r i e s  a r e  Qn = 'n = 0 f o r  a l l  n.  

The complex p o t e n t i a l s ,  a s  i n  the  c l a s s i c a l  e l a s t i c i t y  theory,  a r e  

(VI .91) 

where a and bn have the  form (VI .83) n 

1 1 I ' = T ( N , + N 3 ,  r'=--(Nl--N3@ia,  2 
(VI -92) 

whereupon X ,  Y a r e  components of t h e  main vector  of  a l l  forces  applied t o  con- 
tour  L; N and N a r e  the  p r inc ipa l  s t r e s s e s  a t  i n f i n i t y ;  a is  the  angle 

1 2 
between t h e  d i r e c t i o n  of the  force  corresponding t o  N and the  Ox ax i s .  

1 

The function Q ( r ,  81, a s  before,  w i l l  be taken i n  the  form ( V I  .84), and 
the  problem w i l l  be solved i n  the  assumption t h a t  X = Y = 0. 

From boundary condit ions (V1.36) we f ind  the  c o e f f i c i e n t s  of t h e  expan- 
s ions  of  functions (VI.91) and function (VI.84) 

where 

(VI -93) 

(VI .94) 



Thus, 

(VI .95) 
52 = d2U, ( r l f )  sin 26. 

The stress state in the plate is found by substituting the stress compo- /485 - 
nents: 

20; 1 2 ( x + 1 ) P a ;  3bj 
rH = (rl- - rt + rr +,+ 

-k $ IK4 (f l l )  - 2KZ(ri l)  + ~ . ( r ! f ) ] )  sin 28, 

2a; 1 2 ( x  + I )  12a; 36; 
for = (r* - .+ 

l a  +,.+ 
+ $ IK4 ( r l l )  -+ 2K2 (r i l )  + K, ( r l l ) ] )  sin 28 

and 

(VI .96) 

(VI .97) 

Hence in the case of the plane stress1 state a = (3 - v)/l + u. On the contour 
of the hole, for all r = a 

0 

 o or the derivation of the basic equations see G. N. Savin [Z]. 
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(VI .98) 

where T i s  defined by formula (IV.94). 1 

Pure Deflection. We w i l l  determine the  e l a s t i c  equil ibrium of an /486 - 
i n f i n i t e  p l a t e  with an absolute ly  r i g i d  d i s c  f ixed i n  a  round hole  of  radius  
a  located i n  a  f i e l d  of  pure de f l ec t ion  by fo rces  ox = py (see Figure VI.3). 
0 ' 

The bas ic  s t r e s s  s t a t e  i s  charac ter ized  by s t r e s s e s  (VI.78) and (VI.79), 
and the  s t r e s s  functions f o r  the  bas ic  s t r e s s  s t a t e  have the  form (VI.80). 

From boundary condit ions (VI .36), where, ins t ead  of v it i s  assumed1 t h a t  
V* = v / l  + v, t he  c o e f f i c i e n t s  of the  des i red  funct ions  f o r  the  addi t ional  
s t r e s s  s t a t e  caused by the  presence of  t h e  hole a r e  

(VI .99) 

where 
*- 

a0 KO (aoll) 
2 ( x  + 1) 

2+-- 
1 L ( a e l l )  ; T, = ( X  + Ts = 

% a: a0 ~ ~ ( 1 1 0 1 0  
8+-+4--  (VI . loo) ' 

fa  1 KI (a010 

In the  given case 

'see G .  N. Savin [Z] . 



S2 = (clkl ( r / l )  cos 6 + c3Y ( r i l )  cos 38) 

The stress components are 

1 6; c, + pr + 4 - 2T. [K, ( r / ~ ) - -  ul ( r / ~ l )  sin 38; 

1 6; c, 
f er = {- F P ~  - 2 ;i + lir [K, ( r l o  + 3Kl ( r i l ) ] )  cos A + 

( V I  .101) 

/487 

( V I  . 1 0 2 )  

pr = - (; p ( x  + I)  l2  + [K, ( r i l )  + KO (rlf)] l  ros 9 t I 

a C 1 + ( 1 2 ( x  + 1) P i  - f (K4 (r / l )  - K2 (+//)I sin 38. I 

The coefficients a", b:, ..., c in relation ( V I . l O 1 )  and ( V I . 1 0 2 )  are 2 3 
defined by formulas (VI .99) . 

On the contour of the hole for r = a 
0 



I 
0 = - ( 3 - ~ ) p ~ ~ [ s i h  4 +x(;i"_3,)], 

1 sin 30 
= T ( l  + x ) m  sine + -T,) I , 

(VI ,103) 

From the solutions found for the second basic problem for aO/Z + m, we 

obtain the values of stress components or, ag and T,~ for the analogous prob- 

lems of classical elasticity theory. 

From (VI .98) and (VI. 103) we have /488 

lim T ~ ,  = - lim T,,, 
oJ1- w- (VI -104) 

i.e., when aO/Z + a we nevertheless do not obtain in its entirety the 

symmetrical stress tensor (T re ' 'er ) upon which classical elasticity theory 
is based. 

55. Stress Concentration near Arbitrary Curvilinear Hole 

Boundary Form Perturbation ~ethod' . We will examine holes, the contours 
of which have no angttlar points and are given by equations 

( V I  ,105) 

 his method in application to plane problems of moment elasticity theory for 
infinite singly-connected ranges is described in greater detail by G. N. Savin 
[Z]. For infinite ranees weakened by a finite number of arbitrarily distribu- 
ted holes, the contours of which are smooth curves, the method for the solu- 
tion of the problem of plane moment elasticity theory is given in the work of 
G. N. Savin and A. N. Guz [ 2 ] .  



where c = 1, c are constant coefficients. 
1 k 

Equations (VI.105) represent real and imaginary parts of the function 

(VI .106) 

which conformally maps the exterior of the unit circle onto range C, represen- 
ting the exterior of the examined hole (Figure VI.4). 

For simplicity we will assume that the holes under examination have at 
least one axis of symmetry, for instance the Ox axis. Under this condition, 
coefficients ck(k = 2, 3, ...) and functions (VI.105) will be real values if 
the Ox axis is used as the axis of symmetry. 

The constant R in (VI.106), which characterizes absolute dimensions of the /489 
hole and its orientation in relation to the selected Oxy coordinate system, 
will be regarded as a real value. The parameter E will be assumed as real and 
small, changing in the range 0 < << 1, characterizing the degree of "devia- 
tion" of the examined hole from the round. 

Figure VI.4. Figure VI.5. 

In the following discussion it is convenient to change to dimensionless 
Cartesian x, y and polar r and 8 coordinates: 

(VI .107) 



Equations (VI.105) and (VI.106) in dimensionless coordinates will have the 
forms, respectively, 

(VI .108) 

y =sine-e cI sin kt) 
k=l 

and 

where 

(VI .log) 

Equation (VI.108) represents parametric equations of the "natural" curvi- - /490 
linear orthogonal coordinate system p = const and 19 = const (see Figure VI.4). 

In accordance with (VI.40) the total stresses near the hole are 

u* Q = a; +a,, a;, = aO* + a,, Pi = P,' 

f& = T : ~  + $a , f& = 9&, + T&,, pi = PQ, (VI. 111) 

0 0 0 where op, og, ..., T are components of the basic stress state, 5 ,  oa, ..., 
SP 

ug are additional stress components occurring due to the presence of a hole. 
Stress components $, uS, T T $ and po in the curvilinear coordinate pa' 9p' 

T ur and p0 in polar coordinate system (P, O ) ,  expressed through or, oO, 

system (r, 0), as follows from (VI.143, will have the form 

"8 - O r  
f,,,, = --2-- sin 2$ + fr, cos2 $ - r,r sina p. 



- " # - O r  
?90 - 2 sin 28 - trQ sin2 $ + rQr cost $, 

P, = ~ 1 ,  cos B + P, sin B, 
p6 = - pr sin $ + P, cos $, (VI. 112) 

where f3 i s  the  angle of r o t a t i o n  of the  axes (p) A(9) i n  r e l a t i o n  t o  the  po la r  
coordinate system (r)A(B) (Figure VI.S), 

The s t r e s s  components i n  polar  coordinates ( r ,  8) (see Figure VI-S), as 
follows from (VI. 17) ,  a r e  defined by the  formulas 

I a=u 1 av I aF - . - -  .- +-.-+-.- 
r drd0 r2 de . r dr r t  dB* ' 

In  equations (VI . l l )  t h e  Laplace opera tor  v2 should be taken i n  
"dimensionless" polar  coordinates ( r ,  8), i . e . ,  i n  t h e  form 

(VI. 113) 

and we w i l l  consider  the  funct ions  U(r, 8) and F(r ,  8) a s  addi t ional  s t r e s s  
functions corresponding t o  the  addi t ional  s t r e s s  s t a t e  (VI.41). 

However, s t r e s s  functions u(" ( r ,  9) and ~ ( " ( r ,  6) a r e  determined i n  
accordance with the  given b a s i c  s t r e s s  s t a t e  (VI.38), s ince  the  a r b i t r a r i n e s s  
of these  functions has no e f f e c t  on the  f i n a l  s t r e s s  s t a t e  near  the  ho le .  

From (IV.109) it i s  easy t o  f ind  

(VI .115) 

(VI .114) 

1(t) -60 y (e.6) = e sin 6 + e 2i 



and also 

~ ( Q , B )  = Vd + y' = Vea+ e [6f (6) + 6f(5)1+ e2f ( 5 ) f .  (VI .116) 

,["f,+, X(t)--to 
fJ ( ~ , 6 b a r c  ti$ =arctac 2 i ~  - .  

,,a+, f ( 6 ) + f  (f) (VI .117) 
2~ 

We see from Figure VI.15 that 

= ei(@+B) , .,a. (VI .118) 

We will represent the vector 1ying.m the A@) axis, i.e., tangent to the 
line 9 = const, in the form 

Consequently I dc i = I dWie + iQeledft I. 

Along the line 8 = const d8 = 0, therefore l d < I = d p .  

Consequently, 

(VI. 119) 

(VI .120) 

In order to use the boundary form perturbation method it is necessary to 
have all values and functions in formulas (VI.112) and (VI.113) in the form of 
expansions by degrees of the small parameter e .  We will begin these expansions /492 - 
with the function (VI.116). After expanding r into a series by degrees of E, 
we obtain 

(VI. 121) 

Functions (VI. 117) and (VI. 120) are also expanded into series with respect 
to E :  

(VI. 122) 



Since z = rei0, then 

Recalling (VI.1161, we obtain 

From (VI .118), (VI .119) and (VI .123) we readily find 

(VI .123) 

(VI -124) 

(VI .125) 

(VI .126) 

By substituting in (VI.126) the expressions from (VI.109) recalling that 

we obtain 

- - - 
es f (t) - f (6 )  - - [ 2 f ( 6 ) f ( c )  8 +y+.2?;y(6)+2Tf'(5) + fJ(u+ 

f;C t (VI. 127) 

We now represent, in the form of an expansion with respect to E, the 
arbitrary function ~ { r @ ,  0 ,  E) 8@, 9 ,  E) ) ,  which contains the required number 
of continuous derivatives: 



where, for brevity, we introduce the definitions: 

(VI .129) 

Js = 4 i f  ( 6 )  f (b) - 2i [ fa ( 6 )  4- f8(6)1 COS 2 6  - 2 [P ( 6 )  - P(6)] sin 2 6  
8iqs 9 

J: = Ifs ( 6 )  + f2(5)1 i sin 2 6  - [la ( 6 )  - m] cos 2 6  
2ip 

We will assume that the basic stress state (VI.38) is characterized by a 

symmetrical stress tensor, i.e., 0 -  0 px - py = 0. In this case the function 
2 V U = 2[$' (z) + 4'(2)] will be determined with an accuracy up to undefined 
coefficients, since the functions $(z) and $(z), which characterize the addi- 
tional stress state occurring due to the presence of the hole, should be taken 
in the general form, which is given by classical elasticity theory1. The 
latter coefficient should be found from the boundary conditions of the problem. 

We will represent the solution of biharmonic equation system (VI.ll) in 
polar coordinates (r, 8) in the form 

'see N. I. Muskhelishvili [ I ] ,  536. 
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(VI .130) 

If we substitute the right hand side of function (VI.130) into the first 
equation of system (VI.11) and equate the coefficients for identical degrees 
of E to zero, we obtain a differential equation for any approximation in the /494 
f orm 

v2v2Uk ( r ,  6) = 0 (k = 0, 1. 2, . . .). (VI .131) 

In our case it is not necessary to solve equation (VI.1311, since by 
taking the functions $(z)  and $(z) in the general form, which is given for the 
analogous case by classical elasticity theory, but only with undefined 
coefficients, we will have function (VI.130). By expanding the latter into 
the Maclaurin series by degrees of E, we find the right hand side of (VI.130). 

We will represent the solution of equation 

in the form of series by degrees of E, i.e., 

F (r. 6, E )  = E ' F ~  ( I ,  6). 

(VI .132) 

(VI .133) 

By substituting (VI.133) into equation (VI.132), we find differential equa- 
tions for any approximation in the form 

v2 [ F k  (r ,  b) - f2p2Fk (r,  6)) = 0, (VI .134) 

where the operator v L  has the form (VI.114). 

The components of the additional stress state caused by the presence of 
the hole. in the "natural" curvilinear orthogonal coordinate system (p, a), 
given by mapping function z = 1 / R  w(<) (VI.109), will also be represented in the 
form of series by degrees of small parameter E: 



(VI .135) 

By substituting expansions for U ..., p8 (VI.135) into the left hand 
P ' 

sides of relations (VI.112) and the expressions *for the components an, ..., UA 
A iB u 

from (VI.113) into the right hand sides, recall-ing the expansions for e 
(VI ,127) , (v~. 121) , (VI .122) and functions V (r , 8) (VI .128) , and equating in 
the right hand and left hand parts, the coefficients for identical degrees of 
E,  we obtain for the k-th approximation the stress components in the curvi- /495 
linear orthogonal coordinate system (pa): 

where, for brevity, we introduce the definitions: 

(VI. 136) 

(VI .137) 



BY U (p, 9) and F (p, 8) in (VI.137) we refer, respectively, to the 
k k 

solution Uk(r, 0) of biharmonic equations (VI. 131) and the solution Fk(r, 0) 
a. 

of equation (VI.134), in the k-th approximation in polar coordinates (r, 81, 
if in these solutions we simply substitute the letters r by p and 8 by 8 .  

Formula (VI.136) still contains five operators L (k-m) 1 9 ~ k ~ - ~ )  and L (k-m). We will introduce these operators in expanded form1 for 
6 , 

napping function z = ( )  taken in the form (VI.109) in the first, second /496 - 
and third approximations2: 

where the following definitions are introduced: 

(VI. 138) 

'see G. N. Savin, A .  N. Guz' [ I ] .  
2 ~ y  using as the first approximation, the solution of the problem for E = 0, 
i.e., for a round hole. 



P, - {f'(i) + /m]i sin 26 - [\I ( 6 )  - f20) cos 26 . 
4ie' . 

(VI. 139) 

And so, the problem of stress concentration near a round hole, the contour - /497 
of which has no angular points and is given by equation (VI.115) for p = 1, by 
the boundary form perturbation method, reduces to the seq~iential solution of 
the corresponding boundary problems for a round hole. We will illustrate the 
application of this method for the simple example of an elliptical hole. 

Uniaxial Tension of Range with Elliptical Hole. We will analyze the stress 
state near an elliptical hole with semiaxes a and b (Figure VI.6) for a plate 
under uniaxial tension Mat infinity" (plane stress state or plane deformation1) 
by forces p = const along the Ox axis, i.e., in the basic stress state, char- 
acterized by formula (VI.50). 

The mapping function is found from (VI. 109) 
by retaining in (VI.llO) only one term: 

Figure VI.6. 

where the parameter 

a-b e = - 
a + b  

(VI. 140) 

characterizes the "degree" of deviation of the examined ellipse from the unit 
circle. 

The Ox axis will always coincide with the a semiaxis of the ellipse and 
the Oy axis, with the b semiaxis (see Figure VI. 6). 

It is obvious that when E > 0, semiaxis a > b, and the ellipse will be 
extended along the Ox axis. When b > a, the parameter E < 0, and the ellipse 
will be extended along the Oy axis, i.e., arranged as indicated in Figure VI.6. 
When b = a the parameter E = 0, and the ellipse will be converted into a circle. 

- - -- - - - - - 

'since the equations of plane deformation and plane stress state coincide 
with an accuracy up to constant coefficients (see G. N. Savin [ Z ] ,  93, p. 13). 



In the basic stress state (VI.50), the case E < 0 (Figure VI .6) will be 
of greatest interest. Stress functions U* and F*, corresponding to stress 
state (VI .40), will be found in form (VI .42).  In the case of basic stress 

states (VI.50). the functions are F(') E 0 and F* = F. 

We will take the biharmonic stress function U* = u(') + U in the form 
given by classical elasticity theory for the analogous problem, but with 

undefined coefficients. Thus, the function U* (r, 8, E) = U(') (I, 8. E) + 
+ U(r, 8, E) will be represented in the form 

U* ( I .  0.8) = Re (z)+~,(z)lf  xf') (2) + x ,  ( z ) } ,  (VI. 141) 

i0 (0) where z = re . (r), X:O)(z) and Ol(z), x (I) are complex Kolosov-Muskheli- 
1 

shvili potentials, respectively, for the basic and additional stress states. 

For basic stress state (VI.50) classical theory1 gives 

(VI. 142) 

From (VI.140)-(VI.142) we find the stress function for the basic stress state: 

~ ( " ) ( ~ . t t . e ) =  $ ( ~ ~ - 2 s + ~ ) ( l  Q -cos28). (VI .143) 

0 0 
Components a*, o and T:~ = TO of basic stress state (VI.50) in 

P 8~ 
curvilinear orthogonal coordinates P = const and 9 = const (see Figure 111.4) 
are determined by formulas2 

(VI .144) 

t ~ e e  N. I. Muskhelishvili [I]. 
*see N. I. Muskhelishvili [I], 550. 



By separating in (VI.144) the real parts from the imaginary, we find the 
0 0 0  0 formulas for up, ob, T , , ~  and rep. We will represent them in the form of an 

expansion with respect to the small parameter 

$ = E  1 
[I  + a 2 8 -  e -- + --eos48) + ( da pa 

1 +e'(-F cos 28 + Tcos60 + ... . 
1 

I l l  
(VI. 145) 

0% = - ) (i ms68)+.. .], cm46 +e2 -cos20--- :[I -co~28-e(~--- Q? Q~ 

We will turn now to the determination of the function U(r, 8, E) for the - /499 
additional stress state caused by the presence of an elliptical hole. 

The functions for the analogous problem of classical elas ticity theory1 
have the form 

e * - l + ( a + l ) ' i ' ]  (VI .146) 
5 ( f i+e)  

Functions(VI.146) are conveniently represented as functions of the vari- 
able z = 5 + E/< (VI.140). 

By substituting in (VI. 146) instead of < its value2 from (VI. 140), 

we obtain 

(VI .147) 

(VI .148) 

 or distinction from other functions, these functions are denoted by the 
superscript, (cl) . 
*1n accordance with the examined case, V1.6, as in formu- 
la (VI.145), the parameter E is 



By expanding functions (VI.148) into Maclaurin series with respect to e, 
we will have 

qyl) (2, e) = ~ { c l )  (I, 0) - e y ~ l ) '  (2. 0) +- +$ - qicl (z,0) + . . . . (VI. 149) 

eP 
gjcl: (2, e) = $\cl) (z,O) - e$kl)' (z, 0) + $\ cB' (2, 0) + . . . , (VI. 150) 

where 

We will also make use of the function XI(C1) (z, E) = I~:~~) (z, ~)dz. By 

integrating with respect to z the function (VI.150), we obtain 

(VI. 151) 

(VI .152) 
/SO0 - 

(VI. 153) 

After determining function (VI.153) we may proceed to the construction of 
functions $(z, E) and ~ ( z ,  E) for our problem. These functions will be taken 
in the form of expansions with respect to small parameter E: 

(VI .154) 

555 



By knowing function (VI.154) we can determine stress functions U(r*, 8, E) 
according to E. Gurst formula (VI.27), conveniently represented in polar 
coordinates r* = Rr and 9 in the form of an expansion with respect to small 
parameter €: 

+ (9 + F) cos 40 In r* + (3 ro2 -j- a,.) cor 29 + + +)COS r 444- 
(VI .155) 

Assuming that E = 0 in function (VI.155), we obtain the function U(r*, 8) 
(VI.55), which we quite naturally expected. The undefined coefficients A, B, 
C, als a*y - - - Y  a12 in function (VI.155) should be found from boundary condi- 
tions (VI.63). 

It follows from (VI.155) that in dimensionless coordinates r = r*/R and /SO1 
8, the functions are 

U l ( f ,  8) = q In Rr + (<iF + a. 

(VI. 156) 
U,(r ,B)=a41nRr+ ) cos2B+ ( % + A ) c a r 4 8 +  R 4 4  Rar, 

cr, + (- Rar* + -&) cos 60. 

From (VI. 149) and (VI. 154) we readily find 

- 
v ~ u = ~ [ ~ ~ ( z ) + + ~ ( z ) I =  - 4  

(VI. 157) 

2 
The function F(r, 8) for the selected function V U (VI.157) will be found 

in dimensionless polar coordinates r, 9 from conditions (VI.18), where the 

operator v2 should be used in the form (VI.114) in the same coordinates. 
2 By integrating (VI.34) for V U (VI.157) and including the integration 

constant in the function F ( r * ,  8), we obtain for the latter the following 
differential equation: 



C F - Fv2F = 8(1- v)i2L7 sin 26 - e (5 sin 28 + 
(VI. 158) 

the partial solution of which in polar coordinates (r, 9) will be found in the 
form 

C 3% 
Fparr (f , 8) = 8 (1 - v)la [rn sin 28 - e ( & - s i n  28 + sin 48 + 

R4r4 ) 
sin 28 + a sin 48 + - REr6 5% sin68) + . . .I. (VI .159) 

The complete solution of equation (VI.158) will be found in the form 
(VI. 59). 

We will look for the solution Q(r, 8, E) of equation (VI.26) in the form 
of an expansion by degrees of small parameter E: 

~ ( 5 . 8 , a )  = R,(T) sin28 - c [ R ~ ( + )  sin28 + R2 (T) sin 481 + 
(VI. 160) 

+ ~ s [ R .  (F) sin 28 + R4 (q) sin 46 + Rs (F) sin 681 + . . . . 

By substituting the function (VI.160) into equation (VI.26) and equating - /502 
the coefficients for identical degrees of E for each function Ro, R1, R2, R3, 

R and R5, we obtain the corresponding equations of the Bessel type, from 
4 
which we find1 

(VI .161) 

where K2, K4 and K6 are modified Bessel functions of kind I1 (McDonald's func- 

tions or modified Hankel functions) and, for brevity, we introduce the defini- 
tion: 

1 l * = , - .  (VI .162) 

1In the solution of equation (VI.26) we retain only those functions which 
satisfy condition (VI.43), i.e., conditions at infinity. 



Thus, 

= DKa (rtl*) sin 26 - e [al&= (rll*) sin 28 + 
+ a14K4 (r / l*)  sin 461 + 8% [a15Ka (rll*) sin 26 + a1&4 (f j l*)  sin40 f 

(VI .163) + a17K6 (rll*) sin 681 + . . . . 

Consequently, the function is 

F (r, 6 ,  e) = [ D K ,  (r/l*)+ * (' R,;) f f C ] ~ i n  21) - 
g(1- v) l'ao a d ,  (f ll*) 4- ] sin 28 + 

24 (1 - v) Pae + [n14Kl (ril*) + pr, 1 sin 4-01 + (VI .164) 

+ E' ([ a,&2 (rll*) + (' <:,!?'I sin 26 + [aaK4 (rll*) + 
24 ( 1 - v) Pa,, -b Pr. ] sin 48 + [ o , , ~ .  (rli*) + 40 - V, '"12 ] sin 68) + . . . . 

where 

D1 C, ag,  as, . - . , (VI .165) 

are integration constants requiring further determination. From (VI.164) it 
follows that 

Fo (r, 6) = [ D K ,  + @] r 3 sin 21); 
(VI ,166) 

] sin 48; FI (n. 6) = 3- 

/SO3 
3B;aIl - 

P, (r ,  6) = [ a , , ~ ,  -4- a d ,  4- w] sin 49 +- 
50.a + [ a , , ~ .  -?- $1 sin 66. 

Integration constants (VI.165) in functions (VI.155) and (VI.164) should 
be determined from boundary condition (VI.63) on the contour of the elliptical 



(0) hole (see Figure VI.6). The operators L1 , ..., (2)  (VI.138) for the L6 CI 

mapping function z = w(<) (VI.140), taken with an accuracy up to E', inclu- 
sively, will have the form 

cos26 d sin 2 6  d . ~ ' f  ' = - . -- - . - 
Q de Q= d 6  ' 

L(2)- 1 + cos46 d2 sin 4 6  dz 1 1 - cos 4 4  da 
1 - . -A -  . - .  a 

4Q1 dp2 2pa a ~ d 6  Q (=+ Q&); (VI .167) 

sin 4 6  d ~ f ) = 2  . - - 2  1-cos46 d 
ea ae e4 * a 

Now, by substituting into (VI.lll) the values found for stress components 
0 0 $, oo, TO = TO in (V1.145) and the values of the components uD, uo, . . . , po 

P6 8P 
of (VI.135), retaining in each of them only three terms and recalling: a) the 

(k) (k) (k) (k) (k), uik) (VI. 136) (k = 0, 1, 2) ; b) the values of $ , u9 , , Tap . up 
(k) -(k) form of operator (VI.167); c) the values of $ , u9 , . . ., uq -(k) (VI.137), we 

find1 the stress components around the elliptical hole : 

o; = oO, $ at) - eag') + e2d2), 
4 

I d,, + 060) - d l )  + e*ulp2); v 
-- 70 + ~ ( 8 )  - e ~ f l )  + eW$, 

7; pa Q* pb 

r& = .rO + 130) - e.rc4 + e2r(2); VQ bq bQ 

pi = p: + pf) - epy) + e2pL2), 

2 (2). p i  - p: + pg)-epg) + ep,, 

(VI ,168) 

By introducing from (VI.167) the expressions found for components a* T* /SO4 
P' pa - 

and u* into boundary conditions (VI.63), we obtain a linear equation system, 
P 

from which we determine the desired coefficients: 

' 1n the functions Uk(r, 0) (VI. 156) and Fk(r, 8) (VI. 166) (k = 0, 1, 2) the 

letters r and 8 should be substituted simply by P and 9, respectively. 



(VI. 169) 

where 

From recurrent relations (VI.64) we obtain 

K, ( R / I )  = ( I  + 
(VI. 171) 

! 
la 

K ; ( R , ~ =  -8 1 9 2 ~ ~  + F ) K I ( R J O  



Thecoefficientsa a a a a a a a a a in the 4' 5' 6' 7' 10' 11' 12' IS' 16' 17 /505 - 
function U (r, 8) of (VI. 156) and the function Fk(r, 0 )  of (VI. 166) are found k 
from boundary conditions for the third approximation. 

From (VI.170) under conditions (VI.70)' we obtain 

lim TI = 0; lirn T, = pR2; Jim T, = q p ~ 2 ;  
R - +w 
I ; +a 5- 

I 

lirn T4 = lirn T, = 1. 
R 
w 
1 -+= 1 

Thus, from (VI.169) under condition (VI.172)' we will have 

(VI. 172) 

(VI. 173) 

The values of coefficients (VI. 173) coincide1 with the corresponding values of 

the coefficients of the functions (z, E) and X1(C1) (z, E) . 
From (VI.169) we have formulas (VI.168) for a round hole. It is of great 

importance to analyze the effect of the asymmetry of the stress tensor on the 
magnitude of stress concentration coefficients near an elliptical hole at the 
point of the contour with the least radius of curvature (see Figure V1.6) (in 
our case this point of the contour will be the point M) and on the size of 
the zone of perturbation near the examined hole. 

In order to answer the first question, it is necessary to calculate the 
values of og* for p = 1 and 9 = ~ / 2 :  

'~ecallin~ the form of the Laplace operator in polar coordinates (VI.19) and in 
dimensionless polar coordinate (VI.114). 
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and to the second question, it is sufficient to calculate the values of a$ and 

a* respectively, by degrees 3 = ~ / 2  and 8 = 0, and to compare the stress- 
P ' 
strain diagrams for these stresses obtained with the same stress-strain dia- 
grams yielded by classical elasticity theory. Such a comparison of the stress- /SO6 
strain diagrams of a* and 0; is presented in Figures VI.7 and VI.8 for E = 

P 
= 0.2, where the solid curves correspond to moment elasticity theory, and the 
broken curves, to classical elasticity theory. Stresses a* through cross sec- 

P 
tion I9 = 0 (see Figure VI. 6) are shown on Figure VI. 7 and' a; through cross 

section I9 = ~r/2 (see Figure VI.6), on Figure VI.8. The numerical values of 
the stress components presented on these figures were obtained for v = 0.25 
and (R/l)min = 3. 

Figure VI.7. Figure ~1.8. 

Multifold Tension of Range Weakened by an Elliptical ~c,le'. We will 
analyze stress concentration near an elliptical hole with semiaxes a and b 
(Figure VI.9) under uniform multifold tension at infinity by forces p = const, 
i.e., in the basic stress state 

Proceeding as in the case of uniakial tension, we obtain 

(VI .175) 

(VI .176) 

After finding functions (VI.176) we may, on the basis of the above consi- 
derations, select the functions for the examined case of moment elasticity 
theory : 

' A  somewhat different solution is given by Yu. N. Nemish [2]. 
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b b 
rp(2,e) - e$ + c2$ +. . .; 

(VI. 177) 

41nz+; 1 +... . 

If we know the functions 4(z ,  e )  and ~ ( z ,  E), then by E. Gurst formula we can - /SO7 
determine the function U(r*, 0,  E) which, as earlier, we represent in the form 
of an expansion with respect to small parameter E: 

(VI .178) 

It follows from (VI.178) that in 
dimensionless polar coordinates r and 8, the 
functions are 

u 

Figure VI.9. 

UO ( r ,  8) - b3 In Kr, 

\ - I 

be (VI .179) (I,(r,9)=b,lnRr+ (= bb ?;i +b 448. 
After determining, on the basis of 

2 (VI.178), the function V U,. we obtain the 
equation for the function F(r, 8) 

(VI .180) 

Using analogous considerations, as we did in the case of uniaxial tension, 
we find the solution of equation (VI.180) in the form 

F ( f ,  8) 8 [B; 2 sin 20 i- b,K? (r;l*) sin 26 I + 

+ es 3 sin 48 + b8K, (r l l*) sin 49 ] + . . . , [ 
(VI. 181) 

where, as before, 



Consequently, 

F, (r . 8)  = [ $ + b7Ks (rll*) sin 28, I (VI .182) 

F, (r, 8) =. [@ + b8& (r i l*) ]  nn 48. 

The constant coefficients bn (n = 1, 2, . . . , 8) in (VI. 179) and (VI. 182) 
are determined from boundary condition (VI.63) on the contour of an elliptical 
hole, i.e., when P = 1. 

For the case under consideration /SO8 - 

(VI .183) 

0 where, as it is easy to check from (VI. 17S), 4 = p; 3, = up 
P 

= 0, and stress 

components u (0) , up (1) , --., (2) are determined by the given functions of 
P 

stresses (VI. 179) and (VI. 182) by formulas (VI. 136) and (VI. 137). 

Hence, by satisfying boundary conditions (VI.63), we find 

2P [ 9 + ~ ; ( 1 5 + ~ ~ ) 1 + & ( 3 - 1 ~ b n b , +  4 = - g ( 6 ~  - l+Q1 
(VI. 184) + ;, [X;F) -~4F)1?). 

b7 = - Y ; P R ~  
; b 0 = -  

@;P@ 1: (5 + 4Q1) - 
(1 + Q ~ )  K; ($1 (1 + 9,) (1 + Qs) K; ($1 



where 

(VI .lSS) 

From (VI.185) we obtain 

limp; = lirn Q, = lirnQ,- limQ,= 0; 
R w R 
I 

-30 -+OD I 1 
3-+9 

I 

lim Q4 = lim Q, = co. 
R R 
--*a ---too I I 

(VI. 186) 

From (VI.184) under conditions (VI.186) we obtain 

b, ;= - pR2; bg = - p p ;  b, = - p p ;  b4 = p p ;  

3 bl - pR2; b6 = pR6; b, = bs = 03. (VI. 187) 

Recalling the form of the Laplace operator (VI.114) in dimensionless polar 
coordinates (r, 8), we see that the values of coefficients (VI.187) coincide 
with the corresponding values of (VI.176). 



The stresses are 

30b4 20b, +---- 2 ~ ;  ( ~ / l * )  eP - 5 ~ ;  (ell*) e+ BK, ( Q / L ' )  
RV R'Q~ b7 e4 

6s 6B;h 2b, 6b, u : = P - w + + { - T  - kT-+ + 2b7 K2e -,- e - K a }  cos 2 6  '4 

(VI. 188) 

(VI .189) 

~K;Q?- ~K;Q + 8Kz + 4b8K;~~K4]cos46), 
e4 Q 

where the coefficients bl, b2, ..., b are determined by formulas (VI.184). 
8 

Figure VI.10 represents the graphs 
characterizing the change of the coefficient 
of concentration k2 = 08/p through cross 

section 4 = 0 when E = 0.2, v = 0.25 and 
(R/Z)min = 3 (solid curve) . The broken 

curve corresponds to the value of the stress 
concentration coefficient k in the same 2 
cross section, found on the basis of formu- 
las of classical elasticity theory. Here, 
too, is represented change of concentration 
coefficient kl = o /p through cross section 

P 
9 = 7 ~ / 2  (the symbols are the same as those 
used for coefficient k2). The curves 

showing the change of the concentration 

Figure VI, 10. 



coefficient by classical elasticity theory were constructed on the basis of 
formulas 

(VI. 190) 

(VI .191) 

Triangular and Square Holes in Field of Uniform Multifold   ens ion'. We 
will assume that the function (VI.109) that accomplishes conformal mapping of 
an infinite elastic isotropic plane z, weakened by a curvilinear hole with 
contour r ,  onto an infinite plane < with a round hole of unit radius, has the 
f o m  

(VI .192) 

N i. e., the function (VI. 110) is f ( 5 )  = 1/5 . The parameters R, E and N (a wllole 
positive number) characterize the dimensions and shapes of the holes. 

We will notice that by selecting respectively E and N, we obtain the 
mapping functions for elliptical, square and triangular holes (the latter 
having rounded corners). 

We will determine the concentration of stresses near holes corresponding /511 - 
to mapping function (VI.192) in the case of uniform multifold tension "at 
infinity" by constant forces p = const. Here the basic stress state has the 
form (VI.175). 

According to (VI.25) and (VI.27) for the k-th approximation of stress 
functions (VI. 130) and (VI. 134), we have 

The functions @k, x and Rk are conveniently taken in the form k 

(VI .193) 

-- - - 

'see Yu. N. Nemish [ 2 ] .  



( V I  .194) 

By determining differential operators L' ( V I .  138) for mapping function i 
(VI.192), considering the complex representation of the k-th approximation of 
stress functions U and F ( V I .  193) ,  according to formulas ( V I  .136) we find k k 
the components of the stress state in the k-th approximation. 

By considering the expressions for the components of ordinary and moment 
stresses in the zero, first and second approximations, we find from boundary 
conditions (VI.183) algebraic equation systems, the solutions of which yield 

( V I  .195) 



Here 

(VI. 196) 

me formulas for stresses o j  and a* with an accuracy up to c2, will be: /513 
P ' - 

1 
O ; = P - ~ B ~ ' + ~  ( N +  I ) ( i V + 2 ) t  

Q~ 

N + 2  ( 1 ,  -- QN+3 B N + ~  + ( N  + l ) ~ i $ - ~  (+-Q)cs\~) cos ( N  + I) a + 

N ( f f + 2 )  m N ( N + l )  + e' ( $N+4 BI + --p+.-[~ + 1 - N ( N + 2 ) t ] A $ )  N ( N + 2 I B g i 2 +  
Q ~  Q2N+2 

N ( N +  1) BP - -- 
Q2N+2 

( N + ' ) ( 2 N + 3 ) t  )A!%+~ 4. (yI. 197) e2 

+ (N 4- 3 (2N f 3 )  ( 1 )  2N + 3  (2) 
e2.Vf-4 

+ ( I ,  ' R 
Q2N+4  BY+^ - -B2 hr+3 ?- TN+I ( -I Q) ct!+l f 

4- 2 (N + 1) Mi$+, (: p) cos 2 ( N  + I )  17 



We will notice that by limit transition for R/Z + co we obtain from 
(VI.195)-(VI.197) the approximate formulas of classical elasticity theory. 
However, in the case of a plate with the hole of type (VI.192), which is under 
uniform tension by forces p in the directions of the x and y axes, according 
to N. I. Muskhelishvili's method [l] for stresses a$ on contour r in classical 
elasticity theory, we obtain the precise formula 

(VI .198) 

By selecting the corresponding values of e and N from the above formulas 
we can solve the problems under examination for the following holes: 

a-b . 
elliptical e = - N = I ;  R = -  u + b  ' a:b (a, b are the semiaxes of the 

ellipse) ; 

equilateral triangle N = 2, & = +1/3 or E = t1/4; 

square N = 3, E = +1/6 or E = +1/9. 
* 

Figure VI.ll illustrates the distribution of ug *(C1)/p and o8 along 

half of the contour of a triangular hole when e = -1/4, and Figure VI.12 /514 - 
illustrates the same along one-fourth of the contour of a square hole for 
E = -1/9. The graphs were constructed on the basis of formulas (VI.197), i.e., 
with consideration of the second approximation. The numerical values of the 
stresses were found for Poisson's ratio v = 0.25 and R/Z = 3. 

Figure VI. 1 1 .  Figure VI. 12. 



By analyzing the results obtained we see that for free holes (circular, 
elliptical, triangular and square) there is a general principle: the maximum 
value of the concentration coefficient for moment theory decreases as a func- 
tion of the magnitude of Poisson's ratio v and ratios R / Z .  

Plane Problem for Mu1 ti ply-Connected (Infinite) ~angesl. We will examine an 
infinite range weakened by a finite number of arbitrarily arranged holes 
(Figure VI.13), the contours L (k = 1, 2, ..., m) of which are smooth curves k 
and are given by the functions 

e < 1 ;  qk < 1; eqk = e,; e = max{ek)  

k = l , 2  , . . . ,  m. 
(VI. 199) 

cLk' Here f (5 ) are functions of the form ' f k ( c )  = --, where c(~) are known k k  GP 
P = I  

P 
constant coefficients. 

The function z (5) accomplishes conformal mapping of an infinite plane k 
with a round hole of unit radius onto an infinite plane with a hole Lk. 

Figure  VI.13. 

To each contour L we will relate the /515 k 
coordinate system (xk, yk) , and (x, y) to 

q by. /$9$$i9 V1.13): an arbitrary point on the plane (Figure 

The coordinate line p = 1 coincides k 
with the contour Lk of the k-th hole; the 

1, 

parameter r R characterizes absolute dimen- 
O k  

sions of the k-th hole; f3 is the angle 
+ q 

between r and p (or n ) lines. 
k 9 q 

= X + iy  re"; z, = x, + i y r  = rkeiek, 
%+ 
/ 

The use of the function zk (V1.199) makes it possible to reduce the stated 

6. = 
2 = 4 + I k ;  zk  == lo f Rkqeiakq. ( V I  .200) 0' I IYx / X 

problem for stress functions to a series m of boundary problems for a range 
corresponding to connectedness with round holes of unit radius in the plane ck. 

'see G. N .  Savin and A. N. Guz' [2] and also A. N. Guz' and G. N. Savin [I]. 
2 ~ 1 1  coordinates in linear parameters are dimensionless and related to r 

0 ' 



The solution of the problem for a multiply-connected-range reduces to the 
determination of stress functions U and F that characterize the additional 
stress state (VI.41) near the holes, from equations (VI.ll) and (VI.12) under 
boundary conditions (VI.20) or (VI,21), which are equivalent to them. These 
functions should satisfy "at infinity" both conditions (VI.43) and the condi- 
tions of uniqueness of displacements. 

Due to the linearity of the problem, the solution of equation system 
(VI.ll) for an m-connected range is represented in the form of the sum of 
complete solutions for the co~responding singly-connected ranges bounded by 
contours L (k = 1, 2, . . . , m), i.e. , k 

(VI. 201) 

where for each k the functions u(~) and F(~) acquire the forms, respectively, 

(VI. 130) and (VI. 133). Each pair of functions u(~) and F(~) should satisfy 
individually the conditions "at infinity," and furthermore these functions are 
such that the main vector and main moment of forces applied to the L (k = k 
= 1, 2, ..., m) contour should be equal to zero. 

Additional difficulties arising in the solution of the problem for multiply-/516 

connected ranges, are encountered in the transformation of 2(m - 1) functions 
uCk) and F ( ~ )  to the k-th coordinate system (r k' 0 k ) (Figure VI.13) and the 

representation of these functions in the form of series with separated 
varis.bles.. 

The conversion to the k-th coordinate system is essential for the 
satisfaction of the boundary conditions of the problem on each contour of the 
hole and consequently for the determination of the total system of linear 
algebraic equations from which the unknown coefficients of the desired func- 

tions u(~) and F(~) are found. 

In order that the problem be homogeneous, it is necessary in the desired 

functions u(~) and F(~) to convert from polar coordinates to a new curvilinear 
orthogonal coordinate system (pk, 19 ) given by mapping function %(i&) (VJ.199). k 

The problem is greatly simplified in the case of round holes, i.e., for 
an infinite plane weakened by a finite number of arbitrarily arranged, noninter- 
secting round holes1. 

'see A. N. Guzl and G. N. Savin [I]. 



In this case stress functions U and F for an m-connected range is written 
in the form 

( V I  .202) 

i.e., the desired solution of (VI.202) is constructed as the sum of the com- 
plete solutions for the corresponding infinite ranges with a round hole of 
radius r . 05: 

If the main vector and main moment of forces applied to each contour L 
k 

is equal to zero, then the conditions of uniqueness of displacements and the 
conditions "at infinity" will be satisfied if 

C(4) D P ) ~ =  0 (9 = 1, 2, . . . , m). (VI .203) 

In representing the solutions of (VI.202).in the k-th coordinate system 
it is necessary to recalculate all functions, including the cylindrical func- 
tions. In order to recalculate the latter it is necessary to use the theorem 
of addition of these functions. 

It is convenient to introduce into (VI.102) the following new constants: /517 

~ 2 )  = x ! \ ;  c!' = xbq:; E:' = I 

(VI .204) 

From the boundary conditions on the k-th contour we obtain an infinite 
equation system in the form: 

(VI .205) 



Here and in the following the "prime mark1' near the sum denotes that in the 

corresponding sum the term for q = k is omitted; Xn (k) , *B* (k) are six-variate 
vector columns; g(k) and B (k'q) are six-variate matrices; n n,P 

(k) xik' = {x ,  ); 3f' = { b y  (n, k ) ) ;  

.-z 11 b:j (n, k) 11; B L ~ ; )  == 1: bi,  (n, P ,  k, q) ;!. 

This system (VI.205) can be transformed to canonic form: 

(VI .206) 

where A (k*q) = I laij (n, p, k, q) 1 1  is a six-variate matrix; bn = Ibj(n, k)); nap 
x(~) = x k  (i, j = 1, 2, . . . , 6) are six-variate vector columns. 
n n, J 

The asymptotic representations of the cylindrical functions for large 
indices and the summation of certain series makes it possible to show that 
infinite system (VI.206) is quasiregular' for any vicinity of nonintersecting 
contours and for a certain smoothness2 of the right hand sides of the boundary 
prob 1 ems. 

It so happens that the uniqueness of the solution of the stated boundary 
problem is ensured by the satisfaction of the condition of applicability of 
Hulbert's alternative. 

- - - - - - - - - - - - - - - - -- -- -- - - - - 

 his means that the solutions obtained from truncated system (VI.206) for an 
increased number of terms in these truncated systems will approach the precise 
solution of infinite system (VI.206), i.e., will approach the desired (precise) 
solution of the problem. 
2 ~ n  particular, system (VI. 206) will be quasiregular under the condition that 
the functions ark and ~r B on the Lk-th contour are continuous, and that k k  
their first derivatives satisfy Dirichlet's condition, and further, if prk are 
continuous functicns on Lk with their first derivatives; the second derivative 

of pr should satisfy Dirichlet's condition. k 
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CHAPTER VII. TEMPERATURE STRESS DISTRIBUTION AROUND 
FREE AND REINFORCED HOLES 

Abstract. This chapter deals with the thermoelastic prob- 
lems of the theory of elasticity. Basic equations are 
derived for the plane thermoelastic problem as well as for 
the problem of bending of the thin plates. The stress con- 
centration is studied near various curvilinear holes with 
uniform heat flow. A case is also considered of a plate 
weakened by a biperiodical system of circular holes having 
the same form and size. 

In the preceding chapters we examined the effect of various types of holes /520 
on stress distribution caused by the effect of a force load on a body at 
constant temperature. If the temperature of the body is changed, then, in 
addition to the stresses caused by the force load, other stresses, the so- 
called temperature stresses, can occur within the body. The determination of 
these stresses is the object of the temperature problem of elasticity theory. 
Obviously the magnitude and law of distribution of temperature stresses depends 
on the temperature change of the body, which is found by solving the problem of 
thermoconductivity. It is quite natural, therefore, that the temperature prob- 
lem of elasticity theory be analyzed in conjunction with the corresponding 
problem of thermoconductivity theory. 

In the present chapter we will present the basic equations of the plane 
temperature problem of elasticity theory and the problems of deflection of 
thin plates as well as the equations of the two-dimensional problem of the 
theory of thermoconductivity. The examples given here do not represent all 
existing solutions of the temperature problem of elasticity theory, but 
illustrate only the characteristic features of the problem of the effect of 
holes on stress distribution in elastic bodies possessing constant thermo- 
elastic properties. A more complete treatment of this problem, and also the 
solutions of many specific problems, can be found in the monographs of N. N. 
Lebedev [I], E. Melan and G. Parkus [I], G. Parkus [I], V. Novatskiy [I], 
B. Boli and J. Weiner [ I ] ,  A .  D. Kovalenko [I], A. V. Lykov [I], G. Karslou 
and D. Yeger [I], which pertain to temperature problems of elasticity theory 
and problems of the theory of thermoconductivity. 

51. Basic Equations of Plane Temperature Problem of Elasticity Theory and of 
Problem of the Theory of Deflection of Thin Plates 

Initial Equations of the Temperature Problem of Elasticity Theory. If the 
temperature of a deformed solid body changes by the magnitude t, which is, 
generally speaking, a function of the coordinates and time, then stresses can 
occur within it which are caused by the incompatibility of purely thermal 
deformation. To prove this we will deliberately break the body down into small 
elements in such a way that the temperature within each one of them can be 
assumed to be uniformly distributed. Then each of these elements, since it 



does not encounter resistance from the others, undergoes pure thermal 
expansion, characterized in the case of an isotropic body by tensor components - /521 
of temperature deformation. 

& ( t )  = E ( t )  = ~ ( t )  L= '-J t ( 0  = $0 = $1 =z 0, 
X Y = t ' l jxy y z  (VII .l) 

where a is the temperature coefficient of linear expansion. 
t 

If purely thermal deformation is incompatible, i.e., if the elements thus 
deformed do not constitute a solid body, then internal (temperature) stresses 
that restore its continuity should develop within it. 

The tensor components of forced deformation 

(VII. 2) 

caused in an elastic isotropic body by these stresses should be such that the 
tensor components of total deformation 

(VII. 3) 

will satisfy the conditions of continuity. In this case the tensor of total 
deformation is potential and Cauchy's relations are applicable for it. 

By excluding from formulas (VII.2) and (VII.3) the tensor components of 
force deformation, we obtain the relations 

(VII .4)  

which generalize Hooke's law for the case where the temperature of the body is 
changed by the magnitude t. 



Plane Problem. If we proceed from the assumptions used in the formulation 
of the plane problem of elasticity theory, then, instead of relations (VII.41, 
we may write 

1 1 -- 1 4 - v  4= ~ ( a ~  -voU) f eH = H ( u ~  - vuX) + a,t, y,, - Trxu, (VI I. 5) 

where in the case of plane deformation, t = t(x, y, T) and' instead of at, v, E /522  - 
we will use 

v  E 
a;= a,(l  + v) ,  v * =  -, E* -- I - V P '  (VI I. 6) 

and also 

uz = v  (c,. 4- ou) - atEt. (VII. 7) 

In the case of the generalized plane stress state (thin plates), by stress 
components CJ a t and temperature t in equation (VII.5), we mean their 

x '  Y' X,Y 
mean values through thickness: 

To prevent deflection of the plate from the center of its plane, the 
function t (x, y, 2, T) should be symmetrical with respect to the middle of the 
plate. 

The stress tensor components should, as usual, satisfy equilibrium 
equations (1.1) and compatibility equation 

which, after the substitution of (VII.5) in it, acquires the form 

A (a, + o,) = - a, EAt 
(VII.9) 



and is, as we see, heterogeneous. Therefore if we introduce the stress 
function through relations (I.6), then we obtain, for its determination, the 
heterogeneous biharmonic equation 

AAU =; - atEAt, (VII. 10) 

the general solution of which can be represented in the form 

U = R e  [;el (z )  + x l  ( I ) ]  - ii tdz& (VII. 11) 

Hence, for the determination of the two analytical functions $l(z) and $l(z) = 

= xl(z), instead of (1.9) and (I.10), we obtain the contour conditions 
1 

- - 
9,k) i Z T ; ( Z )  t (P, (z )=  f , +  i f i +  T J t d ~ + c  on L, (VII. 12) 

- - 
%el (4 - zcp; (2) - +, (2) = 2~ ki?, + ig, - (' + ') 1 tdz] on L. 2 (VII. 13) 

In the case of the first basic problem, it is sometimes more convenient to /523 - 
use instead of (VII.12) the contour condition 

where N and T are normal and tangential, respectively, to L, component stresses, 
and Pl ( 2 )  = $i (2) , Y (z) = $i (z) . 

If the functions $l(z) and ql(z) are known, then the stress components 

and displacement components are found from formulas 

- dl -- 
ou - o, + 2irxg -;; 2 [ z e ;  ( I )  + 9; (111 - aIE j dz. 

(VII. 15) 

(VII .16) 

Relations (VII.12)-(VII.16), as far as we know, were first established by 
N. N .  Lebedev [I]. In the case of thin plates they are valid, as we pointed 
out earlier, for the symmetrical distribution of temperature with respect to 
the middle of the plate. 

Deflection of Thin  Plates. A temperature field that is asymmetrical with 
respect to the middle of the plane can be reduced to its deflection. If we 



proceed from the assumptions that are ordinarily used in the theory of 
deflection of thin plates and make use1 of relations (VII. 4) for the determina- 
tion of the stresses in the plate caused by its sagging w, we obtain 

Analogously, we obtain for the moments and shear forces2 

(VII. 17) 

(VII. 18) 

(VII .19) 

where 

(VII. 20) 

By substituting the values of Nx and N from (VII.19) into the third 
Y 

equilibrium equation3, we will obtain for the determination of the sag of a 
thin isotropic plate, the heterogeneous biharmonic equation 

2a, (1 + V )  AAw -- - (VII. 21) 
h 

'see G. N. Savin [I], formula (6.3). 
'see G. N. Savin [I], formulas (6.7), (6.8). 
3 ~ e e  G. N. Savin [ I ] .  



the general solution of which has the form 

(VII. 22) 

Hence, for the determination of analytical functions1 $(z) and +( ) = xl(z), 
we will have the following contour conditions 

(VII .24)  

If the functions $(z) and $(z) are known, then the moments and shear 
forces, as demonstrated by R. N. Shvets, are found from the formulas 

M, - M x  + 2iHxv = 2 (1 - v)  D [q" (z) + 9' (2) - (VI I. 25) 
h 

N, - i N ,  = - 4DrpR (2). 

In the general case of heating within a plate, both deflection stresses 
and stresses that correspond to the generalized plane stress state can occur 
within it. Then the general stress state, due to the linearity of the problem, /525 
is determined by the formulas 

(VII ,263 

Thus, for the determination of stresses in the case of plane deformation, 
it is essential to know the plane temperature field t(x, y, T). To determine 
the mean stresses and deflection moments of thin plates through thickness, it 
is necessary to find the mean temperatures T and T* through the thickness, and 
also the temperature t(x, y, Z, T) for the determination of the stresses. 

'see G. N. Savin [I]. 
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52. Basic Equations of the Theory of Thermoconductivity 

Three-Dimensional Problem. To determine the temperature field in a solid 
body we will use the equations of thermoconductivity 

d2t d't 8'1 1 dt 
~ + d y e + ~ = a ' -  d~ (VI I. 27) 

where T is time; a = A/c is temperature conductivity (A is thermoconductivity, 
c is heat capacity of unit volume). 

At the initial moment of time T = 0, the temperature of the body should 
also satisfy the initial condition 

t ( x ,  YI Zs 0) = f (xs Y p  2) (VII .28) 

and the conditions on the boundary of body S. 

Usually, four types of boundary conditions are distinguished: boundary 
conditions of the first type 

f = f l ( M , ~ ) ,  M E S .  z>O; (VI I. 29) 

boundary conditions of the second type 

(VII .30) 

boundary conditions of the third type 

at -+k(t-td=Oon Sfor z>0. dn (VII. 31) 

In the case of ideal thermal contact of two bodies, the boundary conditions will /526 
have the form: 

at1 h' t2, hIx = k2% on S for r > 0, 
(VI I .32) 

where n is the external line normal to the surface of the body, k = an/A is a 

relative coefficient (a is the absolute coefficient of thermoconductivity into n 
the medium with temperature tm). 

Plane Temperature Field. If the temperature of the body does not depend 
on the Z coordinate, then the temperature field is plane. The latter is 



possible in cylindrical bodies of arbitrary length, including thin plates, the 
ends of which are thermally insulated, and the initial condition (VII.28) and 
boundary conditions on the cylindrical surfaces are identical in any cross 
section. Hence the temperature t(x, y, T) will satisfy the two-dimensional 
equation of thermoconductivity 

(VII .33) 

initial condition 

t ( x ,  y, z) =-/I ( x *  Y) z = o  (VII .34) 

and one of boundary conditions (VII.29)-(VII.32) on contour L, which bounds 
the cross section of the body. 

Thus, the determination of the plane field reduces to a two-dimensional 
boundary problem of thermoconductivity. 

Equations of Thermoconductivity of Thin Plates. In the general case when 
the temperature in the plate changes through the thickness, the temperature 
field has to be found from equation (VII.27) and the corresponding boundary 
problems. However, as mentioned earlier, the generalized stress state of the 
plate and the deflecting moments are characterized by the values 

(VI I. 35) 

the determination of which, as In the case of the plane field, can be reduced 
to the solution of some two-dimensional boundary problem of thermoconductivity. 

We will formulate this problem for the case where heat conducted from the 
ends of the plate Z = kh/2 into the medium in accordance with boundary condi- 
tion (VII.31). 

1 6 By multiplying equation (VII.27) by $Z and -ZdZ and integrating within 
h 2 

the range -h/2 to +h/2, we obtain 

6 1 dT* (VII . 36 )  - /527 AT* - 3 (k+f+ - k-l-) - - (I+ - 1-) ; -.-- - 3 ( k f G  -- k-t;), 
11 h" a d r  I I  



where t+, t- is temperature and k+, k- are relative coefficients of thermo- 
+ - 

conductivity on surfaces Z = +h/2, respectively; tm9 tm is the temperature of 
the medium flowing over each of these surfaces. 

In order to exclude from (VII. 36) the known temperatures t+ and t- on 
planes Z = +h/2, we will express these values through the desired values T and 
T* (VII.35). By representing for this purpose equations (VII.27) in the form 

d't - + pr = 0, dZ' (VI I. 37) 

where p2 = A - I a and employing the symbolic method, we write 
a F  

sin pZ t 5 COS pZfa 4- --,to, (VI I. 38) 

where to is the temperature, and t* is its derivative with respect to Z on the 0 
center of the plate. 

By expressing t and t(; with the aid of (VII.35) through T and T*, we 0 
obtain the relation 

h 
P.*.cospZ 

sin pi? t = h T + ~ .  sin p h h h T*, 
sin - p 3 cos p y (VII .39) 

by which we can determine through simple differentiation the temperature 
through its average characteristics T and T*. By introducing (VII.39) into 
(VII. 36), we obtain1 for the determination of these characteristics, a system 
of equations of infinitely high order 

h h k* I.. C O ~ P ~ T - ~  h --. -(kf,+ k .Q. 
1 -p- i jcot  p? 

(VII .40) 

'see.Ya. S. Podstrigach [4 ] .  



where 

If, for the description of the thermophysical properties of a thin plate, we 
introduce the adduced thermoconductivity A* = Ah, adduced heat capacity c* = ch 
and thermoresistance r* = h/A, then, by proceeding in (VII.40) to the limit for 
h + 0, preserving the constants A*, c*, r* we obtain1, for the determination of 
T and T*, the following system of two equations of the second order: 

a' ?,'AT - (ET + e * ~ )  = c - (el,+ e M. 
(VII .41) 

** 3 ( e t ; n f e e ~ ,  A'AT' - 3 ( e * ~  C %TO) = c - 
1 1 . 1  1 1 1 4 

where .e =x +r-, e =--- ,+ - 0 7  * - is resistance to heat 
0 

exchange on surfaces Z = +h/2, respectively. 

Equation systems (VII.40) and (VII.41) were derived by Ya. S. Podstrigach 
[ 4 ] .  Equation system (VII.41), with consideration of heat sources, was also 
derived by V. V. Bolotin [I] on the basis of the variation principle in the 
assumption of linear temperature distribution through the thickness of the 
plate. 

Equation system (VII.41) for thermoconductivity of thin plates, as 
pointed out by I. A. Motovilovets [l] and V. M. Gembara [1] , reduces to a 
single resolving solution 

(VI I. 42) 

where 

Proceeding to the limit for h + u 1 1 1  relation (VII .39) , retaining here the 
constant Z/h along with 2 ,  we obtain 

'see Ya. S. Podstrigach [4]; V. V. Bolotin [I]. 
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(VI I. 43) 

If the problem of thermoconductivity is symmetrical with respect to the 
+ - + - 

middle surface of the plate, i.e., tm - tm - - - tm, a = a = a, T* = 0, then, 

considering that here, due to (VII.43) t = T, we obtain, instead of (VII.41), - /529 
the equation 

I at At -xZ ( t  - tJ = ;-=, 
(VII. 44) 

where 

The boundary conditions which must be satisfied by the values T and T* 
are derived from (VII. 28) - (VII. 32) : 

the initial condition is 

T  = F, (x,  g, O), T' = F: (x ,  y, 0); (VI I. 45) 

the conditions of the first type are 

T = F I ( M , ~ ) ,  T * = . F ; ( M , ~ ) ,  MEL,  r>O; 

the conditions of the second type are 

(VI I. 46) 

(VI I. 47) 

the conditions of the third type are 

the conditions of ideal thermal contact are 

TI =T9r T; = T;, aT, fl" dT; a ~ ;  
A 1 3 i = A . 2 2 .  1 ,  MCL, r > O ,  (VII .49) 



where n is normal to contour L, which bounds the middle plane of the plate. 

Conditions of Thermal Exchange on Reinforced Edge of Plate with Hole. We 
will assume that the edge of a hole in a thin plate of thickness h is rein? Y 

forced by a ring of some other material of the same thickness and of width hr 

(Figure VII.l). Assuming that the heat exchange of the system with the 
surrounding medium obeys Newton's law, and that there is ideal thermal contact 
between the ring and the plate on surface S, then for the determination of the 
temperature field in accordance with (VII.44), we have the following equations: 

for the plate 

for the ring 

the boundary conditions 

1 iit 
Figure VII.1. 

(VI I. 50) 

(VII .S1) 

are 1530 - 
at 

tr = t  ONS, b, -$- = aS(ft -9 on Se; (VII. 52) 

the initial conditions are 

t  = t(", t ,  = t r )  for r = 0. 

(VII. 53) 

(VII .54) 

where t, tr, tm are the temperatures, respec- 

tively, of the plate, ring and medium flowing 

over the surfaces of the system; r2 = 2a / A  h, r Z r 
hr is the thermoconductivity of the material 

of the ring, cr is its heat capacity, a is z 
the coefficient of heat emission from the 
lateral surfaces Z = fh/2 of the rod, a is S 
the coefficient of heat emission from the 
internal cylindrical surface Sc of the rod, 

a' is the coefficient of heat emission from S 
the external cylindrical surface Si of the 
plate. 



Assuming that the width of the ring hr is of the same order as the 

thickness h, we will regard it as a thin rod. We will formulate the condition 
that must be satisfied by the temperature of the plate on the reinforced edge, 
considering that the axis of the rod coincides with the contour of the plate. 
For this purpose we will relate the rod to coordinates (s, n) (Figure VII.1) 
and, by writing equation (VII.51) in these coordinates, we will disregard the 
values k, n (k is the curvature of the axis of the rod L ) in comparison with r 
unity. To determine the temperature of the ring we obtain the equation 

(VII .55) 

the solution of which, with consideration of the two latter conditions (VII.52) 
has the following form: 

yr' I* 

x (4 p cos ph, + a, sin phr )-' + [ sin P (no - n) fdrb. 
'hr - - 
2 

where the superscripts "plus" and llminusll indicate the value of the functions - 
2 for n = f h  /2, respectively; p2 = a /as2 - K - c / *a/a. r  (ds is an element o f  r r r  

arc L ). r 

By substituting the expression for the temperature of the rod (VII.56) 
into the first boundary condition of (VII;52), we find that the temperature of 
the plate on the contour should satisfy the equation of infinitely high order 

sin ph 

h r - (VII. 57) 

h + l sin (+ + n)] t&n = 0. 
's - h, - 

2 



where rS = l/a is resistance to heat exchange on the cylindrical surface Sc 
S 

of the rod. 

As in the derivation of the conditions of imperfect thermal contact 
between solid bodies1, we will introduce the following thermophysical para- 
meters: * = XrF is adduced thermoconductivity of the rod; c: = crF is its r 
adduced heat capacity; r* = hr/hrh is the adduced internal heat resistance; r 
r; = l/a h is the adduced resistance to heat exchange on surfaces Z = fh/2 of Z r 
the rod; r; = l/ash is the adduced resistance to heat exchange on cylindrical 

surface Sc of the rod; F = hh is the area of cross section of the rod. r 

We will proceed in equation (VII.57) to the limit for hr + 0, using the 

theorem of the mean and preserving A* c* r* r* constants, but disregarding r r' r' Z 
the derivatives A* *r* c* or* a**r* We obtain the condition of heat r r r r' Z r* 
exchange on reinforced thin rod edge L of the plate2 

(VI I. 58) 

Assuming here that the adduced thermoconductivity A; and heat capacity c; of 

the rod are equal to zero, we arrive the condition of heat exchange on rein- 
forced edge L of the plate 

(VII .59) 

which coincides in form with Newton's condition (VII.52) on cylindrical surface - /532 
S of a nonreinforced plate, in which the role of the relative coefficient of 

C 
heat emission with the surface is filled by 

In the case where r; = 0, the value H* in (VII.59) acquires the form r 

(VI I .60) 

'See Ya. S. Podstrigach 12, 31 . 
2 ~ e e  Yu. M. Kolyano [l , 21 . 



To determine the  mean temperature through width hr of  the  rod 

we i n t e g r a t e  (VII.56) i n  accordance with (VII.61) and i n  t h e  expression 
obtained proceed t o  the  l i m i t  f o r  hr -t 0, j u s t  a s  i n  the  de r iva t ion  of the  

condit ion of  heat  exchange (VII.58). We obta in  an expression f o r  the  tempera- 
t u r e  i n  the  rod 

(VII .62)  

+ 
which, when r; = 0, w i l l  be equal t o  the  temperature t of the  p l a t e  on i t s  

reinforced edge. 

53. Temperature S t resses  Caused by Perturbat ion of Homogeneous Heat Flow near 
~ o l e s '  

Suppose we have an i n f i n i t e  plane with an a r b i t r a r y  hole, bounded by 
smooth contour L. We w i l l  assume t h a t  a t  i n f i n i t y  the re  is  homogeneous heat  
flow q ,  d i rec ted  a t  angle a t o  t h e  Ox a x i s ,  t o  which corresponds l i n e a r  
temperature d i s t r i b u t i o n  

loD= q ( x c o s a  + ys ina)  +to.  
(VI I .  63) 

A l i n e a r  temperature f i e l d  i n  a dense p l a t e ,  a s  we know, has no e f f e c t  on 
s t r e s s e s  i f  the  p l a t e  i s  f r e e  of pinch. Because of the  hole,  the  temperature /533 - 
f i e l d ,  remaining l i n e a r  a t  i n f i n i t y ,  experiences some per turbat ion  i n  the  
v i c i n i t y  of t h e  hole ,  with t h e  r e s u l t  t h a t  temperature s t r e s s e s  develop around 
it. This disttlrbance w i l l  be determined, obviously, by the  form of contour L 
and boundary condit ions on it. The temperature f i e l d  i n  a p l a t e  with a hole i s  
represented i n  the  form 

t =1 f ,  +fa,  (VI I .64) 

where t l  i s  per turbat ion  of the  temperature f i e l d  caused by the  hole .  

' I n  t h i s  sec t ion  we w i l l  examine problems f o r  the  plane temperature f i e l d .  



In the following discussion we will disregard constant temperature t 
0 ' 

since it will cause no stresses in a nonreinforced body. 

Considering the contour of the hole to be thermally insulated, for the 
determination of the perturbation of a stationary plane temperature field by 
the hole on the basis of formulas (VII.31) and (VII.33), we obtain the equation 
of thermoconductivity 

At, = O 
(VII .65) 

and boundary conditions 

--  "I - o on L; I, = o for x = y = m. dn (VII. 66) 

Let the range outside of the given contour of hole L be mapped conformally 
by the function Z = w(<) on the exterior of unit circle y. Then, from 

(VII.63)-(VII.66), for the distribution of temperature in the range of variable 
i9 5 = pe , we obtain. 

(VI I. 67) 

where R is some real constant that depends on the dimension and shape of the 
hole. 

The problem of temperature stress distribution in this case is analyzed in 
the works of A. L. Florence and J. N. Goodier [l-31, H. Deresiewicz [I], Atsumi 
Akira [I], Muramatsu Masamitsu, Atsumi Akira [I], I. V. Gayvas' [l]. 

By substituting variable z by ( ), formulas (VII. 15) and (VII.16) are 
transformed to1 

- 
a, 4- a, - 2 (0 (5) + (01 - a, El (5 1 t), (VI I. 68) 

. 1 - dt 
0 e - u Q ~ 2 i r  OV = + [ ~ ~ m ~ ( c l + " ~ ( g ) ~ ( c ) - ~ J ~ ~ ( ; ) z d i ] ;  4'0 ( 5 )  (VI I .69) 

0 ( 5 )  -7- - - b (u + iv) = xlp (4)- =- 9 (0 (P(6) 4- 1 0' (6)  t (5 .  t )  4. 
0' ( 5 )  

1 See I. V. Gayvas' [I]. 



and contour conditions (VII.14) in the case of the first basic problem in the /534 
absence of external load, acquire the form 

a - @ (0) + Q)T)- --- [U (0) 0' (a) + +' (a) Y (a)] = 
~ ' ( 1 ~ 1  

(VI I. 70) 

Square Hole. We will take the mapping function in the form1 

By substituting (VII.67) into (VII.70), we obtain a functional equation rela- 
tive the functions @ (<) and Y (<) : 

or, if we convert to the conjugate values, 

We will represent the functions in the form 

(VII. 71) 

(VII. 72) 

(VII .73) 

1 I + 2aa By multiplying equation (VII.72) by -.-da and integrating with respect 
2ni a- 6 

to y, considering 1 > 1, we obtain 

'see formula (I. 43). 



4 a1 (1 + 2C4) DIE - 0 (Dl + 2u.--lP + 2a-26' + 2u.--3E + 2a-4 - -7 = (VI I. 74) 

1 1+2a' da 
Analogously, from equation (VII. 72), multiplying it ~y 7 -zc - /535 

and integrating with respect to y, recalling > 1, we obtain 

By comparing the expressions for a(<) from (VII.74) and (VII.75), we 
obtain, for the determination of the coefficients, the following system of 
equations: 

The condition of uniqueness of the displacements requires that 

(VII .76) 

(VI I. 77) 

The stresses at infinity will be equal to zero if 

1 
a l = T a  t Eq R r  la. (VI I. 78) 

Solving jointly (VII.761-CVII.78), we find 

1 L, = 0; a4 = - a, E q R r i a .  
12 

(VI I .79) 

By introducing the values found for the coefficients into (VII.74), we will have 



atE9R @(O = 7. (VI I. 80) 
3 

The function Y(<) is found from equation (VII.71) by multiplying it by 

A I .- * + u '  and integrating with respect to y, considering 151 > 1. azi ay '- 0 - S  

Recalling here (VII.80), we obtain 

By substituting (VII.67), (VII.80) into (VII.68) and assuming 5 = Pe i6 

when P = 1, we obtain the formula for stresses on the contour of a square hole: 

2 a,EqR 
a* = - - 3 ' 5 + 4 c o s 4 6  15 cos (6 - a) + cos (36 + a)]. (VII -82) 

The values of stresses ag in fractions of a EqR along the contour of the /536 t - 
hole, corresponding to functions (VII.80) and (VII.81) when a = ~ 1 2 ,  are 
presented below: 

Tr iangular  Hole. The exterior of a triangular hole is mapped onto the 

exterior of unit circle y by the function1 w(<) = 

Functions O ( 5 )  and Y ( < )  for this case are found in the form 

'see formula (I. 44) . 
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The stresses on the contour of the hole are 

(VII .84, 

The values of u0 in fractions of atEqR on the contour of the hole are 
presented below for a = 0 and a = ~ / 2 ,  respectively: 

0 0,m 
10 -0.860 
30 - 0,469 
90 -4539 
loo -0,838 
115 -u72 
120 - 5464 
125 - a069 
135 -01.432 
180 -0,000 

E l  1 i p t  i cal Hole. The function that conformally maps the exterior of an 
elliptical hole with semiaxes a and b onto the exterior of unit circle y has 
the form1 

Omitting the intermediate calculations, we present the final expressions /537 
for the functions 

The stress components are 

(VII. 85) 

'see formula (I . 42 ) .  
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a ,EcR 
a, = ., [me (e4 - I )  (e2 - m2) cos (6 + a) + 2 (e4 - 2.7:~' c , x  38 T. rn )- 

4- e (1 - P) (e4 - m4) COS( 6 - a)], 
a ,E9R 

'6 = 2 ( ~ 4 -  2 m ~ ? c o s  2r4 + [me(e2+ m2)(1 + 4e2 + e4)cos(6+a)- 
- Q (1 + Q?) (e' + 4m2@ + ni4) cos (6-a) - 2m2eS (1 + ev cos (30 + a) + 

(VI I. 86) 
-I- 2me3 (eZ + m2) cos (36 - a)], 

a,EqR . 

= 2 (e4 - 2 m ~ ~  cos 26 +- m')2 
[me (e2 - m2) (1 - e2)2 sin (9 $ a) + 

+ ~ ( 1  - Q?) (ez-m2)2 sin (3- a)]. 

The stresses on the contour of the hole are 

where k = b/a. 

Below are the values of o4 in fractions of atEqR on the contour of the 

hole when a = 0: 

Round Hole. Assuming in formulas (VII.85) m = 0, a = 0, we obtain stress 
functions @(<) and Y ( < )  for a range with a round thermally isolated hole of 
radius R, subjected to the effect of a homogeneous heat flow. 

The stress components are found from (VII.86) for m = 0 and a = 0: /538 

a tEqR 
0.- ~ ( f  - i ) C O S &  

a t E d ?  1 
uQ = --(- 2 es + $)case, 

z.6 - (-$ - i) sin 8. 2 

(VII .88) 



From (VII.88) it follows t h a t  t h e  maximum absolute values of ug on t h e  

contour of  a round hole  a r e  found f o r  9 = 0 and 9 = T .  

Below a r e  the  values of oo i n  f r a c t i o n s  of a EqR near  the  contour of the  
t hole  

Narrow S l i t .  Under the  e f f e c t  of a homogeneous heat  flow i n  a medium with 
an insu la ted  s l i t ,  the  s t r e s s  s t a t e  w i l l  be determined by functions (VII.85) 
when m = + I .  When m = 1, P = 1, we obta in  from (VII.86) the  expression f o r  
s t r e s s  along t h e  contour of a s l i t  arranged along the  Ox ax i s :  

aF9R sin a 
(J = --.- 
d 2 sin 6 ' (VII .89) 

I f  the  heat  f l u x  i s  d i rec ted  p a r a l l e l  t o  the  s l i t ,  then the  s t r e s s  
components a r e  equal t o  zero. In the  case where the  d i r e c t i o n  of the  heat  
flow is  perpendicular  t o  the  s l i t ,  t h e  s t r e s s  on the  contour w i l l  be 

atEqR 1 
O e =  --.- 2 

sin 6 ' (VII. 90) 

I t  follows from (VII.90) t h a t  a t  the  po in t s  (8 = 0 and 9 = n) the  s t r e s s e s  
w i l l  increase  t o  i n f i n i t y .  

54. Axisymmetrical Temperature Field and Temperature St resses  i n  an I n f i n i t e  
P l a t e  w i t h  a Round Reinforced Edge 

We w i l l  determine t h e  unsteady temperature f i e l d  and temperature s t r e s s e s  
i n  an i n f i n i t e  p l a t e ,  f r e e  of ex te rna l  load, with a c i r c u l a r  reinforced edge 
o r  a t h i n  rod, considering the  temperature of the  external  medium a s  a function 
of time only. 

Temperature F i e l d .  Because of symmetry, ins tead  of (VII.50) and (VII.58) - /539 
f o r  the  determination of the  unsteady temperature f i e l d ,  we w i l l  have i n  the  
given p l a t e :  

equation of thermoconductivity 



boundary condition 

at at - - ~ i ;  ( t  - tJ = $. - for r  = 1, 
dr dFo* (VII .92) 

a R 2  * - a* where ~ i ' =  2-; Fo - p  is Fourier's criterion; r relates the polar radius to 

the radius of the hole of the plate; 

We will assume that the temperature of the system at the initial moment of 
time is equal to zero. Assuming, for instance, that the temperature of the 
medium is a harmonic function of time, i.e., 

hFom tm= toe , (VII .93)  

we find from (VII .91)-(VII .93) ,  using the Laplace transformation, the 
unstationary temperature field of the   late' 

t = t 6 M i Q o  (r, Fo*, q) 4- t,(io [e0 (f , q) - e0 (r, Fo*, '1)): , (VI I .  94) 

where 

n - 0 , l ;  ' A = ~ i *  - b; ~ i ' ,  8 (3 -- A' - b;q2; Mi = ~i'F0' is Mikheyev s criterion ; 
r 

J (q) , Y (q) are Bessel s functions of kind I and I1 of the real argument. 
n n 

For the asymptotic condition2, we have instead of (VII.94) 

i g S ) ,  IcK. ( r  I">) + Bi*], (VII .95) 

'see Yu. M. Kolyano [I, 21. 
2 ~ e e  Ya. S. Podstrigach [I]. 



where 

Kn(rl) is McDonald1 s function, , o* = Bi* + io. 

Assuming in (VII.94) w = u, we find the solution of the problem of thermo- /540 
conductivity 

t = to [ l  + e-MLQ, (r. Fo*, q)l, (VII .96) 

that corresponds to the case where the temperature of the surrounding medium 
changes at the initial moment of time by some magnitude, remaining constant 
thereafter. 

Determination of Stresses. To determine the stress-deformation state 
caused in the plate by temperature fields (VII.94) and (VII.96), we will use 
relations (VII.15) and (VII.16) of the temperature problem of elasticity 
theory for the generalized plane stress state, which in the case of radial 
symmetry become 

- 
a, + a, = 2[@ (z) f @ (z)]  - a,Ef, 

the condition of compatibility of deformations of the plate and rod is 

Or u = - + aikV for r = 1 (VII .98) 
E, 

and the conditions of the absence of stresses at infinity are 

a(-) = a(-) I= 0, 
0 (VI I. 99) 

i €I 
where $(z), +(z) are functions of complex variable z = ze . In the given 
case 



(VI I .  100) 

where r ,  I" a r e  complex constants  t h a t  determine the  s t r e s s  d i s t r i b u t i o n  a t  
i n f i n i t y  and r o t a t i o n  of t h e  body a s  a  r i g i d  whole; QO(z) ,  QO(z) a r e  holomor- 

phous functions which, f o r  a  s u f f i c i e n t l y  la rge  value of z ,  have an expansion 
of  the  form 

(VII. 101) 

a  b a r e  complex constants .  n' n 

In the  case where the  temperature f i e l d  has t h e  form (VII.95), we f ind  1541 
from (VII.97)-(VII.99) t h a t  a l l  c o e f f i c i e n t s  of the  functions $(z) and $(z) 
a r e  equal t o  zero, with t h e  exception of 

(VII .102) 

where 

By s u b s t i t u t i n g  (VII.lOO)-(VII.102) i n t o  formulas (VII.97), we f ind  the  
d i s t r i b u t i o n  of  temperature s t r e s s e s  i n  the  p l a t e  

Big 
0:s) = (D [allmy'- - + a,fmEC ( o * ) - " * [ r ~ ,  (r,)- K, (1/,~;77]] r-2, 

(VII. 103) 

C up9 = - uFs) - a,Et -, KO (r ,) ,  
ma 

where 



I n  t h e  case  of  temperature f i e l d  (VII.96),  

where 

-MI t i =  t ( ~  - e  1. 

On t h e  edge of t h e  p l a t e  (r = 1) we f i n d  from (VII.104) 

(k) -MI g = D b , t , , - a ,  t ] ,  I a , = - u , - a , E e  (1-Q:) (VI I .  105) 

where 

For a nonreinforced p l a t e ,  we should assume i n  (VII.105) t h a t  

Assuming t h e  adduced hea t  capac i ty  cr and i n t e r n a l  hea t  r e s i s t a n c e  r *  of t h e  r 
rod t o  be equal t o  zero,  we w i l l  have, i n s t ead  of (VII.105),  

a; = - - e-Mi [ I  - Q:] f o r  A' = B = Bi;. 

where 

(VII. 106) 

/542 - 



The graphs of d i s t r i b u t i o n  of s t r e s s e s  (VII.106) f o r  hrH: = 93.1 
7 2 j /m.sec-deg a s  func t ions  of  Fo*, Bi*, m f o r  a s t e e l  (E = 2061 x 10 n/m , 

- 6 a = 12-10 l /deg ,  A = 46.556 j/m.sec-deg) p l a t e  with a round ho le ,  t h e  edge 
t 

(k) = 18.10-6 of which i s  r e in fo rced  by a t h i n  bronze (Er = 11772-10' n/m , at 
l /deg)  rod ,  a r e  presented  i n  Figures  VII.2 and VII .3 .  The graph of  t h e  func- 

t i o n  $, given i n  t h e  book of  G .  Karslou and D .  Yeger [l] was used f o r  t h e  

cons t ruc t ion  of  t hese  graphs. 

F i g u r e  VII.2.  

Figure VII.3.  

I t  i s  c l e a r  from t h e  graphs t h a t  t h e  maximum s t r e s s e s  on t h e  edge of  t h e  
p l a t e  r e in fo rced  by t h e  t h i n  rod w i l l  b e  achieved sooner f o r  t h e  given case  a s  
hea t  emission from i t s  l a t e r a l  s u r f a c e s  i nc reases .  

Radial s t r e s s e s  a* (Figure VII .2)  a r e  always p o s i t i v e .  They decrease  a s  r 
t h e  parameter of  t h inness  of  t h e  wal l  o f  t h e  r e i n f o r c i n g  element m = 
decreases .  

hrR 



The ring stresses 06 (Figure VII.3) can change signs as time passes, 

changing from compressive stresses to tension. Hence as the parameter m in 
the range of compression decreases, they will increase in absolute value, and 
in the range of tension, they will decrease. 

In the stationary thermal condition, i.e., when Fo* + m, temperature 
stresses (VII. 106) will become 

As we see, in this case they do not depend on the thermophysical characteris- 
tics of the rod and plate. 

If in (VII.104) we change to Cartesian coordinates, moving the origin of - /543 
the coordinates to the contour of the hole, assuming R + then we obtain 
stresses 

I A -0" = - a Et [F, (4- (4 - f ,  ( x )  + f ,  ( x ) ]  + e-"'er fc O\ )/1--4B,A (VII. 107) 

which occur in a semiinfinite plate whose edge is reinforced by a thin elastic 
rod. 

Here 

X 

~f ( x )  = e - x f W E  erfc (2 - y-6 - v ( ~ i  +.Pi) Fo ) f 

(Bi, + Pi) F? - 9 * hViGE ,==fc & + 1 ' (Bi + Pi) FO)] ; fi = - j~+~r  . (2 )/Fo 

5 5 .  Temperature Stresses during Deflection of Thin Plate with Round Hole /544 

Let an annular plate be heated by convective heat exchange with a medium 
bounded by concentric circles of radii r = R1 and r = R (R > R1). The 2 2 
temperature of the medium flowing over the surfaces Z = +h/2 of the plate is 



cons tan t  and equal ,  r e s p e c t i v e l y  t o  ti and ti. Conditions ( V I I  .48) a r e  

s a t i s f i e d  on t h e  contours  of t h e  p l a t e .  We w i l l  determine t h e  temperature 
f i e l d  e s t a b l i s h e d  i n  t h e  p l a t e  and t h e  s t r e s s e s  caused by t h i s  f i e l d  under t h e  
corresponding boundary condi t ions .  

Determination of Temperature F i e l d .  The s t a t i o n a r y  temperature f i e l d  i n  
t h e  p l a t e  f o r  i d e n t i c a l  c o e f f i c i e n t s  of h e a t  emission from su r faces  Z = +h/2 
is  descr ibed  by t h e  equat ions  

By so lv ing  equat ions  (VII.108) under boundary condi t ions  

we o b t a i n  

where 

(VII .108) 

(VI I .  109) 

( V I I .  110) 



(VII. 111) 

- - + 
t- are known constants, I (p), I ( P )  are Bessel functions TmJ Tm' Ti, T;, tms 0 1 

of the first kind of the zero and first orders from the imaginary argument, 
K (P), K (P) are McDonald's functions of the zero and first orders. 0 1 

If the edges of the plate are thermally insulated (kl = k2 = 0), then 

Al = A2 = B1 = B2 = 0, and the temperature i7 the mean plane of the plate will 

be constant: 

e T = t f i  7'*=-t0 
e, m' (VII. 112) 

Temperature Stresses and Moments. Let the edges of an annular plate be 
free of stresses. By substituting the values of temperature T and T* from 
(VII. 110) into boundary conditions (VII. 12) and (VII. 23) assuming fl = f2 = 0, 
we obtain 

where 

2a, (1 - v') 
ao=-, A ~ =  q-e, 



The s t r e s s  and moment a r e  

(VII. 114) 
M,, - -aoD ( a o + b -  :a) -M;V 

where 

(VII. 115) 

q, = aJj2D (4 (1, (B/) - (By)] + B2 [KO (Bg) + & Kl (Bg)] + j 4. 
If t h e  edges of t h e  p l a t e  a r e  thermally insula ted  (kl = k2 = 0 ) ,  then 

from (VII.114) and (VII.115) it  follows that t h e  temperature s t r e s s e s  and 
moments a r e  equal t o  zero. The p l a t e ,  under t h e  e f f e c t  of temperature f i e l d  
(VII.112), i s  def lec ted  without s t r e s s e s  i n t o  a spher ica l  surface.  

I f  R2 i n  formulas (VII.111) and (V11.113) approaches i n f i n i t y ,  we obta in  

the  s t r e s s  s t a t e  i n  an i n f i n i t e  p l a t e  with a round hole  of radius R In t h i s  
case A = A2 = 0 1 ' 

1 

(VII. 116) 

( V I I .  117) 



There a r e  no s t r e s s e s  i n  a dense p la te .  

Let t h e  ou te r  edge of t h e  p l a t e  be pinched, and le t  t h e  inner  edge be 
f r e e  of  s t r e s s e s .  Then from boundary condit ions (VII.123, (VII.13), (VII.23) 
and (VII. 24), with considerat ion of (VII. 3 ) ,  we obta in  

where 
Ra 1 

4 = - (:: [ A l l l  ($lRa) - B I K l  (B1Rl)I - All1 ( $ I R ~ )  f B,Kl ( P ~ R A ]  - ij-td 
BIAR 

(VII. 118) 

3 B:AO .) (VII. 119) 
+ -.- 

2 p, 'dl 

b -- R1y - -.- (: + R' [ A J ,  ( p 2  R,) - B2K1 ( P a  Ra)] + A?!, (P2Rl)- 
1 -  AR - V  R2 

The s t r e s s  and de f l ec t ing  moment a r e  

(VII.  120) 

0 0 
where age, Mee a r e  determined by formulas (VII.115). 



The s t r e s s  s t a t e  i n  a  p l a t e  t h a t  i s  pinched a t  i n f i n i t y  and weakened by 
a round hole  i s  

i 
(VII .121) 

3e:t; R: , 
Moo = %D ( 8 2  [$ Kl (P1Rd - Ko ( B 2 r )  - B;; KI (Brr)] - pi (1 - V) ( 1  + ,)# 

where B and B a r e  defined by formulas (VII.116). 
1 2 

I f  the  contour of a  round hole i s  thermally insu la ted  (kl = 0) ,  then 

B1 = B2 = 0 and from (VII.121) we f ind  

M,, = - ate (1 + v) 

he0 .t<l+ 5).  
(VII.  122) 

I t  i s  c l e a r  from (VII.122) t h a t  on the  contour of the  p l a t e  r = 
R1 ' 

pinched a t  i n f i n i t y ,  t h e  values age and Me* a r e  twice a s  grea t  a s  i n  a  
continuous p l a t e .  

56. Temperature S t resses  i n  T h i n  P l a t e  Weakened by a Biperiodic System of 
l dent i ca 1 Round Hol e s  

This problem was examined by L. A. F i l l s h t i n s k i y  [ l ]  under the  following 
condit ions:  

1) on the  contours of round holes  f r e e  of ex te rna l  forces ,  a  constant  
(identical for all holes) temperature To is given; 

2) the  centers  of round holes  of radius  R form a b ipe r iod ic  system with 
ia  bas ic  periods w = 2; w = 2Ze ; 2 > 0; Imw > 0, and t h e  congruent system of /549 

1 2 2 - 
po in t s  (centers  of round holes)  D = mu 

1 + nu2 (m, n  = 0; 1; 2;.  . .) i s  

symmetrical with respect  t o  t h e  coordinate a x i s  Oxy, the  o r i g i n  of which is 
placed a t  one of t h e  centers  Loo of t h e  holes (Figure VII.4); 

3) t h e  surface  of t h e  p l a t e  is  i n  contact  with a constant  heat  flow of 
i n t e n s i t y  q .  



Figure V I I . 4 .  Figure V I I . 5 .  

The range under examination, in,which we seek the distribution of 
temperature stresses, represents the exterior of equal circles L the centers 

-t + + mn ' 
of which are located at the points P = mul + nu (see Figure V I I . 4 )  (m, n = 0; 2 
*I, *2;.. . ) .  

Using the elliptical Weierstrass functions and derivatives, and also 
certain special functions, we can construct the solution for a broad class of 
biperiodic problems of the plane theories of elasticity, thermoelasticity, 
thermoconductivity and deflection. 

Figure V I I . 5  illustrates the curves1 oy/q* at the points A and B (see 

Figure V I I . 4 )  for a right triangular lattice (w = 2; w2 1 = 2einl3) where q* = 

= Eaq/hX*; A* is the coefficient of thermoconductivity of the material from 
which the plate is made; h is the thickness of the plate; q is the intensity 
of the heat flow; a = ~ / 3 ;  E is Young's modulus of the material of.the plate. 



REFERENCES 

Atsumi Akira [I], "Temperature Stresses near a Round Hole in a Rod in a 
Homogeneous Heat Flow," Trans. Japan. Soc. Mech. Engrs. , No. 29, p. 197, 
1963 (RZhMekh, Vol. 12, No. 18, 1963). 

Boli, B. and J. Weiner [I], Teoriya Temperatumykh Napryazheniy [Theory of 
Temperature Stresses], Mir Press, Moscow, 1964. 

Bolotin, V. V. [I], "Dynamic Problems of Thermoelasticity for Plates and 
Shells in the Presence of Emission," T r .  Konf. po Teorii  Plastin i Obolochek 
[Proceedings of the Conference on the Theory of Plates and Shells], Kazant, 
1961. 

Gayvast, I. V. [I], "Analysis of Temperature Stresses Caused by Perturbation 
of Homogeneous Heat Flow near Holes," PrikZ. Mekh., No. 12, 1965. 

Gembara, V. M. [I], Candidate Dissertation, L'vov, 1964. 
Karslou, G. and D. Yeger [I], TepZoprovodnost' Tverdykh Tel [Thermoconductivity 
of Solid Bodies], Nauka Press, Moscow, 1964. 

Kovalenko, A. D. [I], Vvedeniye v Temoupmgost' [Introduction to Thermoelas- 
ticity], Naukova Dumka Press, Kiev, 1965. 

Kolyano, Yu. M. [I], "Temperature Fields and Stresses in Thin Plates, the Edges 
of which are Reinforced by a Thin Rod," DAN URSR, No. 12, 1964. 
[2], "Temperature Stresses in Thin Plates with Reinforced Edge," Kontsen- 
trats iya Napryazheniy [Stress Concentration], Vol. 1, Naukova Dumka Press, 
Kiev, 1965. 

Kosmodamianskiy, 0. S. [I], "Thermoelastic Problem for Cylinders With Cavities," 
PYikZ. Mekh., Vol. 8 ,  No. 6, 1962. 

Lebedev, N. N. [I], Temperatmyye Napryazheniya v Teorii  Upmgosti [Tempera- 
ture Stresses in Elasticity Theory], ONTI Press, Moscow-Leningrad, 1937. 

Lykov, A. V. [I], Teoriya TepZoprovodnosti [Theory of Thermoconductivity] , 
GITTL Press, Moscow, 1952. 

Mayzel', V. M. [I], Temperatwnaya Zadacha Teorii Upmgosti [Temperature Prob- 
lem of Elasticity Theory], AN UkrSSR Press, Kiev, 1951. 

Melan, E. and G. Parkus [I], Temperatmyye Napryazheniya, Vyzyvayemyye 
S t a t s i o m y m i  Temperatwulymi PoZyami [Temperature Stresses Caused by Sta- 
tionary Temperature Fields], Fizmatgiz Press, Moscow, 1958. 

Motovilovets, I. A.  [I], "Temperature Field and Temperature Stresses in Heated 
Cylindrical She1 1 in Varying Liquid Level, " TepZ. Napryazh. v Elementakh 
Konstruktsiy [Temperature Stresses in Construction Elements], Vol. 3, 
AN UkrSSR Press, Kiev, 1963. 

Muramatsu, Masamitsu and Atsumi Akira [I], "Temperature Stresses in Vicinity of 
Infinite Row of Holes in Plate in Uniform Heat Flow," Trans. Japan. Soc. 
Mech. Engrs., No. 28,-..p. 191, 1962 (RZhMekh, No. 6, p. 48, 1963). 

Muskhelishvili, N. I. [ I ] ,  Nekotoryye Osnovnyye Zadachi Matematicheskoy Teorii 
Upmgosti [Some Basic Problems of Mathematical Elasticity Theory], AN SSSR 
Press, Moscow, 1954. 

Novatskiy, V. [I], Voprosy Termouprugosti [Problems of Thermoelasticity], AN 
SSSR Press, Moscow, 1962. 

Parkus, G. [I], Neustanovivshiyesya Temperatmyye Napryazheniya [Unsteady 
Temperature Stresses], Fizmatgiz Press, Moscow, 1965. 



Podstrigach, Ya. S. [1] , I1Thermal Field in Walls of Uniform Thickness at 
Asymptotic Thermal Conditions," (Thermal Stresses in Thin-walled Structures), 
AN URSR Press, Kiev, 1959. 
[2], "Conditions of Thermal Contact of Solids," Dan URSR, Vol. 1, 1963. 
[3], "Temperature Field in a System of Solid Bodies, Conjugated with the Aid 
of a Thin Intermediate Layer," IFZh, Vol. 6, No. 10, 1963. 
[4], "Temperature Field in Thin Shells," DAN URSR, No. 5 ,  1958. 

Podstrigach, Ya. S. and S. Ya. Yarema [I], Temperaturni Napruzheniya v OboZo- 
nkakh [Temperature Stresses in Shells], AN URSR Press, Kiev, 1961. 

Savin, G. N. [I], Kontsentratsiya Napryazheniy OkoZo Otverstiy [Stress Concen- 
tration near Holes], GTTI Press, Moscow, 1951. 

Uzdalev, A. I. [I], Nekotoryye Zadachi Termouprugosti Aniaotropnogo TeZa [Some 
I Problems of Thermoelasticity of Anisotropic Bodies], Doctorate Dissertation, 
Kazanl , 1966. ' 

Fil'shtinskiy, L. A.  [I], "Problems of ThermoconductiviQy for a Plate Weakened 
by a Biperiodic System of Identical Round Holes," TepZ. Napyazh. v EZemen- 
takh Konstruktsiy [Temperature Stresses in Elements of Construction], Vol. 4, 
Naukova Dumka Press, Kiev, 1964. 

Deresiewicz, H. [I], "Thermal Stress in a Plate due to Disturbance of Uniform 
Heat Flow by Hole of General Shape," J. AppZ. Mech., Trms. ASME, Vol. 28, 
No. 1, 1961. 

, Florence, A. L. and J. N. Goodier [I], "Thermal Stress at Spherical Cavities 
and Circular Holes in Uniform Heat Flow,ll J. AppZ. Mech., Trans ASME, Vol. 26 
No. 2, 1959. 
[2], "Thermal Stress due to Disturbance of Uniform Heat Flow by an Insulated 
Ovaloid Hole," J. AppZ. Mech., Trans. ASME, Vol. 27, No. 4, 1960. 
[3], "Thermal Stresses at an Insulated Circular Hole near the Edge of an 
Insulated Plate under Uniform Heat Flow," Quart. J. Mech. and Math., Vol. 16, 
No. 3, 1963. 



CHAPTER VIII. STRESS DISTRIBUTION NEAR CRACKS. 
LIMIT LOADS DURING BRITTLE RUPTURE OF MATERIAL 

Abstract. In this chapter are given the principal statements 
of the theory o f  equilibrium crack in the case of a simplified 
brittle body model. A large class of problems is considered 
for the determination of the critical load. The critical 
loads are determined for one and two colinear rectilinear 
cracks emerging at the circular hole contour due to the 
prescribed loads on infinity. The diagram plot of the ulti- 
mate stresses for a body subjected to the plane stress state 
is presented. A comparison of the diagrams with the experi- 
mental results is given. 

91. Introductory Comments 

The results of analyses of stress concentration near an elliptical hole, /551 
presented in 92, Chapter 11, show that the greatest stresses u8 on the contour 

of the hole depend greatly on the curvature of the contour at the particular 
point. In the case of uniaxial tension along the Ox axis, these stresses 
achieve their maximum values at the points of intersection of the contour of 
the hole with the 2b axis of the ellipse, i.e., when 9 = t7r/2 and are determined 
by the formula 

a,, = 'kp, (VIII. 1) 

where the stress concentration coefficient is 

(VIII. 2) 

p is the intensity of tension stresses at infinity, directed perpendicular to 
the 2b axis of the elliptical hole; p is the radius of curvature of the contour 
of the hole at points 19 =   IT/^. 

If the radius of curvature of the hole at this point is not too small and 
the material of the elastic plane is sufficiently brittle, then the limit value 
of the load is p = p,, i.e., the value of the external forces of tension1 at 

which the body will rupture is determined from the following conditions: 

- - - - - -  

'In this chapter the principal stresses N and N applied at infinitely remote 1 2 
points of the elastic plate are denoted through p and q, such that N1 5 p, 
N2 z q. 



(VIII. 3) 

where a is the resistance of the material to rupture. 
m P  

If the radius of curvature P is infinitely decreased @ + 0), then at the 
limit we obtain a plate that is weakened by a hole in the form a rectilinear 
slit with sharp ends. Such a sharp-ended slit in an elastic brittle body, 
when the maximum distance 2a between its opposite edges (walls) is small in 
comparison with the distances between its ends '(between the ends of the hole), 
will represent a real crack. 

It follows from formula (VIII.2) that concentration coefficient k found 
from the solution of the corresponding problem of classic~l~elasticity theory 
increases when the radius of curvature P decreases, whereupon k + when 
P + 0. Hence, and from (VIII.3), we arrive at the conclusion that a plate 
(Figure VIII.l), weakened by a crack with a sharp notch, should rupture 
immediately if subjected to tension by forces p > 0, however small. In 
reality, however, this does not occur. A simple test (see 59) indicates that 

a plate a sharp-ended crack will rupture under 
a finite (and, generally speaking, not small) 

l ! t t t t l t l p  
value of tension forces p (Figure VIII .I) . 
In other words: a plate made of a brittle 
material, weakened by a rectilinear isolated 
crack, is capable of sustaining a completely 
defined finite load of tension, the value of -- which depends on the dimension (length) of 

x the crack and the physico-mechanical proper- 
ties of the material. 

However, the solution of (VIII.l) and 

i l l l l l l l l p  
(VIII.2) obtained in classical elasticity 
theory, and which gives infinite large values 
of tension in the vicinity of great stress 
concentrations, is obviously not valid in the 

Figure VIII. 1. physical sense. This disagreement between 
theory and experiment, to which classical 

elasticity theory leads, can probably be attributed to the fact that the 
assumptions upon which the basic relations and equations of classical elasti- 
city theory are based, are not applicable to the given class of problems. This 
discrepancy between theory and test can obviously be attributed to two factors: 
first, the equations of classical elasticity theory1 which were derived in the 
assumption of negligible smallness (incomparison with unity) of elongations, 
displacements, and angles of rotation, and also that the products of the angles 
of rotation can be disregarded in comparison with elongations and displacements 

'see V. V. Novozhilov [I], p. 179. 
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cannot be appl ied  t o  t h e  given c l a s s  of  problems of  s t r e s s  concent ra t ion  n e a r  
c r acks  and near  acu te  angles  of ho le s ,  i n  genera l ,  and second, Hooke's law is 
assumed t o  be  v a l i d  f o r  a l l  deformations. A s  shown i n  58, Chapter V ,  s l i p  
zones, from which micro and macrocracks may o r i g i n a t e  under the spp ropr i a t e  
cond i t i ons ,  occur near  acute  s t r e s s  concent ra t ions  under t h e  e f f e c t  of 
comparat ively small va lues  of  t ens ion  f o r c e s  p.  

The p a t t e r n  o f  deformation of  t h e  ma te r i a l  nea r  t h e s e  cracks w i l l  be 
d i f f e r e n t  from t h a t  of t h e  s t ress -deformat ion  s t a t e  p red ic t ed  by c l a s s i c a l  
e l a s t i c i t y  theory ,  based on t h e  continuous model of  an i d e a l l y  e l a s t i c  body. 
Therefore,  t o  determine t h e  magnitude of  t h e  l i m i t  load of  a  b r i t t l e  body with 
sharp-ended s t r e s s  concent ra tors  (cracks)  it i s  necessary  a s  t h e  f i r s t  s t e p 1  t o  
r e t a i n  t h e  method of c l a s s i c a l  e l a s t i c i t y  theory ,  bu t  t o  supplement t h e  model /553 - 
of c l a s s i c a l  theory  by c e r t a i n  new p r o p e r t i e s ,  which w i l l  make i t  poss ib l e  t o  
desc r ibe  more completely ( i n  t h e  phys i ca l  sense)  t h e  s t ress -deformat ion  s t a t e  
i n  t h e  v i c i n i t y  of  such s t r e s s  concent ra tors  and t o  e s t a b l i s h  a  b e t t e r  c r i t e r i o n  
f o r  t h e  eva lua t ion  of t h e  s t r e n g t h  of a  s o l i d  body. 

The a n a l y s i s  of  equi l ibr ium of a  deformed s o l i d  body, weakened by d e f e c t s  
i n  t h e  form o f  sha rp ly  poin ted  c a v i t i e s  o r  c racks ,  a l s o  i s  t h e  ob jec t  o f  
matl~ematical  theory  of  equi l ibr ium cracks .  This  theory  ( a f t e r  t h e  known works 
of A. A. G r i f f i t h )  was developed only  i n  r e c e n t  yea r s  i n  t h e  works of t h e  
Soviet  r e sea rche r s  A. S. Khris t ianovich,  G .  I .  Barenbla t t ,  M .  Ya. Leonov, 
V .  V .  Panasyuk, among o t h e r s ,  and a l s o  i n  t h e  works of  c e r t a i n  fo re ign  
r e sea rche r s  (G. R .  Irwin, E .  0 .  Orowan and o t h e r s ) .  

An o u t l i n e  of  t h e  development of  research  on mathematical theory  o f  
equi l ibr ium cracks ,  a  b ib l iography of  works i n  t h i s  a r e a ,  and t h e  formulat ion 
of  c e r t a i n  genera l  p o s i t i o n s  of  t h e  theory ,  a r e  contained i n  t h e  a r t i c l e s 2  of  
G .  I .  Barenblat t  [ l ,  21, G .  R .  Irwin [ I ] ,  J. I .  Bluhm [ I ]  ; he re  we w i l l  p r e -  
s e n t  t h e  s o l u t i o n s  of only a  few two-dimensional problems of t h i s  theory .  

52. G r i f f i t h ' s  Problem 

We w i l l  examine an i n f i n i t e  e l a s t i c  p l a t e  of  u n i t  t h i ckness ,  weakened by 
a  r e c t i l i n e a r  i s o l a t e d  crack of length  22 ( see  Figure V I I I . l ) .  We w i l l  assume 
t h a t  t h e  ma te r i a l  o f  which t h e  p l a t e  i s  made i s  i d e a l l y  b r i t t l e ,  i . e . ,  r e t a i n s  
t h e  proper ty  of  l i n e a r  e l a s t i c i t y  a l l  t h e  way t o  rup tu re  and i s  capable of  
s u s t a i n i n g  f i n i t e  fo rces  of  t ens ion .  Let such a  p l a t e  be subjec ted  t o  t ens ion  

00 

by monotonically i nc reas ing  s t r e s s e s  a = p,  appl ied  a t  i n f i n i t e l y  d i s t a n t  
Y 

' ~ e n e r a l l y  speaking, i n  analyzing t h e  stress s t a t e  i n  the  zone o f  concent ra t ion  
of  s t r e s s e s  near  acute  angles  i n  ho le s  o r  a t  t h e  ends o f  c racks ,  it i s  
necessary t o  use  t h e  b a s i c  equat ions  of  non l inea r  e l a s t i c i t y  theory .  This 
g r e a t l y  complicates t h e  problem, s i n c e  it r e s u l t s  i n  t h e  s o l u t i o n  of a  system 
of  nonl inear  equat ions  under r s t h e r  complex boundary cond i t i ons .  

2 ~ e e  a l s o  N .  I .  Muskhel ishvi l i  [ 2 ] ,  0166. 



p o i n t s  of  t h e  p l a t e  and d i r e c t e d  perpendicular  t o  t h e  p lane  of t h e  c rack .  We 
w i l l  determine t h e  magnitude of  load p = p, a t  which t h e  crack begins t o  

i nc rease  i n  length ,  and under which t h e  p l a t e  i s  rup tured1 .  

As was mentioned e a r l i e r ,  t h e  s o l u t i o n  of t h i s  problem i s  impossible 
wi th in  t h e  frameworks of  c l a s s i c a l  e l a s t i c i t y  t heo ry .  In o rde r  t o  so lve  t h i s  
problem it i s  necessary  t o  in t roduce  i n t o  t h e  a n a l y s i s ,  t h e  fo rces  of  t he  
weakened i n t e r p a r t i c l e  coupling i n  t h i s  p a r t  o f  t h e  deformed body, where t h e  
magnitude of  deformations exceeds t h e  l i m i t  of e l a s t i c i t y .  In  t h i s  case ,  such 
reg ions  w i l l  b e  t h e  v i c i n i t i e s  of t h e  ends of a r e a l  crack (sharp ly  pointed /554 
s t r e s s  concen t r a to r s ) .  

The l a y e r s  o f  a s o l i d  body, where t h e  ma te r i a l  i s  deformed beyond t h e  
l i m i t  o f  e l a s t i c i t y ,  can be seyara ted  from t h e  body, forming c e r t a i n  micro- 
scopic  s l i t s  ( c racks ) ,  t o  t h e  su r f aces  of  which a r e  appl ied  fo rces  corresponding 
t o  t h e  a c t i o n  o f  t h e  m a t e r i a l  removed. Consequently, t h e  problem of  t h e  
s t ress -deformat ion  s t a t e  of a s o l i d  body, where t h e  body con ta ins  i n i t i a l  
c racks  a s  wel l  a s  l a y e r s  of t h e  m a t e r i a l ,  deformed beyond t h e  l i m i t  o f  e l a s t i -  
c i t y ,  reduces t o  t h e  problem o f  t h e  s t ress -deformat ion  s t a t e  i n  an e l a s t i c  
body weakened by t h e  o r i g i n a l  c racks  ( s l i t s )  and by microscopic c r acks ,  t h e  
s u r f a c e s  of  which a t t r a c t  each o t h e r  due t o  c e r t a i n  fo rces .  I f  t h e  fo rces  of 
i n t e r a c t i o n  between t h e  edges of  t h e  microcracks a r e  def ined ,  t h e  problem 
reduces t o  some mixed problem of  e l a s t i c i t y  theory .  

The de termina t ion  o f  t h e  f o r c e s  of  i n t e r a c t i o n  between t h e  edges of 
microcracks i n  t h e  genera l  case  r ep re sen t s  an extremely d i f f i c u l t  problem. 
However, t h e  f o r c e s  of a t t r a c t i o n  q(X) between t h e  edges of  a microcrack can 
be represented  approximately2, f o r  b r i t t l e  m a t e r i a l s ,  i n  t h e  fol lowing3 form 
(Figure VIII.2) : 

a, f o r  h, < h 6 ak, 
0 f o r  X > a,, 

where h i s  t h e  d i s t a n c e  between t h e  edges of t h e  microcrack; uO i s  t h e  l i m i t  of 

b r i t t l e  s t r e n g t h  ( r e s i s t a n c e  t o  r u p t u r e ) ;  A i s  t h e  l i m i t  va lue  of t h e  parameter m 

  he s o l u t i o n  of  t h i s  problem was f i r s t  found by A. A .  G r i f f i t h  [ I ,  21 with t h e  
h e l p  of  t h e  so -ca l l ed  energy method, which i s  based on t h e  balance of work 
accomplished by e x t e r n a l  f o r c e s  i n  i nc reas ing  t h e  length  of t h e  crack,  and of 
t h e  work expended thereby  on t h e  formation of new s u r f a c e s  of t h e  body. The 
s o l u t i o n  given i n  t h i s  s e c t i o n  i s  found i n  t h e  works of V .  V .  Panasyuk [ l ,  21, 
M. Ya. Leonov and V .  V .  Panasyuk [ I ] ,  P. M. V i t v i t s k i y  and M.  Ya. Leonov [ I ] .  
2 ~ t  w i l l  be shown below t h a t  such an approximate r e p r e s e n t a t i o n  of  t h e  func t ion  
q(X) i s  s u f f i c i e n t  f o r  t h e  s o l u t i o n  of  problems of c racks .  

3 ~ e e  M. Ya. Leonov and V.  V .  Panasyuk [2] ,  V .  V .  Panasyuk [ I ] ,  P .  M. V i t v i t s k i y ,  
M .  Ya. Leonov [ I ] .  



A at which the-forces of interaction no longer obey Hooke's law; 6k is the 

limit value of the parameter X at which there is still interaction between the 
edges of the microcracks. The value of 6k is defined such that the values of 

the effective energy surfaces of the brittle body and elastic model coincide, 
i.e., the value of 6 from the equation (see Figure VIII.2) k 

a,a, = 2 ~ .  (VIII .5) 

Here y is the density of the effective energy surface of the brittle or quasi- 
brittle material. 

Figure VIII.2. Figure VIII.3. 

If the forces of interaction q(h) between the edges of the microcracks in 
a brittle material are determined by equation (VIII.4), then it is easy to 
introduce the following calculation model for the determination of equilibrium 
of a brittle body with cracks. The brittle body is represented as an elastic 
continuum, for which the following conditions are satisfied: 

a) the normal tension stresses acting in it do not exceed the values of 
aoJ i.e., 

b) the relationship between stresses and deformations obeys Hooke's law /555 - 
if condition (VIII.6) is satisfied; 

c) if the elastic body contains ranges in which the stress-deformation 
state that satisfies the conditions of linear elasticity theory and condition 
(VIII.6) (i.e., there are layers of the body in which the material is deformed 
beyond the limit of elasticity) is impossible, then such ranges of the body are 
regarded as microcracks (slits in an elastic body); 



d) the  opposi te  s i d e s  of  the  microcracks a r e  a t t r a c t e d  t o  each o ther  by 
s t r e s s e s  u i f  t he  d is tance  between them does no exceed 6 and do not  i n t e r -  

0  k ' 
a c t  with each o the r  i n  the  opposi te  case;  the  d is tance  between t h e  s i d e s  of 
t h e  cracks during deformation of  t h e  body is defined a s  a sum of e l a s t i c  d i s -  
placements of  t h e  opposing po in t s  of  t h e  s ides  of  a s l i t  i n  t h e  e l a s t i c  model. 

For the  examined problem the  layers  of  the  body i n  which t h e  mater ia l  i s  
deformed beyond the  l i m i t  of e l a s t i c i t y  under s t r e s s e s  p > 0, however small,  
a r e  located i n  the  v i c i n i t y  of the  ends of the  crack. Therefore, i n  the  frame- 
works of the  formulated model, the  problem of the  d i s t r i b u t i o n  of the  i n i t i a l  
crack of length 22 i n  a b r i t t l e  p l a t e  (Figure VIII .3) ,  where t h e  p l a t e  i s  0 

00 

under tens ion by monotonically increasing s t r e s s e s  a = p,  reduces t o  the  
Y 

following plane problem of mathematical e l a s t i c i t y  theory. In an i n f i n i t e  
e l a s t i c  p l a t e  the re  i s  a s l i t  of length 22(-Z'<x < J ) .  The following s t r e s s e s  
a c t  on the  surfaces  of t h i s  s l i t :  

0 f o r  - l o < x < I o ,  
U" (~90) = 

a. f o r  f , < ( x l < l ;  (VIII.  7) 

and a t  i n f i n i t e l y  d i s t a n t  po in t s  of the  p l a t e :  / 5 5 6  - 
m 0 0  

(3" -- p and r,, = 0, (VIII .8) 

where 1 is  the  s i z e  of the  absc issas  of  the  po in t s  t h a t  bound t h e  range of t h e  
microcrack and the  range of  t h e  e l a s t i c a l l y  deformed mater ia l  of  t h e  p l a t e .  
The magnitude of Z is  not  known beforehand; it must be determined during the  
so lu t ion  of  the  problem. Outside of t h e  s l i t  ( - 2 ,  Z ) ,  the  mater ia l  of the  
p l a t e  i s  deformed e l a s t i c a l l y  and within t h i s  range of the  body, c l a s s i c a l  
e l a s t i c i t y  theory i s  appl icable .  

I f  from the  s t r e s s  s t a t e  i n  an e l a s t i c  p l a t e  with s l i t  21 (Figure VIII.3) 
defined by boundary condit ions (VIII.7) and (VIII .8) ,  we ca lcu la te  the  homo- 
geneous s t r e s s  s t a t e  a = p, we obta in  some complementary (auxi l ia ry)  s t r e s s  

Y 
s t a t e  i n  t h i s  p l a t e ,  which vanishes a t  i n f i n i t y ,  and on the  surface  of the  
s l i t  i s  defined by the  following boundary condit ions:  

T~~ ( ~ ~ 0 )  = 0  f o r  -a< x < a. 



where p (x) = -a (x, 0) is normal pressure on the surfaces of the slit for the 
n Y 

auxiliary problem. 

We will determine for the auxiliary problem the value of vertical 

displacements of the sides of the slit, i.e:, we will find1 v(x, 0) for 

-2 < x 4 t and (x, 0) when 1x1 2 2: 
Y 

(VIII. 10) 

(VIII. 11) 

Here c is a constant which, for the case of plane deformation, is equal to 
3 (1 - v )/(TE), and for the case of the generalized plane stress state 1/rE (E 

is Young's modulus, v is Poisson's ratio) the function is 

r2 - X E  + (12  - x2)(1a - f l  ' I?(l,x,EJ = In 
1 2  - x t  - 1.'(12 - X ~ ) ( P  - Fa) (VIII. 12) 

It is easy to see that displacements of the sides of the slit for the 
original (see Figure VIII.3) and auxiliary problem coincide, and stresses 

uy(x, 0) for 1x1 > 2 differ for the original problem from stresses u(l) (x, 0) 
.r 

when 1x1 > t by the magnitude p, i.e., 
I 

Gu(x,O) -- u!,')(x,O) + p for x > 1: . (VIII.13) 

Stresses a (x, 0) for x >  Z (in the range where the material is deformed 
Y 

elasticall)) cannot exceed the limit of brittle strength a i.e., they should 0 ' 
be limited for all x 2, as required by condition (VIII.6). From formulas 
(VIII.12) and (VIII.13), however, we see that condition (VIII.6) is violated 
when x -, 2 .  Consequently, the parameter Z should be defined such that condi- 
tion (VIII.6) will be satisfied even when x = 2 .  In accordance with formulas 
(VIII.12) and (VIII.13), the necessary (and sufficient) condition for this is 
the equation 

1 

,im P,, (8 V l 2 -  k2 d t  = 0, 
x+l+D 

-1 
x - E  (VIII. 14) 

'see M. Ya. Leonov and V. V. Panasyuk [ 2 ] .  
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which also serves as a condition for the determination of the (previously 
unknown) parameter 2. 

By substituting into equation (VIII.14) the value pn(c) in accordance 

with formula (VIII.9) and by completing the required calculations, we obtain 

(VIII. 15) 

With such a value of 2,  on the basis of formulas (VIII.9), (VIII.ll) and 
(VIII.13), stresses av(x, 0) will satisfy condition (VIII.6) for all x Z 

J 

whereupon, on the boundary of the microcrack and elastic range (x = Z), conti- 
nuity of stresses a (2, 0) is observed, i.e., 

Y 

a, (I + 0.0) = a, (I - 0,O) - a,. 

Further, by using formulas (VIII.9), (VIII.lO) and (VIII.15), we obtain 

(VIII. 16) 

where 2 is expressed by formula (VIII.15) and r(Z, x, kZli) is determined in 

accordance with equation (VIII.12) when 5 = +ZO. 

By differentiating (VIII.16) with respect to x and assuming x + 2, we 
obtain 

(VIII. 17) 

Equation (VIII.17) shows that during the process of the opening of the 
crack (under the effect of external force), the opposite walls of the crack, in 
the vicinity of its ends, are smoothly interlocked (with zero angle of aper- 
ture). This result is also obtained in the general case of load pn(x), if 

we differentiate expression (VIII.lO) with respect to x and find the value 
vl(x, 0) when x -+ 2 ,  and when condition (VIII.14) is satisfied. 

Assuming in (VIII.16) x = +ZO, it is easy to find the distance 

np 2v (~I , ,O)= -  8cl,aoln cos - , 
2 0 0  

(VIII. 18) 



to which, during the process of deformation of the plate, the opposite sides 
of the crack separate in the vicinity of its ends, i.e., in the vicinity of 
the points (kt0, +0) and (*lo, -0). 

If stresses p = p, are such that the distance is 

(VIII. 19) 

then, according to the properties of the assumed model in the vicinity of 
points (&lo, +O), the o~posite sides of the microcrack cease to interact with 

each other and consequently, it becomes possible for the length of the original 
crack 22 to increase (see Figure VIII.3). Thus, equation (VIII.19) is the 

0 
condition of spreading of the initial crack of length 22 i.e., is a condition 0' 
of development of the process of rupture of a plate with a crack when the plate 
is under tension by stresses p. 

Stresses p = p, which cause the spreading of the initial crack, i.e., when 

condition (VIII.19) is satisfied, are called the limit or critical stresses. 

Thus, the magnitude of the limit stresses for the problem at hand, as 
follows from (VIII.18) and (VIII.19), is 

' 6, p4 = f Go arc cos exp (- r) 
10 0 0  (VIII. 20) 

It follows from (VIII.20) that when Z0 + 0, the rupturing stresses are 

p, + oo, i.e., the strength of a plate with a "crack of zero length" is equal 

to the strength of the material containing no defects. 

If the length of the original crack 2Z0 is so great'that it is possible to 

consider 6 /Z 4 1, then, by retaining in formula (VIII.20) the small values 
k 0 

(6 / Z  ) only of the first order of smallness, we obtain k 0 

Hence, and on the basis of,equation (VIII.S), we obtain the known formulas of 
A. A.  Griffith [l, 21, respectively, for plane deformation and generalized 
plane stress state: 

(VIII .21) 



53. Condition of Limit State for Macroscopic Cracks 

Macroscopic cracks will be defined as those cracks for which the 
following condition' is satisfied: the width of the terminal region of the 
crack, i.e., at the point where the forces of conjugation between the opposite 
sides of the crack are at work, is small in comparison with the dimensions of 
the entire crack2. 

For macroscopic cracks it is possible to obtain certain simple relations / 5 5 9  - 
that will enable us to determine the magnitude of the limit load for a body 
(weakened by such cracks) during its brittle rupture, by knowing simply the 
principal part of the elastic forces of tension in the vicinity of the contour 
of the given crack. 

Suppose that there is a rectilinear isolated macrocrack of length 22 in 0 
an elastic plate consisting of a brittle material (Figure VIII.4). We will 

introduce rectilinear Cartesian coordinate 

Y 
system xOy, as shown in Figure VIII.4 and 

q (4 assume that some normal pressure3 %(x) is 
4 60 

1 applied to the edges of the crack under the 
condition 1 x l  < a, where a lo, and that @+ there are no stresses at the infinitely dis- 
tant points of the plate. Within the frame- 
works of the model of an ideally brittle 

21 body, and analogously as in the preceding 
section, we will represent the vertical dis- 

Figure ~111.4. placements of the sides of the crack in the 
form 

(VIII. 22) 

where Z is the abscissa of the boundary between the microcrack and the elas- 
tically deformed material; 

'see Yu. P. Zheltkov and S. A.  Khristianovich [I], G. I. Barenblatt [I]. 
'1t can be shown that if, for instance, the characteristic linear dimension Z0 
of the initial crack is greater than 10 p, then such cracks can be regarded 
as macroscopic cracks, i.e., they satisfy the formulated condition. 
3 ~ t  can be shown, analogously as in 2 (see H. F. Bueckner [ I ] )  that in the 
general case of tension of a plate at infinity by a system of external forces 
p = const; 90 = const, the problem can be reduced to that of normal pressure 

q0(x) applied to the edges of the crack. 



40 ( i )  for I f l < a v  
0 for a<ifi,I<I,,  
- 0 ,  for I ,<  x ( < l .  

For the case under consideration 

(VIII. 23) 

(VIII .24) 

From condition of boundedness of stresses a (x, 0) when x -+ Z + 0 it 
follows that Y 

(VIII. 25) 

By substituting the corresponding values of a(() from (VIII.23) into (VIII.25) - /560 
we obtain 

( V I  I I -26) 

For convenience we will introduce the parameter 

Since the crack under consideration is regarded as macroscopic, the 
inequality Z - Z 4 Z should be satisfied, and therefore E 4 1. Considering 0 0 
this, equation (VIII.26), with an accuracy up to small values of the first order 
of smallness with respect to parameter E, may be represented as follows: 

2loq0 -r/2e = J' s (El l/p - E2 dk 
4 

l -  E (VTII. 27) 

Analogous to.the preceding, from (VIII.22) we obtain, with the same accuracy 
with respect to E,  



Here it i s  necessary  t o  bea r  i n  mind t h a t  according t o  t h e  d e f i n i t i o n  of  
macrocracks (E 4 1) we may f o r  such cracks  assume 2 + 2 ;;1 2Z0 z 22. 

0 

I f  t h e  parameters  t h a t  de f ine  t h e  load q (x) a r e  such t h a t  condi t ion  
0 

(VIII.19) i s  s a t i s f i e d ,  then  t h e  parameter--& achieves some l i m i t  va lue  E,. On 

t h e  b a s i s  o f  (VIII .19)  and a l s o  on t h e  b a s i s  of equat ion-  (VIII .27)  and 
(VIII.28) we f i n d  

(VIII .  29) 

(VIII .30) 

where 2, i s  t h e  maximal magnitude of  parameter Z which is  achieved a s  soon a s  

t h e  e x t e r n a l  load reaches i t s  maximum value.  

Since, i n  t h e  r i g h t  hand s i d e  of  equat ion (VIII.SO), values appear t h a t  
do no t  depend on t h e  c h a r a c t e r  of  t h e  load and i n i t i a l  s i z e  of  t h e  c rack ,  i t  
fol lows from t h i s  equat ion  t h a t  f o r  t h e  given m a t e r i a l ,  under t h e  given 
cond i t i ons ,  t h e  te rmina l  p a r t  o f  t h e  macrocrack, i n  t h e  case  of  i t s  l i m i t  
equi l ibr ium,  i s . c o n s t a n t .  

The l i m i t  load g a x ( x )  = q, f o r  macrocracks should s a t i s f y  an equat ion 
0 

f i r s t  found by G .  I .  Barenbla t t  [2] :  

(VII I .  31) 

where u ( s ,  q,) a r e  rup tu r ing  e l a s t i c  s t r e s s e s ,  c a l c u l a t e d  on t h e  b a s i s  of /561 
Y 

c l a s s i c a l  e l a s t i c i t y  theory  f o r  load q,; s i s  a small  d i s t a n c e  of  p o i n t s  of t h e  

body loca t ed  i n  t h e  p lane  of  t h e  c rack ,  from t h e  contour of  t h e  crack;  K i s  
t h e  coupling modulus, equal  f o r  p lane  deformation and f o r  t h e  genera l ized  p lane  
s t r e s s  s t a t e ,  r e s p e c t i v e l y ,  t o  



* 
We will examine equation (VII1.26), which, with an accuracy up to small 

values of order E (inclusively) can be represented in the form 

where q is a parameter that characterizes the external load. 

The function is 

(VIII. 33) 

Formula (VIII.33) represents exactly the same thing as elastic rupture stresses, 
calculated for a macroscopic crack of length 21 (Figure VIII.4), where, to the 

0 
edges of the crack, are applied external forces qo (x) for 1 xl c a. 

It is readily seen that the expression 

(VIII. 34) 

where s = x - ZO, represents the distance between the vertex of the contour of 
the crack and the points of the body lying on the Ox axis (Figure VIII.4) when 
x > ZO. 

Moreover, we will notice that relation (VIII.32) is valid for any load 
q(x) that does not exceed its limit value. If, however, the parameters that 
characterize the external load are such that the external achieves the magni- 
tude of the limit value (in the given case q = q,), then the parameter E is 

determined by formula (VIII.29). Considering this and (VIII.32) we obtain for 
the determination of the magnitude of the limit load, the formula 

(VIII. 35) 

The right hand side of formula (VIII.35) will be transformed, with the aid of 
formulas (VIII.5) and (VIII.29), to the form 

(VIII. 36) 

We see from (VIII.36) that relations (VIII.35) and (VIII.31) coincide, as we 
were required to prove. 



* 
In the following discussion we will use, for the determination of the - /562 

magnitude of the limit load for a brittle body weakened by macroscopic cracks, 
relation (VIII.31), which was first established by G. I. Barenblatt [2] as an 
outcome of other considerations. 

54. Tension of  Elastic Plate Weakened by Two Col inear cracks1 

Two Unlike Cracks. We will examine an infinite elastic plane with two 
microscopic cracks of different length, arranged on one straight line, which 
we will call the x axis (Figure VI11.5). Let monotonically increasing stresses 

Q) 

a = p, directed perpendicular to the line of the cracks, be applied at 
Y 
infinitely distant points of the plate. We will determine the magnitude of 
stresses 

p* = min p, (VIII. 37) 

due to which the cracks will spread. 

Through a, b, -c, -d we will denote the abscissas of the points of the . 
(a) ( 1  , ( c )  ends of a crack, as illustrated in Figure VIII.5, and through p, , p, p, , 

p!d), the values of stresses p at which the cracks will begin to spread in the 

direction of abscissas a, b, - c ,  -d, respectively. 

The stresses in the examined plate2 are 

where x acquires values corresponding to the points outside of the cracks; the 
coefficients c and c are determined from the conditions of uniqueness of dis- 
placements: 1 2 

l~he solution of the problem of the limit load for a plate with two colinear 
cracks of unequal length, with its refinement to calculation formulas, is 
given in the work of V. V. Panasyuk, B. L. Lozovyy [ S ] .  The general approach 
to the solution of such a problem for the case of an arbitrary number of 
cracks is given in the work of G. I. Barenblatt, G. P. Cherepanov [I]. 
*see N. I. Muskhelishvili [I]. 



where Fk, n(n, k), n(m, k) are total elliptical integrals of kinds I and 111 /563 

with the modulus k and parameters n and m; the integrals are 

(VIII. 40) 

The modulus k and parameters n and m are expressed.through the values of the 
abscissas of the ends of a crack by the equalities 

(VIII. 41) 

Figure VIII.5. Figure ~111.6. 

By substituting (VI 11.38) into equation (VI 11.31) and accomplishing limit 
transition for s + 0 for each of the ends of a crack. we obtain the formulas 

for pia), pib), pLC) and Thus, for instance, for the ends (a, 0) and 

(b, 0) of a crack, s = a - x for x +  a - 0 and s = x - b for x + b + 0, 
resepctively. On the basis of these equations and formula (VIII.38) and also 
equation (VIII.31), we obtain 

(VIII .42) 



where the coefficients cl and c are determined by formulas (VIII.39)-(VIII.41). 
2 

(dl The analogous formulas can also be found for and p, 

Two Equal Cracks (Figure VIII.6). If, in formulas (VIII.42), we assume 
c = a and d = b, we obtain the formulas for the determination of the limit 
load in the case of plate weakened by two colinear cracks of equal length. In - /564 
such a case (c = a and d = b) , from formulas (VIII. 42) we obtain 

pp = - F ( k )  pra (b2 - a f )  v* .- 
( b ? - a ? ) F ( k ) - 4 b 2 I r l ( k , k ) - J , ( k . k ) ]  n ' 

p$b) , F ( k )  t f b  ( b Z  - a*) v2R -.- 
4 b2 [Il ( k , k )  - J ,  ( k , k ) ]  ' 

(VIII. 43) 

If, further, we represent the integrals JZ(k, k) in formulas (VIII.43) 

through a combination of integrals n(k, k), E(k), F(k) and then transform the 
elliptical integrals into a new modulus 

f b z  - a2 e' 1 - e l  e - 
b '  

k = - -- (e:= 1-@, 
( 1  f v l  - ez)* I - el (VIII .44) 

as shown in the work of V. V. Panasyuk, B. L. Lozovyy [I], we then obtain1 

be I /;F ( e )  2E ?' 
= b2E ( e )  - a*F (el vn (1  - ~ 2 )  ' 

#*b) , e m )  
[ F  ( e )  - E (e)]  ] / b -  (1 - v*)' 

(VIII .45) 

where F(e), E(e) are the total elliptical integrals of kinds I and I1 with the 

modulus e = fbE$. 

We will examine certain limit cases that derive from formulas (VIII.45). 
Thus, assuming that a + 0, we obtain e + 1 and 

eF (el lim -- = 1 , lim be Vz F ( 4 -  = 0. 
-, F ( e )  - E ( 4  ,,, b2E ( e )  -a2 F (e)  

On the basis of the latter for the case a = 0 (e = I ) ,  i.e., for the case of a 
plate with one crack of length 2b, we find from formulas (VIII.45) 

- 

'~ormulas (VIII.45) were derived in the works of T. J. Willmore [ I ] ,  V. V. Pan- 
asyuk and B. L. Lozovyy [2] on the basis of the energy method. 



Formula (VIII .46)  co inc ides ,  a s  should be expected, with the  known formula 
(VIII.21) of G r i f f i t h  f o r  one i s o l a t e d  crack of  length  2b. 

We w i l l  examine another  l i m i t  case  where c o l i n e a r  c racks  of  equal length  
a r e  loca ted  a t  a  s u f f i c i e n t  d i s t a n c e  from each o t h e r ,  i . e . ,  when it can be 
assumed t h a t  a  -+ and b  - t m  b u t  such t h a t  b  - a  = 22 = cons t ,  where 22  i s  t h e  
length of  each of  t h e  above-mentioned cracks .  In  t h i s  case  e  -+ 0 ,  and t h e  
c o e f f i c i e n t s  t o  t h e  l e f t  of t h e  r a d i c a l s  i n  (VIII .45)  r a p i d l y  approach t h e  

- -  - 
b2-a2 e x p r e s s i o n 1 / z 2 z  f o r  =v-q,O. A t  t h e  l i m i t  we w i l l  have 

6-0 

i . e . ,  formula (VII I .46) .  Hence each such crack w i l l  behave a s  an independent 
i s o l a t e d  ( s i n g l e )  crack of  length  22. 

The graphs of  change of condi t ions  p,(a) (curve 1)  and (curve 2 ) ,  

c a l cu l a t ed  on t h e  b a s i s  of  formulas (VIII .45) ,  a s  func t ions  of a/Z, a r e  shown 

in Figure VII I .  7. A s  we s e e ,  t h e  va lues  of  l i m i t  load a r e  always sma l l e r  
(b) than  p, , i . e . ,  t h e  development of  two 

c o l i n e a r  c racks  (of equal  length)  f i r s t  pro- 
ceeds i n  t h e  d i r e c t i o n  of  each o t h e r  by way 
of  t h e  rup tu re  of  t h e  p l a t e ;  a f t e r  they  have 
jo ined ,  y e t  another  ( jo ined)  crack of length  
2b comes i n t o  be ing .  I t  should be  pointed 
out  he re  t h a t  i f  t h e  c ros sp iece  2a between I 

t h e  c racks  i s  s u f f i c i e n t l y  small  i n  compari- 
son with t h e  length  2 1  of  each crack,  such 

w - t h a t  a/Z 4 0.1, then  t h e  rup tu re  o f  t h e  - 
c ros sp iece  (when e x t e r n a l  load p achieves 

1 1 1 1 1 1 ! 1 1 1 1  (4) 4 2 -  t h e  va lue  p, w i l l  no t  ye t  e n t a i l  t h e  
4 rup tu re  of t h e  e n t i r e  p l a t e .  In t h i s  case  

0 ' I I I - t h e  rup tu re  load f o r  t h e  p l a t e  i s  determined 
2 4 6 o/l  by formula (VIII .46) .  I f ,  however, a/Z > 0.1 

Figure VI11.7. then  t h e  d e s t r u c t i o n  of  t h e  c ros sp iece  w i l l  
involve t h e  rup tu re  of t h e  e n t i r e  p l a t e .  



Thus, the  rupture  load (p = p ) f o r  a  p l a t e  with two co l inea r  cracks of 
ruP 

equal length (22), i n  t h e  case where- t h e  p l a t e  i s  under tension by monotoni- 
c a l l y  increas ing fo rces  urn = p ,  i s  

Y 

f o r  pia' > P?'? 
Prup = \p f o r  p?' < dr)9 (VIII .48)  

where p!a) and p!r) a r e  ca lcula ted  on the  b a s i s  of formulas (VIII .4S) and 

(VIII.46), r e spec t ive ly .  

From t h e  graphs shown i n  Figure VIII .7,  we may a l s o  conclude t h a t  i f  t h e  
crosspiece between the  cracks i s  such t h a t  a/Z > 3, then the  cracks,  f o r  a l l  
p r a c t i c a l  purposes, can be regarded a s  i s o l a t e d  (having no e f f e c t  on each 
o ther)  and the  rupture  load can be found by formula (VIII.47). 

Mutua l  Effec t  of Small  and Large Cracks. Consider t h e  case where the  
length of one of the  cracks (Figure VIII .5)  i s  small i n  comparison with t h a t  
of the  o ther .  We w i l l  analyze, i n  t h i s  case, the  e f f e c t  of the  small crack on 
the  magnitude of the  l i m i t  load f o r  the  l a rge  crack. For t h i s  purpose we w i l l  - /566 
use formulas (VIII.42), assuming t h a t  d  - c  < b - a.  Here, f o r  b rev i ty ,  we 
w i l l  assume i n  t h e  following t h a t  c  = a  and (d - a) /d  9 1. In t h i s  case the  
parameter 

d - a  m = -  
b + a  = e (8 < 1) 

is  a small value i n  comparison with one. Hence, and from (VIII .41),  we f i n d  

The t o t a l  e l l i p t i c a l  i n t e g r a l s  of kinds I  and 111, and a l s o  i n t e g r a l s  
J (n, k ) ,  J(m, k) i n  formulas (VIII.43), can be expanded i n t o  s e r i e s  by degrees 2 
of small parameter E. By r e t a i n i n g  i n  these  expansions only t h e  terms contain-  
ing E i n  t h e  f i r s t  power, we obta in  

F (k) = $ ( I  + y )  + O(ea,, 

X 11 (n, k) - - 1 - e - 
[ ~ + ~ ( l / l +  n -  1)]+0(e4.  

(VIII .49) 



Recalling expansions (VIII.49), we may represent formulas (VIII.43) with 
2 

an accuracy up to magnitudes of the order O(E ) in the following form: 

- 
e b + d  4Ey PP '= ( '  +-!*-) i / n ( L - v q ( b - a )  ' (VIII .so) 

4Ey 
JI ( 1  - v2)  ( b  - a )  ' (VIII.51) 

where 

d - a  
E == - 

b + a  ' 

Formulas (VIII.50) and (VIII.51) afford, in each specific case, the 
possibility to evaluate the effect of the small crack on the magnitude of the 
limit load p, for the large crack, located on the same straight line with the 
small one. 

5 5 .  The Effect of the Limit Load for an Elastic Plane Weakened by a Round Hole /567 - 
with Radial Cracks 

The problem of the rupture of an elastic plane weakened by a round hole 
with radial cracks of equal length was first analyzed by 0.  L. Bowie [I]. In 
this work is constructed the rational function z = w(5) which accom lishes, 
approximately, the conformal mapping of the exterior of the circle 7c1>  1 in 
plane 5 on the exterior of a circle with radial cracks in plane Z. With the 
aid of function w(5) and N. I. Muskhelishvilils method, the approximate method 
for the determination of stresses in the examined plate is given in the above- 
mentioned work, and then, on the basis of Griffith's method, the graphs for the 
determination of the magnitude of limit forces are constructed as functions of 
length Z of the radial cracks. 0. L. Bowiels calculations are extremely 

cumbersome. Another approach to the solution 

t t t l l t l t t t l ~  of such problems is outlined in the works of 
A .  A. Kaminskiy [I, 21 (see also 59, Chapter 
V). Here we will present the approximate 
method for the solution of the problem of 
the limit load for an elastic plate weakened 
by a round hole with radial cracks. This 
method was presented in the work of V. V. 
Panasyuk [ 3 ] .  

Round Hole with Two Radial Cracks. We 
will assume that an unbounded elastic plane 
xOy (Figure VIII.8) contains a round hole of 
radius R with two radial macrocracks of 

Figure ~111.8. 
length Z1 and Z2 (Z2 G Zl), which are arranged 

on the extension of one of the diameters of 



the hole. We will assume further that the cracks are located on segments 
- a <  x S  -R and R S  x S  b, where a = R + 2 b = R + 2 and that external 

2 ' 1 ' 
forces that are symmetrical with respect to the plane of distribution of the 
cracks are applied at infinitely distant points of the plane (we will assume, 
for instance, that monotonically increasing stresses om = p are applied at 

Y 
infinitely distant points of the plate). We are required to determine the 
limit magnitude of external load for the problem under consideration. 

To determine the limit load p = p, in the case of macroscopic cracks, it 

is necessary to determine, as was pointed out in 53, the intensity of rupturing 
elastic stresses in the vicinity of the ends of a crack. For the problem at 
hand, the precise determination of elastic rupturing stresses a (x, 0) in the 

Y 
vicinity of the ends of a crack is very difficult. In this connection we will 
represent the elastic stresses n (x, 0) for x S  -a and x >  b approximately, 

Y 
in the form of the sum 

0, (x ,  0) 2 $y ( x .  0) + u:lj(x, O), 
(VIII -52) 

0 where x <-a or x >  b; a (x, 0) are elastic tension stresses, which occur in /568 
Y 

the elastic plane containing the round hole, where a given system of external 
m 

forces is applied to the plate, for instance stresses a = p; 0'') (x, 0) are 
Y Y 

elastic tension forces which occur in an elastic plane containing a rectilinear 
slit along the Ox axis when -a< x S  b, when, to the edges of this slit on 
segments -a < x < - R  and RG x < b, is applied normal force 

0 p,  (x )  - u, ( x ,  0). (VIII .53) 

The representation of stresses a (x, 0) in the form of sum (VIII.52) is 
Y 

valid if R 4 Z2 < 2 In the case where the radius R of the hole is comrnensu- 
1' 

rate with the length of the cracks, sum (VIII.52) gives only a certain approx- 
imate value of stresses a (x, 0) for the problem at hand'. 

Y 
0 Stresses a (x, 0) in (VIII.52) can be calculated readily2 for an arbitrary 
Y 

load, and in the following analysis we will regard them as known values. 

Stresses a(') (x, 0) can be determined3 with the aid of the formula 
Y 

'such an approach to the determination of stresses a ( x ,  y) can be regarded as 
Y 

somewhat of an analog of the method of series approximations proposed in the 
works of D. I. Sherman [l] and S. G. Mikhlin [I]. 
2 ~ e e  41, Chapter 11. 
3 ~ e e  M. Ya. Leonov and V. V. Panasyuk [2]. 



0;) ( x ,  0) = 1 
I x -  E l 

where x <  -a, x 2  b, a <  b; 

i a: ( L O )  npu - a <  E - R, 
Pn (8 = 0 npu - R < E < R, 

o; (E l  0) npu R < E 6. -- 

(VIII. 54) 

(VI I I. 55) 

Consequently, on the basis of relation (VIII.31) and formulas (VIII.52)- 
(VIII.55), we can determine the approximate value of the limit load p = p,: 

* 
where pn(c) is defined by formula (VIII.55) for the limit value of the para- 

meters characterizing the external load (p = p,); x. is the abscissa of one of 
1 

the ends of the cracks (a; b). 

0 Since stresses av(x, 0) do not depend on the parameters that characterize 
J 

the dimensions of the crack, i.e., on abscissas a and b, then equation (VIII.56) /569 
can be transformed readily to 

(VIII .57) 

Hence, to determine the limit value (p = of external forces applied to 

the plate (Figure VIII.8), due to which the cracks begin to spread in the 
direction of abscissa b, we have 

(b where p*(€,) is determined by formula (VIII.55) for p = p, . 
n 

(VIII .58)  

Using the analogous method, we can determine from equation (VIII.57) the 
equation for the determination of the magnitude of external forces p = 



due t o  which t h e  c racks  begin t o  spread i n  t h e  d i r e c t i o n  of  a b s c i s s a  a. But 
s i n c e  a <  b (Z2<  Z1) f o r  t h e  problem under examination, then  obviously, 

< Consequently, t h e  l i m i t  f o r ces  f o r  an e l a s t i c  p l a t e  weakened by 

a round h o l e  with r a d i a l  c racks  Z1 and 2 where Z2G 2 w i l l  be  t h e  f o r c e s  
(b) 

2 1 ' 
P* = P* . 

Two Radial Cracks o f  Equal Length. Let us  examine two cases  i n  g r e a t e r  
d e t a i l :  a )  when t ens ion  s t r e s s e s  cfm = p and P = 0 a c t  a t  i n f i n i t e l y  d i s t a n t  

Y X 
p o i n t s  of  an e l a s t i c  p l a t e  weakened by a round ho le  with r a d i a l  c racks  Z l  and 

m CO 

Z 2  ( see  Figure V I I I . 8 ) ;  b) when s t r e s s e s  a = q and ax = q a c t  a t  i n f i n i t e l y  
Y 

d i s t a n t  p o i n t s  of such a p l a t e  (mul t i fo ld  t e n s i o n ) ,  and t h e  contour of  t h e  
round ho le  i n  t h e  f i r s t  and second problems i s  f r e e  of  ex t e rna l  f o r c e s .  

For t h e  above-stated examples of s t r e s s ,  

(VIII .60) 

We f i n d  from (VIII.55) and (VIII .58)-(VIII .60)  t h e  l i m i t  va lue  of fo rces  
p = p, and q = q,: 

where 

(VIII .61) 

(VII I .  62) 
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(VIII .63) 

By c a l c u l a t i n g  i n t e g r a l s  (VIII.62) and (VIII .631,  we ob ta in  t h e  expres-  
s i o n s  f o r  t h e  func t ions  



(VII I .  64) 

a + b  a -  6 - 2 R  i 7 (n + arc sin 
a + b  -arc s i n a p b + + b 2 R ) ,  

where 
R R ' 5  1 b  RJ 15 1 b 

A ( a , b & R ) =  l & T + T ( T + - . - ) k F ( E + - . -  8 a .  4 a  --.- 16 b ' P  as, ' 

RZVZ , ( I J ' ~  + V(a - R )  ( b  + R I P  + R~ -- - (n - h\ ln  --- (VII I .  65) 

Then, wi th  t h e  a i d  of  formulas (VII I .61) ,  (VIII.64) and (VIII .65) ,  it i s  
easy t o  f i n d  t h e  s o l u t i o n  of  t h e  problems examined i n  t h e  work of  0. L. Bowie 
[ I ] .  Thus, i n  t h e  case  where r a d i a l  c racks  a r e  of  t h e  same l eng th ,  i . e . ,  
Z2 = Z l  = 1 and consequently a = b, we ob ta in  from t h e  above formulas 

where 

(VII I .  66) 

In t h e  case  where an e l a s t i c  p l a t e  weakened by a round ho le  with one 
r a d i a l  crack (see Figure VII I .9)  i s  under t ens ion  a t  i n f i n i t e l y  d i s t a n t  p o i n t s  

m 03 m m 
.by s t r e s s e s  o = p and ox = 0 for o = q and ox = q, then  t h e  l i m i t  va lues  of  /571 

Y Y 
t h e s e  s t r e s s e s  a r e  e a s i l y  computed by formulas (VII I .  61) ,  (VII I .  64) and 
(VIII .65) ,  i f  we assume i n  t h e s e  formulas t h a t  Z 2  = 0 and Z1 # 0. In such a 
case  we have (a = R) 



where 

1 1 1 1 1 1 1 1 1 1 1 '  
Figure VIII.9. 

A (9) = - (16 -+ 1511 + 149' + 15q3). 
B (q) = q- (5; 23q--911'+2 lif), (VIII. 70) 

n f - i- arcsin - 
2 '+'l 

R 1 (VIII. 71) q=-- - 1, 
b - I fe , '  e l = R .  

The graphs (solid lines) of change of limit loads .rrp,&/K and .rrq,fi/K are 

constructed in Figures VIII.10 and VIII.ll on the basis of formulas (VIII.66)- 
(VI.71), as functions of the relations E = Z / R  and cl = Z1/R, where curves 1 

correspond to the case of one radial crack (Z1), and curves 2, to the case of 

two radial cracks of identical length (2). For comparison, the functions of 
the above stated limit ioads, as established in the work of 0.  L. Bowie [ I ] ,  
are shown in these figures by the broken lines. Comparison of the graphs shows 
that the constructed approximate solution, given by formulas (VIII.66)-(VIII.71) 
for Z / R  > 0.5, coincide satisfactorily with the calculations of 0. L. Bowie. 
It should be noted here, however, that the solution of 0. L. Bowie was found 
by the method of cumbersome calculations, whereas here this solution was found 
quite simply. 

If the length of the radial cracks is small in comparison with the radius 
of the round hole, then the distribution of such cracks will obviously be 
determined by the magnitude of rupture stresses acting directly on the contour 
of the hole. It is easy to see from formulas (VIII.59) and (VIII.60) that in 
the case of uniaxial tension, the greatest rupture stresses on the contour of 
the hole will be equal to 3p, where as in the case of multifold tension, 2q. - /572 
Therefore, for the examined problems, the ratio of the limit equilibrium loads 
p,/q, should approach 2/3 when I -t 0. 



Figure VIII.10. 

2 

Figure  VIII.11. 

From (VIII.66)-(VIII.68) we obtain 

i . e . ,  t he  formulas (VIII.66)-(VIII.71) a t  the  l i m i t  f o r  Z + 0 (E -t 0) y i e l d  the  
expected r e s u l t .  We a r r i v e  a t  the  very same conclusion a l s o  on t h e  b a s i s  of 
formulas (VIII -69) - (VIII.  71), where -+ 0. I f ,  on the  o the r  hand, the  length 

of t h e  r a d i a l  cracks is  s u f f i c i e n t l y  g rea t ,  f o r  ins tance ,  Z 9 R (Figure VIII .8)  
such t h a t  we may assume t h a t  E -t -, R -+ 0 (ER = Z = cons t ) ,  then we f ind  from 
formulas (VIII.66)-(VIII.68) o r  (VIII.69)-(VIII.71), the  known G r i f f i t h ' s  f o r -  
mulas f o r  an i s o l a t e d  crack. 

For comparison, t h e  graphs (curves 3) of change of the  c r i t i c a l  load 
.rrp,&/~ a r e  a l s o  constructed i n  Figure VIII.10 f o r  the  case where t h e  p l a t e  

contains no i s o l a t e d  r e c t i l i n e a r  crack of length 2 (R + 2) o r  2 (R + 1/2 2) , but  
where forces  of  tens ion a: = p a c t  a t  i n f i n i t e l y  d i s t a n t  po in t s  of t h e  p l a t e .  

J 

Comparison of  the  curves i n  Figure VIII.10 shows t h a t  when Z / R  > 1 the  l i m i t  
values of s t r e s s e s  (p = p,) f o r  a p l a t e  weakened by a round hole  with r a d i a l  
cracks,  and f o r  a p l a t e  weakened by a r e c t i l i n e a r  crack of length 2 ( R  + Z), a r e  
so  s i m i l a r  t h a t  the  hole  now has hardly any e f f e c t .  

In the  r ecen t ly  published works of 0. L. Bowie [ 2 ,  31 ,  t he  case of l i m i t  
equil ibrium of a beam with ou te r  surface  cracks i s  examined. 



56. Tension of Elastic Plate with Arc-Shaped or Arbitrarily Oriented - /! 
Rectilinear crack1 

Arc-Shaped Crack. In the preceding sections we examined problems of the 
limit equilibrium of a plate with a rectilinear crack oriented perpendicular 
to the line of tension of a plate. Now we will determine the limit equilibrium 
state of plate with an arc-shaped crack. Thus, we will examine an infinite 
elastic. plate with an arc-shaped macroscopic crack, which represents a slit 
along an arc of a circle of radius R. We will introduce a system of rectangu- 

lar Cartesian coordinates xOy (Figure 

p m a  
VIII.12). We will assume that the edges of 
the crack are free of external stresses and 

Y that monotonically increasing forces of ten- 
sion p and q are uniformly applied in 
mutually perpendicular directions at infi- 
nitely distant points of the plate, where 

0 
p are directed at angle a to the Ox axis 
(Figure VI 11.12) . We will determine the 
limit (critical) values of stresses p = p, 

and q = q,, due to which the crack goes into 

xt y, the state of mobile equilibrium (begins to 

m p  
spread from one of its ends) . 

The determination of the magnitude of 
the limit load for the problem under examina- 

Figure VIII. 12. tion is, generally speaking, impossible 
simply on the basis of equation (VIII.31), 

since, for the above-stated problem, the direction of the initial spreading of 
the crack is not known beforehand. However, it is natural to assume2 that the 
initial direction of propagation of a curvilinear (or rectilinear arbitrarily 
oriented) macrocrack will coincide with the plane in which the normal forces of 
tension achieve the maximum possible intensity. As an outcome of this assump- 
tion, and on the basis of equation (VIII.31), we will obtain for the determina- 
tion of the limit values of external forces for the problem under examination, 

K lim I 7ui(r,j3#) == , 
r 4  

where r, f3 are polar coordinates with the origin at the vertex of the crack, 
and with the polar axis directed along the tangent to the contour of the crack 
(see Figure VIII.12); a (r, B) are normal tension stresses perpendicular to B 

/574 

lines f3 = const; u;(r, f3) are stresses C (r, 6) for p = P, and q = q*. 
ti 

 he solutions of these problems were found by V. V. Panasyuk, L. T. Berezhnit- 
skiy [I]. 
2 ~ e e  V. V. Panasyuk, L. T. Berezhnitskiy [l] ,Erdogan, Si [ I ] .  



The angle B = B,, which determines the initial direction of propagation 

of a crack, satisfies the relation 

Thus, if the magnitude of elastic stresses in the vicinity of the 
vertices of a curvilinear crack is defined, then by using relations (VIII.72) 
and (VIII.73), it is easy to determine the magnitude of the limit load as well. 

For the problem under examination (Figure VIII.12) the tensor components 
of stresses or a and T in polar coordinate system (r, B), in the vicinity B r, B 
of the ends 0 and 0 of the crack, can be represented in the form' 1 2 

B - cos x) + k2J (- 5 sin- + 3 sin - 
2 2 2 

I + 4Ai C O S ~  $ + 0 ( rF) ,  

I 
0s (r ,  $1 - -qg B B (kl,, (3 cos 5 + cos 3) - 3k2,, (sin - i sin ;- 

2 2 2 

I (VIII .74) 
+ 4Ai sin2 $ + 0 ( ry ) ,  

I 
-- 2Ai sin 20 + 0 ( r T )  ( i  = 1,2), 

where the coefficients klSi and kZSi (i = 1, 2) of the intensity of the stresses 

at the vertex of the crack Oi (i = 1, 2) are determined by formulas 

r- <- 

kl.l=1/Rsin6qI(a,t), k2,1=VRsin~cp,(a,6),  
r- 

k1.2 = V Rsin ev, (a, - e),  k2,2 = V R  sin e ~ ,  (a, - 01, 
8 

sin2 - 
1 2 

A, (a, t) = (P  -t q) e + 
1 + sin" 

2 

Az (a, 6) = Al (a, - 0); 

8 8 cos 2a sins- cos2 - 
2 2 

4 e 1 + sina- 
2 

1 See Si, Paris, Erdogan [I], V. V. Panasyuk, L. T. Berezhnitskiy [I] .  
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here 

8  0 + (I - ( p  - q) cos 2a sins- cos2 - 
2 2 8  

(a ,  ) - -- cos + 
8  1 + sinP- 
2 

0 + (p - q)  sin 20 sinS -5 4- ( p  - 9) COS 
8  0 p  + Q - (p  -4) cos 2 a  sin2 - cos" 
2 8  sinp- qz (a, 6) = e 

1 + sina - 
2 

0 0 - @ - 9) sin 2a sin2 ~ O S  p - (P -- 9) sin (201 - $)I. 

(VIII .76) 

From (VIII.75) and (VIII.76), for the case q = 0, we will have1 the 
expressions 

8 0 1 - cos 2a sin2 - cos2 - 
p f F z T  2 2 8  

kl.1 == 2 .€I cos ij- 4- 
1 + sin2 - 

2 

0 0 1 - cos 2a sin2 - a s a  - 
p f ~ m  2  2 8  

k2.1 = 8  sin - 
2 1 + sina - 

2  

(VIII. 77) 

By using formulas (VIII.74), we can remesent relations (VIII.72) and 
( V I I I . 7 3 )  in the form 

B ' 4VF- k ;  (3 cos + cos 38') - 3kiVi (sin 2 + sin 36' / == 
(VIII .78) 

2 2  2 ,7 ' 

(VIII. 79) 
- 38, 3 COS ?) = 0. 

 h he coefficients klBi and k2,i for an arc-shaped crack in an infinite elastic 
plate were calculated by a different method by Si, Paris, Erdogan [ I ] .  How- 
ever, in the expressions proposed by them for the coefficients k 1,1 and k 2,2 
(only at vertex 0, of an arc-shaped crack), when the elastic plate is under 

I 

tension "at infinity" by forces p at angle a to the Ox axis, i.e., when q = 0 
(Figure VIII.12), there are errors. 



where the intensity coefficients k* l,i and k;,i are determined by formulas 

(VIII.75) and (VIII.76) for p = p, and q = q,. 

From equation (VIII.79) we find the values of angle B, at which the stress /576 - 
a (r, B )  achieves its maximum intensity: 

R 

where "plusf1 corresponds to the values k < 0 and "minus," to the values 2,i 
k > 0; ni = k /k (i = 1, 2). 2,i 2i 1,i 

Thus, on the basis of formulas (VIII.78)-(VIII.81) we can calculate the 
value of the limit load for a plate with a curvilinear isolated crack, if the 

coefficients kl,i and (i = 1, 2) of 

P:' intensity of the stresses are defined. 

120 Let us examine in greater detail the 
\ 

4?E' 
case where an elastic plate, weakened by an 

60 arc-shaped crack in the form of a semicircle, 
is under tension at infinitely distant points 
by uniformly distributed stresses p, directed 
at angle a to the Ox axis (Figure VIII.13). 

Assuming in formulas (VIII. 75) and 
(VIII.76) q = 0, p = p, and 8 = n/2 ,  we 

obtain for the coefficients kTSi and kiji, 

Figure VIII.13. the expressions 

k;. t =' Af+ (a ) ,  k ,  = - 4  a )  kY.2 = Af- (a), kiS2 = - Ag- (a), 

where 

(VIII .82) 

.- 

A==-.  fi=4-7cos2af 9sin2a; g,(a)=4+5~0~9a*3~i~2~. 
12 1,'2 ' 

Hence, on the basis of equation (VIII.78) it is easy to find 



21K p2* = T . -. 
1 

P f- (a) cos 2 + 3g- (a)  sin 
2 

(VIII .83) 

(VI I I. 84) 

where 8, is defined by formulas (VII I. 80) - (VIII .82) . 
By using formulas (VIII .80), (VIII.81) and (VIII .82)-  (VIII .84), it is - I577 

easy to calculate the change of angle B, and limit stresses pl, and p2, as 

functions of angle a (0 < a  <  IT/^). The results of such calculations are 
presented in Figures VIII.13 and VIII.14, where curves 1 pertain to the point 
01, and curves 2 to the point 0 From the graphs presented in these figures 

2 ' 
it is easy to see that when 0 < a < ~ 1 2 ,  the limit load pl, < p2,, i.e., a 

crack in the form a semicircle, begins to spread near the vertex, for which 
the angle B, is smallest. 

Figure VIII. 14. Figure VIII. I S .  

Arbitrarily Oriented Rectilinear Crack. By using the results obtained 
above, it is easy to determine the magnitude of limit stress for the case where 
an infinite plate with a rectilinear crack is subjected to tension by mono- 
tonically increasing stresses of intensity q, applied at the infinitely distant 
points of the plate and directed at angle a to the plane of propagation of the 
crack (Figure VIII.15). 

Assuming in formulas (VIII.75) and (VIII.76) 8 -+ 0,  R -t but such that 
R e  = I = const, and assuming p = 0 and q = q,, we obtain 

- 2 kiBr= 9* 1 I sin a, k 2 . 1 T = q * t / ~ s i n a c o s a  ( i =  1.2), 

where 0 < a  <.rr/2, Z is the half length of the crack. 



From this and in accordance with formulas (VIII.80) and (VIII.811, we 
have 

$* = - 2 arcsin v /6uot-4a + I - Pr8 cot"a + I 
2 (9corZ a + 1) (VIII .85) 

Further, by using equation (V111.78) and coefficients k ,  and k;,i, we 

obtain for the problem under examination 

(VIII .86) 

where angle 6, is defined by formula (VIII .85). 

Assuming in formulas (VIII.85) and (VIII.86) a = n/2 (see Figure VIII.15), /578 - 
we readily find, as a partial case, the known Griffith's relations [ 2 ] :  

Experimental check1 of Functions (VIII. 85) and (VIII .86). The dependence 
of angle 6, and of limit load q, on angle a in the case of uniaxial tension of 

a plate is represented in accordance with formulas (VIII.85) and (VIII.86) in 
Figure VIII.15 and VIII.16 in the form of solid lines. These functions were 
checked experimentally on plates of organic and silicate glass. For this pur- 
pose, plates (see Figure VIII.15) of the corresponding dimensions2 were cut 
from sheet material. In the center of each plate was cut a hole with a dia- 
meter of about 6 mm, and with the aid of a glass cutter, a crack (slit) was 
made at some angle a to the longitudinal axis of the plate. Then, with the aid 
of a special device, by way of application of forces of tension to the edges of 
the hole in the direction perpendicular to the line of the slit, the initial 
crack was opened up through the entire thickness of the plate and was extended 
to a given length 2 1 .  After this the length (22) of the original crack and 
angle a were measured. In this manner groups of plates were made of silicate 
and organic glass with cracks with different directions (different value of 
angle a for 0 < a < ~ / 2 )  and different length 22. The test plates were then 
subjected to tension in the direction of the longitudinal axis of the plate on 
an MR-0.5 rupture machine (at a load rate of 6.6010-5 m/sec) to rupture. In 
this manner the magnitude of the limit (rupture) force p = p, at which the 

'A more detailed description of the experiment is found in the work of V. V. 
Panasyuk, L. T. Berezhnitskiy and S. Ye. Kovchik [I]. 
'see V. V. Panasyuk, L. T. Berezhnitskiy and S. Ye. Kovchik [ I ] ,  where detailed 
tables are available. 



crack would begin t o  spread and a t  which the  p l a t e  would rupture ,  was measured. 
On the  b a s i s  of the  da ta  of  the  experiment, the  rupture  s t r e s s  was ca lcula ted:  

where b i s  width and h i s  thickness of  p l a t e ;  the  index a denotes t h a t  t h e  
above-stated values p e r t a i n  t o  the  cracks d i rec ted  a t  angle a t o  t h e  longitu-  
d ina l  a x i s  of the  p l a t e .  

F i g u r e  ~111.16.  

By determining the  value q,aJ it is 

easy t o  c a l c u l a t e  the  r a t i o  

The r e s u l t s  of the  experimental da ta  
a r e  presented i n  Figure VIII.16. The 
average value of ~ ( a ,  Za) f o r  each group of 

p l a t e s ,  having i d e n t i c a l  angle a, a r e  repre-  
sented by the  c i r c u l a r  and t r i a n g u l a r  symbols 
on Figure VIII.16, where t h e  t r i a n g l e s  per- 
t a i n  t o  p l a t e s  made of  organic g lass ,  and ' - /579 
t he  c i r c l e s ,  t o  p l a t e s  made of s i l i c a t e  g l a s s .  
The s o l i d  curve on t h i s  f i g u r e  represents  the 
values of the  function 

derived from formula [VIII . 86 ) .  

Furthermore angles (B,) of t h e  i n i t i a l  d i r e c t i o n  of propagation of the  

crack f o r  both ends of  the  crack, i. e . ,  B!') ( f o r  the  l e f t  end of t h e  crack) 

and f3ir) ( f o r  the  r i g h t  end of the  crack) ,  were measured f o r  each p l a t e .  The 

average angles 6, (a) = 1 2 (  + f3ir)) f o r  each group of  p l a t e s  a r e  shown i n  

Figure VIII.15 i n  the  form of t r i a n g l e s  ( fo r  organic g lass )  and c i r c l e s  ( fo r  
s i l i c a t e  g lass )  a s  functions of angle a. The s o l i d  curve on t h i s  f igure ,  which 
represents  the  dependence of angle (3, on a, was constructed on the  b a s i s  of 
equation (VIII.85). 

Thus, a s  seen from the  graphs presented here in ,  the  experimental da ta  
agree s a t i s f a c t o r i l y  with theory. 



57. Deflect i on of Rods (~eams) Weakened by Rect i 1 i near c racks  ' 
We will analyze the limit equilibrium state of rods (beams) weakened by 

rectilinear cracks and deflected by external monotonically increasing forces 
acting at the middle of the plane of the rod. First we will find the distribu- 
tion of elastic stresses in the rod (beam) in the vicinity of the crack, where 
known external loads are applied to the middle plane of the rod, far from the 
crack. 

Deflection of Rod w i t h  Central Rectilinear Crack. We will analyze an 
elastic isotropic rod (beam) with a rectilinear crack located in the center of 
the rod, perpendicular to its longitudinal axis (Figure VIII.17). We will 
denote through 2h and 26, respectively, the width and thickness of the rod, 
and through 21, the length of the crack. We will introduce rectangular 
Cartesian coordinate system xOy, as shown in Figure VIII.17, and we will assume 
that the middle plane of the -rod coincides with the xOy plane, and that the 
crack is located on the segment -2 < x < 2. 

Figure VIII. 17. Figure ~111.18. 

Let external loads (deflecting moments or uniformly distributed pressure) 
located in the middle plane of the rod, i.e., in the xOy plane, act on such a 
rod. Under the effect of external forces (in the zone of compressive stresses), 
the edges of the crack come into contact in some segment A < x X2, which 1 
results in the development of contact stresses on this segment of the edges of 
the crack. Beyond this segment the edges of the crack will be free of contact 
stresses. The parameters A and h 2 ,  which define the boundary of the range of 1 
contact between the edges of the crack, must be determined during the solution 
of the problem. We will determine the stress-deformation state in the vicinity 
of the crack. 

For the given problem, we will have, on the contour of the crack, the /580 
following boundary conditions: 

'see B.  L. Lozovoy, V. V. Panasyuk [I, 21, V. V. Panasyuk, 0 .  L .  Lozovoy [3 ,  41, 
where, apparently, the solution of this problem is first encountered. 



on the segment of contact, i.e., when y = 0, XI X X2, 

x = =  ( x )  Y ' - ( x , O ) = V - ( x , O ) i ~ @  (VIII. 87) 

on the edges of the crack that are free of contact stresses, 

+ 0, ( x ,  0 )  = a' ( x ,  0 )  = 0. (VIII .88) 

where 

Furthermore, we will assume that there are no tangential stresses on the 
contour of the crack, i.e., 

rxg  ( x ,  fl) = 0  for - 1 x < I .  (VIII .89) 

Stress tensor components ax, a,,, T and displacement vectors u, v are 
xv 

determined in the plane problem through two analytical functions @(z) and Q(z )  
(see 51, Chapter I) by the following relations: 

- 
a, + a, = 2 [o (2) + @ (41, = x t iy, (VIII .SO) 

uu - ifxu = @ (z)  + Q 6) + (z - z )  0' (z),. (VIII.91) 
2G (u' + io') -- x@ (2)- 9 (3 - (z - 2) @' (2) 

au ' 
(VIII -92) 

We will assume that 

(VIII .93) 

(VI I I. 94) 

where the coefficients An and Bn (n = 0, 1, 2, 3) are constants that determine 

the stress state in a rod without a crack for 

(VIII .95) 



where J = 46h3/3 is the moment of inertia of the rod; the functions (VIII.93) /581 
and (VIII.94) give the solution of the problem of pure deflection by moments 
M of an infinite rod (beam) without a crack (see Figure VIII .17). When 

7q B,=: 9hs (VIII .96) 24J ' B1 -- 0, B.,= B, = - - 81 19J ' 

(symbols are given in Figure VIII.183, the functions (VIII.93) and (VIII.94) 
give the solution bf 'the problem of deflection of a beam (rod) of length 2L 
without a crack, when the beam is loaded by uniform pressure of intensity q. 
It is assumed here that the beam is resting freely on two supports, and that 
the support reactions are defined as tangential forces applied to the ends of 
the beam. 

In a rod (beam) that is under the effect of an external load, i.e., 
deflecting moments (see Figure VIII.173, or uniformuly distributed pressure 
(Figure VIII.18), let a crack of length 2 1  extend along the Ox axis. The 
presence of the crack in the rod results in the redistribution of stresses in 
the vicinity of this crack. The stress-deformation state in the rod at points 
distant from the crack will be characterized1 for the above mentioned types of 
load by functions @ (2) and Q ( 2 )  for the corresponding values of coefficients 0 0 
An and Bn from (VIII.95) and (VIII.96). Boundary conditions (VIII.87)-(VIII.89) 

on the contour of the crack should be satisfied. 

If in formulas (VIII.90) and (VIII.91) we proceed to the boundary values 
on the contour of the crack, i.e., assume y -+ +O, recalling boundary conditions 
(VIII.87) and (VIII.89), we will arrive at the problem of linear conjugation 
for the desired functions @(z)  and L?(z). The method for ;olving these problems 
is known2. The functions that satisfy condition (VIII .SO) will have the form 

0 (2) = 1 
t - z  

L* 
n (2) = i s V t2 - 1' p ( I )  dl + P,, (d 1 

- -- 2Uiv 22 - 18 t - z  ,, - 3 Lao (4 - Qo (.)I, (VIII .98) 
A1 

where (2) and R o ( z )  are known functions (VIII .93) and (VIII .94) ; 0 

(VIII .99) 

"his assumption, as we will see below, will be satisfied with a very high 
degree of accuracy. 
2 ~ e e  N. I. Muskhelishvili [I]. 



The power of the polynomial pn(z) and its coefficients (c 0' c 1' ..., c ) are n .  
/582 - 

determined from the conditions of the behavior of functions @(z) and Q(z) in 
the vicinity of infinitely distant points, i . e. , when 1 z ] + m. These func- 
tions, for 1 z 1 + should satisfy conditions 

+ 
To determine the magnitude of contact stresses 0 (x ,  0), we will use 

Y 
formula (VIII.92). Proceeding in this formula and also in the formula conju- 
gate to it, to the values on the contour of the crack, using for functions 
O(z) and Q(z) their expressions from (VIII .97) and (VIII .98), we find 

- 
2Gi (o'+ - v'3 = - - 1 vtz - P p  ( t )  

dt + 
1. 

where A1 <to C A2; ROY R1, R2, R3, R are constants which are expressed 4 
through the coefficients An, Bn (n = 0, 1, 2, 3) of functions (VIII .93) and 

b 

(VIII.94); t is an arbitrary point on the contour of the crack. 0 

To determine the function a+(t) from boundary conditions (VIII.87) and 
Y 

formula (VIII.101), we will obtain a singular integral equation 

where Al  6 to As. 

The solution of equation (VI 11.102) that satisfies the condition of 
boundedness of contact stresses for t = A1 and t = A2 will have the form 0 0 

where h l < t o  < A,. 

(VI 11.103) 

The parameters X and A 2  in the solution of (VIII.103) are determined 1 
from the conditions of boundedness of the solution of equation (VIII.102) for 
to = A1 and to = X2; the coefficients mo, ml, m2, m3 are expressed through the 



coefficients An and Bn (n = 0, 1, 2, 3) of functions (VIII.93) and (VIII.94). 

For the given forms of external load that act on the rod, the coefficients 
m ml, m2, m3 and parameters A and A 2  will have the following form: 0 ' 1 

a) during pure deflection of a rod with a crack (Figure VIII.17) 

b) during deflection of a beam (rod) with a crack by uniformly distributed /583 
load (Figure VII I. 18) 

Q m, = - 3 J ,  m l = - & ( l l + h ) .  

2ha 1' ' 
= -& (A, + AJ (5ht - 21,A, + 5J.3 + +(A, + A,) (L' - - - a )* 

where X1 = -2, and A2 is determined from the equation 

By substituting relations (VIII.103) and (VIII.106) into formulas 
(VIII.97) and (VIII.98), we obtain for the examined forms of loading of a rod 
(beam) with a crack, the following functions: 

a) for pure deflection of rod with crack (see Figure VIII.17) 

b) for pure deflection of a beam (rod) with a crack by uniformly distribu- 
ted load (Figure VIII.18) 



where the coefficients mo, ml, m2, m3 are determined by formulas (VIII.105) 

and the parameter X2 is found from equation (VIII.106). 

By knowing the functions O(z) and Q(z) and by using formulas (VIII .SO) 
and (VII1.91), we easily find the components of the stress tensor in the vici- 
nity of the examined crack. In particular, the stress components a (x, 0) 

X 
r (x, 0), uY(x, 0) along the Ox axis (see Figures VI11.17 and VIII.18), i.e., 
XY 
whkn y = 0 ( 2  < I x l  < h) , will have the following form: 

a) during pure deflection of rod with crack (Figure VIII.17). - /584 

o,(x,O) ;i B ( $ - - ; )  f ~ 3 - f  x - l  1 B* 

1 MI . where I < ] X I  4 h, A,= B =  - 
J '  

b) during deflection ot rod (beam) with crack by uniformly distributed 
load (Figure VIII. 18) 

where 2 < 1x1 < h, A2 is found from equation (VIII. 106) and mo, ml, m2, m3 

are defined by formulas (VIII.105). 
+ 

The contact stresses u for the examined problems are determined in 
Y 

accordance with formula (VIII.103). 

In order to obtain a graphic representation of the rate of extinction of 
the stress field caused by the presence of the crack in a deflected rod, the 
graphs (solid lines) of change of the components of the stress tensor 



uX(x, 0), 0 (x, 0), T (x, 0) are constructed in Figure VIII.19 on the basis 
Y x Y 

of formulas (VIII. 109) as functions of the distance x for I xl 2 I .  For com- 
parison, the broken line represents the change of stresses 

O& ( x ,  0) - B x / l ,  0'3 (x, 0) .= 0, z:g ( x ,  0) = 0 

during pure deflection of such a rod, h t  without a crack. As we see, when 
1x1 > 22, the perturbed stress state can be assumed, for all practical pur-1 
poses, to coincide with the unperturbed stress state determined by functions 
(VIII.93) and (VIII.94). 

By substituting the values of stresses a (x, 0) from (VIII.109) and 
Y 

(VII I. 110) into equation (VIII .31) and then, by accomplishing limit transition 
in the equations obtained for x + +Z, we will find the formulas for the 
determination of the magnitude of limit (critical) external loads for the 
problems shown on Figures VIII.17 and VIII.18- 

where the parameter X is determined from equation (VIII.106). 2 

Deflect ion of Rod with Rectillnear Crack Located in Zone o f  Tension /585 - 
stresses1. When rectilinear isolated cracks are located in the region of ten- 
sion stresses and are directed perpendicular to the lateral surfaces of a 
deflected rod (Figures VIII.20 and VIII.21), the edges of the crack will always 
be free of contact stresses. If we relate the examined rod with a noncentral 
crack to coordinate system xOy and place the Oy axis on the longitudinal axis 
of the rod and the Ox axis on the plane of the crack, the boundary conditions 
on the contour of the crack, located in the zone of tension stresses, will have 
the form 

where a < 1x1 G b (a, b are the abscissas of the ends of the crack). 

(VIII. 113) 

'see V. V. Panasyuk, B. L. Lozovoy [4 ] ,  and also B. L. Lozovoy, V. V. Panasyuk 
[21 
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Figure VIII.20. 

Figure VIII.21. 

Figure VIII.19. 

Far from the crack we will assume that the stress state in the rod is 
characterized by the functions (VIII.93) and (VIII.94), where the coefficients 
An and Bn (n = 0, 1, 2, 3) are defined by formulas (VIII .95) and (VIII .96) and 

the desired functions @(z) and Q(z) for z -t 03, satisfy conditions (VIII.lOO). 

From (VIII.90), (VIII.91) and boundary conditions (VIII.113) it is easy to 
determine the functions of stresses Q(z) and G(z) for the examined problems. 
Actually, by accomplishing limit transition in equations (VIII.90) and (VIII.91) 
to the contour of the crack, and by using boundary conditions (VIII.113), we 
arrive at the problem of linear conjugation for the boundary values of the 
functions @ ( 2 )  and R ( z )  : 

[0 (t)  + Q (t)l+ + IQ, (4 + Q U)I' = 0, 

[a (t) - SZ (t)]+ - [a ( t )  - Q (t)l- = 0. (VIII.114) 

where t is the abscissa of the points of the contour of the crack - (a  < It1 < 6 ) .  

By solving1 equations (VIII. 114) with consideration of the behavior of /586 
functions @(z) + R(z) and @(z) - Q(z) for 1 zl -+ a we obtain 

'see N. I. Muskhelishvili [I]. 
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* (z) = LC# + clza + ctza + CsZ + 4 1 (VIII. 115) 

V ( Z  - a)(z - b) 
- 3 [a0 (4 - Qo (dl* 

where co, c c c c are constants found from condition (VIII.lOO). 1' 2' 3' 4 

Recalling relations (VIII.93)-(VIII.96) from formulas (VIII.115), when 
conditions (VIII.114) are satisfied, we obtain the coefficients cn (n = 0, 1, 
2, 33 41. 

Thus, the stress functions for each of the examined problems will have 
the following form: 

a) during pure deflection of rod with central crack (Figure VIII.20) 

M 8zz- 4 (a + b ) z -  ( b -  a)' M a (2 )  = - . -- 
16J V ( Z  - a ) ( ~  - bj- 4 1  '* 

where J = 46h3/3 is the moment of inertia of the rod; 

b) for deflection of rod with noncentral crack by uniformly distributed 
load (Figure VI I I. 21) 

where 

4 (161'+8(.+6))1'+2 
' ( ' )  = 961 ) . ( r  -a)(*- b) 

- (!ka + 6ab + 5b2) i? - 3 '(a + b) I 
A ( b  - a" [24 (L' - y) + 1 3na + 22ab + 1 3b2]] . 

8 



The stress components for the points located on the Ox axis, i.e., when 
y = 0, will have the following form: 

a) for pure deflection of rod (Figure VIII.20) 

b) for deflection of rod (beam) by uniformly distributed load (Figure 
VIII. 21) 

where f (x) is defined by formulas (VIII.117) for z = x + iy and y = 0. 
2 

Recalling a (x, 0), defined by formulas (VIII. 118) and (VIII. 119), from 
Y 

the condition of limit state (VIII.31), which is conveniently represented in 
the form 

K lim [ l / l x - b l  a;(xlO)l = -;5-* 
x + i b  

we obtain the magnitudes of limit forces M = M* and q = q, for the problems 
shown in Figures VIII.20 and VIII.21: 

where 22 = b - a is the length of the crack; the other symbols are shown in 
Figures VIII.20 and VIII.21, respectively. 

8. Limit State of Elastic Body Weakened by Stress Concentrator wlth Small 
Radius o f  Curvature 

An interesting and unique theory of macrostresses, which permits the 
graphic and comparatively simple formulation of the criteria of the limit state 



of an elastic body weakened by stress concentrators with a small radius of 
curvature, is presented in the works of M. Ya. Leonov [2] and M. Ya. Leonov. 
and K. N. Rusinko [I,  21. The basic positions of the above approach are out- /588 
lined in this section. 

theory. 
Figure VIII.22. 

For such a body we will introduce certain 
relative elongations of the diameter of the 

sphere of radius P (macroelongat ions) and stresses (macrostresses) related to 
them by a linear law of stress. 

Macrodeformations and Macrostresses. We will examine a solid elastic body 
assuming it to be macrohomogeneous in the sense that the mechanical properties 
of any elementary volume bounded by a sphere of radius R, hypothetically cut 
from the above described body, and not extending to.its surface, are identical 
for radius R > P ,  where 20 is some constant of the material, denoting the 

dimension of length1, related to its structure. 
m Moreover, we will assume that the rupture or 

Y A plastic deformation within the body, enclosed 

We will call macroelongation E (x, y, z, P )  the relative elongation of the n 

0 

corresponding diameter (n) -(Figure VIII.22) of the sphere of radius P with its 
center at the point (x, y, z). By definition, macroelongation in the direc- 
tion of the Ox axis (Figure VIII.22) can be represented in the form 

within a sphere of radius P, do not depend on 
the character of distribution of stresses with- 
in this volume, but is determined by the defor- 
mation of the surface that bounds the above- 
described elementary volume. We will also 
assume that if cracks are not formed within the 
body, then the relative displacements of two 
points of the solid body, separated by a dis- 
tance greater than Z P ,  are determined by the * 

where u(x + p, y, z) is elastic displacement in the direction of the C'x axis. 
Analogously, we will determine the macroelongations in the direction of the 
Oy and Oz axes. 

. x corresponding solutions of linear elasticity 

'~oment elasticity theory (see Chapter VI) also yields, in addition to other 
material constants, a constant with the dimension of length. This constant 
reflects the "granularitytt of the structure of a real hard body. 



We will define macroexpansion 8 as the ratio of the increment (during 
deformation) AV of the volume of the material enclosed within the sphere of 
radius p , to its initial value (V = 4/3 TP 3 ) ,  i.e., 

where F is the surface of the sphere of radius P whose center is located at / 589  
the point (x, y, z); dFn is an element of surface F with normal n. 

In view of the above definitions, formula (VIII.123) expresses the average 
elastic expansion within the sphere of radius P ,  i.e., 

where u, v, w are the components of the vector of elastic displacements; V is 
volume bounded the sphere (F). 

Under the effect of both surface and constant mass forces, elastic 
expansion represents a harmonic function. Therefore, by using the average har- 
monic function theorem, we find from (VIII.124) 

(VIII. 125) 

i.e., macroexpansion does not depend on radius P of the examined sphere, but 
is determined by elastic expansion in the center of this sphere. 

We will define macrodisplacement r as change of the right angle between mn 
the rays (lines) that connect the points of the body located prior to deforma- 
tion at the ends of the diameters of the sphere of radius P ,  parallel to m, n 
(Figure VIII.22). 

For the plane (m, n), parallel, for instance, to the coordinate plane xOy, 
we will have 

1 (VIII.126) + - [ vn (x -  ~sincp, y + gcoscp, z) - v ,  (x  + esincp, Y - ecosc~, z)l, 
2e 

where the projections of the elastic displacements in the directions of the m 
and n axes are, respectively, 



vn = ucoscp+vsincp, v, = -usincp+ vcoscp. 

Here u and v are the projections of the vector of displacement onto coordinate 
axes Ox and Oy, respectively. 

The component of normal macrostress on the plane to which direction (n) 
is normal is determined by the formula 

where the displacement modulus and Lame's constant are 

Here E is Young's modulus; v is Poisson's ratio. 

In view of the fact that macroexpansion is not a function of the direction /590 - 
(n), the direction of maximum macroelongation coincides with the direction of 
maximum normal macrotension. 

Macrotension of displacement (tangent) is the value 

where rmn is macrodisplacement defined by formula (VIII.126). 
Macrotension Concentration Coefficient. Condition of Brittle Rupture. 

Let an unbounded body with stress concentrators in the form of holes'or cracks 
be subjected at its infinitely distant points to tension by a field of uniform 
stresses of intensity s. Then the coefficient of concentration of normal 
macrostresses will be the ratio 

where s is the maximum magnitude of macrotensions for the points (x, y, z) n 
of the examined body. 

The coordinates (x, y, z) of the center of the elementary sphere of radius 
P ,  for which macrostresses sn achieve their maximum value, and direction (n) in 

which they act (Figure VIII.22), generally speaking, are unknown beforehand. 
To determine these values it is necessary to analyze expression (VIII.127) to 
the fullest extent. 



As before, we will denote through oo the magnitude of resistance to 

rupture for a given material and we will find the intensity of external load 
(s) at which the greatest macrostress will achieve the magnitude a Such 
load is defined by formula 

0 ' 

where k is expressed by relation (VIII.129). 

External load s = s, is defined as the limit or critical load. When the 
external load achieves the magnitude s,, no new cracks can form within the 
body, and the existing cracks cannot spread. This condition of crack formation 
is called the macroscopic hypothesis of brittle rupture. 

Elastic Plate Weakened by Elliptical Hole under Tension. We will determine 
the coefficient of concentration of normal macrotensions for an unbounded body 
(in the case of plane deformation) with a cylindrical cavity, the base of 
which is an ellipse with semiaxes a, b. We will assume that,the surface of 
the cavity is free of external stresses, and that tension stresses of intensity 
s are applied at the infinitely distant points of the body, directed perpendi- 
cular to the large axis 2a of the elliptical hole. 

The displacements in the elastic plate are defined by formulas (see 51, 
Chapter I) 

2G (u + iv) = xcp (z )  - ~~'(2) - $0. (VIII.131) 

During plane deformation K = 3 - 4 . The analytical functions in the range - /591 
occupied by the body are 

2ab - -v22- &+ 6 2  - a (aa +- b2) 
a - b  

] (VIII.132) 
f Z ^ -  a2 + 62 ' 

where lim z-' 1/'z?- azf b2 = I .for z --t 03. 

The maxin~um macrostress develops in the elementary volumes bounded by 
spheres of radius P, with the center at the points (a + P , 0) and (-a -p , 0). 
For the above spheres, in accordance with formulas (VIII.125), (VIII.131) and 
(VIII.132), we obtain the following formula for the determination of macro- 
expansion 



where 

Macroelongation for these spheres will be maximal: 

Hence, and on the basis of relations (VIII.131) and (VIII.132), we obtain 

where 

al = i/(f + a r + d ( l  + a)'. 

Thus, from (VIII'. 127) , (VI 11,133) and (VIII ,134) , the maximal tension 
macrostresses will be 

$,mu' = ks, (VII.I.135) 

where the concentration coefficient is 

I+a 
(VIII. 136) + (3-4v-- 

(1 -rl))/2(qr+2=+hl) 1-rl 



Assuming in (VIII.136) b = r~ = 0, we obtain the coefficient of concentration - /592 
of macrostresses during tension of an elastic plate with a slit of length 2a: 

(VIII. 137) 

where 

If, in the right hand side of equation (VIII.136), we proceed to the limit 
for n + 1, we obtain the coefficient k for an unbounded plate with a round hole 
under uniaxial tension 

2va2 k = + 3 +  l l a + 2 5 a ~ + 4 W + I ? a 4 + 2 4 a ~ + & ~  (VIII.138) 
(1 + a)? (1 2a + 2 a z )  ( I  +2a+2a2)* 

If semiaxis a of the elliptical hole is smali in comparison with the 
structure parameter P (i.e., a + a), then we obtain from (VIII.136) k = 1. 

Thus, holes and slits, the dimensions of which are small in comparison 
with structure parameter P ,  do not cause the concentration of macrostresses. 
This, of course, is to be expected. 

Let us consider a macroscopic elliptical hole for the case where the semi- 
axes (a, b) are much greater than structural parameter P (i.e., a + 0). Dis- 
regarding in formula (VIII.136) the values of a that are small in comparison 
with unity and q, we obtain formula' (VIII.2): 

Thus, in the case of amacroscopic hole, the coefficient of concentration 
of macrostresses coincides with the coefficient of concentration of elastic 
stresses given by classical elasticity theory. 

The coefficient of concentration of perfect (elastic) stresses for a 
fixed ratio a/b is independent of the absolute dimensions of the semiaxes of 
the ellipse. In particular, for a circular cavity, k = 3, regardless of the 
magnitude of the radius of the round hole. At the same time, the coefficient 
of concentration of macrostresses k in the case of unlimited decrease of the 
dimensions of the hole approaches the value for a solid body, namely k = 1. 

'1n the case under examination, the elastic plate is subjected to tension by 
forces s = const, perpendicular to the 2a axis of the elliptical hole. 



We will examine the case of a macroscopic slit (a p p; Q = 0). Formula 
(VIII.137) (after discarding the small p/a of higher order) can be converted 
to the form 

where 

Certain values of the coefficient k :(VIII.136) for a slit (q = O), - /593 
round hole (q = 1.0) and three intermediate values of n,  equal to 0.25, 0.50 
and 0.75 for an elliptical hole, are presented in the table. The coefficient 
k was calculated for Poisson ratios v equal to 0.15, 0.20, 0.25 and 0.30. 

~ l l  iptical' 
(rl=O,25) 

El 1 iptical 
(7j=0,5) 

3,149 El 1 iptical 
3,149 (q=0.75) 
3., 150 

i 3,150 

Round 
(<= 1 .O) 

Tr. Note: Comnas indicate decimal points. 



Figure VIII.23 shows the graphs of k as a function of the ratio a/p for 
certain values of n. For comparison, the coefficients of concentration of 
perfect (elastic) stresses given by classical elasticity theory, for which the 

values of the coefficients of concentration of 
macrostresses approach asymptotically during 
the unbounded increase of semiaxes a and b, are 
also represented in the figure by the broken 
lines. In the case of tension of a body 
weakened by a slit (q = O), the coefficient of 
concentration of macrostresses obviously has no 
asymptote. 

m 40 60 BO cr/p Determination of Limit Load. Relationship 
between Parameter p and Other Material Constants. 

Figure VIII.23. For an elastic plate weakened by an elliptical 
hole and located in a homogeneous stress state 

at infinity, the stress concentration coefficients k are determined for various /594 
ratios q = b/a by formulas (VIII. 136)- (VIII. 141). By using these formulas and 
relation (VIII.130), it is easy to determine the magnitude of limit load s = s, 
for the problem at hand. For instance, in the case of an elastic plate with a 
macroscopic slit, we have on the basis of formulas (VIII.130) and (VIII.140), 

where f3 is defined by formula (VIII.141). 
Y 

The relationship obtained between limit stress and the dimension a of the 
crack coincides with an accuracy up to a constant factor with Griffith's for- 
mu1 8 

We will require that limit load (VIII.142) coincides identically with 
limit load (VIII.143). We will obtain the relationship between structural 
parameter P and other material constants: 



s', 
where p' = ml--v?) is a numerical factor equal to 0.386, 0.386, 0.402, 0.421, 
respectively, for values of v equal to 0.15, 0.20, 0.25, 0.30; y is the 
effective surface energy of the material. 

59. Brittle Rupture of   ate rial' 

On the basis of analysis of the limit equilibrium state of a plane 
(brittle plate) with defects of the arbitrarily oriented sharp-pointed cavity- 
crack or hypocycloid hole types, a diagram of limit loads can be constructed 
for the case where the body is subjected to plane biaxial tension -- compres- 
sion. This diagram can be used as the criterion for determining the beginning 
of brittle or quasibrittle rupture of solid bodies weakened by variously 
oriented defects of the above-mentioned types (stress concentrators with small 
radius of curvature). 

Biaxial Tension -- Compression of Elastic Plate with Hole in the Form of - /595 
a Hypocycloid. Let us consider an elastic plane xOy (plate of unit thickness), 
weakened by a hole in the form of a hypocycloid, i.e., by a hole whose contour 
L is described in parametric form by equations 

where 0 Q 2  ; A > 0; n is a whole positive number (n = 1 ,  2 ,  3 . . .). 

The contours for n = 1 and n = 2 are represented in Figures VIII.24 and 
VIII.25, respectively, by formulas (VIII.146). The vertices of the contour of 
a hypocycloidal hole, as follows from formulas (VIII.146), are angular cusp 
points, and contour L, for a fixed n, has the cusp point n + 1. 

Figure ~111.24 Figure VIII.25. 
-- 

'see V. V. Panasyuk [4] . 



Let an elastic plate with a hole in the form of a hypocycloid be subjected 
to tension-compression by monotonically increasing stresses p and q (q/p = n ) ,  

0 
acting in mutually perpendicular directions, and applied at the infinitely 
distant points of the plate, where stresses p are directed at angle a to the 
Ox axis (see Figures VIII.24 and VIII.25). The contour of the hole is assumed 
to be free of external forces. We are required to determine the values of 
limit stresses p = p, and q = q,, whereupon one of the vertices of the given 
hole goes into the state of limit equilibrium and it becomes possible for a 
rupture crack in the vicinity of this vertex to spread. 

It is necessary first of all to determine the field of elastic stresses 
in the vicinity of the angular points of the examined plate for the given 
external action (Figures VIII.24 and VIII.25), and then, by using limit state 
equation (VIII.31), to determine the magnitude of the limit load. Here, how- 
ever, in the general case of angular points on the contour bounded by the 
examined range, the determination of the field of elastic stresses, i.e., the 
solution of the corresponding problem of elasticity theory, is quite difficult. - /596 
In the case where there are angular cusp points on the contour of the given 
infinite range containing a hole, as is the case of the given problem (Figures 
VIII.24 and VIII.25), the solution of the required problem of elasticity theory 
for such a range can be found, for instance, from the solution of the corres- 
ponding problem of elasticity theory for a range bounded by a contour with a 
continuously changing tangent and which depends on certain parameters, if, in 
such a solution, the parameters (characterizing the smooth contour under con- 
sideration) approach given limit values such that it will be possible to 
obtain at the limit a contour with angular points of the specified type; for 
instance, by the method used for solving the problem of elasticity theory for 
an elastic plate with a rectilinear slit (crack) from the solution of the 
corresponding problem for a plate with an elliptical hole'. 

We will construct the solution of the problem of elasticity theory for the 
case where an elastic plate is weakened by a hole in the form of a hypotro- 
choid, and where biaxial stress field (p, q) acts at its infinitely distant 
points. For this purpose we will examine the function 

here z = x + iy is a complex variable in the plane z(xOy), and 5 = 5 + iq = 

= pei9 is a complex variable in the plane <(tori); A > 0; 0 G m <  l/n; n is a 
whole positive number. 

The function (VIII.147) conformally maps the range located in plane z out- 
side of the hypotrochoid on the exterior of the unit. circle in plane <. It is 
easy to show also that when m = l/n, function (VIII.147) conformally maps the 

'see $ 2 ,  Chapter 11. 
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e x t e r i o r  of t h e  hypocycloid i n  p lane  z onto t h e  e x t e r i o r  of t h e  u n i t  c i r c l e  i n  
p lane  5, whereupon contour  L o f  t h e  hypocycloid i n  plane z i s  found from equa- 

na 
t i o n  (VIII.147) f o r  m = f/n, A=- 

n + l  
, a>Oand 5 1 = 1. 

Thus, i f  with a given s t r e s s  f i e l d  a t  t h e  i n f i n i t e l y  d i s t a n t  p o i n t s  of  an 
e l a s t i c  p l a t e  conta in ing  a ho le  i n  t h e  form of  a hypotrochoid O <  m < l / n  w i l l  
be  t h e  s o l u t i o n  of t h e  problem of  e l a s t i c i t y  theory ,  then,  by assuming i n  t h i s  
s o l u t i o n  t h a t  m -+ l / n ,  A = na/n + 1, we w i l l  o b t a i n  t h e  s o l u t i o n  of  t h e  co r r e -  
sponding problem of e l a s t i c i t y  theory  f o r  a p l a t e  with a ho le  i n  t h e  form of a 
hypocycloid. 

Since contour  L of t h e  hypocycloid (and a l s o  of  t h e  hypotrochoid) i s  
assumed t o  be f r e e  of ex t e rna l  f o r c e s  then ,  f o r  t h e  determinat ion of  s t r e s s  
func t ions ,  we w i l l  have t h e  condi t ion  i 

On t h e  b a s i s  of  complex p o t e n t i a l s  $ ( 2 )  and I/J ( 2 )  , we determine2 t h e  s t r e s s  
components 

1 1 

In transformed range 5, contour  condi t ion  (VIII.148) can be represented  i n  /597 
t h e  form . 

(VII I .  150) 

For an e l a s t i c  p l a t e  with a hole ,  where main s t r e s s e s  p and q a c t  a t  i t s  
i n t i n i t e l y  d i s t a n t  p o i n t s ,  and t h e  contour  o f  t h e  ho le  i s  f r e e  of  ex t e rna l  
fo rces ,  t h e  func t ions3  a r e  

' see  5 1 ,  Chapter I .  
*see 5 1 ,  Chapter I .  
3 ~ e e  5 1 ,  Chapter 11. 



here QO (5) and qo(c)  are holomorphic functions in the range 15 / 5 1; q+, (a) = , 
the constants are 

(VIII .1s; 

where a is the angle between the Ox'axis and the direction of main stress p. 

We will assume that in formula (VIII.147) 0 < m < l/n. In this case the 
contour of the hole will represent a hypotrochoid, i.e., there are no angular 
points on the contour of the hole. Consequently, to determine functions $(<) 
and $(<) from contour condition (VIII.150), we may use N. I. Muskhelishvilils 
method, outlined in 51, Chapter I. Consequently, we find readily stress func- 
tions $(c) and $(<) for an elastic plate with a hole in the form of a hypotro- 
choid 0 < mn < 1. Accomplishing limit transition in these functions for 
mn -t 1 (m = l/n), we obtain the desired functions for an infinite elastic plate 
with a hole in the form of a hypocycloid, where the forces p and q are applied 
at infinitely distant points of this plate: 

here 

a2 ( a  - 2) Qn-2 
-;[&+2&+ + 6 - 1 for n > 2, 

G:, (5) = 
1 O for n < 2; 

[n,p-2 $. 2 ~ @ - ~  + . . . + (n - 1) a,-11 for n > 2, 
G:, (5) = 

0 for n < 2; 

as q , ( c ) = 9 + $ + F + . . .  for 151511 

(VIII .153) 

(VIII .155) 



where the coefficients al, a a . . .  are found by comparing the expressions 2' 3' 
of the right and left sides in formulas (VIII.154) and (VIII.155). 

Stresses i n  V i c i n i t y  o f  Angular Po in ts .  To determine the principal part 
of the stress tensor components in the vicinity of the angular points of the 
contour of the given range (Figure VIII.25) with a hypocycloidal hole, it is 
necessary to bear in mind the following. Angular points 0 (j = 1, 2, 3, ...) 

j 
on the boundary of the range are cusp points. In the small vicinity of such 
points, the stress tensor components in a polar coordinate system with the 
origin placed at angular point 0 are determined for the case of the plane 

j 
stress state by the following relations: 

1 B 3 B 3 
0, = - 

4)/% 
( k,, i(5 cos - cos $) + k2,i(--5sin p + 3 sin B)] + 0 ( I ) ,  

B 3 B 3 ' ( k , , ,  (3 cos + cos p) - 3k2.i (sin + sin $1) + O(l)7 Os= - 
4 ) / 5  J 

(VIII.156) 
t =..- B 3 B ( k,, (sin + sin 8) + kZvi  (cosi-+3 cosp B) + O(l)* 

rfJ 42/2f I 
where j = 1, 2, 3 is the number of'the angular point; O ( 1 )  is the ~egular part 
of the stress component for r + 0; 

kl,j 
and k2 are coefficients of intensity , j 

(concentration) of stresses in the vicinity of the angular point, which were 
found1 from the equation 

~ F C O S ~  - k2,j v'? sin $- + 0 (1) = 4Rdi (zi)7 

where @.(z.) is a function equal to 
3 J 

related to the local system of polar coordinates (r, B ) ,  with the origin at the 
angular point 0 . z = re1@. This function can be represented in the form 

jy j 

where j = 1, 2, 3...; L =reiB; 5. = P  eih; r 4 n ; p 1  
j 3 1  ' 'oj 

is the affix /599 

~ - ~ 

'see V. V. Panasyuk, L. T. Berezhnitskiy [I], Si, Paris, Erdogan [I]. 



of the origin of the polar coordinate system in the plane z, and 9 .  is the 
3 

cusp angle of the polar axis of this system relative to the Ox axis. 

Thus, by using formulas (VIII.153), (VIII.157) and (VIII.158), we can 
find the values of components k and k (j= 1, 2, 3, ...) for an elastic 

1 ,j 2,j 
plane (plate) with a hypocycloidal hole (in particular, with a rectilinear 
crack) under biaxial tension (Figures VIII.24 and VIII.25). 

By way of examples, we will consider the following problems: 1) the case 
of a rectilinear cavity (crack) and 2) the case of a hole in the form of a 
hypocycloid with three vertices. 

For the first problem (Figure VIII.24) it is necessary to assume in 
formulas (VIII. 153) that n = 1. In this case formulas (VIII.153) will acquire 
simple form and in accordance with expressions (VIII.157) and (VIII.158), we 
will obtain 

kl.l = p f i  (sin2 a + q, cos2 a )  ( 1  = a ) ,  

'2.1 = p (1 - q,) 1/i sin a cos a (lo = q / p ) ,  

where 2 is the half length of the crack (slit). 

For the second problem (Figure VIII.25) it is necessary to assume in 
formulas (VIII. 147) and (VIII. 153) that n = 2: 

Hence, and on the basis of formula '(VIII.158), we obtain 

where j = 1, 2, 3. 

By using formula (VIII.161) and expression (VIII.152), we obtain 

(VIII. 161) 



By substituting the function (VI11.162) into equation (VIII.157) and 
comparing coefficients for identical harmonics, we obtain 

pzi 
kt , /  = 3 [P + Q - @ - (I) cos (2a + * 

m 
kg,/ = 3 ( p  - q) sin (2a + ei), 

where angles J (j = 1, 2, 3) have, for vertices 01, O2 and 0 respectively, 
j 3 ' 

the following values: J = 0, 9 = 2/3n and J3 = 2/3 n. 1 2 

Determination o f  Limit Load. Let external forces p and q, applied at 
infinitely distant points of a plate with a hypocycloidal hole (Figure VIII.25) /600 
increase monotonically in proportion to some parameter. We will determine the 
values of limit loads p = p, and q = q, (q/p = no, no = const), i.e., external 

stresses p, and q, whereupon it is possible for a rupture crack to develop 
(spread) from the angular points of the given hole. 

To determine the magnitude of stresses p, and q, for an elastic plate 
weakened by a hole with angular cusp points, we obtain the following equations: 

lim K 
r-o { f i n &  $,. P,,. fb)) = ;i . (VIII.164) 

Here j = 1, 2, 3 is the number of the angular points; K is the coupling modu- 
lus', which is expressed through Young's modulus E, Poisson's ratio v and 
effective surface energy y of the material of the plate as follows: 

- - - 
K =  1/%: for plane deformation and K == for the generalized plane stress 

state; 

for k1.i > 0, 

where tfplus" corresponds to the values k < 0 and "minus" to the values 
2,j 

k2, j 
> 0; the parameter nj = k2, j/kl, j, 

'see G. I. Barenblatt [I]. 
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By using equations (VIII.164), (VIII.165) and expressions (VIII.159), 
(VIII.163), we can determine the magnitude of limit stresses for a plate con- 
taining a sharp-pointed slit (Figure.VIII.24): 

here 

where the values of angles 6, are defined by formulas [VII1.165), if we substi- 
tute in them 

kZI ( 1  - qo) sin a cos a 
n / = - =  

klJ sin2a + qo cosZ a ' 

the coefficients k and k are defined by formulas (VIII.159). 
1,1 2,l 

For a plate with a hole in the form of a hypocycloid with three vertices - /601 
(Figure VIII.25), on the basis of equations (VIII.164), (VIII.165) and equali- 
ties (VIII.163), we find 

(VIII .167) 

where 
3 

f l b . % . B o . v , ) = 6 .  ~ ( l l  + l b - ( l - r b ) ~ ~ ( 2 a + ~ j ) ] ( 3 c o s ~ + c ~ s i i p ~ ) -  

B 3 -' - ~ ( l - ~ s i n ( 2 a  + 6 , ) ( s i n $ + s i n y $ ) )  (VIII .167) 

and the parameter 6, is defined by 'formulas (VIII. 165) and (VIII .163) . 
Diagram of  L i m i t  S t r e s s e s .  If the parameters no, a and a are given, then, 

on the basis of formulas (VIII.166) or (VIII.167), we can calculate the magni- 
tude of limit stresses p = p, and q = q, in each specific. case. However, it 



i s  b e t t e r  t o  c o n s t r u c t ,  on t h e  b a s i s  of  t h e s e  formulas,  t h e  diagrams of  l i m i t  
( i n  t h e  sense o f  s t r e n g t h )  s t r e s s e s  f o r  a  body subjec ted  t o  t h e  p lane  b i a x i a l  
s t r e s s  s t a t e .  

Before cons t ruc t ing  such diagrams, we w i l l  no t e  t h e  fol lowing.  The 
rup tu re  of  b r i t t l e  bodies ,  a s  we know, i s  r e l a t e d  t o  t h e  development of  fo rces  
dur ing  t h e  process  of  t h e i r  deformation, under which d e f e c t s  of t h e  sharp-  
poin ted  cavi ty-crack  type  go i n t o  t h e  s t a t e  of  l i m i t  equi l ibr ium and, conse- 
quent ly ,  dur ing  small  p e r t u r b a t i o n s  of  t h e  f i e l d  o f  e x t e r n a l  s t r e s s e s ,  it i s  
poss ib l e  f o r  them t o  spread through t h e  c r o s s  s e c t i o n  of t h e  body. To d e t e r -  
mine t h e  condi t ions  of such a  s t a t e  we can use  formulas of t h e  type  (VIII.166) 
o r  (VIII .  167) .  

Actual ly,  we w i l l  assume t h a t  a b r i t t l e  body conta ins  i n t e r n a l  d e f e c t s  of  
t h e  sharp-pointed cavi ty-crack  type ,  t h e  c h a r a c t e r i s t i c  l i n e a r  dimension of  
which i s  equal  t o  a ,  and such de fec t s  a r e  va r ious ly  o r i en t ed  and s c a t t e r e d  
through t h e  e n t i r e  volume of  t h e  body such t h a t  t hey  can be assumed t o  be 
i s o l a t e d  from each o t h e r .  If such a  body is subjec ted  t o  t h e  p lane  s t r e s s  
s t a t e  due t o  t h e  e f f e c t  of  monotonically i nc reas ing  ( p r i n c i p a l )  s t r e s s e s  p and 
q (q/p = qO) ,  then,  among t h e  va r ious ly  o r i en t ed  i s o l a t e d  d e f e c t s  - -  cracks ,  

w i th in  t h e  deformed body, t h e r e  should e x i s t  such ( t h e  most dangerous f o r  t h e  
given q ) o r i e n t a t i o n  f o r  which l i m i t  s t r e s s e s  p = and q = qimin) 

0 
acquire t h e i r  minimal va lues  i n  comparison wi th  t h e  l i m i t  va lues  o f  p, and q, 
f o r  d i f f e r e n t  o r i e n t a t i o n  of  such d e f e c t s .  

(min) A s  e x t e r n a l  s t r e s s e s  p and q achieve t h e  values p, ("in) in the 
and q* 

given b r i t t l e  body conta in ing  sharp-pointed c rack - l ike  c a v i t i e s ,  it becomes 
p o s s i b l e  f o r  t h e  given d e f e c t  t o  develop (spread) i n  a more dangerous o r i e n t a -  
t i o n .  This  s i g n i f i e s  t h a t  when t h e  ex t e rna l  s t r e s s e s  exceed somewhat t h e  

(min) va lues  p, and q, (mini, t h e  body may be ruptured .  Therefore,  from t h e  p o i n t  
o f  view o f  t h e  s t r e n g t h  of  a  b r i t t l e  body, weakened by d e f e c t s  o f  t h e  sharp-  /602 - 

(min) poin ted  c rack-cavi ty  type  (o r  sharp-pointed ho le s )  s t r e s s e s  p, (min) 
and q* 

a r e  t h e  maximum t o l e r a b l e  s t r e s s e s  under t h e  condi t ions  of  t h e  p lane  s t r e s s  
s t a t e  of  t h e  body. Consequently, t h e  curve t h a t  determines t h e  change of  

(min) s t r e s s e s  p, and q, (min) a s  a  func t ion  of  t h e  parameter q i . e . ,  a s  a  func- 0 ' 
t i o n  o f  t h e  form o f  t h e  p lane  s t r e s s  s t a t e ,  w i l l  r ep re sen t  t h e  diagram of t h e  
l i m i t  ( t o l e r a b l e  from t h e  p o i n t  of  view o f  t h e  s t r e n g t h  o f  t h e  body) s t r e s s e s .  

The o r i e n t a t i o n  of  t h e  d e f e c t  f o r  which, i n  accordance with formulas 
(VIII.167) o r  (VIII .166) ,  we o b t a i n  t h e  minimum s t r e s s e s  p, and q,, it is  

def ined  by some angle  a = a, (OG a < ~ r / 2 ) .  For such a  value of  angle  a = a,, 

t h e  func t ion  f ( a ,  q, B,, 8.) acqu i r e s  ( f o r  t h e  given q ) i t s  maximal va lue  i n  
3 0 

comparison with t h e  o t h e r  va lues  of  angle  a (0 9 a 9 ~ / 2 ) .  By cons t ruc t ing  t h e  



graph of change, for instance, of the function fl(a, qO, B*,  0) for a given r), 

where a acquires the values in the range 0 9  a < ~ r / 2 ,  we may determine the 
angle a = a,. Then, by using formulas (VII1.167), we can find the e~pressions 

mln) - I R f (a,, qo, $. , 0). P!~ ' " '  = R, f ,  (a,,l&. B.. 01, 
' - 1 0 1 ,  (VIII. 168: 

where the function f(a, q f3,, 0) is represented by formula (VIII.167) for 
9. = 0. 

0' 
J 

In the partial case where the body is subjected to unaxial tension by 
stresses p (q = 0, = 0), we find, on the basis of formulas (VIII.167), 

0 

p y i n l  = ~ , f ,  (a,, 0) = 1.03R1; q. = O- (VIII. 169 

The value R1 in formulas (VIII.167)-(VI11.169) is 

where a is the characteristic linear dimension of a sharp-pointed crack cavit: 
of a hypocycloidal hole in the structure of the given body. Since the value 
for the given material, under the given conditions (temperature, surrounding 
medium, character of heterogeneity of structure, etc) is a constant value, 
then, under the very same conditions, the value R can also be assumed to be 1 
constant. When a brittle body containing the given type of defect is under 

represents the average technical strength uniaxial tension, the stress p, 
a of the given material under uniaxial tension. Thus 
t 

On the basis of the above examples, we may calculate, using formulas 
( I  6 ,  (VIII .168) and (VIII .170), the value /ut and qimln)/~t for 

several values of the parameter no (-a< qO < a), and then, on the basis of 
these data, we may construct the diagram of limit (rupture) stresses for the 
case when the body -- plate with defects of the sharp-pointed crack cavity type, - /603 
is in the plane stress state. 

By calculating on the basis of formulas (VIII.167) the dimensionless 
(min) stresses p, /ot and q!min)/o for the values of the parameter q (-m 

t 0 <no 
< m), we can construct the diagram of limit (rupture) stresses for the brittle 
rupture of a body with defects of the hypocycloidal type, where the latter is 
subjected to the biaxial plane stress state. In particular, for the case when 



t h e  body i s  weakened by sharp-pointed holes i n  the  form of hypocycloids with 
t h r e e  ve r t i ces1 ,  t h e  diagram of l i m i t  s t r e s s e s ,  with respect  t o  s t r eng th ,  
constructed by formulas (VIII.167), i s  represented by curve 1 i n  Figure VI11.26. 
We w i l l  note here  t h a t  f o r  a body weakened by de fec t s  of the  hypocycloidal 
hole  type with th ree  v e r t i c e s ,  t h e  values R and i n  formula (VIII.167) 1 
d i f f e r s ,  genera l ly  speaking, from t h e  analogous values f o r  a body containing 
de fec t s  of the  narrow crack cav i ty  type.  

Comparison of Results of Theory and Experiment. The quest ion of t h e  
choice of the  c r i t e r i o n  of s t r eng th  during the  b r i t t l e  rupture  of s o l i d  bodies 
located i n  the  b i a x i a l  s t r e s s  s t a t e  has not ye t  found f i n a l  so lu t ion .  The 
hypothesis of maximum normal s t r e s s e s  and G r i f f i t h ' s  theory3 must be regarded 
a s  the  most common c r i t e r i a  of s t rength .  

G r i f f i t h l s  theory of rupture  of a b r i t t l e  body under b i a x i a l  tension- 
compression by p r inc ipa l  s t r e s s e s  p and q i s  based, a s  we know, on the  analys is  
of  e l a s t i c  s t r e s s e s  near  an elongated e l l i p t i c a l  hole i n  a p l a t e  subjected t o  
the  plane s t r e s s  s t a t e .  Here i t  i s  assumed t h a t  t h e  radius  of curvature of 
such a hole a t  i t s  ver tex  i s  small,  but  f i n i t e .  Moreover, it i s  assumed t h a t  
a r e a l  b r i t t l e  body a l s o  contains c a v i t i e s  of a l l  o r i e n t a t i o n s ,  and rupture  of 
the  body w i l l  occur when the  g rea tes t  tension s t r e s s  on the  contour o f  the  most 
dangerously or iented  cav i ty  reaches the  magnitude at, the  value of b r i t t l e  

s t r eng th  of the  mater ia l .  In  h i s  works [ I ,  21 A .  A .  G r i f f i t h  formulas t h e  
following c r i t e r i a  of  b r i t t l e  rupture  of  a body i n  the  plane s t r e s s  s t a t e :  
1) i f  3p + q > 0, rupture  occurs when p = at ;  2)  i f  3p + q < 0,  rupture  occurs 

* 
when (p - q)' + 8ut(p + q) = 0. The graphic i n t e r p r e t a t i o n  of these  equations 

i s  shown i n  Figure VIII.26 i n  t h e  form of curve 2 .  The condit ions of b r i t t l e  
rupture  i n  accordance with the  hyp0 thes . i~  of  maximum normal s t r e s s e s ,  a r e  
expressed through the  e q u a l i t i e s  p = at  o r  q = ut ( l i n e  3 ) .  

We w i l l  compare the  diagrams of b r i t t l e  rupture  shown i n  Figure VIII.26 
with experimental da ta  obtained during the  t e s t i n g  of b r i t t l e  bodies. F i r s t  
l e t  us consider  some experimental r e s u l t s  obtained4 during the  rupture  of 
tubu la r  c a s t  i r o n  samples subjected t o  t h e  plane s t r e s s  s t a t e ,  which was 
crea ted  by t h e  app l i ca t ion  of  a x i a l  tension-compression q and i n t e r n a l  pressure - /604 
p i n  various r a t i o s  q/p = 

"0 .  

A s  we know, c a s t  i r o n  i s  the  mater ia l  with r e l a t i v e l y  l imi ted  p l a s t i c i t y ,  
and during a c e r t a i n  amount of thermal treatment numerous ( a r b i t r a r i l y  or iented  
through the  volume of t h e  body) graphi te  inc lus ions  e x i s t  within i t s  s t r u c t u r e  
i n  t h e  form of t h i n  p l a t e s .  The l a t t e r  possess neg l ig ib ly  low s t r eng th  t o  

Cmin) and see  V.  V .  Panasyuk [4] ,  where the  corresponding values of s t r e s s e s  p, 

q y i n )  a r e  presented. 
2See N .  N .  Davidenkov and A.  N. Stavrogin [ I ] .  
3 ~ e e  A .  A .  G r i f f i t h  [ 2 ] .  
4 ~ e e  J. Cornet and R.  C. Grassi [ I ] .  



rup tu re  i n  comparison with t h e  analogous s t r e n g t h  of 
t h e  f e r r i t e  base o f  c a s t  i r o n ,  and conseqnet ly,  they  
can be regarded ( i n  t h e  f i r s t  approximation) a s  
d e f e c t s  of  t h e  sharp-pointed crack c a v i t y  type  i n  t h e  
b a s i c  s t r u c t u r e  of  t he  m a t e r i a l .  Thus, c a s t  i r o n s  
with laminar g raph i t e  i nc lus ions  r ep re sen t  ( i n  t h e  
f i r s t  approximation) a  l i keness  of a  r e a l  o b j e c t  t h a t  
s a t i s f i e s  t h e  condi t ions  of t he  model of  an i d e a l l y  
e l a s t i c  body, formulate.' above, with sharp-pointed 
crack c a v i t i e s .  Therefore,  t he  r e s u l t s  of t h e  t e s t i n g  
of  such c a s t  i r o n  samples under t h e  p lane  s t r e s s  s t a t e  
a r e  q u i t e  important from t h e  po in t  of  view of  compari- 
son of  t h e  r e s u l t s  of  theory  and experiment. 

Figure VIII.26 shows t h e  r e s u l t s  of t e s t s  
conducted by J. Cornet and R .  C .  Grassi [l] on t h e  
rup tu re  o f  t u b u l a r  c a s t  i r o n  samples i n  t h e  p lane  
s t r e s s  s t a t e ,  where t h e  c i r c l e s  p e r t a i n  t o  samples 
made of modified c a s t  i r o n ,  f o r  which oe = 345.3 .10~ 

n/k2,  and t h e  t r i a n g l e s  and squares  p e r t a i n  t o  
samples made of  gray c a s t  i r o n s ,  t h e  t echn ica l  
s t r e n g t h s  of  which a r e ,  r e s p e c t i v e l y ,  228.60 106and 
185.4. l o 6  n/m2. A s  we see ,  t h e  r e s u l t s  o f  t h e  exper i -  
ments agree q u i t e  wel l  with t h e  r e s u l t s  of  theory ,  
i . e . ,  with diagram 1 on t h i s  f i g u r e .  For such 
m a t e r i a l s ,  t h e  r a t i o  of t h e  magnitude of t h e  t e c h n i c a l  
s t r e n g t h  during un iax ia l  t ens ion  (k = oC/%),  

e s t a b l i s h e d  by t h e  t e s t s  of J .  Cornet and R .  C .  Grassi  
[ I ] ,  v a r i e s  wi th in  t h e  range 2.5-3.3.  The t h e o r e t i c a l  
c o e f f i c i e n t  k  from diagram 1  i s  2 .7 ,  and t h e  k  calcu-  
l a t e d  on t h e  b a s i s  of  G r i f f i t h ' s  theory  i s  8.  

Figure VIII.26 r e p r e s e n t s ,  i n  t h e  form of  c ros ses  
and half-shaded boxes, t h e  experimental d a t a  obtained 
by N .  N .  Davidenkov and A.  N .  Stavrogin [l] during 

.22P t e s t s  f o r  t h e  rup tu re  of  t u b u l a r  gypsum and g l a s s  

Figure ~111.26. samples i n  t h e  p lane  s t r e s s  s t a t e .  A s  we see ,  t hese  
d a t a  agree  q u i t e  s a t i s f a c t o r i l y  wi th  t h e  t h e o r e t i c a l  
diagrams of rup tu re  i n  t h e  f i r s t  quadrant ,  i . e . ,  when - /605 

q >  0  and p > 0,  and d e v i a t e  from them i n  t h e  second quadrant ,  i . e . ,  when 
q < 0 and p  > 0. Here t h e  rup tu re  of  t h e  g l a s s  samples i n  t h e  second quadrant 
i s  b e s t  descr ibed  by t h e  diagram of  l a r g e  normal s t r e s s e s  (although i n  t h i s  
ca se  t h e  mechanism o f  rup tu re  under condi t ions  c l o s e  t o  pure compression i s  no t  
c l e a r ) ,  and t h e  rup tu re  of gypsum samples i n  t h e  second quadrant f a l l s  w i th in  
t h e  range between diagrams 1 and 2  i n  Figure VIII.26. According t o  t h e  d a t a  of 
N. N.  Davidenkov and A .  N .  Stavrogin [ I ] ,  ot = 4.1- l o 6  n/m2 and k  = 7.1  f o r  

g)lpsm samples; f o r  g l a s s  samples a = 39.2- lo6  n/m2 and k  = 22 .  t 



Comparison of  t h e  r e s u l t s  of theory  and experiment show t h a t  t h e  genera l  
p r i n c i p l e s  of rup tu re  of b r i t t l e  m a t e r i a l s  i n  t h e  p lane  s t r e s s  s t a t e ,  as 
e s t a b l i s h e d  t h e o r e t i c a l l y  on t h e  b a s i s  of t h e  model o f  an i d e a l l y  e l a s t i c  body 
wi th  sharp-pointed crack c a v i t i e s ,  a r e  q u i t e  s a t i s f a c t o r i l y  v e r i f i e d  expe r i -  
mental ly .  Moreover, f o r  b r i t t l e  m a t e r i a l s  with c l e a r l y  expressed d e f e c t i v e  
s t r u c t u r e ,  i n  t h e  form of crack s l i t s ,  as i s  t h e  case ,  f o r  i n s t ance ,  o f  c a s t  
i r o n s  with laminar g raph i t e  i nc lus ions  ( i n  t h e  f i r s t  approximation),  t h e o r e t -  
i c a l  diagram 1 of rup tu re  (Figure VIII.26) agrees  wi th  t h e  experimental d a t a  
i n  t h e  q u a n t i t a t i v e  sense a s  we l l ,  cons ider ing  t h a t  t h i s  diagram c h a r a c t e r i z e s  
t h e  s t a t e  of i n i t i a l  rup tu re  of a body with t h e  more dangerous de fec t s  of  t h e  
sharp-pointed crack c a v i t y .  Therefore diagram 1 can be regarded a s  t h e  lower 
bound of s t r e n g t h  of  a b r i t t l e  body i n  t h e  p lane  s t r e s s  s t a t e .  

The d i s t a n c e s  between t h e  t h e o r e t i c a l  (diagram 1, Figure VIII .26)  and 
experimental va lues  of s t r e n g t h  of  a b r i t t l e  body of  t h e  gypsum and g l a s s  types  
where such bodies  a r e  subjec ted  t o  t h e  p lane  s t r e s s  s t a t e  f o r  q 6  0 and p >  0,  
a r e  probably a t t r i b u t e d  t o  t h e  e f f e c t  of  t h e  f o r c e s  of  f r i c t i o n  between t h e  
con tac t ing  edges of  t h e  spreading d e f e c t ,  and i n  c e r t a i n  ca ses ,  t o  t h e  shape 
o f  t h e  v e r t e x  of  such d e f e c t s .  Considerat ion o f  t h e s e  f a c t o r s  w i l l  obviously 
make it p o s s i b l e  t o  cons t ruc t  more un ive r sa l  diagrams of t h e  l i m i t  s t a t e  o f  
b r i t t l e  bodies  under p lane  tension-compression, and t o  desc r ibe  more completely 
t h e  mechanism of  rup tu re  of  b r i t t l e  bodies  of  va r ious  physico-chemical n a t u r e .  
Furthermore, on t h e  b a s i s  of t h e  comparisons of  t h e  r e s u l t s  of  theory  and 
experiment presented  he re in ,  we may conclude t h a t  t h e  t h e o r e t i c a l  formulat ion 
developed i n  t h i s  s e c t i o n  desc r ibes  t h e  behavior  of  b r i t t l e  bodies  o f  varying 
n a t u r e  under t h e  condi t ions  of  t h e  p l ane  s t r e s s  s t a t e  i n  agreement wi th  t h e  
experiment,  i f  t h e  p r i n c i p a l  s t r e s s e s  a r e  p > 0 and q > 0. In t h i s  case  we 
o b t a i n  good v e r i f i c a t i o n  of  t h e  f a c t  t h a t  t h e  rup tu re  of  b r i t t l e  bodies  is  
c o n t r o l l e d  by t h e  development of d e f e c t s  of  t h e  sharp-pointed crack c a v i t y  
type  i n  t h e  s t r u c t u r e  of  t h e  deformed ma te r i a l .  I t  i s  c h a r a c t e r i s t i c  t h a t  i n  
t h e  spec i f i ed  range of  t h e  p lane  s t r e s s  s t a t e  ( p >  0;  q >  O), t h e  diagrams 
e s t a b l i s h e d  f o r  t h e  r u p t u r e  of b r i t t l e  bodies  co inc ides ,  f o r  a l l  p r a c t i c a l  
purposes,  with t h e  widely known hypothesis  of  maximum normal ( tens ion)  s t r e s s e s 1  
used i n  engineer ing  p r a c t i c e .  

' see  a l s o  V .  I .  Mossakovskiy, M. T. Rybka [ I ] .  
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CHAPTER IX. STRESS DISTRIBUTION NEAR HOLES IN GENERAL 
CASE OF PLANE NONLINEAR PROBLEM OF ELASTICITY THEORY 

Abstract. This chapter is devoted to the formulation of the 
general nonllnear plane problem of the theory of elasticlty. 
Two methods of solutions are discussed. The first method 
is based on the works of Adkins, Green and Zerna. The prin- 
cipal resolving equation systems are presented for the plane 
strain and the plane stress state. The second method is 
based on the works of L. A. Tolokonnikov. The formulation 
in complex variables is given of the problem on the stress 
concentration around holes and the solution of some parti- 
cular problems is obtained. 

Much attention has been focused during the last 12 years on the ;lane /608 - 
nonlinear problem of elasticity theory in the general statement, i.e., non- 
linear physically and geometrically. 

Among the first works pertaining to this problem are the foreign studies 
of J. E. Adkins, A. E. Green, R. T. Shield [I], J. E. Adkins, A. E. Green, 
G. G. Nicholas [I], A. E. Green and W. Zerna [I], J. E. Adkins, A. E. Green [I]. 
Later, this problem was analyzed in national literature in the works of G. N. 
Savin and Yu. I. Koyfman [l], Yu. I. Koyfman [l-51. 

The basis of the statement of the problems of A. E. Green, J. E. Adkins, 
G. F. Smith, R. S. Rivlin [I] and their successors is the possibility of 
representing stress potential in an isotropic body as the function of alge- 
braic invariance of the deformation tensor. In turning to the solution of 
partial problems, the potential is considered to be a polynomial of some degree 
in relation to the algebraic invariance. Thus, the experimental problem of 
determining the mechanical properties of a material reduces to the determination 
of certain constants. 

This general statement of problems resulted in such a complex system of 
resolution equations that their solution by a single method turned out to be 
the approximate small parameter method, or perturbation method, which makes it 
possible to construct theoretically the approximations for any order on the 
basis of classical solutions of single-type problems as approximations of the 
first order. 

There is also a somewhat different general statement of problems of 
nonlinear elasticity theory (plane deformation); this approach is used in the 
works of L. A. Tolokonnikov [l-51 and is developed by V. G. Gromov 11-41, G. S. 
Taras'yev and L. A. Tolokonnikov [2] and others. In this statement, the 
deformation invariants that are suitable for the processing of experimental 
data which permit the determination of the properties of change in volume and 
properties of change in shape of an element of the body, are singled out. It 
is further assumed that the mechanical properties of the body are defined by 



curves that represent the laws of change in volume. The method of series 
approximations remains, as in the first statement, the uniquely suitable 
method of solving the resolution equation. 

The solutions of several problems concerning stress concentration near a 
round hole, or hole of different shape, show that the second approximation, 
following the classical solution, is the effect primarily of geometrical non- 
linearity, i.e., chan e in position and shape of the elements of the body. - /609 
Physical nonlinearit? is expressed by approximations of an even higher order. 

We will discuss below certain results of analyses of problems of stress 
concentration in the above-mentioned statements. 

51. Basic Equations of Nonlinear Plane Elasticity Theory 

Some Relations of Elasticity Theory i n  Curvilinear Coordinates. The 
location of points of a three-dimensional body in an initial undeformed and 
unstressed state at the moment of time t = 0 is defined by their coordinates2 
i x (i = 1, 2, 3) in the rectangular Cartesian coordinate system, or by arbi- 

i i 
trary curvilinear coordinates 0 , related to x by relations 

(IX. 1) 

The location of points of a deformed body is defined by Cartesian 
i i coordinates y , which are functions of initial coordinates x and time t: 

(IX. 2) 

i We will assume that curvilinear aordinate system 8 is "frozen" to the 
examined body and is deformed along with it. Due to deformation of the body, 

i the curvilinear coordinate system 8 of the initial state is transformed to 
i curvilinear coordinate system 0 of the &formed state at moment of time t. 

The covariant and contravariant metric tensor components in coordinate system 
i 8 of the initial state will be denoted, respectively, through gik, g ik 

'The analysis of the effect of physical nonlinearity of a material on stress 
distribution near holes is discussed in a special (IV) chapter of this mono- 
graph . 

2 The index i (i = 1, 2, 3) of coordinates x, 0 and y, as we know, can be placed 
either above or below. However, due to the fact that the differentials of 
these coordinates are transformed as contravariant components of the corres- 
ponding vector, the indices of these coordinates are used as superscripts. We 
will obey this law in the following discussion. 



(i, k = 1, 2, 33, and the analogous values in the coordinate system of the 

deformed state at moment of time t will be denoted through Gik, G ~ ~ ,  whereupon 

det (g,,) := g, det (G,,) L' G. 

The function of the specific energy of deformation for a homogeneous and 
isotropic elastic material in the nondeformed state is a function of the three 
algebraic deformation invariants I I# 5 ,  13, i.e., 

w w ( I i p I s ,  13). (IX. 3) 

where 

(IX. 4) 

In this case the physical law of deformation of an ideally elastic material 
can be written in the following form: 

Here 

(IX. 5) 

(IX. 6) 

i j 
T are contravariant stress tensor components, calculated per unit area of 
the deformed body and related to the curvilinear coordinate system of the 
deformed state. 

The equilibrium equations in the absence of volumetric forces can be 
represented in one of the following1 forms: 

where 

(IX .7) 

 o or brevity we will denote the partial derivatives with respect to the 
coordinates by the comma. 



-t 
G .  a r e  vectors  of  t h e  covariant  base of the  deformed s t a t e ;  Vi is  t h e  covar- 

3 i 
i a n t  de r iva t ive  with respect  t o  coordinates 0 of t h e  deformed s t a t e .  

In plane nonlinear  e l a s t i c i t y  theory,  a s  i n  i ts  l i n e a r  v a r i a n t ,  b a s i c a l l y  
two types o f  equil ibrium of an e l a s t i c  body a r e  analyzed - -  plane deformation 
and plane s t r e s s  s t a t e .  

Plane S t r e s s  S ta te .  We w i l l  assume t h a t  the  body under examination 
represents  i n  the  nondeformed s t a t e  a t h i n  p l a t e  made of a homogeneous i s o t r o -  
p i c  ma te r i a l ,  bounded by planes x3  = kho. This p l a t e  is subjected t o  g rea t  

deformations t h a t  a r e  symmetrical with respect  t o  the  middle plane x 3  = 0, 
which becomes middle plane y 3  = 0 of  t h e  deformed body. Here, due t o  deforma- 
t i o n ,  the  f l a t  bases of  p l a t e  x 3  = kho a r e  transformed i n t o  t h e  surfaces 

yS = f h bl, Y'). (IX. 8) 

Considering deformation t o  be homogeneous through thickness,  such a form of 
deformation of  a t h i n  p l a t e  can be described approximately by the  following 
r e l a t i o n s :  

C1 a 
where h i s  a function of the  y (or  x ) coordinates.  

(IX. 9) 

We w i l l  introduce f ixed coordinate system ei such t h a t  i n  the  deformed 
s t a t e  

3 3 
= ya (6'. b2, t ) ,  y = 6 (a = 1 ,  2). 

(IX. 10) 

By s e l e c t i n g  the  ei coordinates i n  t h i s  manner, the  metric  tensor  components 
of the  deformed s t a t e  w i l l  acquire t h e  form 

(IX. 11) 

where A a r e  the  covariant  and contravar iant  components, respect ive ly ,  of 
aBJ 

t h e m e t r i c  tensor  and a r e  functions of the  ea coordinates i n  the  middle p l a t e  

y3 = 0 of  t h e  deformed body. 

We w i l l  wr i t e  the  formula f o r  t h e  vector  3 of s t r e s s e s  ac t ing  on the  
bases of the  p l a t e :  h 



The vector of stresses acting on the surface, with normal unit vector 
+ -+ i 
n = n.G , is expressed through the stress tensor components by the formula 

1 

-b [I-' t = n f r  G,. (Ix. 12) 

-b 
The ni (i = 1, 2, 3) components of the unit vector n of the normal to 

surface 

will have the form 

(n1, n*, 5 )  = k, (- h.1, - h.2, I),  

where 

1 

!a a 
2 ah(e1* es) . &, = ( ~ % , h ~  + 1)- - dBa ' (a, f! -- 1, 2). 

Consequently, we obtain from formula (IX.12) 

-+ a 3+ t,, = e Ga + e G, (a = 1, 2); 

here 

(IX. 13) 

(IX. 14) 

(IX. 15) 

-+ 
If the bases of the plate are free of external forces, then th = 0. 

Consequently 

By discarding P3 from relations (IX.16) we obtain 

(IX. 16) 



when 

For a thin plate we may assume that the value h is small; hence, as 
,a 

follws from formula (IX.l7), the r33 component on the bases of the plate is a 

magnitude of the second order of smallness in comparison with the raB compo- 
nents. Considering this fact and the symmetrical character of deformation, 
we may-assume, with a sufficient degree accuracy, that 

(IX. 18) 

in the entire plate. 

The case of elastic equilibrium of a thin plate subjected to deformations 
that are symmetrical with respect to the middle plane, when the bases of the 

plate are free of external load, and when the stress tensor component T~~ is 
equal to zero in the entire plate, will be defined as the plane stress state. 

The equilibrium equations of the plane stress state in the absence of 
volumetric forces will be of the form 

where the integral values of the stress tensor components are 

(IX. 19) 

(IX. 20) 

From equilibrium equations (IX.19) we find the Airy stress function 
1 2  U(O , 0 ) which is related to stress components naB as follows: 

(IX. 21) 



(IX. 22) 

where 

(IX. 23) 

The principal vector 3 and principal moment ih of the forces acting on an /613 - 
5 element of an arbitrary profile in the plane y = 0 can also be expressed 

through stress function U: 

(IX. 24) 

+ P 
where 3 and M are arbitrary constant vectors; R are components of the vec- 

0 0 
tor radius of the points of the profile. 

If some curve AB is the boundary curve of the b dy and is free of 
external load, then it follows from the formula for f that the conditions 

U.1 = U,p = 0. (IX. 25) 

will be satisfied at all points of the curve. 

Let us proceed to determine the resolution equation system of the plane 
stress state. We see from formulas (IX.9) and (IX.lO) that Cartesian coordi- 

i i nates x are related to curvilinear coordinates 0 of the nondeformed state: 

(IX. 26) 

Then the metric tensor components of the nondeformed state are 



1 
g, - a,, ga = F'  ga3 = 0, d = 0, 

&?*. = a@, g33*3*2, go3=01 (IX. 27) 
a g = -  1, * a = la*I (a, B =  1 1  21, 

where a aaB are the metric tensor components of the curvilinear coordinate "8' 
system 0 in the plane x3 = 0 of the nondeformed body. 

By substituting into formulas (IX.4) the expressions for the metric tensor 
components of the initial and final states (IX.27) and (IX.11), we find that 
the deformation invariants are 

A I, = A' + a * ~ ~ ,  II = (h2aoBd@ + 1) 7 , 

A (IX .28) 
r*=aa-.  @=O, a '  

where 

The ~~j components in (IX.6) will have the form 

B* = a2a@ + A@-$ , B ~ = A ~ ( ( ~ - A ~ ) ,  d=0.  (IX. 29) 

From linear elasticity law (IX.S), recalling relations (IX.11), (IX.27) - /614 
and (IX.29), we obtain 

(IX. 30) 

(IX .31) 

where 

(IX. 32) 



The value P can be discarded from relation (IX.30) by using equation 
(IX.31) : 

(IX. 33) 

We find from (IX.20) 

(IX. 34) 

By substituting the naB components through stress function U in accordance 

with formulas ( 1  2 1 ,  and raB components in accordance with formulas (IX. 33), 
we convert relations (IX.34) to the form 

V# = %aa + KA* (a, p = 1,2), (IX. 35) 

where 

(IX. 36) 

(IX .37) 

Equations (IX.35), together with equation (IX.31), form the resolution equation 
system of the plane stress state, from which stress function U, two components 
u and v of displacement in the middle plane and the X function are found. 

In deriving the resolution system, we may use, instead of invariants Ik, 

deformation tensor invariants Jk, which are related to Ik by the relations 

I ,  . / % = I 2 - 2 I l + 3 ,  J ~ = I , - I ~ + I I - I .  (IX. 38) 

Then the resolution equation system can be represented as follows: 

(IX. 39) 



where 

(IX. 40) 

(IX.41) 

In deriving these expressions, the value P is retained in formulas (IX.30) and 
(IX. 31) . 

We will introduce the complex coordinates of the nondeformed and deformed 
states: 

(IX. 42) 

a 
If we denote the displacement components along the x (a = 1, 2) axis 

through u and v, the relationship between the (z, z) and (n, $ coordinates 
can be represented in the form 

(IX. 43) 

where D = u + iv is the complex displacement function. 

a - 
Suppose the 9 coordinates in a deformed body coincide with the (z, z) 

coordinates: 

- 
1 1 = , 6% = z* = Z. (IX. 44) 

In this case the metric tensor components A aaB, af3 ' a"' will be of the 
f o m  

- 1 A,, = = 0. A,, = 3 , va = !- 
2 '  

(IX. 45) 

(IX. 46) 



The expressions for the invariants I and J will be the following: k k 

(IX. 47) 

1 (IX .48) J; = (" - 1) (1 + 4 - 7ii) 

Since the components A A"@ are constants, then Kristoffel 's symbols are "B' 
equal to zero and the covariant derivatives in the deformed body are converted 
to partial derivatives. Consequently, recalling relations (IX.45)-(IX.48), - 
the resolution equation system (IX.39) in complex coordinates (2, z) can be 
represented in the form 

(IX. 49) 

aw aw ao aD 1 4 ' J  - -  . -  
a u ( d l ,  dl, a< a~ - O* 

where H and K are defined by formulas (IX.40) and (IX.41). This system can-he 
used for determining the functions U, D and A. 

As follows from formulas - (IX.21)) the stress components related to com- 
plex coordinate system (2 ,  z) are: 

(IX. 50) 

In turn, the stress components that are related to Cartesian coordinate system 
a y , are also related to the naB components as follows: 

(IX .51) 



Consequently, - /617 

(IX. 52) 

11 22 12 By introducing the definitions a = a a = a o = T we find from x ' Y'  XY' 
formulas (IX. 50) and (IX. 52) 

(IX. 53) 

We will write, in complex coordinates, expressions (IX.24) for the 
principal vector and principal moment of forces. If we denote the components 
of principal - vector P along the ya axes through (X, Y), then, in coordinate 
system (z, z) , 

(IX .54) 

By comparing relations (IX. 24) and (IX. 54) recalling that fi = i/2, we 
find 

(IX. 55) 

Analogously, for the magnitude of the moments, we find from formula (IX.24) 

(IX .56) 

where C and C* are arbitrary constants. 
0 

Plane Deformation. If a body is deformed such that all of its points 
experience displacements that are parallel to' the plane x 3  = 0 and do not 
depend on x3, such deformation is called plane defdrmation. We will select 

the axes of the coordinate system such that the x3 and y3 axes will be 
parallel and the planes x 3  = 0 and y3 = 0 will coincide. Then plane deforma- 
tion will be described by the relations 

ya = ya (xl. xa, t). ty = 9. (IX. 57) 

We will introduce coordinate system €Ii: 



(IX. 58) 

i j 
Consequently, for stress tensor components T , we obtain, from deformation 
law (IX.5), the following expressions : 

(IX. 59) 

(IX. 60) 

Since, as follows from formulas (IX. 59) and (IX.60), the raB, T~~ components - /618 

depend only on the components in the plane y3 = 0, the equilibrium equa- 
tions in the absence of volumetric forces are converted to the form 

(IX. 61) 

As in the case of the plane stress state, we introduce stress function 
1 2 '  U(8 , 0 ), which satisfies these equations, whereupon 

vsU = €avehrw. (IX. 62) 

The expressions for the principal vector and principal moment of forces 

acting on an arbitrary arc in the y3 = 0 plane are defined by formulas (IX.55) 
and (IX.56). 

After replacing the raB components in the left hand sides of relations 
(IX.59) by the stress function, we obtain the resolution equation system for 
plane deformation, from which the stress function u(el, e2)  and displacement 
components in the plane are determined. 

In the complex coordinates of the deformed state, the resolution equation 
system in the case of plane deformation has the following form: 

(IX. 63) 

'~hese expressions can be found from the corresponding expressions for the 
case of the plane stress state when X = 1. 
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Integration of Resolution Systems (IX.49) and (IX.63). We will analyze 
the integration of resolution equation system (IX.49) for the plane stress 
state. The method of integration should be selected such that it will be 
possible to exploit to the fullest extent the results of classical (linear) 
theory. For this purpose we will use the method perturbation - theory (small 
parameter method) and represent the functions U(z, z) , D(z, F) , X(z,  F) in 
the following form1: 

(IX. 64) 

(IX. 65) 

(IX. 66) 

where E is the characteristic small parameter; OH is a constant, the numerical 
value of which will be specified below. 

- 
Since the functions D ( z ,  z) and X(z, z) are repfesented in the form of 

series with respect to parameter E, then, from formulas (IX.48), we find for 
invariants J k : 

Here 

and 

(IX. 67) 

(IX. 69) 

 he applicability of this method to the equations of nonlinear elasticity 
theory was discussed by F. Stoppeli [l, 21.  
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Resolution equation system (IX.49) and (IX.63) contains functions aW/aJ 
k ' 

which characterize the mechanical properties of the material. For the approxi- 
mate integration of the equation system, we will use the expansion of these 
functions into the Taylor series in the vicinity of the initial (nondeformed) 
state, i . e . ,  for Jk = 0. Recalling formulas (IX.67), this expansion can be 

represented in the form 

(IX. 70) 

where the symbol [ ] denotes the value of the function when its arguments 0 
have the null value. 

Since there are no stresses in the nondeformed, then 

(IX. 71) 

In linear elasticity theory, the Lame constants are given by the following 
formulas : 

The constant in (IX.64) will be defined as follows: 

(IX. 72) 

( I X .  73)  

By substituting expansions (IX.64)-(IX.70) into equation system (IX.49) and - /620 
equating the coefficients for identical degrees of E, we obtain 

(IX. 74) 



where 

(IX. 75) 

(IX. 76) 

(IX. 77) 

(IX. 78) 

(IX. 79) 

Thus, expressions (IX.76)-(IX.78) for the terms o f  the second order will 
include three new elastic material constants. 

(j 1 After integrating systems (IX.74) we find that the general solution U, , /621 
(j > Do , A:') of the homogeneous systems corresponding to systems (IX.74) has the 

following form1 : 

' B ~  discarding from the second and third equations of (IX.74) A:'), differen- 

tiating the ffrst equation for a2/az2, and the second for a2/azaz, and 

excluding the derivatives of  ~ f ) ,  it can be proved that 



- 
L$) (2, i) = iq(j) (2) -i- (2)  -+ x ( j )  (2) + 9) ( z ) ,  (IX. 80) 

- - 
06" ( z ,  3 = kq(I' (2) - zq(j"l (2) - $ ( j )  (4, (IX. 81) 

1 
A!!) (2, ;) = (k  - 3) [cJ(')' (2) f q~(')' ( I ) ] ,  (IX. 82)  

d ' ~ ( f l  
r e  J )  ( 1  , ( 1  ( z  z = ( z  ) are complex potential functions 

of the j-th order; 

(IX. 83) 

v is Poissonf s ratio. 

The general solution of heterogeneous systems (IX.74) can be writtein in 
the following form1: 

-. 
&')(z* ;I = q ( j )  (2) + z q ( j ) '  (z) + ,,,(I) ( 2 )  

~ { j )  ( 2 ,  ;), CIX. 84) 
dr 

D"' ( z ,  ?, = kq(j' (2) - z$l'. (i) - $1) (f) - ~ $ 1 )  ( z ,  3, (IX. 85) 

tn - 1 A (2. 2) = (k - 3) [p' (3 + iy" (31 - Fii) ( 2 . 3 ,  (IX. 86) 

where the functions F!') are related to the partial solution of heterogeneous 

i 
(2) systems (IX.74), whereupon F(') = 0 (i = 1, 2), and the values F ( ~ )  and F2 1 

will be given below. 

For the terms of the second order (j = l), expressions (IX.84)-(IX.86) 
are known Kolosov-Muskhelishvili functions of the plane problem of linear 
elasticity theory. 

The solution of resolving equation system (IX.63) for plane deformation 
wi 11, also be found in the form (IX. 64) and (IX. 65) , where we assume 

(IX. 87) 

'we write the expressions for a~(j)/3~, since the vector of forces (IX.55) is 

expressed through this function and it is more convenient for application than 
(j 1 is the function U . 



Proceeding analogously as in the case of the plane stress state, we find from /622 - 
system (IX. 63) , for each approximation. 

where S *(I) = 0; s ; ( ~ )  can be found from formulas (IX. 76) and (IX. 77), 
i * 

assuming1 i ( j )  = 0 and c = 0. 
3 

After integrating equations (IX.88), we find 

where 

(IX. 88) 

(IX. 89) 

(IX. 90) 

(IX. 91) 

In the following analysis we will examine only the nonlinear effects of 
the second order. 

Basic Relations of Plane Nonlinear Elasticity Theory for Terms of Second 
Order. We see from formulas (IX.84), (IX.85) and (IX.89) that the structure 
of the relations for the terms of the second order, both for the case of the 
plane stress state and of plane deformation, is identical, and therefore they 
can be combined, and these relations for terms of the second order of plane 
nonlinear elasticity theory are represented in the form2: 

- - 
('I=) = cp2 (z)  + ~ c p ( ~ ) '  ( I )  + $(2! (2)  - Fl (2, i), 

a; (IX .92) 

(IX. 93) 

where 

'In the case of plane deformation, J3 = 0. 
2 f, p .  622. 



- 
F2 (z, 2 )  = y A (z ,  i) + r$')' (z) D") (z, 2 - k& [I$')' (z)12 - 

-- (IX. 95) 
- k;  J p"" (2) rp"" (2) di- k; J [1(1'' (2)12 61; 

( 1 )  " ( 1 1  2) a;;) ; r k . ~ ) = ( ~  = + D  " ( 1 , ; )  = (D ( 1 )  .& 8 + D O )  2) D('). (IX. 96) 
& a; 

- 
Constants in the function Fl (2, Z) , F2 (2, y) are expressed through the - /623 

elastic constants of the material: 

(IX. 97) 

where 

- 1 for plane deformation 

= \ci  for the plane stress state 

The constants kr, ki (r = 1, 2, 3) can be found by a more convenient 

mehtod, but such that the following equal it i t s  are satisfied1 : 

k, + k; - B;; kkz - k; = B,; 

B8 
(IX. 98) 

4 - k * =  x--B,;  . kk j+  k ; =  kB;-B,--B, ,  

where 
1 B i = B , - - ( k + 1 ) ;  B ;=L?2-3 (k+1)2 ;  

(IX. 99) 
1 1 B ; = B l + T B ; ;  B , = - B ' - B ; .  2 1 

- - 

 o or greater detail see A. E. Green, J. E. Adkins [I], J. E. Adkins, A. E. 
Green, G. G. Nicholas [l]. 



In particular, we may discard the integral terms from formula (IX.94), 
assuming 

kl = k2 = 0 (IX. 100) 

and we may introduce the corresponding values of the constants kt (r = 1, 2, 3) r 
into formulas (IX.95). 

Assuming 

k; = k; = 0 (IX. 101) 

and placing the corresponding values of the constants kr (r = 1, 2, 3) into - /624 
- 

expression (IX.94) for the function Fl(z, z), we may discard the integral 
- 

terms from the function F2(z, z) (IX.95). 

To find the terms of the second power in the case of an incompressible 
material with the Mooney form of energy function 

W := A, ( I ,  - 3) + A2 (I2-- 3) (IX. 102) 

it is necessary to use in formulas (IX.97) limit transition: Oci ; C2-f 00 ; 

(IX. 103) 

Here the constants (IX.97)- (IX.99) will have the following form: 

1) in the case of plane deformation 

k =  B, - B2= -B; = -B' - 1; 1 

2 - B ; e B , - ; y =  - ; B, = 0; (IX. 104) 

2) in the case of plane stress state 

(IX. 105) 



where p ,  = A /A is a constant that characterizes the ratio of Mooney's con- 
2 1 

stants in (IX.102). 

The formulas for stress components, modulus (magnitude) of principal 
vector P (with an accuracy up to terms of the second order) acquire the form 

,j?u(') 32,y(?' 
= - ~ o H E [ - -  + ] . 

8 ~ ' ~ '  
dzz d;~ ' + 6-1 dzdz ; (IX. 106) 

(IX. 107) 

For the solution of problems in the case where the boundary of the range 
is given in the nondeformed state, it is necessary to use formulas that express 
magnitudes which characterize the stress and deformation states of the body, 
in the form of functions of coordinates (q, T). To derive these formulas it is 
necessary to remember that dis lacements u + iv can be,represented as functions /625 3 - 
of coordinates ( 2 ,  -i) or (q, q . In this connection we may write 

2 (2' .D(" (2, +- e2D'" (z, ?) + . . . = e ~ i "  (q, 5 + e Dl ' (1. I) f . . . . 

(IX. 108) 

(IX. 109) 

- 
If we expand the functions D(~) (z, L) into Taylor's series in the vici- 

nity of the point (q,. y) recalling that 
2 (2) 

2 - q = Dl (q, i) = eD\l) (q, i) + . Dl (q. 3 + . . . , (IX. 110) 

we obtain 

(IX. 111) 

By substituting (IX.lll) into the left side of relation (IX.109) and 
equating the terms for identical degrees of E,  we obtain 

(IX. 112) 

(IX. 113) 

where the A function is given by formula (IX.96). 



- 
Applying Taylor1 s expansion to functions u(') (z , z) , aU(j)/a~, we find 

U") (2, 5) = u'') (q, 3; au(I) (2, t)  - - . auc1) (q, 3) 
a; 6 9 (IX. 114) 

(IX. 115) 

where the r function is given by formula (IX.96). 

Thus, as follows from (IX.114), the form of the terms of the second order 
that correspond to linear theory do not depend on the choice of the coordinate 
system, which, of course, is to be expected. 

By comparing formulas (IX. 113), (IX. 114) with relations (IX.92), (IX.93), 
we see that in changing to the coordinates of the nondeformed state (11, F) , it 
is sufficient in the formulas for the terms of the second order to substitute 
in the - right hand sides of relations (IX.92) and (IX.93) the coordinates 
(z, z) by coordinates (n,  y) and the constant y by the constant y', equal to 
y - 1. 

- - 
We will represent the functions F ( 2 ,  z) and FZ(" I) in the form 1 

/626 - 

(IX. 116) 

- -- - [(*(I) (z )  + y(" (z)) D l )  + (d@(" (2) -kd1'(z)) ~ ( " 1  - F, (2, 2) = 
-- 

- kiz [a(" (z)l2 - k ;  f a(') (z) Y") (2 )  d i  - k i  [d') (z)12 dz, (IX.117j 
.. 

where 

By denoting 

(IX. 118) 



we rpresent the formulas for the terms of the second order in coordinates 
(TI, 0 )  in the form 

au(" ( z  -2) 
‘3; (IX. 119) 

(IX. 120) 

Here 

We will express stress components nCLB through coordinates (n ,  fi). By 
using transformation formulas 

(IX. 122) 

where 

recalling the expansions for D (IX.111), we find from relations (IX.106) 

(IX. 123) 

We will represent the stress state components, magnitudes of resultant /627 
vector and resultant moment of forces, through complex potentials of the first 
and second Orders. By substituting in formulas (IX.106) expression (IX.92), 
and in formulas (IX.123), the expression (IX.119), taking the dimensionless 
small parameter EZ such that 



1 ti/nt2for plane deformation 20He = 
1 H / A  for plane stress state 

we obtain the following expressions for the stress state components: 

C" --ax + 2irxu = 2 Fa'')' (z) 4- Y(') ( 2 )  + ( 
(IX. 124) 

(IX. 125) 

where 

(IX. 126) 

f ( 2 . ~ 1  = ,? {[F@(')* (2) + Y(! ) ( z ) ]  [ z @ ( l ) /  (2) + v(I) (z)]  + 
+ ( 1  - kb)@'"(z)@("(z)  + - - k [((D'" ( z ) ) ~  + ("; 

+ (d-)~] - 2d1 Re [@(')' (2 )  D'" (z,;)]} ; 
- 

f l  (z,?) = Y{(;@("' (2) + Y"' (2)) [ 2 0 ' " ( z )  f 

+ (6 - k )  @(I) (z ) ]  - dl (i@(l'" (2) + Y(')' (2)) D(') ( 2 5 )  - 
- ascD")' (2) D(l) (~2))  + [kl  Y( ' )  (2) $ 2k&(')' ( z ) ]  0") (2).  (IX. 127) 

- 
In the case - of the solution - of problems in coordinates (z, z) in 

functions f (2, z) and fl(z, z), it is necessary to assume 

1 &,=a. (IX. 128) 

If, however, the problems are solved in coordinates (0, i i ) ,  then, in 
- 

formulas (IX. 124)- (IX. 127) it is necessary to substitute (z, z) by (v, 7) 
c(~) (2) and Y(*) (2) by C:2) (q) and (v) and assume 

I - ! ! - .  d , c . d - - .  I (IX. 129) 
Y '  Y 

We will represent the magnitude of resultant vector (IX.55) 



and the magnitude1 of resultant moment (IX. 56) 

in the form of the following series: 

(IX .130) 

/628 - 

(IX. 131) 

(IX. 132) 

By substituting the expansion 

into the right hand sides of formulas (IX.130) and (IX.131) and comparing them 
with formulas (IX.132), we obtain 

(IX. 133) 

We will express the terms of the second order P(*) and M'~) through 

complex potential functions. For this purpose we will determine a priori the 
- 

function u(*) (z, z) . By integrating the expression for a~(~)/az, we obtain 

U'" = 2Re (zq'" (2) + y(2) (2) - B, - R B ~  ~ @ ( ' ) ( z ) @ " ( z ) d z +  

+ kl [z a(') (2) Y(I) (z) dq - J' (z)  Y(') (2) + (IX. 134) 
- + k, T!' 10'" (z)I2 &) + y ~ ( l )  ( 22 )  n(') (I,;) -I- (B. - kB9 q(') (2) (p(') (z), 

where 

(2) = \. (2) dz. 

- 
  he function U(z, z) is a real function of complex arguments (z and y) or 
(n, 3 
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If we introduce in formulas (IX.133) expressions (IX.92) and (IX.134) for 

au(2) /a; and u(*) , we find 

+ k ,  zQ"' (z )  Y"' (z) dz i I ( k s  {Q") ( I ) ) .  + F4 (z2))d + 

where 

(IX. 135) 

(IX. 136) 

1629 - 

We will assume that region S is a finite singly-connected region. In 

this case the holomorphic functions 4" )  (2) , (2) , X( j )  (z )  , @(j) (z) , 
~(j) (z )  are single-valued in S. Moreover, since the functions 

F l ( z ) =  @ " ) ( z ) Y ( " ( z ) ,  F 2 ( i ) =  [~'"(z)]~, 

F,  (2)  = a"' ( I )  + ( I )  (2) , F4 (2)  = zF1 ( I )  (IX. 137) 

are also holomorphic (as derivatives of holomorphic functions), then the 
integrals 

z 

T ( z )  = F ( z )  d (k = 1.2.3.4) 
7-  (IX .138) 

in region S are unique functions of their upper boundary. Therefore, in the 
case of a closed contour where the points A and B coincide, it follows from 
formulas (IX. 135) , (IX. 136) and (IX. 116) that 

Consequently, if the closed contour bounds a finite singly-connected 
region, then 

X = Y = M = O .  (IX. 139) 



If region S is multiply -connected, but displacement components and stress 
components in it are single-valued, then, for closed contour L which belongs m ' 
to the region, formulas (IX.135) and (IX.136) acquire the following form': 

p:) = p(2) - 
L,,, - - i [9'*' (2 )  + $(*) (z)]L, - i [ k l m )  l)+ kdl  ( 2 ) l ~ ~ ;  (IX. 140) 

Mh) = MfA = Re (z) - ap") @)IL,,, - Re 
B,  - RBI 

[ T3 ( 4  + kIT4 ( ~ ) I L , , ,  + 
1 + y (4 - kB3 k"' (2) vcp"' (~)IL, .  (IX. 141) 

Since the relation for P(~) does not contain - constant y, it is 
sufficient in formula (IX. 140) to substitute (z, z) by (n, 6) to find the 
corresponding expression in coordinates (n, y) ; the analogous result can be 

- 
found for M(*) by, using functions u(~) (z, z) and XJ(*)/~T, expressed through 
coordinates (q, n) . 

Analysis of Complex Potentials of Second order2. We will examine a 
problem of the degree of definition of potentials of the first and second 
orders. In the linear approximation, for a given stress state, the functions 

@(l) (z) and $('I (z) are determined, respectively, with an accuracy up to the 
terms 

c'" i z  + a!"; a;'). (IX. 142) 

- 
Here displacements D(') (z, z) are determined with an accuracy up to the 
expression 

which characterizes rigid displacement of the body as a whole. 

If potentials @(k)(z) and $("(z) - are determined - with an accuracy up to 
terms (IX.142), then functions f(z, z) and fl(z, z) in the formulas for the 

stress state components, are determined with an accuracy up to the terms, 
respectively 

' 1n this case the functions $('I ' (z), $('I ' (z)  are single-valued, as follows 
from the formulas for stresses (IX.124) and (IX.125). 
2 ~ e e  G. N. Savin and Yu. I. Koyfman [I], and also Yu. I. Koyfman [ S ] .  



- 26, ~e (dl)' (I) [(k + 1) c(') iz + &a!') - a$"])); 

y {(a(')' (2) + Y") (2)) (6 - k - 2) c(') i - 6 ,  (zdl )*  (2) + 
+ Y"" (2)) [(k + 1) C"' ir + ko!" - &hl'] + 62@(1" ( z )  [(k + 1) ~ " ' i ;  - 

- &a\'' + a$')]) + [k ,Y( ' )  (2) + 2k&"" (z)] c"' i ,  

(IX. 143) 

- 
where a a are complex constants. Consequently, functions f (z, z) , fl (2, ?) 3' 4 
will be defined'under the condition 

c"' = 0; ka\" - -(I' a2 = 0, (IX. 144) 

i.e., when displacements of the first order are completely defined. 

Thus, at a given stress state, in contrast to linear theory, arbitrariness 
in the selection of complex potentials of the first order is decreased. When 
both stresses and displacements are given, it is possible to assign arbitrarily 

only one of the constants or a For instance, if the origin of the 2 
coordinate system is located in the region occupied by the body, then the 

appropriate choice of a(') or a can be refined such that 
1 2 

cp(l) (0) = 0 or I$') (0) = 0. (IX. 145) 

Hence both functions $('I ( z )  and J 1  (z )  are completely defined. 

If conditions (IX.144) are satisfied, then from formulas (IX.124) and - /631 
(IX.125) we find that in the given stress state the potentials of the second 

order $(2) (z) and ~1'~) (1) are defined with an accuracy up to the terms, 
respectively, 

where c(~) is real and a!*), .I2) are complex constants. 

(IX. 146) 

- 
Since the function ~ ( l )  ( z ,  L) is defined, it is natural to require that 

- 
the function D(~) (z, z) also be completely defined, and to use potentials 



(j 1 4 (2) and $(jl (z) (j = 1, 2), which, in the given stress state, completely 
- 

define displacements ~(j) (I, I). The integrals 

- 
in function F,(z, z, y, 6) are defined with an accuracy up to the constants 

J 
gl, g2. Accordingly, if potentials 4(21(~) and I/.J(~) ( z )  are defined with an 

r., \ - 
accuracy up to terms (IX.1461, then the function D'" (z, z) is defined with 
an accuracy up to the expression 

(k + I )  C" iz + kal?' - hi2) -j- (L; g1 + k; g,). (IX. 147) 

- 
When the function D(') (z, ) is completely defined, it is obviously necessary 
that the conditions 

~ ( 2 )  = 0; . ka\2) - G f )  = - (k;  & i- k; g,). (IX. 148) 

be satisfied. 

(2) (2) Since the four constants al , a2 , gl, g2 are related by one condition, 
it is possible to fix arbitrarily three of them. For instance, we may assume 
(when k; # 0; ki # 0 ) :  

(2) 0  q ( ) = 0 ;  $ ' 2 ' ( ~ ) = 0 ;  g l = O  (IX. 149) 

(2) 0 q ( ) = 0; g, = 0  ( j  =; 1,2), etc. 

If, however, 

then we may fix only one of the constants, namely aC2) or a(2). Such arbi- 1 
trariness in the selection of the functions 0(2)(z) and +(z'(z) is also 
preserved in the case where the displacements are given. 

Let region S occupied by the body (after deformation) be bounded by 
several simple closed contours L I #  t2, . . - , Lm+y where contour Lm+l encompasses 



all others. We will determine the general form of the potentials - of the 
second order for such a region by using coordinates (z, z). 

We will assume that the displacement and stress components are single- - /632 

valued in region - S. Consequently, functions @(ll ( 2 )  , Y (z) , ~ ( l )  ( 1 ,  i) , 
hence f (z, z) , fl (z, 3, are also single-valued, where 

- - 
Since the functions f (z, z) and fl ( 2 ,  z) are single-valued, then the 

analysis of the possible multiple-connectedness of the potentials of the second 
order can be accomplished, as an outcome of formulas (IX.124) and (IX.125), 
analogously as was done in the linear theory. Therefore, we may write the 
general form of the potentials of the second order for region S (for the time 

- 
being without consideration of the uniqueness of the function D(~)(Z, z)): 

~p(" (2) = z 2: A?) In (z - 1,) + 2: B/*) 1r1 (z - zi) t ~ p f '  (z), 
I- I I-I 

(IX. 150) 

(IX. 151) 

where z are arbitrary points within contours L . A(~) are real, and B (2) 
j j' j j ' 

( 2 )  B : ( ~ )  are complex constants; 0, (z) and +i2) (z )  are functions that are holo- 
3 

morphic in region S. 

We will find the conditions which must be satisfied by functions $(2) (z) 
- 

and $(*I (z) so that the function D ( ~ )  (z, z) will be single-valued. By substi- 
tuting functions (IX. 150) and (IX. 151) into relation (IX.93), we obtain 

(2) - --*(2) ,- - 
[D (z,z)]L; = - 2 d  { ( k  -+ 1)  Aj2)z + ka?) + B j  ) + [k lTl  ( z )  + k; T ~ ( Z ) ] ~ ; ,  (IX .152) 

where L! is some contour that encompasses contour L + contour L' is circuited 
J j ' j 

in the clockwise direction. 
- 

From the condition of single-valuedness of displacements [ D ( ~ )  (z, z)] L, = 
= 0, we obtain j 

(IX. 153) 



We will express coefficients B") and B?(') through the principal vector 
j J 

components of forces acting on the contour. We will assume that the solution 

of interest to us is regular (functions $(k) (I), $ ' (z) ,  $J(~) (I) are extended 
continuously1 to all points of boundary L of region S). In this case, to find 

the result,ant vector p12) ,  we may use formula (IX.140), where contour Li  is /633 
J J 

the boundary. By substituting formulas (IX.150) and (IX.151) into relation 

(IX. 140) recalling that A ( ~ )  = 0, we obtain2 
j 

From equations (IX.153) and (IX.154) we have 

where 

- 
El,, = - i [(kl + k;) Tl (2) 4 fkz -!- k;) Tz (~)IL,;  

- 
E2,, 5 - i[(kk, - k;) T ,  (z )  + (kk2 - k;) T, (2))~~. 

If we assume in formulas (IX. 156) 

k ,  =. k2 -- 0 (or k;  - k; = O), 

then we obtain 

(IX. 154) 

(IX. 155) 

(IX. 156) 

(IX. 157) 

Considering relations (IX.153) and (IX.155), functions (IX.150) and (IX.151) 
can be represented in the form 

(IX. 158) 

'see N. I. Muskhelishvili [I]. . 
2 ~ t  can then be assumed in formula (IX.153) that contour L '  coincides with 

j 
contour L 

j ' 



m 
I 

*'2) (2) = nn (r + ,) [k (X;l' - iy) + E2, j  In (Z  - z,) + t2) (z). 
1-1 

(IX. 159) 

Obviously, functions $[2) (q) and (q) are of the same form. 

We will determine the general form of comp1e.x potentials $I(~)(z) and 
(2) $ (2) for the case of an infinite region with boundary contours L1, L2, . - . ,  

..., Lm. We write a circle of radius LR whose center is located at the 

origin of the coordinate system (the origin of the coordinates is located 
outside of region S) such that contours L are located within LR. Then, for 

j 
all z lying outside of LR, we will have 

and 

where $I;f1(z) is a function that is holomorphic outside of circle LR. 

Consequently, formulas (IX.158) and (IX.159) will acquire the form 

Here 

(IX. 160) 

/634 - 

(IX. 161) 

(IX. 162) 

(2) (*) are functions that are holomorphic outside of LR, with the excep- 
$01 * "'01 
tion, possibly, of the infinitely distant point. 

We will determine the form of functions $(2) (z) and $J(~)(z) that satisfy 
the condition of boundedness of stresses in the entire region S. Since, in 
this case, the potentials of the first order are of the form1 

'see N. I. Muskhelishvili [I]. 



it follows from expressions (IX.126) and (IX.127) that 

f (2, i) = V, + 0 

f l  (2,;) ---- v +  0 

(z outside of L~). 

where 

(IX. 163) 

(IX. 164) 

(IX. 165) 

In this connection, as the outcome of formulas (IX.124), (IX.125) and (IX.164), 
it is easy to show that under the condition of boundedness of stresses in 
region S 

(IX. 166) 

where $A2) (= )  and $h2)(z) are functions that are holomorphic outside of LR, 

including the infinitely distant point. 

To find constants r(2) and ('), we will substitute functions (IX. 166) /635 - 
into formulas (IX.124) and (IX.125) for the stress state components. Recalling 
relations (IX. 164) for 1 zl + -, we obtain 

(IX. 167) 



If N and N are values of the principal stresses at infinity, and a is the 
1 2 

angle which the principal axis, corresponding to N constitutes with the Oy 1 1 ' 
axis, then, by comparing the equations 

0, + =;. N,+ N2, 

a, - a, + 2iz,, L- - (N, - N,) eFZa 

with formulas (IX.1671, we find 

1 Re I""' = (N, -+ N,); r r ( l )  - - - - 1 (N, - N ~ )  e-2ia; 
2 

(IX. 168) 

(IX. 169) 

(IX .170) 

We will assume that there is no rotation at infinity, i.e., when xa and 

ya are large with respect to modulus, deformation of a continuous medium is 
described by the relations 

P=ca&'  ( a , $ = 1 , 2 ) ,  (IX. 171) 

where 

C@, = caa. 

Consequently, we may write 

Since z = D + q, we find from relations ( IX .172 )  

(IX. 172) 

(IX. 173) 



Since for large (2) 

we find from equations (IX. 173) for z + 

kf ('1 - T(') = &P(') - PI), 

Analogously, the derivative is 

ad2) = -  k ix(" + 1 ~ ' ~ )  - Ell • I + gr(2) - ~ ( a )  + vs + ?i 
a2 221 (1 + k) z ( I ) *  

where V is a real constant. 3 

When l z l  -t =, we find from relations (IX.173) and (IX.174) 

IM r(*) = 0. (IX. 17s) 

Since I'(l) is a real constant, expressions (IX:165) can be represented in 
the form 

,tl)r(u (IX. 176) v, = [y (2 + 8 - k) + k,l I' 

Repeating the same considerations for analyzing the general form of complex 
potentials of the second order in coordinates of the nondeformed state (q, c), 
it is easy to show that functions +!2)(q), ~1~(~)(q) will have the very same form 

(IX. 166) as functions +(2) (2) and J1(2) (1 )  ; here, since V and V2 do not depend 

on the constants (IX. 128), 62 (IX.129), constants I'(2f and I" (2) for func- 

tions c$~(~)(Q) and $1(2) (n) will also be determined by formulas (IX. 170) and 

(IX. 174) 

(IX.176) (y and 6 are not replaced here by y 1  and 6 ' .  



Thus 

(IX. 177) 

From Cauchy's theorem we have 

where contour L encompasses a l l  contours L while function f ( z )  i s  holo- m+ 1 j; 
morphic. Therefore, i n  our case we w i l l  have 

(IX. 178) 

Here LR,  is  an a r b i t r a r y  contour encompassing contour L ( i n  t h e  clockwise R 
d i r e c t i o n ) .  

We w i l l  c a l c u l a t e  Ti(z) f o r  z outs ide  LR. Since i n  t h i s  case 

then 

(IX. 179) 

where f .  (z) a r e  functions t h a t  a r e  hoiomorphic outs ide  of L 
1,2 R* 

'The functions (z) and Y (z) a r e  holomorphic i n  t h e  e n t i r e  region S,  
and consequently, t h e  funct ions  Fl(z) and F2(z)  are a l s o  holomorphic i n  S 

(see formulas (IX.137). 



Thus, from formulas (IX. 178), r e c a l l i n g  r e l a t i o n  (IX. 179), we obta in  

(IX. 180) 

In t h i s  connection, t h e  values E and E a s  follows from formulas (IX.156) and 1 2 ' 
(IX.162), w i l l  be of t h e  form: 

(IX. 181) 

From (IX.181) we see  t h a t  the  values El and E2 a r e  transformed t o  zero only i n  

t h e  case where the re  a r e  no s t r e s s e s  a t  i n f i n i t y  o r  the  r e s u l t a n t  vector  of 
forces  appl ied  t o  the  boundary L = L1 + L + ... + Lm 2 

of- region S is equal t o  
zero. 

Statement of Bas lc Boundary problems1. In connection with the  f a c t  t h a t  
i n  nonlinear  e l a s t i c i t y  theory various forms of both ex te rna l  load a c t i n g . a n  - /638 
a deformed contour and of  the  contour i t s e l f  a r e  poss ib le ,  t h e  b a s i c  boundary 
problems can be analyzed i n  severa l  v a r i a n t s .  We w i l l  formulate t h e  statement 
of  severa l  va r i an t s  of the  bas ic  problems of plane nonlinear  e l a s t i c i t y  theory.  

F i r s t  Basic Problem. To f ind  e l a s t i c  equil ibrium i n  cases where: 

t h e  boundary L o f  region S and external  load P( t )  applied t o  it a r e  given 
i n  the  nondeformed s t a t e ,  where t i s  the  a f f i x  of  a point  of  t h e  deformed con- 
t o u r  (var iant  A) ; 

boundary L of  region S is  given i n  t h e  nondeformed s t a t e  and ex te rna l  
load P ( t )  i s  given on a deformed contour (var iant  B ) ;  

boundary L of  region S i s  given i n  t h e  nondeformed s t a t e  and the  external  
load P( t )  ac t ing  i n  the  deformed s t a t e  i s  r e l a t e d  t o  the  nondeformed contour 
(var iant  C) . 

'see G .  N.  Savin and Yu. I .  Koyfman [ I ]  and a l s o  Yu. I .  Koyfman [5] . 
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Second Basic Problem. To find elastic equilibrium in cases where: 

displacements g(t) of points of the boundary, the shape of which is known 
in the deformed state, are given (variant D); 

displacements gl(t*) of points of the boundary, the shape of which is 

known in the nondeformed state, where t* is the affix of a point of the nonde- 
formed contour (variant E) . 

Along with the first and second basic problems, we can, as in the case of 
classical elasticity theory, analyze various "contact" problems, and in parti- 
cular, the problems of equilibrium of a composite plate. We will limit our 
examination in the given monograph to two possible variants of the statement, 
specifically to find elastic equilibrium of a composite plate (body) in the 
cases where: 

boundary L of a body and the contours of the seam L of the component 
j 

plates, and also load P(t) 1 are given in the deformed state; there are no 

displacement jumps1 on contours L (variant F); 
j 

boundary L of the body and contours of the seam L. of the component 
3 

2lates are given in the nondeformed state and load ~(t) is given on the 
deformed boundary of the body; there are no displacement jumps on the contours 
of the seam (variant I). 

Since the components of stresses and displacements of the second order 
are expressed through complex variable functions, the basic boundary problems 
in the second approximation are reduced, as in the linear theory, to boundary 
problems of the theory of complex variable functions. In this connection, we 
will use the methods of plane elasticity theory to solve the boundary problems 
in the second approximation, and we will assume that the solutions of the 
corresponding linear problems are known. 

We write the general form of the boundary conditions for potentials of the 
first and second orders in the various variants of the basic boundary problems. 

F i r s t  Basic Problem. Variant A.  We know from formula (IX.55) or (IX.130) /639 - 
that the boundary condition is of the form: 

(IX. 182) 

'cases where displacement jumps on the contours of contact are given are 
analyzed in variants G and H, discussed by Yu. I. Koyfman [ 5 ] .  



where Xn, Y are components of the external load; L is a known contour of the n 
deformed region; C is an arbitrary constant. 

If we assume that outer load P(t) can be represented in the form of series 
(IX.132) by degrees of E, then, as follows~from relations (IX.64) and (IX.182), 
the boundary conditions for the terms of the first and second orders are 

(xi') + i ~ k ' ) )  ds + c ; ( t )  + C, 
a2 (IX. 183) 

0 

(IX. 184) 

By substituting expressions ---_ by the boundary value of the corresponding a;; I. 
combination of complex variable functions, we obtain the following boundary 
conditions for potentials of the first and second orders, respectively: 

- - 
t p t l )  (0 + trp")'(f) + 9'" ( t )  = i ~ ' "  ( t)  + C, (IX. 185) 

-- 
tp(a (0 -+ (p(2)'(t) + I$') ( t )  - Fl ( t ,  i, 1, 6) = i P 2 )  0).  (IX. 186) 

Variant B. Since we know here the form of tbe contour of the region in 
the nondeformed state, boundary condition (IX.182) should be related to k_nown 

d U ( z .  z )  
contour L*. For this purpose we will express functions P(t) and a; 
through coordinates (q, 5) of the nondeformed state. From relations (IX.114) 

and (IX. 115) we know that the function 2 au(Z") can be represented in this 
d f 

case (with an accuracy up to terms of the second order) in the form 

(IX. 187) 

We will expand the function of external load P ( t )  =pfI& [Pfl'(t) i ~ P ( ' : ( t )  + . . .] 
into Taylor's series in the vicinity of arbitrary point t* of the nondeformed /640 
contour L*: 



p (t)  = 2OHe (P(') (13 + Dl (1') P('" (t') + . . 
(IX. 188) 

By substituting the corresponding expressions (IX.187) and (IX.188) into 
boundary condition (IX.182) and equating the terms for identical degrees of E, 

we obtain 

(IX. 189) 

(IX. 190) 

By replacing the left sides in formulas (IX.189) and (IX.190) by the boundary 
value from (IX.119), we will represent the boundary conditions for the 
potentials of the first and second orders (omitting the asterisk in the affix 
t*) in the form 

- - 
q(l)  ( t)  + tcp(')' ( t )  + ~p"' ( t )  = iP"' (t) + C, (IX. 191) 

- - 
qf) (1) + tqf) '( t)  + 9'1') ( t )  - F; ( t ,  ?, y', 6') ipO' (4, (IX. 192) 

where 

(IX. 193) 

Variant C. Here the form of the undeformed boundary of the body is known, 
and the load1 P(t) acting on the defamed contour, assumed to be related to 
the nondeformed contour, will have the given form Pl(tX). Consequently, by 

relating boundary condition 

to contour L*, we obtain the following boundary conditions for the terms of the 
first and second orders, respectively: 

-- - -  - 

 he form of load P(t) in this variant, generally speaking, is unknown and can 
be determined after the solution of the problem. 



au(Ir (gl G )  = i ~ i "  (t*) + c on L*,  (IX. 194) a i  

(IX. 195) 

We will find, as before, the boundary conditions for the potentials (on Ln) in - /641 
the form 

(IX. 196) 

(IX. 197) 

By comparing boundary conditions (IX.197) and (IX.186), we see that if the 
functions of the external load in these variants coincide with respect to 
shape, the potentials of the second order in variants A and C are determined 

simultaneously: for this purpose it is sufficient to substitute in potentials 
- - 

(2) (z) and $(2) (z) the coordinate z by TI and the constants y, 6 by y1 , 6 . 
It was pointed out above that with a given stress state and completely 

defined displacements it is possible to assign arbitrarily in functions 
(1) (1 1 I$ (E), $J (I), only one of the constants a:') or a (I) In boundary condition 

2 * 

(IX.185), the constant a:') (01 a(1) can be given, by the appropriate selection, 2 
any value cf constant C. Consequently, with a fixed value of C, functions 

I$(i) ( z )  and $('I (z) are completely defined, while constants I$(') (0) and +(l) (0) 
(if the origin of the coordinate system is placed in the region occupied by 

the body) must be found from the solution of the problem. The potentials 
(1) I$ (z) and $J(')(z) can also be fixed, assuming 

cp(') (0) = 0 [or 3" (0) = 0); (IX. 198) 

where the constants C and $(l) (0) (or $(') (0)) are found from the solution of 
the problem. 

If potentials I$(*)(z) and $(2)(z) are defined with an accuracy up to terms 

(IX. 1461, then the function a ~ ( ~ ) / a ~  will be defined with an accuracy up to 

+ a-(') + klgl + k2g2. Since constants the expression (for kl # 0, k2 # $0) al 
2 

kl, k are related to constants ki, k; by relations (IX.98), then, if the 
2 

function ; ~ I J ( ~ ) / &  is given and if conditions (IX.148) are satisfied, we may 



arbitrarily fix only two of the four constants a!') and gi ( j  = 1, 2). For 

(2; 
J 

instance, we may assume g = 0 (or 4(2)(0) = $ (0) = 0) and determine con- 
j 

stants +(2) (0) and $('I (0) or gj from the solution of the problem. If, however 

kl = k2 = 0 (or ki = ki = 0), then we may assign arbitrarily either constants 

g. or the constant ai2) (a:')) and one of constants g (j = 1, 2): 
I j 

Second Basic Problem. Variant D. In this case the boundary condition 
has the form 

Assuming that g(t) = g(l)(t) + ~~(~'(t) + . . . , we obtain the following boun- 
dary conditions for the potentials of the first and second orders, respectively 

- - 
kq"' (t) - tv"" ( t )  - 9"' (t) = 2  OH^"' ( t )  on L, 
- (IX. 199) 

kcp'2' ( t )  - tqt2" ( t )  - ( t )  - F, (t, 7, y, 8 )  = 2  OH^'^' (f). (IX. 200) 

Variant E. From boundary condition Dl(n, E) = gl (t) on L*, as before, we - /642 
find 

- - 
kqtl) ( t )  - tq(I)' ( t )  - I$') ( f )  .-- 2  OH^^) ( t )  on L* , (IX. 201) 
- - 

kqlfl ( 1 )  - tq?' ( 1 )  - $f' (1) - F ,  ( t ,  ?, y '. 6') = 2  OH^^" ( t ) ,  (IX. 202) 

where t is the affix of a point of the nondeformed contour L*. 

By comparing boundary conditions (IX.200) and (IX.202), we see that the 
complex potentials in variants D and E are defined simultaneously (by substitu- 
ting z by q and y, and 6 by y l ,  8') in those cases where the functions g(t) and 
g (t*) coincide with respect to shape. 1 

In solving the second basic problem, we fix potentials +(j) (r) and $(j) (z) 
(j = 1, 2) in the same manner as described above. 

We will write the boundary conditions of the problem of elastic equilibrium 
of composite plates (bodies) in variants F and I. We will examine the plate 
S containing holes, in some of which (or in all) are placed, without ten- 

(0) 
sion, elastic discs (plates) S 

(j)' 
consisting of various materials. We will 

assume that the contours of the inserted discs and the corresponding holes are 
in contact without clearance and are soldered together. We will further assume 
that on the boundary of the (composite) body S thus obtained is applied some 
system of external forces. We will denote the boundary of such composite 



body S through L, where L = L + L + ... + L is the set of contours of 1,o 2,o m,O 
free (not filled with discs) holes and the outer contour of the composite 
plate, and the contours of the seam between the plate and the disc will be 
denoted through L 

j ' 

Variant F. The boundary conditions and conjugation conditions of the 
problem are written as follows: 

dll 2, = i P ( t )  + C on L, 
az 

(IX. 203) 

- --- - dO'") a; w ( ~ )  az + cII); D ( ~ ,  (I, i) = D ( ~ )  (2, I )  on L j ' (IX. 204) 

where U (01' '(j), D(e)9 D(j) 
is Airy's function and the displacement function, 

respectively, in region S and in the region of the inserted plates S 
(0) (j); 

GI = C  ( k = 1 , 2 ,  ..., m). 
k, 0 k,O 

- 
By combining functions aU /3y and D (z, z) into series 

(j 1 (j 1 

substituting these expansions into boundary conditions (IX.203) and conditions 
of conjugation (IX.204), and also equating the terms of identical order of 
smallness, we obtain the following conditions for the terms of the first and - /643 
second orders, respectively: 

&(I' 
-- - i ~ ' "  (t) + C' on L; (IX. 205) 
a; 

(IX. 206) 

(IX. 207) 

(IX. 208) 

From conditions (IX.205)-(IX.208) we obtain the boundary conditions for 
the potentials of the first and second orders: 



- - 
9"' ( t )  + t c p ( l ) '  ( t)  + , $ I )  ( t )  = i ~ ' "  ( f )  + C' 

on L; 

(IX. 209) 

-- - - 
k{o)q;:; ( t )  - t9;;; (t) - *;:; ( t )  = mi [ktj)T;;; 0)  - tqJ;;'(t) - v;;; (41 

on L, ; (IX. 210) - - J 

( p ( 2 )  ( t )  + ( I )  + I#*' ( t )  - Fl (t, ?, y, 6 )  = i ~ ( ~ )  ( t )  on L ; (IX. 211) 

- - 
( t )  + t91::' (1) + $;I ( t )  Flo)  ( f v  1; Y(,)* ' ( j ) ) I  On Lj " mi [ ( P ( / )  
- - 

k O v ~ ~  ( t )  - t ~ $ l '  (4 - $:; ( t )  - F2(0) (tv 7~ Y ( o y  &(o))  = 
- - 

= m: jk,,)9:l,' ( t )  -tq#' (I) - (t) - F2(,) 7, $dl* 

m -- - OH'') ; ${:I ('1, ( t p  T, Y(,)* '0) . are the boundary values of where OH 
! I )  

(IX. 212) 

- 
potentials $ ( i ) ( z ) ,  +(i)(z) and functions F (z, z, Y(~), 6(j)). 

(j 1 (j i(j) 

Variant I. Boundary conditions (IX.203) and conjugation conditions 
(IX.204) should be written on the outer contour of the body and on the contours 
of the seam, the shape of which is given in the initial (nondeformed) state. 
By combining, as before, the external load P(t) into Taylor's series in the 
vicinity of point t* of the undeformed outer contour L* and using the function 
aLJ/aF, expressed through coordinates (q, y), we obtain the following conditions - /644 
for the terms of the first and second orders: 

~ ( 2 )  
-- +r (q, f l ) = i [ ~ ( ' ) ( t )  + D;)P(')' (t)] on L*; 
6 

(IX. 213) 

(IX. 2 14) 



The boundary conditions for the potentials of the first order will be of 
the form (IX.209) and (IX.210) where t is the affix of the point of the nonde- 
formed contour. 

The conditions on L* for potentials of the second order are represented 
in the form 

- - 
'*)' t  + 9'" ( t )  - F; (I, i, y ', 6') = iP'" (0; d2' ( I )  + t o  ( 1 
- - (IX. 215) 

~pii; (t) + tot;' ( I )  + 9;;; (t) - F,(o, ( t .  7, rb. C) = 
-- 

= mi 19;;; ( t)  + tq;;;'(t) + 9;;; (t)  - F,(,) ( t .  7. ~;n. 8;Jl on L* ; 
-- - 

k$ (I) - IT;:;' (1)  - *;:; (0 - F,,(t. t* ~( '0) .  C) = 
- -  

= m k (t)  - t  ( t )  - 9 ( t )  - F 2  ( f  , Y I on L3 . (IX. 216) 

We will introduce the expanded form of the boundary conditions for the 
potentials of the second order in the case where region S represents an infi- 
nite plane weakened by some curvilinear hole. We will plate the origin of 

coordinate system ya within the hole and assume that the origin of the 
coordinate system is located within the hole prior to deformation. 

The potentials of the second order are of the form (IX.161) 

Assuming 

kl = k2 = .0, 

we find from condition (IX. 186) for variant A 

- - 
,$2) ( I )  f l q p '  (1) + rpr (t) = k, ( t .  7. v* 8) on 

0 

where L is the contour of the hole; 

-'2)'- K~ (t, < y,  6 )  = iP2) (t) + F1 ( t ,  7, y,  6)  - - r t  + 

(IX. 217) 

~ ( 2 ) -  iy(2) - t El ~ ( 2 )  + iy(2) ( I X .  218)  .- - 
2n(A + I )  t 2" (L+ 1) 2 n ( k +  I )  (In t  - k In f i .  



To determine the boundary condition of variant B, it is sufficient to 
replace in condition (IX.217), as shown above, the function Ko(t, i; y, 6) by 
the function 

- 
Ki (t, t ,  Y', 63 = KO (t, y', 6') + iD(')P")' (9 (IX. 219) 

and assume that t is the affix of a point of the nondeformed contour. Boun- 
dary problems of variants A and B are solved simultaneously by replacing y, 
6 by y', 6'. 

We readily see that the function K (t, t, y, 6) is a single-valued con- 
0 

tinuous function of the point t of contour L, i.e., 

If we assume that the boundary condition is satisfied also in the first 

approximation .(~(~)(t) = O ) ,  and that the resultant vector of forces acting on 
L is equal to zero, then the function K (t, F, y, 6) is simplified and 
acquires the following form: 0 

We will notice also that if contour L is free of load, then 

Ki C, i, y', 6') = KO (t,  i, yf ,  d8), 

(IX. 220) 

(IX. 221) 

and the boundary conditions of variants A, B and C are solved simultaneously. 

To fix functions $A2) (z) and $A2) (z), we may assume (for k = k2 = 0) 
1 

(ac) = 0 (or (GO) = 0). (IX. 222) 

We will write the boundary conditions for the potentials of the second 
order in the case of the second basic problem for an infinite plate with a hole 
in variant D. Assuming 

ki = k; = 0, 

from condition (IX. 200) we find on L: 



- - 
kTT ( t )  - tqi2)' (t) - $b2) (t) = gr) (t, ?, y, 61, (IX. 223) 

where 

k (xi2) + i ~ ( 3  - El) (t i) - gl2' (t,  y ,  = (t) + F2 ( t ,  7, yt ') + 2n (k + 1) 

- * ( P I - -  X ( 2 )  - iy(*) - G )  t (IX. 224) . - - - P(2)) t  + r t 2n (k + ,) . 

In the case of variant E the function g(2)(t, , y, 6) is replaced by the 1 
function g(2) (t, , yl, 6 )  i.e., boundary conditions of variants D and E, as 1 
mentioned above, can be solved simultaneously. It follows from formula 
(IX.224) that g(t, t, y, 6) is a single-valued function, continuous on L. 

Potentials $(2) (z) and $A2) (1) in the second basic problem are also fixed 

by conditions (IX.222) (for k' = k; = 0). 

If we assume that the boundary conditions are satisfied due to the first 

approximation (g(2) (t) = 0) and the resultant vector of forces is equal to 
zero, then the function is 

g$'(t, ?, y,  6 )  .= F, ( t ,  < y,  8) - (&I?(" - r(2)) f - ~ ' ( ~ ) f l  (IX. 225) 

We will write the basic relations for the terms of the second order for 
conformal mapping. By introducing, as a function of the shape of the hole, 
mapping function z = w(c) or = a(<), we obtain1 

a ~ ( ~ '  - 
-- 0 (6 )  (2)' - -- T 2  ( )  + - (5) + $2' (5)  - F 1  (5' 5. Y' 8)' a; 0 ( 5 )  (IX. 226) 

(IX. 227) 

where 

--- 
- ky (5) 1'0") (6)12 - k ,  a") (6)  Y"' ( 6 )  of (6 )  d i  - k2 1 [a'" (5)P a' (5)  d5; 

2  ere we denote m(2)(<) = ) [ w ( < ) ] ,  etc. 



- P - 
*(I)' (6) + y(I)(0l j j ( l )+~a  J1) (g)-a@(I' (c)] fl)]- F8 (f* 5. v. '1 = - y ([ 

- --- (IX. 229) 
. , - k;" ( 6 )  [ ~ ( ~ ) ( c ) l ~  - ti; 1 (c) u(l) (6) (Q c - k; S [UP) (<)I* 0' (5 )  dt. 

The formulas for the components of the stress state are 

where 

(IX. 230) 

(IX. 231) 

-- 

+ [k,9r1) (<) + 2 k 3 t ( $  d"' (I)] dl)(~). 

We will write the expressions for the complex potentials of the second 
order in the case of the mapping of an infinite plane with an arbitrary hole 
onto an infinte plane with a round hole of unit radius. The mapping function 
will be taken in the form 

where R, al, a generally speaking, are complex constant coefficients. 
2' 



In t h i s  case 

(IX. 232) 

The boundary condit ions f o r  p o t e n t i a l s  $ i 2 ) ( < )  and $i2)(<) i n  the  case of 

the  f i r s t  bas ic  problem (var iant  A) have, on the  contour of  u n i t  c i r c l e  y l ,  
t he  following form 

where 

where 

~ ( 2 )  + uo (a)  X(2)'- i ~ ( ~ )  - Pa - r (2 )  I?-] 
+ 2, l n ~ + r n [  2 n ( * + 1 )  a 

In  t h e  second bas ic  problem (var iant  D ) ,  we have 

(IX. 233) 

( I X .  234) 

(IX. 235) 

(IX. 236) 

The boundary condit ions f o r  v a r i a n t s  B, C and D a r e  obvious, and the re fo re  
we w i l l  not include them. 

52.  Influence of Nonlinear ~ f f e c t s  of Second Order on S t r e s s  Dis t r ibut ion  near 
Holes 

Round t401e1. Let the  examined region represen t ,  in the deformed (nonde- 
formed) s t a t e ,  an i n f i n i t e  plane with a round hole of radius  R .  We w i l l  p lace 

'see Yu. I .  Koyfman [2, 51 . 



- 
t h e  o r i g i n  of  t h e  coord ina te  system (z ,  z) and (q, 5 a t  t h e  c e n t e r  o f  t h e  
ho le  and assume t h a t  t h e  s t r e s s  s t a t e  a t  i n f i n i t y  i s  homogeneous, and t h a t  t h e  
contour  of t h e  ho le  i s  subjec ted  t o  t h e  e f f e c t  of  uniform normal p re s su re  of  
i n t e n s i t y  p.  To determine t h e  s t r e s s  and deformation s t a t e s  nea r  t h e  ho le  it 
i s  necessary  t o  so lve  t h e  f i r s t  b a s i c  problem with fol lowing boundary condi- 
t ions  ' 

(IX. 237 )  

where t i s  t h e  a f f i x  of  a  po in t  of  contour L of t h e  ho le ;  

dU 4 --=- = ( N ,  i- A',) 2 - ( I1  - N B )  e ( f o r  I z 1 -+ m). 
dz 

( I X .  238) 

The p o t e n t i a l s  of  t h e  f i r s t  o rde r  a r e  

q ( ~ )  (z) = r(l)z - ~'(l)!!. 
z ' 

R2 - , ( I )  R' 
( ) z - ( 2 + -  7 .  

/649 - 

(IX. 239) 

The p o t e n t i a l s  of  t h e  second o rde r  a r e  determined from boundary (on L) 
condi t ion  (IX.217) 

- - 
(pi2) ( t )  + tqgL')'Ct) + 1C',, (f) =; K, ( t ,  < y, 6). 

where, f o r  v a r i a n t  A, we have 

-'(2)- K o ( t , < y , 8 )  = F 1 ( t , ~ y , 6 ) - 2 r ' * ' t - r  t .  

(IX. 240) 

(IX. 241) 

- 
By s u b s t i t u t i n g  func t ions  (IX.239) i n t o  t h e  express ion  f o r  F ( z ,  z ,  y, 6 )  

1 
and conver t ing  t o  t h e  va lues  on t h e  boundary, we f i n d  from condi t ion  (IX.240), 
cons ider ing  r e l a t i o n s  (IX.241) and (IX.163), t h a t  t h e  complex p o t e n t i a l s  of 
t h e  second o r d e r  i n  v a r i a n t  A w i l l  be of t h e  form: 

' s i nce ,  i n  t h e  non l inea r  theory ,  we cannot use  superposi  t i o n i n g  of  s o l u t i o n s ,  
t h e  problem i s  solved f o r  t h e  j o i n t  e f f e c t  o f  t h e  examined system of  f o r c e s .  



(IX. 242) 

where coefficients a(2) and b(2) (for kl = k2 = 0) are 
j j 

= Y [(k + 1)(1 - 8) r(l) + 2pj ?'(I) - F'(2); 

a(2) -'(I) 2. - 3 = - Y ( k +  l ) ( r  ) 9 

br,  = [y(3 + d) (k + I) - k3] (k + 1) ( 1  +- 6) r'"'F'(" - 
(IX ,243) 

- 2r(23 + ~ ( 4  + - k) r(llP + yp2; 
bF3 = y [2 + a - kjp~'"'  - 2&,F'("r(') - j i 1 ( 2 j ;  

b-, = - - ' ( I )  2 '' I4y (k+ l )+k3 l ( I '  ) .  

In the case of variant B the function K (t, 7, y, 6) in the boundary 
0 

condition of the problem is rep1aced.b~ function (IX.219): 

K;(t97,v'.a')= K,(t , i ,y' ,8')-  p [ ( k t  1 ) r " ' f p l t - ( k f  I )F : (~ )+ ] .  (IX. 244) 

As the result, we find that the coefficients of the expansions of functions 
( 2 )  (q) and 11:') (11) are determined from relations (IX. 243) by substituting 

y, 6 by y1 , 6 '  and by adding to coefficients a(2) , t?1(2) , the terms, respec- - 1 
/650 - 

tively 

- - , [(k + i ) r t l )  + P I .  ~ ( k - k ] ) r  7 (IX. 245) 

The coefficients of expansion of the potentials of the second order are 
determined in the case of variant C in accordance with formulas (IX.243) by 
replacing y, 6 by y', 6 ' .  

Let us consider some particular cases. We will assume that the contour of 
a hole is free of external load; then functions +(2) (2) and q ( 2 )  (2) are defined 
by formulas (IX.242), (IX.243) if we assume in themlthat p = 0. The 

'The expressions for the coefficients of the functions 0(2)(z) and d 2 ) ( z )  for 
this case were first presented in the work of J. E. Adkins, A. E. Green [ I ] .  



coefficients of the potentials of the second order for variant B are found in 
this case by simple substitution of y, 6 by y', 6 '  in formulas (IX.243). 

We will write the formulas for the stress state components in variants 
A and B. 

Variant A. Here we analyze the elastic equilibrium of a body which, for 
a given magnitude of principal stresses at infinity N and N2, represents a 1 
plane with a round hole of radius R. Obviously, in the initial state, the 
hole, generally speaking, differed from round, whereupon, for each pair of 
values N and N 2 ,  the original shape and dimensions of the hole differ. 

1 

We will introduce, in the deformed state, the polar coordinate system 
i 19 r, 8 (z = re ) Then, by substituting functions $(k)(z), $(k)(z) in the 

relations for stress components (IX.124) and (IX.125), consdering the formulas 
for conversion from Cartesian to polar coordinates, we obtain for the points 
of the contour circle 

o, = N ,  + N ,  - 2 (N, - N,) cos 28 + ?';-[(2 - ha) (N, - N,I2 + (N, + 

+ N,)? - 4 ( N :  - N:) cos 26 + 4 (A1, - ~,)'cos 461; 

a - 0. 
(IX. 246) 

Formula (IX.246) enables us to find the stress distribution ug on the 

contour of a round hole in the case of uniaxial tension-compression, multifold 
tension-compression, and pure deflection. The stress concentration coeffi- 
cients in these problems are: for uniaxial tension-compression (N = 0, N1 = N) 2 

(A, [ ; y (1.1 - kb) N k = 3  1 ,  12 .-I ' 
for multifold tension-compression (N = N2 = N) 1 

for pure deflection (N1 = - N 2  = N), 

(IX. 247) 

(IX. 248) 

1651 - 

(IX. 249) 



Variant B. Here we analyze the elastic equilibrium of a body which, in 
the initial (undeformed) state, represented a plane with a round hole of 
radius R. During the process of deformation, the shape and dimensions of the 
hole changed continuously. Here, to each pair of values N and N corresponds 

1 2 
a deformed contour of a certain shape. 

i 6 If we introduce, in the deformed state, polar coordinates r, 6 (0  = re ) ,  
then stress components on the deformed contour are 

k+ 1 
Y--3- 

n12= Nl +N2- 2 (N, -N, )  cos 26 f 40H ' 
( I X .  250) 

where n12 = or + oo is the sum of principal stresses. 

We will notice that since component nl* is invariant in relation to the 
transformation of the coordinate system, then, in the curvilinear coordinate 
system (p, O*), which corresponds to the contour of the deformed hole, we find 

(IX. 25 1) 

Since, on contour o = 0, then component n12 is a ring stress for points P 
of the deformed contour. 

The stress concentration coefficients on the deformed contour are: 

for uniaxial tension-compression (N = 0; N1 = N) 2 

for multifold tension-compression (N = N =.N) 1 2 

( I X .  252) 

(IX. 253) 

for pure deflection (N1 = -N2 = N) 



N 
kCB) = 411 + [ y ( 6 - ~ ) - 2 ( k +  1)lX)- (IX. 254) 

On the basis of formulas (IX.246) and (IX.250) we can analyze the effect - /652 
of nonlinear effects of the second order on the stress distribution around .the 
contour of a round and initially round hole in a homogeneous stress state at 
infinity. 

We will analyze stress distribution ag on the contour in the case of 

uniaxial tension-compression for an incompressible material with energy func- 
tion of the Mooney form (IX.102). Here the constants in formulas (IX.246) and 
(IX.250) are defined by relations (IX.104) and (IX.105). 

Variant A .  The stress component on the round contour is defined by the 
formulas 

in the case of plane deformation 

in the case of plane stress state 

(IX. 255) 

(IX. 256) 

where 

Stress distribution ag (IX.255) and (IX.256) at the various points of the con- 

tour is characterized by Table IX.1. 

We will notice that in the given problem a finite round contour can be 
obtained by two ways: by tension (+N) of a plane with an oval hole along its 
small axis, or by compression (-N) along its large axis. 

As follows from Table IX.l the greater the forces of tension that must be 
applied to achieve deformation of the original contour to round contour (for 
an oval with a shorter small axis), the greater the stress concentration must 
be on the contour; when the compressive forces increase (for an oval that is 
extended to a greater.degree along the large axis), the stress concentration on 
the contour decreases. 



TABLE IX. 1 TABLE IX.2 

6' 
I P 1 ane .de'f or- 
mation 

0  - ~ ( l - 0 . 2 5 ; )  

N2 
30 -0 ,25-  

P 

N 1-0,25- 45 ( 

- - 
Plane st'ress state ' Plane defor- Plane stress state 

oe j 
f o r  (P = 1/19) , mat i on /for @ = 1/19) 

I 

Tr. Note: Commas indicate decimal points. 

Variant B. .Here we analyze the stress concentration on the contour of a 
hole which was initially round. Because of deformation, the round hole was /653  - 
transformed into an oval, extended along the oyl axis under tension and along 

2 the Oy axis under compression. 

The ring stress on the deformed contour of the hole is defined1 by the 
formulas : 

in the case of plane deformation 

(IX. 257) 

in the case of the plane stress state 

n 1 ~ = ~ [ 1 - 2 ~ 0 ~ 2 8 +  18 1 7 + 2 9 ~ *  (1  + p*) . o f f  N (If 9- + lie* 2 9 ~ *  + 2 ~ 0 ~ 2 0  - 2~0~46)]. (IX. 258) 

In formulas (IX.257) and (IX.258) 8 is the polar angle in the nondeformed plane. 

Stress distribution ag on a nondeformed contour is characterized by 
Table IX.2 .  

The difference between the results in variants A and B is attributed to 
the change of the shape of the contour during deformation. As the forces of 

'~ormulas (IX.255) and (IX.257) were first derived in the work of J. E. Adkins, 
A .  E. Green, R. T. Shield [ l ] .  



tension increase, the original contour of the hole becomes more and more 

flattened along the oyl axis, and naturally, stress concentration at the point 
6 =  IT/^ decreases. Under compression, the hole becomes flattened along the 

2 
Oy axis, with the result that stress concentration at the point 6 =  IT/^ 
increases. These results bear out the fact that the terms of the second order 
for an incompressible material take into account only the non- 
linearity of the problem. 

Such analysis can also be accomplished in the case of multifold tension- 
compression and pure deflection. The results of this analysis, for an 
incompressible material with the Mooney form of energy function (IX.102) for 
A2:Al = 1:19 can be characterized by Table IX.3 and the stress-strain diagrams 
of stresses ag/N in Figures IX.l and IX.2. 

TABLE IX.3 

Plane Deformation I Plane stress siate. 
Stress I $ 5  
s ta te  . . Variant A I Variant B Variant A 1 Variant B 

--I 

Uniaxial N N N 
tension 

N N 

tension 

N 

T r .  Note: Commas indicate decimal p o i n t s .  

The results obtained can be formulated briefly as follows. 

1. In nonlinear theory the stress concentration coefficient depends on 
the initial and final shapes of the contour of the hole, the form and magnitude 
of load at "infinity," elastic properties of tlie material, and form of elastic 
equilibrium (plane deformation or plane stress state). 

2. Deviation of the magnitude of the stress concentration coefficient from 
the stress concentration coefficient given by linear theory is considerable 

'we will also arrive at this very same conclusion below, in 53, as the outcome 
of several different starting points. 



in many problems. In the case of the homogeneous stress state at "infinity," 
the greatest deviation occurs in the problem of pure deflection. 

Figure IX.2. 

By using the potential of the first 
(IX.239) and second (IX.242) orders, we 
can write out the formulas for the 

i stress components and for the other 
partial cases. For instance, in the 

Figure IX.1. problem of multifold tension-compres- 
sion of a plate with a round hole, the 
contour of which is subjected to the 

effect of uniform normal load with potentials of the second order, defined by 
formulas (IX.242) and (IX.243) for 

(IX. 259) 

for variant A 

'2) RZ d2) (2) = r12)2; ~ p ( ~ )  (T) = b- , ;-- . (IX. 260) 

The curves of stresses ug/N on the contour of a round hole are shown in - u Figure IX.l for N/ H = 0.3 in the plane stress state, where I is uniaxial ten- 
sion; I1 is pure deflection; 111 is multifold tension; the broken curve 
corresponds to linear theory. 

The curves of stresses ag/N on the contour of a round hole are illustrated ,. 
in Figure IX.2 for N/"H = 0.3 in the plane stress state, where I is uniaxial 
tension; I1 is multifold compression; the broken curve corresponds to linear 
theory. 



For v a r i a n t  B 

( 2 1 3  ~pf'(tl) = ~'~'1; 9;' (7) = b,, ,  . (IX. 261) 

In  formulas (IX.260) and (IX.261) R i s  t h e  r ad ius  of  a  round ho le  i n  t h e  
deformed p l a t e ;  R i s  t h e  r a d i u s  of  a  round ho le  i n  t h e  i n i t i a l  s t a t e ;  

1 

b',4 = q ( N  + p) [ 2 ( N  + p) + (kf 6)NI;  

(IX. 262) 

b:? = (Y - 2) ( N  + PI)' + [y (k-i-g - 2(k - 1)1 (N  + P)N. 

I f  we in t roduce  i n  t h e  deformed and i n i t i a l  s t a t e s  p o l a r  coord ina te  
systems r, 9 and r * ,  J*,  then ,  f o r  s t r e s s  components, we ob ta in  t h e  formulas1: 

f o r  v a r i a n t  A 

f o r  v a r i a n t  B 

(IX. 263) 

Since i n  t h i s  problem displacement component u  i s  no t  a  func t ion  o f  angle  r 
6,  and component ug i s  equal  t o  zero,  then  dur ing  deformation t h e  round contour 

r e t a i n s  i t s  shape and only magnitude of  t h e  r ad ius  o f  t h e  hole  R v a r i e s .  We 
w i I l  n o t i c e ,  however, t h a t  i n  t h e  case  o f  v a r i a n t  A,  t o  each p a i r  o f  va lues  N 
and p corresponds a  c e r t a i n  magnitude of i n i t i a l  r a d i u s ,  and i n  t h e  case  of 
v a r i a n t  B ,  f i n i t e  r ad ius  of t h e  ho le .  

Since deformation i n  t h e  given problem i s  axisymmetric, or*, agx coinc ide  

with the  s t r e s s  components i n  t h e  p o l a r  coord ina te  system of  t h e  deformed s t a t e ,  

' see  Yu. I .  Koyfman [3] . 



bu t  a r e  expressed through t h e  i n i t i a l  va lues  o f  t h e  r ad ius  o f  t h e  ho le  and 
v e c t o r  r ad ius  r. The formulas f o r  t h e  s t r e s s  components f o r  p o i n t s  o f  t h e  
contour  of t h e  c i r c l e  have t h e  form 

(IX .265) 

Assuming i n  formulas (IX.263) and (IX.264) p = 0 o r  N = 0, we f i n d  t h e  
express ion  f o r  t h e  s t r e s s  s t a t e  components f o r  t h e  problem o f  uniform normal 
p re s su re  on t he  contour of a round ho le  i n  a p lane ,  o r  o f  mu l t i fo ld  t ens ion -  
compression of  a p l a t e  with a round ho le1 .  

E l  l i p t  ical  tiole2. We w i l l  assume t h a t  t h e  contour  of  an e l l i p t i c a l  ho le  
i s  subjec ted  t o  t h e  e f f e c t  of uniform normal p re s su re  and t h a t  t h e  s t r e s s  s t a t e  
a t  i n f i n i t y  i s  homogeneous. 

The p o t e n t i a l s  of  t h e  second o r d e r  f o r  t h i s  problem a r e  given i n  5 2 ,  
Chapter 11: 

where m and R a r e  t h e  parameters  of t h e  mapping func t ion  

a- b me- a + b .  R = -  
a + b '  2 '  

a and b a r e  t h e  semiaxes of t h e  e l l i p s e ;  

T, = mr'') + T'(') + pm; T, -- ( I  + rn2)(2r(') + g) + rnF'(". 

(IX .266) 

(IX. 267) 

"The formulas f o r  v a r i a n t  A i n  t h e  f i r s t  of  these problems were f i r s t  p resented  
i n  t h e  work of  J .  E .  Adkins; A.  E.  Green [ I ] .  

2 ~ e e  Yu. I .  Koyfman [ 2 ,  3,  S ]  and a l s o  G .  L ian is  [ I ] .  



The potentials of the second order are defined by formulas (IX.232), 
which, for the' given problem, acquire the form 

(IX. 268) 

Functions (c) and $h2) ( 5 )  should be found from boundary condition 
0 

(IX. 233) . 
The functional expressions for the determination of the potentials can be 

written in analogy with the linear1 theory in the form 

(IX. 269) 

where 

( ' ( ' 0' + m ] F'(2) KO 0. , Y. 6) = FI o , y .  Y, 6)- RI"~' [a .+ - 0 .  (IX. 270) 

In solving the problem in variant B, the K function is replaced by the func- 
tion 0 

(IX. 27 1) 

where displacements of the first order for the points of the contour are 

(IX. 272) 

here 

'see formulas (I. 37) . 
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From equations (IX.269)) after elemental calculations, we obtain functions 
(2) 

t$O (5) and I / J ~ ( ~ ) ( < ) ,  and then potentials of the second order, finally, can be 

written in the following (variant A) form: 

(IX. 273) 

where the coefficients of these functions for k = k = 0 are 1 2 

+ TJ 6T4 - ( I  + 6)  T,F"') - k, [ ( 2 ~ " '  + mTl) T ,  - m3 (r"')'] + (IX. 274) 

2 ( 2 )  i - m ( 3 + m ) r  ; 

M, -- y [2m~,I"( l )  + TsT6 + ( I  + 6) r ' " ~ .  - I""'T, - bF4 (mr"' + TI)] - 
- k3 [2m (T, + mP1')  + r")]  r(') - (2 + m2) r(2); 

T6 = (1 - m2) ( 2 r  ( I )  + p) - m (r '(1) + F'(''). 

In the case of variant B 

M; + ~ ; 5  '+ ~1;5' (IX. 275) 

E(6' - m)' 

Here the components MI are determined on the basis of formulas (IX.273) by 

replacing in them y, B by y f ,  6 ' .  



By using the  po ten t ia l s  of the  second order (IX.273) o r  (IX.274), we can 
analyze ce r ta in  p a r t i a l  problems. By way of example we introduce the  formula 
fo r  s t r e s s  o8 on the  contour of a f r ee  hole,  i . e . ,  when p = 0, i n  the  homo- 

geneous s t r e s s  s t a t e  N1 and N a t  i n f i n i t y  f o r  a = 0: 
2 

1 + 2 (Rs + R4 cos 28 + Rb C O ~  46) + $ ( R ~ + R ,  cos 26 + R,COS 40 + RQc0s 666 8 

where 
I1 

(IX. 276) 

1 -= 8 (3 - ka) ( N :  - N:) )  4- y ( 1  - k6) [ ( I  -+ m?) ( N ,  + N?)' + 4dl]. 
(IX. 277) 

R, = 1 1 2  4 (N: - N:) - mk (Ar, - N , ) ~ ] ,  

In the  case of var iant  A ,  it i s  necessary t o  assume i n  these formulas thp t  
61 = 1. 



In analyzing variant B it is assumed that the region under examination 
represented in the nondeformed state a plane with an elliptical hole which was 
characterized by the parameter m = (a - b)/(a + b). Conformal mapping in this 
case is related to curvilinear coordinates p * ,  9* of the initial state. 

During deformation, the shape of the contour changed, but since component 

n12 is invariant, then, in the curvilinear coordinate system P , 8, related to 
the deformed contour, we may write 

nl* = II 11 a** + a*. = a; + a;.. (IX. 278) 

Since there is no external load on the contour, then /660 

(IX . 279)  

The component 0;' is defined by formula (IX.276) ,  if in components R4, R3 

we assume 6 = 1 - l/y and in components R6, ..., R9, replace y by y - 1. 1 

As the outcome of formula (IX.276), we may determine the stresses on the 
contour for the following problems: 1) for the biaxial stress state (N1 # N 2 ) ;  

2) for tension-compression along the large axis (N = 0); 3) for tension-com- 2  
pression along the small axis (5 = 0); 4) for multifold tension-compression 

(N1 = N ); 5) for pure deflection (N1 = -N2). 2 

By way of example we will analyze the stress distribution around the 
contour of an elliptical hole for tension-compression along the large axis in 
the case of plane deformation of an incompressible material with the Mooney 
form of energy function when m = 1/3. 

I 
Variant A. The values of component cr0 at the various points of the 

elliptical contour are presented below (8 is the polar angle in plane < of the 
deformed state) : 



These results show that as in the case of a round hole (see formulas (IX.255) 
and (IX.256)), the nonlinearity of the problem results in an increase in the 
concentration coefficient as the forces of tension increase, and to a decrease 
in the concentration coefficient a$ the compressive forces increase. 

Variant B. Due to deformation, the elliptical hole becomes flattened 
along the large axis under tension and along the small axis under compression. 

The values of stresses 0:' at the various points of the deformed contour are 

given below (8 is the polar angle in plane < of the nondeformed state): 

A decrease in stress concentration at the point 9 = 90' with tension in /661 - 
comparison with variant A and also in the case of a round hole is attributed to 
the fact that in this variant the magnitude of stress concentration is deter- 
mined on a contour that is extended more along the large axis of the hole than 
in variant A.  Under compression the shape of the hole approaches more closely 
to circular and therefore the stress concentration increases. 

The values of the stress concentration coefficient on the contour of an 
elliptical hole (variant A) or initially elliptical (variant B) hole during 
the plane deformation of an incompressible material with the Mooney form of 
energy function for 

a-b 1 
m =  - -  

a + b - 3  

in the case of plane deformation of an incompressible material for certain 
partial problems, are presented in Table IX.4. 

Thus, the data in Table IX.4 illustrate the effect of geometric nonlinear- 
ity, which distorts the shape of the contour during deformation, on the 
magnitude of stress concentration. 

P.cund Hole w i t h  Reinforced ~ d ~ e ' .  Let the examined region represent a 
plane with a round hole of radius R in which is soldered a round and wide ring 

'see G. N. Savin and Yu. I. Koyfman [I, 21. 
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with i n t e r n a l  radius  R We w i l l  assume t h a t  the  s t r e s s  s t a t e  a t  i n f i n i t y  i s  1 ' 
homogeneous and t h a t  the  ins ide  contour of the  r i n g  i s  f r e e  of ex te rna l  fo rces .  

The problem can be examined i n  two v a r i a n t s ,  namely F and I .  In  
analyzing va r i an t  F it i s  assumed t h a t  the  contour of seam L and i n  t h e  i n t e r -  
na l  contour of  the  r i n g  L a r e  c i r c u l a r  i n  the  deformed s t a t e ;  i n  va r i an t  I  it /662 1 - 
i s  assumed t h a t  these  contours a r e  round i n  the  i n i t i a l  s t a t e .  

TABLE 1 X . 4  

of Load Ivari- Tension- qompreu- hension-compress- 1 Mulrifold tension I ant lion along major axision along minor axis mmpression 

Linear Theory 
I 
I - I 

N 
( 0 . 8 )  1 4(1+0,18$-) A 

Tr .  Note: Commas indica te  decimal points .  

2(1+0,21f) 

A 

The boundary condit ions f o r  the  p o t e n t i a l s  of t h e  second order  i n  va r i an t  
F (see formulas ( I X .  209) - (IX. 212)) a r e  wr i t t en  a s  follows: 

Tension 

5(1-0,80$) 2 I 4  219- ( . )  

(IX. 280) 

2 1-0,156$) 1 5(1-0.40$) 1 4(1-0,062;) 

40-0.687;) 

Compression 

-- ; ;  t )  + t t + ; ;  1 - ( )  f 9 ( 1 .  I ,  = 0 on L1 ; 
-- - 
")' ( t )  + 43 ('1 - (t. a,,)) = 913 0) + tcp,,) 
- - 

= (t)  + w$;' ( t )  + q(:j 0) - FI(,,, (t,?. yq. aco,)l, 
-- - 

k ,T{:; ( f )  - t(P{i[ (0 - 91;; ( 4  - F ~ ( I )  F* Y [ I ) ~ ( I J  a 

- - 
= m2 [k (po (f) - t:"?)' ( I )  - $(2) ( f  

(0) (0)  T (0) lo)  - F z ~ ,  (t. K Y  (0) .  610,)1 on I, * (IX. 281) 

2 ( 1+0,156- :) 15(1+0,40<)  4 ( 1 + 0 , 0 6 2 ~ )  



(2) (2) where 0") (t), 9c01 (t) and @(2) (t), JI (t) are the boundary values of the 
(01 (1) (1 

potential; of the kecond order for regions occupied hy the plane and ring, 

OH(i) respectively; rn = -. 
OH(0) 

Since the internal contour of the ring is free of external forces, i.e., 
on L we have the condition p(t) = 0, then 1 

Consequently, by comparing the boundary conditions of variants F and I (IX.211), 
(IX.212) and (IX.215), (IX.216), we see that in the problem under consideration 
the boundary conditions of variant I differ from boundary conditions (IX.280) 
and (IX.281) only in that the constants y, 6 in functions Fl(t, i, y, 6) and 
F (t, t, y, 6) are replaced by y', 6l, and t is the affix of contours L and L1 2 
in the initial state. Thus, the potentials of the second order in both 
variants of the given problem are determined simultaneously from boundary con- 
ditions (IX. 280) and (IX. 281). 

The potentials of the first order are 

9:;; (z) = i' ' (I12 + By, -; R2 -+ $('\ jS , . 

(IX. 282)  

(IX. 283) 

- 
By substituting these potentials into functions F l ( z ,  z ,  y, 6) and F 2 ( z ,  r,  y, - /6f 
6), we find from boundary conditions (IX.280) and (IX.281), by the method of 
complex Fourier series, 

( I X .  284) 



(IX. 285) 

The coefficients of the potentials of the second order are defined by the 
following relations (for kl = k2 = 0): 

1 
u ? = ~ [ D , - ( I  - m ) ( l -  p2) L;~, E = - I [D8 - 3 ( 1  - m)(l - p 2 )%I; (21 

To 

b!?s = p2 [ ~ i ~ ~  + 3cP3 - pQ)l, b!!J = 8 t p ~ ;  + 2; - p 4 a f ) ~ ,  

b s  p [A; - 2 M  , blD = A~ - 21 - hi2) + m [re@) + ei - Q - ~ I ,  (IX .286) 

J'= &-& -5a52) + m ( & - ~ 4 ) ;  

1 PI = - nt - -2aIO' + bEl - m (2r(*) - Q~) - A,], 

where 

do - 15pa(1 - ~ 3 ~ ( 1 - m ) ( 1  +mk(o,) + [p6(k(1)-mk[0,)+(1 +mktm)]T, ,  

dl = 3d (1 - pa)' t 1 - m)( 1 + mk(o)) + [P' - mk(o)) + (1 + mk(o))l TI, 
d , = 2 i p " ( l - m ) +  m l + k ( 1 , - 1 ;  

To = m -i- & ( I )  4- ( 1  - m)plO, TI = m + & ( I )  + (1 - m) PC, 
Dl = mYk(o)Q-3 - Q--3.1) + A--3.1 - rnk(,,A-3, 

Dz = rn2[k(o)Q-~ - Q-1.11 f LI,I - mk,0)A1 - mZ(k(@ + 1 )  r'm, 

(IX. 287) 
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( I X .  289) 



The values A2n+l, Vr, M. are found from A;n+l, V;, M' respectively, for p = 1; 
J j ' 

the values Q2n+l, Q2n+l, 1 are found from A2n+1, A2n+l,l, respectively if we 

substitute the elastic constants of the ring by the elastic constants of the - - 

plate, and the coefficients a2n+l, () bZnel (I) (n = 1, 0, -1) by 0, r (11 , a-l (11 , 
('1 ('1, respectively. r '  8-1 , B-g 

As shown above, to find the coefficients of the potentials of the second 
order in variant I, it is sufficient to replace in formulas (IX.286)-(IX.289) 
the constants y, 6 by y', 6' and assume that p = RI/R*, where R* R* are the 1 ' 
internal radius of the ring and the radius of the contour of the seam, 
respectively, in the initial state. 

We will notice that by assuming in formulas (IX.286)-(IX.289) p = RI/R = 

= 0 ,  we obtain the coefficients for the potentials of the second order for the 
problem of elastic equilibrium of a plate with a round hole, into which is 
soldered a heavy disc of a different type of material. 

In the polar coordinate system of the deformed state, the stress components 
on the contour of the seam in the given problem are of the form 

f, a = (I"'" + 38% - 2a!!l1) sin 26  + --- I [B, sin 28 + B, sin 461, 
2"(0) 

1 
or = 2r'l) + @El + (3g!l\ - -'(I) - 4d.i) cos 2e + - 

2OH(0) 
[Br + B, cos 26 4- 

+ Be cos 461, 

where 

(IX .290) 



x i = -  ( 1 )  
( 1 )  (1)  ('1 r*(O - BEI + Y ( O )  {- 2a-I Va -- (2 + 40) - k(o)) r B-1 - (6(0,-k(o))el 

- btco) [6V8Ve + ~ $ E ! , v ~ I  - 262,o)&\va), 

X;  -- 2a(2' - 3$!% + Y ( O  ) { (2  + - R(o)) ( L ~ P - ~  ( 1 )  ( I )  + rcl vd - 
( 1 )  (1) - 61(o)[6Vy Ve -I- 2I3!!\~b + ~P!!)~VBI - 282(0,a!!)1~,) i- 4k3$ -1, 

= 12a?\ - 5$!!\ $- yo {(k[o) - 6(0)) d1]v, - 2 ~ ' " ' a l f ~  - 661(o, v6v8 - 
- 
- 262(0) a!!), vB) - 4kqo)a'l':; 

( 2) ( 1 )  ( 1 )  B, = 313% - 2a-I + ~ ( ~ ~ ( ( 2  - + ~ ( o I )  U - I B - ~  - ( 2  + ,-- kts) r llv. - 
( 1 )  v ( 1 )  1 

(IX. 291) - ai(o) [2$-I B - 6VeVY - 2 ~ ~ 1 ~ ~ 1  + 2&2(0) ~ C ' I  v y )  - 4k3(0$" el. 
' ( 1 )  (1 B8 = 58fk- 12a3  + y(o) {(d(o,  - R(o)) a!!\va - 2I' e l  + 

+ 6VbVeb1(~, + 28?(0) a ? , ~ ~ }  + 4kqo) a!!.% 
(1) Va = 2att', - 38'1'3, Ve = a!!), - 

( 1 )  - r'(l) V = ( 0  - 1) - 1 ,  Va = kts , 
( 1 )  ( 1 )  V,  = 2$-3 - a,, . 

In variant F it is necessary to assume 

In variant I it is necessary to assume 

On the basis of formulas (IX. 2SO), (IX.291) and (IX. 284) -(IX.289) we may 
determine the stress state in the points of the contour of the seam, both for 
uniaxial tension-compression (N = 0, N1 = N), and for multifold tension-con- 2 
pression (N1 = N2 = N), and also for pure displacement (N1 = -N2 = N) for both 

compressible and incompressible materials. 

Hole w i t h  Soldered, Absolutely Rigid Inclusion ( ~ i n g  or DISC). We will 
assume that region S under examination represents an infinite plate with a hole 
which possesses one axis of symmetry. We will assume that an absolutely rigid 
inclusion, in the form of a ring or continuous disc is placed (without clear- 
ance) into this hole. The rigid inclusion is soldered along the contour of 
contact to the surrounding material of the elastic plate. We will assume also 
that plane S, at sufficiently c1,istant points from the hole, is under the effect 



of external forces N = const and N = const, i.e., in the biaxial stress state, /667 
1 2 - 

where forces N act at infinity along the axis of symmetry of the hole, and 1 
forces N2, perpendicular to this axis. The rigid inclusion is free of external 

forces, except for the forces of interaction with the surrounding material of 
the elastic plate. We will analyze the equilibrium near this absolutely rigid 
inclusion1 . 

Under these assumptions there can be no rotation of the rigid inclusion, 
and therefore, on seam contour L, the following conditions2 should be satisfied: 

D (2, t) = g ( t )  = 0 

D ' ~ )  (z, i) = g(h) ( t )  = 0. 

(IX. 292) 

(IX. 293) 

Since, in the given problem, the principal vector of forces acting on both the 

seam contour and on the contour of the hole is equal to zero, then x(~) = Y ( ~ )  = 
= 0 (k = 1, 2) and as follows from formulas (IX.181), Ek = 0. Then if we 
introduce the mapping function 

the potentials of'the second order will be of the form 

cp(2) (5) = I"2)R5 + ( ~ r )  (C), 

ga = r r ( * )Rc + 9s) (5). 

(IX. 294) 

(IX. 295) 

The functions @h2) (5) and $i2) (5) are determined from boundary condition 
(IX.235) of the second basic problem: 

1 
k ~ h ~ ) ( o )  - 6;" ($) - G i 2 )  (2) = g, (a. q, y, 6)on y,, , 

(0) 

it9 where yl is a circle of unit radius; a = e , 

( I X .  296) 

'See Yu. I. Koyfman [4 ] ,  G. N. Savin and Yu. I. Koyfman r21. 
2~ince the contour of the hole is not deformed, the problem is analyzed in only 
one variant. 



(IX. 297) 

Assuming in the expressions for the function F2(5, e, y, 6) (IX.299), 
ki = ki = 0, and considering that on L D = 0, we obtain 

F, (a. , y, 8) = - k;m (a) [W) (')r on y, . (IX. 298) 

As in linear theory1, the functions $A2) ( 5 )  and +A2) ( 5 )  are found from 

functional equations 

(IX. 299) 

We will examine in greater detail a partial case, specifically, we will 
determine the potentials of the second order for the case where the contour of 
the hole is elliptical. The potentials of the second order in the given prob- 
lem, under the given assumptions, are of the form 

R 9"' (0 =  RE + F(')R + (r('Im + re")) I Ma . - (IX. 300) 
c*-m 4 '  

where n and R are parameters of mapping function Z = R (  5 4- 7)  . 

From functional equation (IX.299) we find the potentials 

- -. 

'see 51, Chapter I. 



where 

Assuming in formulas (IX.301) m = 0, we obtain the potentials of the 
second order for a round hole of radius (z = RT) 

(IX .302) 

where 

By substituting the expressions obtained into the formulas for the stress state /669 - 
components, we can analyze the stress concentration in the general case, i.e., 
for any elliptical hole. Here we will analyze only the stress concentration in 
the case of plane deformation of an incompressible material. 

The stress components on the contour of the seam for an elliptical hole are 
defined by the formulas 

2 (NI - N-d2 [ I  + 2 (1-;J.S 48)]] 
[IX ,303) 

a Q =;( Nl-tN, + a ( N , - N , )  (cos26-m) - 
' 3 ~  9 

- - (Nl - N 2 )  Sin 26, 
??e - d 

where 

d = 1-2mcos26+m2. 

By assuming in (IX.303) m = 0, we obtain the formulas for a round hole 



1 I 
(IX .sod) 

u, = ((N, + N,) + 2 (N, - N,) eos B -- (N1- N2)2 [3 - 2 cos 281 , 
8,u 

r = - (N, - N,) sin 26. * 
The values of the stress concentration coefficients a8/N for round and 

elliptical (m = 1/3) holes in certain partial cases of load at infinity during 
the plane deformation of an incompressible material with the Mooney form of 
energy function are presented below: 

Round ho 1 e 
tlniaxlal tension- Multifold tenslon- 
compressfon Pure displacement compression 

Elliptical hole 
Tenjfon-compres- Tension-compres- 
sion along large sion along small Multifold tenston- 
axis axis compress ion 

In the problems under examination the difference between the maximum 
stresses on the contour of the seam and those calculated on the basis of the 
formulas of classical linear theory is slight. This is ohviously related to - /670 
the fact that the contour of the hole, during deformation of the plane, remains 
the same. 

Round Hole Reinforced by Thin (~ound) Elastic Rod. Consider an infinite 
plane with a round hole, the contour of which is reinforced by a thin elastic 
rod of constant cross section1. We will assume that one of the principal axes 
of inertia of each cross section of the reinforcing ring lies in the plane of 
the plate and that the plate and ring come into contact along the contour of 
the axis of the ring. Consequently, the reinforcing ring is regarded as an 
elastic line that operates only by tension and deflection. We will a?.so assume 
that the elastic equilibrium of the plate (or large body during plane deforma- 
tion) is described by the equations of plane nonlinear theory, and that elastic 
equilibrium of the ring is described by the equations of the theory of small 
deformations of thin linear-elastic - curvilinear rods. We will place the origin 
of the coordinate system (2, z) at the center of the hole. 

see Yu. I. Koyfman [I] , G .  N .  Savin and Yu. I. Koyfman (21  . 
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On the contour of contact L of the plate and ring the following conditions 
are satisfied: 

(IX .30S) 

where u, v, Xn, Y are displacement and stress components along the axes of n 
the Cartesian coordinate system for plates; uo, vo, Xn,O, Y are the analo- 

n, 0 
gous values for the axis of the reinforcing ring. 

Hookels law for the reinforcing ring is taken in the form 

(IX , 306)  

B0 = B0(s) is relative elongation of an element of the axis of the ring; 

8 = 8(s) is the magnitude of rotation of an element of the axis due.to deforma- 
tion; P is the radius of curvature of the ring after deformation; GI, G2 are 

rigidities to tension and deflection; Q1 is normal force; M is deflecting 

moment in the cross section of the ring. 

The relationship between normal force Q1, shear force Q2, deflecting 

moment M and load acting on the ring is defined by formulas presented in the 
work of M. P. Sheremet 'yev [l] or in the work of Yu. I. Koyfman [I] . 

Complex displacement of the axis of the ring can be represented in the - /671 
form' 

1 where a is the angle formed by the normal with the Oy axis. 

'see Yu. I. Koyfman [I] . 
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Since it is assumed that deformations of the rod satisfy (geometrically) 
linear elasticity theory, then the form of these relations is not changed if 
we relate the values in them to the length of the arc of the deformed axis. 

Suppose that the pro$ections of the fcpces for the plate and ring are 
represented by series with respect to parameter E: 

(IX. 307) 

Since Q1 and M are expressed through the projections of the forces, they, 

along with the values B0 and 0, are represented in the form of the same series. 
Therefore we may write 

D = u + iv, = 2OHe ID;) + &Dh2) 3- . . .] 4- Co, o o (IX. 308) 

where 

Since, on the other hand, 

the boundary conditions ( IX .305)  for terms of the first and second orders can 
be represented in the following form: 

D2) = 2OH efa (i$b2) - 8 9  ds, i 
0 

(IX. 309) 

(IX. 310) 



By expressing the left hand sides of the conditions (IX.310) through the /672 - 
boundary values of a combination of complex variable functions, we obtain the 
boundary conditions for the determination of the potentials of the first and 
second orders. In particular, for potentials of the second order 

a 

q ~ ( ~ )  ( I ) +  t m )  + q2v) - F1 (1.-t, y, 6) - i ( (Xz + LYE,) ds, 
6 

(IX. 31 1) -- 
kq(2) (t) - tvc2)' ( t)  - $(2) ( t )  - F2 ( t ,  t, y, 6)  -- 2OH / da (ipi2) - 6(2)) &, 

where t is the affix of a point of the deformed contour. 

In solving the problem in the coordinates of the nondeformed state, it is 
necessary in boundary conditions (IX.311) to substitute the constants y, 6 by 
y t ,  6 ' ;  t in this case is the affix of a point of the nondeformed contour. 

We will assume that the stress state at infinity is homogeneous. The 
potentials of the first order for the plate are 

From (IX.312) we find the potentials of the second order 

where 

(IX. 312) 

(IX. 313) 



+ (TI - r"") [ ~ O H R ~  $ 3 ( R ~ G ~  + G2) +k (3Ga - R~GJPHR - 
L. 

- 3 (-!.Sl(ilG2 20HRGa f 20HRSG3 TU 7 OHR [4OHRJ - 
- 3 (PG1 - 3G3) + k (R2G1 + 9Ga)] TjJ 9 ( I X .  314) 

1 - (I2 [60G,G + OHR ( P G  I + 1 5G2)1 T,,, + [ 1 20HRS + 
+ 15 (R2Gl + 9Ga) + 3k ( 1  5G2 - R"G31° HRT-:, - 20 [ I  2kGlGa+ 

+ OHR (R2G1 - 9Ga)] Ts.1 + OHR [40HR3 - 15 (R2G1 -- 15Ga) + 
+ 3k (R2Gl 4- 25G2)] Ts); . 

dl = 40H2R4 + 3OHR (3k + 1) Gz + 0HR3 (k  + 3) G1 I- 12kG1Gt, 

4 = 4"H2R' , 15OHR (5k $. 3) Ga + 0HR3j3k + 5) GI f 24OkG1G2; (IX. 315) 

( 1 )  ( 1 )  
Vb = 2a-I - 3g-, , V ,  = ka"' -1 - I"('), 

( 1 )  (1) V, = a_,  - V3 = (k - 1)P1)- $(I) . 
- I  ' 

( 1 )  y (1)2 3 (1)  ( I )  
T5 y IVoV, - 21 -k3a-1 f 3 kla-l $-, 9 

(1)  ~ ( 1 )  - T, = Y [V& - V, + ( I  + 6) I'(''v2 - 6aT1\ V,] + 2k,a-, 

k1 - 3 ' )  ( 1 )  -1 P - I ) ~  ( 1 )  

(1) y T, = Y IV& - V3 + I"("v, + ( I  + d) r")v3 - , - a:: V21 - 
( 1 )  ( 1 )  - (k3 + k2) r(l)2 - kl ( r  p-, + r"')), 

T-, = ,- [wg(l) - a:: V ,  - a:), V ,  + ( I  + a )  r(l)v,l- kIr"'r0"' - 2 k ~  ( 1 )  a_, (I) , 

1 T, = y [r"'"~,  - a:), V,] + - 3 R 2 -I 

( 1 )  v 3 (1) ( I )  T51 = Y Ida-, 2-VlV01-kja!.!7+ 5 k1a-, fJ4, 

( 1 )  y TU = Y llda?, - VJ V3 + $-, , - ( d  - k) r" '~ ,]  + 2R;F1)a~)l  - 

R; (1) ( 1 )  (1, (1) --(3r 2 $ ~ - a - l f L l ) ~  ( I X .  316) 

T~.l - r I- (v, s ka?, ) V ,  + B:),V, - (d - k)  I'(')v, + (do:), - r ' " ) ) ~  ,I - 
- (k; + k'~ r(l)z - k ;  (r(i)pE)l + r'(1) (1) 

a-1 1 9  



can be found from formulas (IX. 314), assuming The values a-l , B-l , Be3 
- = 0 and by substituting r (21, p(2) by r(l), r ,  (1) T2n+1 - T~n+l,l 
Thus, the potentials of the first and second orders are completely defined. 

We will assume that for sufficiently thin rods we may disregard the effect 
of rigidity to deflection, i.e., we may assume G, = 0 ;  then we find the 

expressions for the coefficients of functions $(GI (z) and qck)  (2)  (IX .312) and 
(IX.313) in the form 

( I )  = [(k - 1)A - I ]  rp(I) 
f3_3 1 + ( k + 3 ) A  ' 

a") - T-] - r'(') + A 13 (T-l - T,) + (T-LI - 3TU) - 2r''*)] 
-I - 1 + ( k + 3 ) A  t 

If we assume in these relations that A = 0 ,  we obtain the coefficients of the 
potentials of the first and second orders for the case of an absolutely flex- 
ible reinforcement, i.e., for the case a free hole. 

As an example we will analyze the stress concentration along the contour 
of a round hole for plane deformation of an incompressible medium, the edge of 



which is reinforced by a thin ring1, for a plate under uniaxial tension-comp- 
pression. We will examine two cases. 

1. Considering the ring to be sufficiently thin (b/R is small, where b is - /675 
the thickness of the ring in the radial direction) we will disregard the effect 
of the rigidity of the ring to deflection and assume 

(IX. 319) 

We will also assume that the linear-elastic material of the reinforcing ring 
possesses a much larger modulus E (Young's modulus) of tension during small 

0 
deformations than the corresponding modulus E = 3~ of the incompressible 
material of the surrounding medium, i.e., we will assume that EO/E 1. In our 

numerical calculations we will use 

0 a -5.-- A =- 4 E R - 6 -  (IX. 320) 

2. We will assume that the ring represents a flexible nontensile thread. 
In this case G2 = 0; G -t -; A + a. 1 With such a type of reinforcement the 

length of the axial line of the ring remains constant during deformation. 

After determining the coefficients of the potentials of the first and 
second orders (IX.312), (IX.313) by formulas (IX.317), (IX.318) and substituting 
them into the corresponding formulas for the stress components, we obtain on 
the contour of the hole the values ag presented in Table IX.5. 

TABLE IX. 5 

v* ( 9 ( for  Case 1 )  ( a* (for case 2) 

Figure IX.3. 
90 1 , W N  1 +O 003- ( , 

points .  
'We will recall that the reinforcing ring is assumed to be an elastic line 
operating only on tension and deflection. 

0,50 N 1-0,234- i C) 

1,00~'(l~0,054~) 

Tr.Note: Commas ind icate  decimal 



As we see, the thin reinforcing ring, the rigidity of which is much 
greater than the rigidity of the surrounding material, decreases sharply the 
concentration of stresses on the contour of the round hole. 

By comparing these results and the results obtained for an absolutely 
rigid reinforcing element, with the data for a free hole we see that the intro- 
duction of a reinforcing element that limits the mobility of the points of the 
contour of the hole, results in a reduction in the effect of the nonlinear 
corrections of the second order. 

The graphs of Gax/p on the contour of a round hole in an incompressible 

medium are shown graphically in Figure IX.3 for plane deformation in the case 
of uniaxial tension for various types of reinforcement: 1, absolutely flexible 
ring; 2, absolute rigid ring; 3, flexible elastic ring when EO/E*b/P = 8; 4, 

flexible ring with nontensile line. 

5 3 .  Another Variant of the Solution of the Problem of Stress Distribution near 1676 - 
Holes during Plane Deformation of Incompressible Material 

Parameters of Plane Deformation. We will analyze two states of a body: 
natural (nondeformed) and deformed. 

The natural state of a body is related to the rectilinear Cartesian 
coordinate system x,  y. 

The plane field of displacements will be given as a function of the 
coordinates of the points of the body in the natural $+,ate: 

The deformed state of the vicinity of an arbitrary point of the body is 
characterized by the parameters of change of volume and shape. 

Let A1, h2, h be the principal elongations, i.e., the elongations of the 3 
principal fibers. Then the invariant characteristic of change in volume during 
plane deformation is 

(IX. 322) 

Contour change will be characterized by two parameters from among three: 

(IX. 323) 



(IX . 324 )  

Parameters Zk are called elongations during contour change, although it is 
more convenient to use the logarithmic values: 

- I Ik -- In lk  - In hk - -- In ( I  f A). 
3 (IX. 325)  

The deviator of logarithmic elongations tk can be given by the principal 
values In Z and its principal directions are assumed to coincide with the k 
principal directions of the deformation tensor. The second and third invar- 
iants of this deviator are expressed through the principal values by the 
formulas 

( I X .  326) 

The values 3i and R are defined as intensity and phase contour change. 

They retain the value of the characteristics of contour change during deforma- 
tions of arbitrary magnitude. The principal values of the deviator are 
defined as 

( I X .  327) 

and therefore the phase of plane deformations of an incompressible material is /677 - 
defined a priori : 

( I X .  328) 

while the principal elongations h are defined by only one parameter, intensity k 
of contour change: 

3c l+A,=:2ch~ '1 ,53 i ,  h , - h 2 = 2 s h 1 / ~ ] 3 3 r .  ( I X .  329) 

Relations Between Stresses and Deformations. In the expression of the 
elementary effort of external forces, related to unit volume of the deformed 
body, the principal true stresses CT are generalized forces, if, as generalized k 



coordinates of deformation, we use logarithmic elongations. These stresses 
and the parameters that determine the orientation of the principal directions, 
are used as the basic characteristics of the stress state. The symmetrical 
invariants of the tensor of true stresses in the principal axes are of the 
form 

(IX. 330) 

Here a is hydrostatic stress; T~ is intensity of stresses; @ is phase of 

stresses. Each of these values has a simple physical equivalent1. Analogously 
(IX.327), the principal stresses can be expressed through stress invariants: 

2 2 a k = u + ~ ~ i c o s q , 7  0, --Cp. q2=q+ zlT, q3=P)--n. 
3 (IX. 331) 

We will assume in the following discussion that the principal directions 
of stresses in the deformation state under examination coincide with the prin- 
cipal directions of deformations, i.e., with the directions of the principal 
fibers. And if these principal directions are known, then, to establish the 
physical relationships between stresses and deformations, it is sufficient to 
determine experimentally the stress invariants as functions of deformation 
invariants: 

(IX. 332) 

The question of how to express uniquely functions (IX.332) for the given 
material remains unanswered. There are several variants2 of relations of the 
type (IX.332) that have been substantiated to some degree or other, experimen- 
tally. Let us examine one of them. 

On the basis of Bridzhmen's tests [l, 21, we may postulate the law of /678 - 
three-dimensional deformation, the essence of which is that relative change in 
the volume of an element of the body is determined only by hydrostatic stress 
and is independent of the other two stress invariants, i.e., 

a -- u(A). (IX. 333) 

'see L. A .  Tolokonnikov [I] . 
'see V. V. Krylov [I, 21 . 



It should be pointed out that for large deformations the magnitude of 
relative volumetric deformation remains quite small, in most cases, in compari- 
son with deformations of contour change. Therefore, the law of volumetric 
deformation is often replaced by the condition of incompressibility 

(IX. 334) 

which reflects with a sufficient degree of accuracy the state of the material. 

Since the elemental effort of the external forces per unit volume of the 
deformed body, 

&A = IL- dA + 3r, [cos (p - p) 63 + 3i sin (q - i3) &$I, 
+ A  (IX. 335) 

is expended on changes of volume and contour, the outcome of (IX.333) and the 
conditions of the existence of the potential of internal forces is the depen- 
dence of intensity and phase of stresses only on contour change invariants: 

= (3,1$), q = (P (3p P). (IX. 336) 

Test data from axial compression and tension of cylindrical specimens, and also 
for pure deflection, indicate that the phase of true stresses and the phase of 
contour change coincide. Moreover, Davis' test data1 show that for the inter- 
mediate states, the difference between these values, as L. A .  Tolokonnikov [3] 
pointed out, will be slight. This enables us to introduce hypothesis of phase 
coincidence: 

(IX. 337) 

which accurately reflects the state of the material not only at the extreme 
points of the range of change of B, but also at the center: 

(IX. 338) 

In this respect hypothesis (IX.337) has an advantage over the other such hypo- 
theses. The consequence (IX.336) and (IX.337) of the above-mentioned condition 
of the existence of internal force potential is universality of representation 
of stress intensity as a function only of contour change intensity: 

1 Teoriya PZastichnosti [Plasticity Theory], Translation Fditor, Yu. N. Rabotonov 
Moscow, Foreign Literature Press, 1953. 



Tl -= T, (3J. (IX. 339) 

As the result we obtain the relations between stresses and deformations in the /679 - 
principal axes: 

(IX. 340) 

It is not difficult to convert to arbitrary axes. Considering (IX.328), we 
obtain @ = 7 ~ / 6  and 

(IX. 341) 

Thus, the determination of the physical properties of a plane-deformed 
body reduces to the experimental determination of the relationship (IX .339) 
between stress intensity and contour change intensity. This relationship is 
called the law of contour change. 

Stress Function. The plane deformation state of the vicinity of an arbi- 
trary point of a body and its orientation, as we know1, are defined by four 
derivatives2 u = au/ax, u = au/ay, v,, = av/ax, v = av/ay. For this , x , Y 9 Y 
purpose, however, we may use another group of four independent parameters, 
among which the deformation invariants are important. As such parameters we 
will use angle 8 between the principal fiber and the x axis in the natural 
state, the principal elongations X and the angle of rotation w of the principal k 
directions during the transition of the body from the natural state to the 
deformed state under examination. On the basis of the geometrical interpreta- 
tion of the parameters 0 ,  5, X2 and w, we find that they are sufficient for 
the determination of the deformed state and orientation of the vicinity of any 
point of the body. In particular, the following relationships can be estab- 
lished between the above-mentioned two groups of parameters: 

3 3 1 + u,,=chTco~o+ shTcos(28 $- w), 

3 3 u, = ch - sin o + sh sin (28 + o), 2 

(IX. 342) 

- - -- 

'See V. V. Novozhilov [I]. 
 or brevity we will denote these derivatives with a comma. 



Here displacements (IX.323) are used and the definition 

(IX. 343) 

is introduced. As the outcome of these relations and conditions of continuity - /680 
of progressive displacements and rotations of the elements of the body, we have 
the relation 

(cos 211 sh 3),YY - (cos 26 sh 3)+, - 2 (sin 211 sh 3),xY + (ch g_ + 
(IX. 344) 

+ + 2~,y(ch3).x-2b,x(ch3),Y =0. 

which generalizes the classical condition of compatibility of plane deformations 
and preserves the geometrical value for deformations and displacements of 
arbitrary magnitude. 

The general equations of equilibrium in the Lagrange variables, in 
application to the case of plane deformation of an incompressible material, as 
pointed out by L. A. Tolokonnikov [Z], are greatly simplified. Considering 
(IX.342), the differential equations can be represented in the form of a homo- 
geneous algebraic system relative to two differential operators over the stress 
invariants. The determinant of this system is a non-zero value, and therefore 
the uniquely possible trivial solution of the system represents a new form of 
equilibrium equations: 

(A- +(r,~in26),~ = 0, 

(r, sin 201, + -- - f - T, cos 20) = 0, ( G.5 .Y 

where 

(IX. 345) 

(IX, 346) 

The structure of equations (IX.345) duplicates the corresponding equations 
of the classical plane problem, and therefore, obviously, we may introduce 
stress functions U. By subordinating the stress functions to compatibility 
condition (IX.3441, we arrive at a nonlinear differential equation1 relative to 
this function that solves the problem. 
- - -- - - - - - - - . - - 

'This equation is not included here, since a compact formulation of the problem 
in complex coordinates will be given below. 



Let true normal pun and tangential pr stresses be given at each point of n 
the surface of a body. For convenience we introduce the constant factor p, 
which represents the stress that is characteristic for each problem. We will 
notice that the definition of the corresponding conditional stresses phTun and 

pATm; where A is - -  a dimensionless value - -  elongation of the contour fiber, r 
a function of the coordinates of the points of the contour, does not complicate 
the solution of the problem. 

Through ci we will denote the angle between the direction of the outer 
normal to the boundary of the body and the direction of coordinate axis x. By 
determining the orientation of the boundary surface of the body relative to 
the principal directions, we can find1 the expression of normal and tan~ential 
stresses on the contour surface through principal directions or symmetrical /681 - 
stress invariants: 

k : p ,  = - v1,5 T, [sh 3 - ch 3 cos 2 (a - b ) ] ,  

( IX.  347) 

hence 

X: =ch3--sh3cos2(a-e). (IX. 348) 

If we replace 0, ri and a here by their expressions through the derivatives of 

stress function U 

(IX ,349)  

we find the formulation of the contour conditions for stress function U. 

Statement o f  Problem in Complex Coordinates. In like manner as the 
classical plane problem of elasticity theory the solution of many problems of 
the theory of finite plane deformations can be found conveniently in complex 
coordinates 

'see L. A .  Tolokonnikov [5] . 



Then, as we know 

where the symbols ( ) and ( ),-;.denote differentiation with respect to z and 
- ,z 
z, respectively. Relations (IX.349) are converted1 to the form 

The resolution equation acquires the form 

(IX. 350) 

Here the intensity of contour change is assumed to be expressed by way of con- 
tour change law (IX.339) through stress intensity; the latter, in turn,'is - /682 
related to stress function [J bay relations (IX.350). The extreme complexity of 
equation (IX.351) is obvious. If, in particular, we use the assumptions of 
classical elasticity theory and replace shgby 3, ch 3by 1, assume T. = G , 
where G is the displacement modulus, and disregard in equation (1x.351) the 
terms of the order of magnitudes of deformations in comparison with unity, 
then we arrive at a biharmonic equation2. 

On the basis of relations ( IX .347 ) ,  we can find3 a compact formulation of 
static boundary conditions for the stress function: 

dUz i (an - ir ch 3) fl. sh 3 u - -: - + y e - r a -  -,- 
ds 2 l/a 2P I'G r~ (IX. 352) 

where ds is an element of the arc of the boundary contour in the natural state. 
To formulate the geometrical boundary conditions it is necessary to know the 
physical properties of the material (IX.339) and to have the expressions of the 
displacement components through the stress function. Such relations are estab- 
lished in complex form in the works of V. G. Gromov [ I ] ,  V. G. Gromov and L. A.  
Tolokonnikov [I]. If we introduce the cortplex displacement function D = u + iv, 
then 

'see L. A.  Tolokonnikov [S] . 
2 ~ e e  L. A. Tolokonnikov [5] . 
'see V .  G. Gromov [I] ;  V. G. Gromov and L. A.  Tolokonnikov [ l] .  



(IX ,353) 

where C ( Z )  is an arbitrary function, determined from the law of conservation of 
mass during deformation: 

(IX. 354) 

From (IX.353) we obtain the boundary conditions for the stress function when 
the displacements on the boundary of the body are given. 

Such are the general relations of the nonlinear problem of elasticity 
theory for plane deformation. 

Representation o f  Stress Function and Complex Displacement Function through 
Analytical Functions. The determination of the accurate solutions of most 
problems is fraught with insurmountable difficulties due to the nonlinearity 
of the basic relations. In order to construct the approximate solutions, how- 
ever, we may use effectively the small parameter method. 

We will examine physical nonlinearities of the type 

(IX. 355) 

Suc!~., for instance, are the laws 

which lead to contradictory deviations from the linear law of contour change - /683 
during large deformations. The first of them approximates th,e experimental 
curves of many soft materials (nonferrous metals and their alloys), and the 
second approximates the experimental curves of highly elastic materials (resin, 
plastics) . 

We will assume that the expansion 

(IX. 357) 

is valid, where E is a small parameter, the choice of which will be discussed 
below. 

Then, on the basis of equation (IX.351), for the stress function and 
physical relations (IX.355), by way of ordinary operations that are essential 



to the classical small parameter method, w establish the differential 
equations for each of the approximat ions UTk) (k = 0, 1, 2. . . ) : 

~ ( k )  - -- ~ ( k )  
.zzzz - ( k =  0, 1,2 ,  ...). (IX. 358) 

We write out the form of functions F(~) for the first three approximations: 

F ( O )  = 0, F(') = - 

F'*' = 1 (0) ~ ( l i -  - ~ ( 0 )  
2 ~e [(u'!!u(j),z; .-- + ,zu .zzz ,,,) + 

(IX. 359) 

The value g = -1/3 corresponds to the first and g = 1/6, to the second of the 

laws (IX. 356) . The function U'O) is hiharmonic. Therefore we have for it the 
E. Gurs' representation through two analytical functions: 

Now we can find sequentially the partial solutions of equation (IX.358): 
- u*(l) - - !(, rc%; + (G; + 30) - cpo,l; 

(IX. 361) 

where 

*Xh dVh . q r = x ; e 7 ;  ' ~ ; = p  
- - - 83 = [hi + $,J2(2$, f G,Jl ,; - 2q0f& (qi + qd - (6; 4- 3~ X 

(IX. 362) 

X I&;* + 2 q ~ i $ ~ d z ]  - qi2dz - 2 (;vi + lpb)'(zi; + % J ~ z -  S - S 
Functions u(~) - U* (k) are biharmonic, and therefore, on the basis of E. Gurs ' /684 
fomul a, we find 

u(" R~ + xk -+ u*'~)) (k = 1. 2. . . .). (Ix .363) 



We further assume that the following expansions are valid 

D = ( D ( O )  + ~ ( ' " e  D"'e2 + . . .), E = e (to -k EIE + E/ - . .)- (IX, 364) 

Then, from (IX. 353) we find 

(IX. 365) 

If we limit ourselves to the first three approximations, then 

By representing sequentially the stress functions uck) and displacement func- 
tions D(~) through analytical functions, we obtain 

- L J J (IX. 367) 

From law of incompressibility (IX.354), recalling expansions (IX.364), 
(IX.365) and relations (IX.367), we find 

' S 1 1 
E = qo, El = q1 + a d ,  & = q 4- 7 1 ~ & ; d z  i- $ iSdz. (IX .368) 

Boundary Cond i t ions for Functions mk(z) and Ok(z) .  If, on the boundary of 

contour L, displacements D are given, then the boundary conditions for the 
analytical functions are written on the basis of (IX.363), (IX. 365) and (IX. 368) 
and in any approximation, in the form 

- - 
~ a ( t * ) - t * ~ ; ( t * ) - 9 k ( f * ) = g k ( t * )  ( k z O ,  1, 2, -.-), (IX ,369) 



where t* a r e  a f f i x e s  of  t h e  contour  p o i n t s  i n  t h e  i n i t i a l  nondeformed s t a t e ;  

(IX. 370) 

When s t r e s s e s  p 4  and p m  on t h e  contour  a r e  given, we have, i n  t h e  case  of - / 6  85 

phys i ca l  laws (IX. 355),  

f = 2p~U.,,u,;; + 0 (e3), (IX. 371) 

where p i s  t h e  c h a r a c t e r i s t i c  parameter of  t h e  given law. Therefore,  r e l a t i o n  
(IX.352) y i e l d s  

d ~ ( "  @(&I --  
ds - (k == 0, 1, 2 , .  . .). (IX. 372) 

The func t ions  @(k) f o r  t h e  f i r s t  t h r e e  approximations have t h e  form 

The boundary condi t ions  f o r  t h e  a n a l y t i c a l  func t ions  a r e  

- - 
cp, (t*) -I- t*q6 ( t* )  + g, ( t * )  = f ,  (k -= 0, 1, 2, . . .). 

where 

1 ' f,, = ,m \ (0. t i~.) dt*, f ,  =; - 2 [u!" 1, + 
Y 

( I X .  373) 

(IX. 374) 

(IX. 375) 



Thus, the construction of the series approximations of both the static 
and geometrical boundary conditions reduces to the repeated solution of the 
basic plane problem of classical elasticity theory, and this solution can be 
found by one of N. I. Muskhelishvili's methods [I] (see, for instance, 91, 
Chapter I). 

Unlqueness of Solution. We will examine, for simplicity, an infinite 
single-connected region, i.e., a plane weakened by some hole. The stress 
invariants, recalling (IX.350) and (IX.371), are represented in the form of 
series 

(2) 2 .r: =.-TO+ 7(').5 + Z  E + . . ., = .(o) + O"'E f ,,(?)&2 + . . .  , 
(IX. 376) 

the coefficients of which are defined by formulas 

(IX. 377) 

The single-valuedness of displacements, single-valuedness and boundedness 

of stresses will obtain if for k = 0, 1, 2, ... the functions U (k) Il(!L are ,ZZ' ,zz 
unique bounded functions ; D (k) are unique functions. 

Recalling (IX. 360), (IX. 363) and (IX. 365), we establish the general form 
of the functions 

c p ,  = B, In z + I',z + cp; (z),  $, = Ck In z  + I';z -!- 9; (z) ,  (IX. 378) 

1 are arbitrary constants; bk, $; areholomorphic functions where Bk, rk, Ck, rk 
at the infinitely distant point. Here we discover sequentially that the partial 

solutions U * , U* (2) , with an accuracy up to additive biharmonic terms, 
possess a unique form. In order to determine this form it is necessary in 
(IX.361) to replace the ambiguous functions Ok, % by the unique functions 

- - 
q ( k , = B k ] " z f ~ k ,  $ c k ) = C k l n ~ + $ k  1 , 2 . . . )  (Ix. 379) 



and to use the identities 

- - 1 
Inz =In(zz)-Inz. l n z l n ? =  -[1n2(G)-1n2z-ln2;]. 2 (IX. 380) 

* 
The choice of functions U ( l ) ,  u*(*) in unique form leads to the * 

corresponding unique forms of functions D (I), D * ( ~ )  in all terms, with the 

exception of the integral terms. In other words, the functions $k, $k in 

(IX.367) are replaced by O(k), $(k). Then, from the condition of uniqueness of 

, we ob tain 
- -, 

Bo $- C, = 0, B 1 - t  = Bore + ro (C, - B,), 

- 1 --. 
B, + C2 = - f r o B o C  + 3 [Bar ,  + BZ; + r0 (el - B,) + I'l (Co - Bo)l. (IX. 381) 

Furthermore, 

- 1 
B k - C k = = m [ f k ] L ,  ( k =  0, 1.2, ...)- (Ix. 382) 

Here the symbol [fkIL denotes the increment of the function fk during passage 

around the closed contour, which encompasses contour L in entirety. 

The constants Tk and I?; are determined by the stress state at infinity: 

(IX. 383) 

where 2N (='I 
1 

= al , tN2 = are the principal directions at infinity; eim) is - /687 

the angle between the principal direction N and the x axis. Here we assume 
that 1 

=(I)(=) = T(2)(=) = o(I)(==) = ,,(2)(-) = 0. (IX. 384) 



For rk (k = 0, 1, 2) we will use only the real parts, since we can show 

that their imaginary parts determine rotation of the body as a rigid whole. 
.I 

The above relations enable us to construct the first three approximations1 
of the solutions of specific problems of stress concentration near arbitrary 
holes during the plane deformation of an incompressible material. 

In the case where the shape of the hole differs from round, then, to 
solve the problemlit is necessary to find a priori the functions that map 
conformally the range under examination onto the interior or exterior of the 
unit circle (see 51, Chapter I), i.e., the function 

(IX. 385) 

(k The formulas for stress functions u ( ~ )  and displacement functions D , 
and also the boundary conditions (IX.369) and (IX.374) should be transformed to 
a new variable <, given by mapping function w(<) (IX. 385) . This can he done by 
using the relations 

d2 1 -- - - . -  
a' a I (IX. 386) 

dra lo' (6)12 [ at2 0' ( 5 )  a! ' 

We will not discuss this aspect of the problem here, however, since the 
foregoing discussion gives the idea of the method of solving the problem of 
stress concentration near any hole3, the contour of which has no angular points, 
To illustrate this idea we will examine the problem of stress concentration 
near a round hole. Here the case of the axisymmetrical stress state is charac- 
terized by the fact that it enables us to solve the stated problem to completion, 
i.e., permits the precise solution under any contour change law (IX.339). The 
value of such a precise solution is difficult to overestimate, since it can be 
used as the basis of evaluation of results obtained by various approximation 
methods. 

Stresses Near Round Hole under Mu1 ti fold Tens ion-compression (~igorous 
~olut ion). We will examine an elastic plane (under the conditions of plane 
deformation), in which, in the natural (unstressed) state, a round hole of 

'By using as the first approximation the solution of a single-type problem 
given by classical elasticity theory. 
*see N. I. Muskhelishvili [I] . 
3 ~ e e  G. S. Tarasfyev, L. A .  Tolokonnikov [I], where the case of an incompres- 
sible material is examined. The case of a compressible material is examined by 
G. S. Taras ' yev [I] . 



radius R is made. This plane is under tension or compression "at infinity" by - /688 
forces 

(IX. 387) 

In (IX. 387), lfplusll corresponds to tension and "minus ," to compression. 

The contour of the hole will be regarded as free of external forces. We 
are required to determine the stress state near the hole under any contour 
change law (IX. 339) . 

In the case of axisymmetric stress state (IX.387), the directions of the 
principal stresses can be selected arbitrarily. We will assume that the first 
principal direction is radial and the second, tangential. 

In axial symmetry-these stresses will be the principal stresses in each 
point of the plane and the solution of the problem will reduce to quadratures, 
inaependently of the law of contour change. 

We will introduce a new variable w = z = r2, where r is the vector 
radius of the points of the plane. We will assume that stress function U 
depends only on this vector radius r, i.e., 

U (2,;) = Q) (w). (IX. 388) 

In this case equation (IX.351) can be twice integrated: 

where C and C2 are integration constants. 1 

From the third relation in (IX.350) and (IX.387) we obtain 

(IX. 389) 

(IX. 390) 

The physical meaning of the signs in (IX.390) is.as follows: '"plus" corresponds 
to selection of the tangential direction as the first principal direction of 
stresses and "minus," to the selection of the radial direction. 

From (IX.389) and (IX.390) we find 

(IX. 391) 



i.e., due to (IX.387), the dependence of intensity 3 on the coordinates of the 
points is completely defined under any law of contour change. 

By expressing complex displacement function D through displacement vector 
components u and u in polar coordinate system (r, 4) ,  we obtain r 4 

(IX. 392) 

Displacement vector u + iu4 is a function only of w. Considering this r /689 - 
and (IX.392), we integrate relation (IX.353): 

(IX. 393) 

We see from (IX.393) that the assumption of axial symmetry leads to a completely 
defined displacement system. The constant C1 in (IX.395) is determined from 
condition (IX. 354) . 

Cons'idering (IX. 392) and (IX. 393), we establish that relation (IX. 354) 
will be satisfied identically only when C = 1, therefore 

for any contour change law (IX.339). It follows from (IX.394) that 

(IX -394) 

where the first term is displacement during plane axisymmetric plastic flow in 
the case of small deformations. The constant C2 is found from the boundary 

conditions. Relation (IX.352) can be converted' to the form 

p a  pa = const, pr, = 0. 2 p W + f = -  (IX .396) 
c 5  ' 

From (IX.390), (IX.391) and (IX.396) we find 

(IX. 397) 

- - 

'see V. G. Gromov [I] . 



where C is the integration constant. Hence, for the above-selected distribution 
of principal stresses, we have' 

(IX. 398) 

The complete solution of the problem requires the knowledge of the specific 
form of contour change law. For instance, by examining the physical nonlind 
earities (IX.356), we find for the first and second laws, respectively, of 
(IX. 356)  

1 
:I = 2 ~ \ l n [ l  + + - ~ a r c t a " ( 1  + 3) + c] ; 

(IX. 399) 

(IX. 400) 

For intensity of stresses we also have for the first and second laws, 
respectively, of (IX.356), the expressions 

1 *-(I++)'  
rt = G and T, = G 

C, 
I + ?  

(IX .401) 

From the condition 

a, -+OF= f N, for r +QO (IX. 402) 

we find the constznt C for the first and second laws, respectively, of (IX.356) 

(IX. 403) 

'see V. G . Gromov [3] . 
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where 

To determine the constant C we will use the condition 
2 

al = 0 for r = R. (IX .404) 

Relations (IX.399) and (IX.400) yield the equations for the determination of 
C2 : 

n 1n[1 + &I- larcran(1 +C)= 1112-- 2 - L +  (IX .405) 

(IX. 406) 

where 

Equations (IX.405) and (IX.406) are transcendental. Their roots can be 
found (approximately) by some numerical method for calculated values of the 
parameter E = p/G. 

Let cO be one of the roots of equations (IX.405) and (IX.406); then, at 

the points of the contour of the hole 

(IX. 407) 

Hence, for concentration coefficients k = 02/p, we have the precise expressions /691 - 
which we will use for comparing them with the approximate values obtained by 
different methods: 

(IX ,408) 



where 

Stresses near Round Hole under Biax ia  1 Stress-Compress ion (Approximate 
solution) . Let the stress state at infinity be 

a\"'=fN1,  u$ '= fN , ,  (IX. 409)  

where N1 and N2 are given non-negative values; the sips in (IX.409) are 

defined as follows: "plus" corresponds to tension and "minus," to compression. 

We will assume that the contour of the hole is free.of external forces. 
It is convenient to introduce the parameters 

which determine the stress state at infinity. 

As mentioned earlier, the construction of the approximations of the stated 
problem reduces to the repeated sollition of the first basic boundary problem of 
classical elasticity theory. Each such problem can be solved by one of N. I -  
Muskhelishvili's methods [I]. By using the most effective of Muskhelishvili's 
methods (see 01, Chapter I), based on the application of integrals of Cauchyls 
type, and relations for the first three approximations, L. A. Tolokonnikov and 
V. G. Gromov [I], and also V. G. Gromov [2-41 found the approximate solutions 
of the examined problem. On the basis of these solutions, the formulas for 
stresses on the contour of a hole were derived in the third approximation: 

where 



for the first and second laws, respectively, of (IX.356). 

Hence the stresses on the contour of the hole can be represented in the 
form 

o , = 2 v u p ( s + f  ( 9 + t 2 ) e + a c 2 + [ - 2 t + s t a + ~ c o s 2 0 ) +  

+ 2 vCspe {(- t2 + ye) cos 49 + eb cos 691. (IX .414) 

The first brace in (IX.414) is the refined value of that part of the stresses 
whose character of change is predicted by classical linear theory, and the 
second is the direct consequence of the consideration of geometrical and 
physical nonlinearity. These parts of the expressions are differentiated with 
respect to the character of the dependences on angle 0 .  

In conclusion we will examine certain partial cases. 

Mu1 t i fold Tension (~orn~ressikn) will obtain when 

From (IX.410) we find 

(IX. 416) 

The stresses on the contour of the hole for the first and second laws, respec- 
tively, of (IX. 356) are 

We see from (IX.417) that consideration of the second approximation leads 
to an increase in stresses for multifold tension and decrease during compression 
in comparison with the classical values, regardless of the law of contour 
change. The corrections of the third approximation have different signs for 
the first and second laws of (IX.356) and do not depend on the changing of the 



signs of the stresses at infinity. Consideration of these corrections leads 
to a decrease in stresses for the first law of (IX.356) and to an increase for 
the second. 

For the concentration coefficients, we have, respectively, 

We will compare the approximate values of k (IX.418) with their precise aDD 
values k (IX. 408) . The roots of equations (IX .P'O5) and (IX.406) were calcu- /693 

pr I_ 

lated for certain values of the parameter E = p/G, and then the values of 
concentration coefficients k were calculated on the basis of formulas (IX.408) Dr 
and of k on the basis of >onnulas (IX. 418). The results of these calcula- 

aPP 
tions are- presented in Table IX .6. 

TABLE 1x.6 

T r .  Note: Commas indicate decimal points. 

Pure displacement, directed at angle  IT/^ to the direction of the principal 
stresses at infinity, of intensity 2p, is found for 

In the case the parameters (IX.410) are 



The s t r e s s e s  on the contour of the hole a re  

(IX. 420) 
+ 2 v c 5 P e  (- t2 cos 48 + ed cos 68). 

where 

and 

fo r  the  f i r s t  and second laws, respect ively ,  of  ( T X .  356) . 
Uniaxial Tension ( ~ o m ~ r e s s i o n )  . We assume N2 = 0. In t h i s  case 

1 
f N , = o P = f  p (s=f-). 2 V  15 (IX .421) 

The s t r e s s e s  on the  contour of the hole a r e  ' - /694 

cr, = 0. 

a3- f p[l  f 0,204e+aes+(-2 f OAO8e+~et)cos28]f (IX. 422) 

f pe [(F 0,408 + ye) cos 48 + eb cos 601, 

where, f o r  the  f i r s t  and second laws, respectively,  of (IX.356) 



The character of functions (IX.420) and (IX.422), or more accurately, of 
ratios 0 /p, is shown in Figures IX.4 and IX.5, respectively, in which the 2 
solid curves correspond to linear theory, and the broken curves to nonlinear 
theory. 

Figure IX.4. Figure IX.5. 

From formula (IX.411), recalling the values of the parameters from 
(IX.413), and the fact that during the predominant effect of forces N1 = p > N2, 

where the top sign corresponds to tension and the bottom sign to compressj.on, 
we find the formulas for the calculation of concentration coefficient k = 02/p 

at the points of the contour of the hole, which, prior to deformation, were 
determined by the values of the angle 8 =  IT/^ and 8 = 31~/2, in the form 

(IX .424) 

where 



(IX. 425) 

The following evaluations are valid for k ( j )  : if elm) < 0, then k") < 0; 

1f 7- 1 k'" < 0 for - - 
fl < s < o ;  

0 for r, = G th 3; 

kt'' < 0 for rl = G sh 3. 

ulm~>O, then k'O'>O; 

k(" < O for v7- 1 .  
o < s <  -. 

v-8 

Jf7- 1 k'') > o for - 1 .  
0 <S<m* 

(IX .426) 

km<O for r, = ~ t h  3; 

> 0 for T, = G sh 3. 

Hence consideration of the second approximation leads both to large and to 
small values of the concentration coefficient in comparison with its classical 

value. The magnitude and sign of oilDi' here are the deciding factors. For 

instance, when o r )  > 0, the coefficient k") increases monotonically from -1 

to 1/3, whereupon -1 < k ( l l  < -1 /2  when -p c o : ~ )  < 0 and 

1 -- 2 <k'" < 0 for o:-'>0 for a:"< ( Y S 2 2 ) p ;  
I 

O<kil'<; for o:')>~ for ( f l - 2 ) p < o ? < p .  

(IX. 428) 



When o ( ~ )  = (R - 2)p the coefficient k(') = 0 and, as follows from 
(IX.424), in this case the second approximation for an incompressible medium 
will have no effect on the numerical value of the concentration coefficient 
given by classical linear theory. 

Consideration of the third approximation alwa:.s leads to a decrease in the /696 - 
coefficient of concentration for the first ( T ~  = G th3) law of contour change 

from (IX.356) and to an increase for the second ( T ~  = (: sh3) law. 

Recalling that geometrical nonlinearity is considered basically by the 
second approximation and that physical nonlinearity begins to be taken into 
account only in the third approximation, then the results obtained can be 
interpreted as the manifestation of qualitative properties of geometrical and 
physical nonlinearity. 

The behavior of the coefficient kc') is related to the purely geometrical 
effect, which is attributed to the influence of deformation of the contour, 
For instance, in the case of pure displacement (IX.420), the coefficient of 
concentration1 is 

and under uniaxial tension or compression (IX.422), 

(IX . 4  29) 

(IX -430) 

A decrease in the concentration during tension and increase.during 
compression (in comparison with the classical value) are due to decrease during 
tension and increase during compression of the curvature of the contour (round 
prior to deformation) of the hole in the examined points 0 = ~ / 2 ,  8 = 3~/2. 

It should be noted that the stress u2 that is preatest in absolute value 

may appear not at the points 0 = ~ / 2 ,  8 = 3n/2, but at the points 8 = 0, 8 = T. 
This, for instance, occurs in the case of pure displacement (IX.420). The 
general conditions under which stresses a at the points 8 = ~ / 2 ,  8 = 3 ~ / 2  are 2 
greater in absolute value than the stresses at points 8 = 0, 0 = IT have the 
form: 

'The first expressions in formulas (IX.429)-(IX.431) correspond to the first law 
of (IX.356) and the second expressions, to the second law. 
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The independence of the concentration coefficients in the classical linear 
theory of the reversal of the signs of the stresses "at infinity" is caused by 
the disregarding of the effect of deformations of the elements of the contour 
of the holes on the stress distribution. As we know, this is one of the basic 
assumptions in classical elasticity theory. 

Concluding Comments. In a more general case of physical nonlinearity - /697 
(IX.355), proceeding from the classical solution 

(IX. 432) 

(-1 (03)  which corresponds to the biaxial stress state at infinity ox = kp;  oy = +q, 
as the first approximation, the approximate (theoretically with any degree of 
accuracy) solution of the problem of stress concentration near a round hole can 
be constructed. 

Analyses show1 that the boundary conditions, both in the forces and in the 
displacements, for all three contour change laws (IX.355) and (IX.356) are 
identical for the first two approximations, and therefore the first two approx- 
imations for all these three contour change laws (IX.355) and (IX.356) coincide. 
In other words, all the formulas that were derived in the preceding.section, 
taken with an accuracy up to the second approximation (inclusively), i.e., with 
the retention in them of the terms with E in the first power, will be valid for 
any of these three laws of contour change (IX.355) and (IX. 356) , The third 
approximation, which begins to take into account the effect of the physical 
nonlinearity of the problem will be different for each of the laws (IX.355) and 

(IX.356) and therefore the term oi2) in formula (IX.411) will have the following 

form for law (IX.355) : 

'see V. G. Gromov [4] . 
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1 4 3 11 a:'= T{(+-ge)s + (T-ge 
(IX. 433) 

1 .  + ($+~e)t3]cos2h+-123-ye 5 \ 

where 

These stresses at the points of the contour of the hole, which prior to defor- 
mation were determined by the values 0 = ~ / 2  and 0 = T, will have the form, 
respectively, 

(IX. 434) 

where the "plus" sign corresponds to the point 9 = ~ / 2  and the "minus" sign to 
the point 0 = T. 

During the rhul ti fol d tens ion-compress ion by stresses (at infinity) of - /698 
intensity 2p, the parameters are t = 0, s = + l / m ,  and therefore we find from 
(IX. 434) 

(IX. 435) 

It follows from (IX.435) and (IX.411) that stresses a2 (IX.411) on the contour 

of the hole for g < -7/48, found with an accuracy up to the third approximation 
(inclusively), will be greater for materials with physical nonlinearity (IX.355) 
than stresses a found with an accuracy up to the second approximation (inclu- 

2 
sively). When g > -7/48, we will ha the opposite situation. When g = g* = 
= -7/48 = -0.146, the component is 01') = O and therefore consideration of the 

third approximation will not transmit the correction to the values of the 
concentration coefficient to (IX.411), found with an accuracy up to the second 
approximation (inclusively). 

Pure displacement at an le ~ / 4  to the principal directions at infinity is 
found for s = 0 and t = + 1 /  $- 1.5. In this case, from (IX.334) we readily find 



At the points 8 = 7~ /2  and 8 = T, we obtain 

(IX. 436) 

(IX .437) 

From the condition oi2) = 0 we find the "critical" value for g* = -0.268. Here, 

as in (IX.434), the top sign in the brackets corresponds to the point 8 = ~ / 2  
and thebottom to the point 8 = T .  

(-1 (=I = I n  the case of predominating effect of one of forces ol = +N1 or o2 

= +N2, for instance, al = ;N1 > 0, it follows from (ix.434) that 

By equating u12) in (IX.438) to zero, we find the "critical" value 

(IX ,438) 

(IX. 439) 

where 

From (IX.439) we see, recalling that s changes within the range - 1 / a  < s < - /699 
< 1/m, that the function g*(s) is limited to the range 

- 0.268 < g' (s) < - 0,146. (IX ,440) 

From (IX.440) we co'nclude that for contour change laws (IX.355) with g < -0.268 

and g > -0.146, the sign of correction u12) (IX.438) will be constant for any 

ratio of the stresses aim) and or). In the first case (when g < -0.268), the 

sign of oi2) is opposite to that of the prevailing stress at infinity, and in 

the second case (when g > -0.146)) coincides with it. This leads either to an 



increase in the greatest stresses a (IX.411), or to a decrease. Therefore, 2 
nonlinearity of the type (IX.355) for g < -0.268 is naturally called "soft," 
and for g > -0.146, "hard." According to this classification, the first law 
of (IX.356) (for which g = -1/3) will be related to the "soft" category of 
nonlinearity, and the second law of (IX.356) (for which g = +1/6) to "hard" 
nonlinearity. In each individual case, i.e., for a given value of g, we may, 
by comparing this value g with the value g* in (IX.4393, make a judgement 
considering the effect of physical nonlinearity, or more precisely, of the 
third approximation, on stress concentration a (IX.411) near the hole. Thus, 2 
if g < g*, then consideration of the third approximation will lead to a decrease 
in the greatest stress, and when g > g*, to an increase. Obviously, when 

g = g*, the stress = 0. 2 
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CHAPTER X .  STRESS DlSTRlRUTlON NEAR HOLES I N  SHELLS 

ABSTRACT. The formulation of problems is given on the 
stress distribution near curvilinear holes in shells. For 
stress concentration near holes, the basic equations and 
boundary conditions of the problem are considered. The 
solution is given of numerous problems on the stress concen- 
tration in the spherical and cylindrical shells near the 
circular, elliptic, square and triangular holes under 
different action of external forces applied to the shell. 

51. Statement of problem1 

Basic Equations of Problem in Differential Form. We will examine the /701 - 
stress state in a thin shell of constant thickness h, weakened hy some hole, 
not too small, the contour of which represents spatial curve I', which does not 
possess angular points. We will relate the middle area of the examined shell 
to some isothermic, and generally speaking, nonself-conjugate system of curvi- 
linear coordinates a and P (Figure X.l). 

The equation of the middle area of the shell in these coordinates will he, 
in vector form, 

where f i  (a, $) = x ,  !.(a, $) =y, f3(a, $) = z  are given functions of parameters a and 
E c .  

In coordinate system a and P, the first and second quadratic forms, as we 
know, will have the form 

I - dsa = la (a, $) (da2 + dp2), (X- 2) 
-b -+ 

11 er - (dl& dn) = Dda2 + 2D*dadj3 + D**dB2. (X . 3 )  

The coefficients A*, D, D* and D** of these forms are found from the given 
equation of the middle area of the shell (X.l) by formulas 

'~eeG. N. Savin [l-61; G. N. Savin, G. A .  VanFo Fy [ll, G .  N. Savin, G. A. Van 
Fo Fy, V. N. Buyvol [ l - 3 1 .  A different approach to the investigation of the 
stress state near a round hole in a spherical shell is given by L. R. 
Imenitov [I-31 . 



where :(a, 6) i s  t h e  u n i t  normal t o  t h e  su r f ace .  

We w i l l  d e f i n e  t h e  fol lowing:  

T',, Ti;  Si, Si- t a n g e n t i a l  f o r c e s ,  

Q;, Q; - shear  fo rces ,  

Hi, Hi - moments of  t o rque ,  

G:, G; - bending moments, 

which c h a r a c t e r i z e  t h e  s t r e s s  s t a t e  i n  t h e  s h e l l  with t h e  given ho le ,  under t h e  - /702 
e f f e c t  of  t h e  given system o f  ex t e rna l  fo rces  and under t h e  given boundary con- 
d i t i o n s .  

The p o s i t i v e  d i r e c t i o n s  o f  t h e  components a r e  i l l u s t r a t e d  i n  Figure X . 1 .  
Moments H* and H* G* and G i  a r e  shown i n  t h e  form of vec to r s ,  where, when a 6 '  
viewed from t h e  p o s i t i v e  s i d e  of t h e  v e c t o r ,  t h e  corresponding moment w i l l  t end  
t o  r o t a t e  i n  t h e  clockwise d i r e c t i o n .  

Figure  X . 1 .  Figure  X . 2 .  

The s t r e s s  s t a t e  i n  t h e  very same s h e l l ,  bu t  continuous (not weakened by 
a  h o l e ) ,  a c t ed  upon by t h e  very same system of  ex t e rna l  fo rces  and sub jec t  t o  



the very same boundary conditions, will be known as the basic stress state, and 
we will denote it in the following manner: 

We will represent components T* ..., G* in the shell having a hole in the form a ' R 

T = T: + Ta; Ti = Ti + TP; Si = Sz + S,; 

Si = S* S,,; G: = G: + Ga; Gi = Gj + Gb 

H ;  = H i  + Ha; Hi ;- HpO + H,,; Q; = Q; + Qa; 
Qi=Q;+Qe.  

We see from (X.8)  that the components 

Ta; Tp; Sa; Sp; Qa; QP; Ha; Hp; 0, and G 
R 

represent additional components of elastic forces and moments in the shell, 
produced by the presence of the hole within it and characterizing, particularly, - /703 
the "concentration of stresses" in the given shell near the examined hole'. 

The experimental analyses of the stress state in shells near holes with 
rather smooth contours indicate that perturbations in the stress state near the 
holes in a shell are of a local character, propagating to a comparatively 
limited zone C* near the hole, bounded by contour L* (Figure X.2). 

The magnitude of this perturbation in the damping zone of the stress state 
near a round disc of thickness 6 = 3 nun and diameter d = 15 nun, glued to the 
cylindrical shell (thickness h = 1 nun and diameter d = 40 mm), which simulates 
a round hole in a shell with an elastic ring under the simultaneous effect of 
internal pressure and axial tension of the cylindrical shell when E = 0 and 
e = 0.5, can be judged by Figure X.3. In the interest of graphical representa- 
tion, the square grid of lines a = const and f3 = const is superimposed on. these 
shells in the nondeformed state. 

The very same pattern of the local character is also seen in the case of 
a spherical resin shell of diameter D = 250 mm and thickness h = 1 mm near a 
glued circular resin disc of thickness 6 = 3 mm and diameter d = 25 mm under 
internal pressure (Figure X.4). 

- - -- -- - 

'such a breakdown of the stress state is possible in view of the linearity of 
the examined problem. 



Figure X.3. Figure X.4. 

A more detailed description of the results of experiments can be found in 
the works of G. N. Savin [l-31. 

Numerous experiments on the investigation of the stress state near round - /704 
and elliptical holes in spherical and cylindrical shells lead to the conclusion 
that in also the general case, in a shell of positive and zero1 gauss curvature, 
with a hole bounded by a sufficiently smooth contour, there may be such a local 
zone of the perturbed stress state C*, bounded by contour L* (see Figure X.2), 
on which, and especially, beyond which the components Ta, ..., C (X.9) will be, 

A P n  
for all practical purposes, equal to zero, and components T') . . ., G" (X.7) and a' P 
T;, ..., G* (X.6) will coincide. This indicates that components Ta, ..., dp R 
( X . 9 3 ,  which especially characterize the "concentration of stresses" in a shell 
near the examined hole, represent rapidly damping coordinate functions, and for 
their determination it is possible to employ the theory of stress states with a 
large variability index, coinciding with the theory of sloping shells (see 
A. L. Gol'denveyzer [l] and \ I .  Z .  Vlasov [I]). 

Before proceeding to the establishment of the basic equations and boundary 
conditions for Ta, ..., G (X.9), we will note that in view of the smallness of 

a 
region C*, we will represent (X. 2) in the form -. 

'see Yu. I. Volozhaninov, S. G. Shokot 'ko [ l ]  , where perturbed zones near 
elliptical holes in cylindrical shells are analyzed by the photoelasticity 
method. 



I = ds2 = hi (da2 $. dfi2), (X. 10) 

where X = const. 
0 

2 The substitution of ds in region C* by expression (X.10), which, in the 
case of a cylindrical shell, is an accurate expression, while in the theory of 
sloping shells it is used for an arbitrary shell, corresponds to the suhstitu- 
tion of the noneuclidian metrics of the middle area of the shell by the 
euclidian metrics of a plane. 

In the following analysis we will assume that the holes are of such 
dimensions that the dimensions of region C*, bounded by contour L*, are small 
and that the expression for ds2 will be taken in the form (X. 10) . 

We will abandon the old coordinate system (a, P) in favor of such an iso- 
thermic coordinate system (p, 8), one of whose coordinate linesp =p = const 

will coincide with contour I' of the examined hole in the shell. The vector 
equation of contour I' is found by substituting in (X.l) a and R, determined by 
the function w(<) (X.ll), by the new variables p and 8, assuming p = p 0 : 

On plane P of variables a and B, contours y and Z will correspond to contours 
r and L* of the surface (Figure X.5). 

We will examine holes in shells bounded by sufficiently smooth contours 
r ,  to which, in plane P, will coincide contours y without angular points, the - /705 
parametric equation of which can be given by the analytical function 

where r, = exp (po + i9) , and po, al , a-l, ..., a are constants. In other - n 
words, we will assume that analytical function (X.11) accomplishes the above- 
stated transformation of the coordinates. In the following discussion, a hole 
in a shell will be named according to the shape of curve y on plane P (Figure 
X.5). We see from (X.ll) that in the new coordinates p and 8 the first quad- 
ratic form ds2 (X.lO) will be of the form 

ds2 = 3e2 (e,8) (dg2 + dbz), (X. 12) 



where 

Contour Z on plane P, corresponding 
to contour L*, can be substituted by the 
coordinate line p = closest to it. 1 

To determine the components 
Tap ..., Gp (X.9). which, in coordinates 

p and 8, will be denoted through 

Figure X.5. 
T8;TQ; - .  . PG,,, (X. 13) 

we will use the approximate theory of stress state with a large variability 
index1 . 

0 0 
Since each of stress states T* . . . , G* (X.9) and T . . . , G (X.7) 

P ' P P ' P 
satisfy the same equations of the theory of sloping shells for the same exter- 
nal forces and boundary conditions, then to determine components T ..., C e ,  

0' 
we find, as readily seen from (X. 8) , a uniform equation system, which can be 
represented in the form2 

I A (X .  14) 
j5j v2v% + v:0 = 0, 

where E is Young's modulus; v is Poisson's ratio; h is the thickness of the 
shell. Operators v2 and V: in isothermic coordinates P and 8 have the form 

where If 6 , 8) is the coefficient of form (X. 12) . 

(X. 15) 

'see A.  L. Gol'denveyzer [ I ] ,  equations (20.8) and (20.9), p. 361, 
*since in the following the polax coordinates (r, 4)  often will be satisfied, 
to avoid confusion, the symbol $ @ ,  8) is introduced for the stress functions. 

796 



The values 

(X. 16) 

represent the curvatures of the normal cross sections of the middle area of the 
shell, extended along the coordinate lines p =  const and 8 = const, respec- 
tively. 

The value 

(X. 17) 

characterizes the degree of nonself-conjugation of the isothermic coordinates 
p and 8. D, D* and D** are coefficients of form ( X . 3 ) ,  written in isothermic 
coordinates pand 8. Deflection of the middle area of the shell ~ ( ' p ,  0 )  is 
assumed to be constant during the deflection of the shell in the direction of 
the negative normal. 

The components of deflection deformation are determined through deflection 
w ( P, 8) by formulas 

The moments are determined by formulas 

(X. 19) 

where D = ~h~ . is cylindrical rigidity. 
12 ( 1  - v 7  



Components T , Te, S and Se are found through stress function @ ( p ,  0) by /707 
P P - 

formulas 

Shear forces are determined through the components (X.19) found by 
formulas 

Equation system (X.14), by introducing the complex function 

can be reduced to the equation 

(X. 21) 

(X. 22) 

Function (X.22) is a particular case of complex transformation introduced to the 
theory of shells by V. V. Novozhilov, [I]. 

Basic Equations in Integral Form. We will introduce, following the 
example of I. N. Vekua r2] ,  instead of the independent variables p and 0 ,  new 
and con jugate independent variables : 



Omitting the intermediate calculations1, we obtain, instead of equation (X. 23), 
its equivalent integral equation of the Volterra type: 

v (E. I +. ie j K~ (E. 1). t )  v ( t .  1)) dt + f K. (9. E. TI v (E, TI dr + l o '  0 

where 

ip) is some regular solution of equa- The function v ( g * q ) = Q [ ~  

tion (X .  23) in region C + 

Figure X.6. 

(Figure .6), i.e., the solution is continuous along 
with its partial derivatives of the order 

< 4  in the above-specified region ( 5  E C; 
TI€ F) . The functions 0, ( E l ,  $6 (n) , 

(5) and $1 (TI) are holomorphic and 

should be determined from the correspon- 
ding boundary conditions and conditions 
at infinity. These functions, for the 
given function V ( C ,  h), are determined 
uniquely if they satisfy conditions 

The functions E n ;  A1(F, TI); E n ;  K(5, n, t, r);  K1(E, n, t) and 
K2 ('1, 5 ,  T) in equation (X. 25) are known and depend only on the form of shell 
and shape of hole: 

(1 a 
1 E *  ) . d ;  A; (I, g) = 1 I (t* n) dt; 

0 0 
- .  

'see G . N. Savin [J]  . 



s 
K, (1 .5 .7 )  = '4 Ate* .,I A (E, r3 dr,; 

7 

By way of example, we introduce integral equation ( X . 2 5 )  for a spherical 
shell weakened by some hole: 

(X. 27) 

Here Ro is the radius of the middle surface of the spherical shell. The func- 
2 2 P  tion h ( 6 ,  17) = Roe ot (<)-, where the values 

should be introduced into the right hand side. 

Conditions o f  Uniqueness o f  Displacements. Boundary Conditions. The 
function @ ( P ,  0 ) ,  which is the solution of equation ( X . 2 3 )  or equation ( X . 2 5 ) ,  
should also satisfy the vector equation 



which insures the uniqueness of the displacement vector, where 

Here c*  is not a complex variable. The expression under the integral in (X.28) 
is a function of deformation components s 

P ' 
E ~ ,  W ,  I C ~  and r(2) and vector 

radius $(p) of point P on the contour of the given hole. 

If in expression (X.28) under the integral deformation components E 
P ' 

E ~ ,  w, Y~ and T(~) are expressed in accordance with known formulas' through the 

function @ @ ,  €I), then we find three scalar relations. By substituting into 
these relations the values (X.22)  and separating the real and imaginary parts, 
we find for functions + @ ,  0) and w@, 8) six scalar relations that insure the /710 - 

3 
uniqueness of displacement vector u. 

Thus, the solution of the stated problem is reduced to the integration of 
equation (X.23); here the solution must satisfy the conditions of uniqueness of 
displacements, specifically vector equation (X.28). Moreover, the solution 
must satisfy the boundary conditions on the contour of the hole as well as the 
so-called conditions at infinity, i.e., conditions at sufficiently distant 
parts of the shell from the hole, beyond zone C*, bounded by contour L*. 

On contour r of the hole, i.e., whenp = pO, various conditions can he 

given: either external forces, displacements of points of the contour, external 
forces on one part of the contour and displacements on the other part of the 
contour, etc. We will consider the case where external forces FibO, B), 
F2(P0,  8), F3(P0, 8) and F 4 ( p 0 ,  8) are given on the contour. External forces 

applied on the contour of hole r should be equal to the adduced forces: 

where 

w sin 2x - . H *  - . dfi; 
T = T ~ + ~  ( -  G = G Q ;  S Q  Q = Q Q - - .  as, I 

- - -- ---- - 

1 See A .  L. Gol'venveyzer rl]. 



x is the angle between contour r of the hole and the line on the middle surface 
of the shell whose normal curvature is 1 Rr is the radius of curvature of 

the normal cross section of the middle surface along contour r .  The derivative 
-.. 

aH;/2Sr in Q is found on arc S of contour I' of the hole. r -.. - 
To solve the problem approximately the formulas for T and S can be 

simplified considerably, specifically by disregarding the terms of the order 
1/R in them and, recalling formulas (X.8), by representing boundary conditions 
(X .29)  in the form1 

Often the basic stress state (X.7) is momentless; then, assuming in 
0 0 0 

(X.30) W g  = @ = Cp = 0,  we obtain the boundary conditions 

If the contour of the hole is free of external forces, then we must assume - /711 
in (X.31) F1 = F = F = F = 0: 2 3 4 

(X. 32) 

We will examine the boundary conditions for a hole in a shell, which is 
located under the conditions of the basic stress state caused by internal hydro- 
static pressure p = const. Here we will make the following assumptions: the 

0 
hole of the shell is tightly covered by a specially constructed roof, which 
assures uniformity of internal pressure in the storage tank; to the contour of 
the hole this roof transmits from the internal pressure imparted to it only the 
shear force, and does not create any other force action on the region of the 
shell near the hole. 

 ere, and in the following, we will w e  the basic assumptions of the theory 
of sloping shells and discard in (X.29) the terns with factors 1/F. Moreover, 
we will denote H = -ffe = H ~ ~ ;  s = -so = -s 

P P P 0 '  



The boundary conditions in this case will be of the form 

(X. 33) 

The function f(*)  (0) in conditions (X.33) characterizes the shear forces, which 

are transmitted by the roof to the contour of the hole. Generally speaking 

f (*)  (8) can be an arbitrary integrated function, which should satisfv only one 
condition, specifically the following: that the resultant of these shear forces 
on contour I' be equal to the force 

where F is the area of the hole in the shell; pn = const is internal hydrostatic 
pressure. 

The boundary conditions for an arbitrary, and not simply sloping, shell, 
weakened by a hole whose edge is reinforced by a thin elastic rinp, were found 
by N. P. Fleyshman [2, 31 .  We will not write them out in the ~eneral case, but 
we will write them in the following section for the case of a sloping shell. 

Let us turn now to the conditions "at infinity." Since components T 
I)' 

Te, . . . , Ge (X. 13) by measure of distance from contour r of the hole, damped * 

rapidly, the functions w(p, 0) and $ ( p ,  0) found from equation (X.23) and from 
the boundary conditions in one of forms (X.29)-(X.33) should satisfy these 
conditions, i.e., for P -+ w, they should satisfy the .following conditions 

(X. 35) 

We will note that equations (X.23) and the relations related to it are 
found under the condition that the gauss curvature K of the middle surface is 
equal to zero. It is clear that the solution thus found for the problem of 
stress concentration in shells for which K # 0 will be more accurate as the zone 
C* diminishes, i.e., the smaller the hole in the shell. However, as demonstrated - /712 
by theoretical and experimental studies, such as those conducted under the 
supervision of V. 2. Vlasov at TsNIIPS [Central Scientific Research Institute of 
Industrial Structures] rl], the approximate solutions based on the theory of 
sloping shells are in good agreement with the experiment for shells for which 
the ascent index f of the shell to its smallest dimension in the plate a will 
be f/a < 1/5. 



92.  Solution Methods 

Concerning the Separation o f  Variables. We will notice that the solution 
Q( 4 8) (X.22) of equation (X.23) must be periodic with respect to 0 ,  i.e., 

and therefore it is natural to represent it in the form of the following 
Fourier series: 

However, it is obvious after direct substitution of function (X.37) into (X.23) 
that for the arbitrary coordinate system Go, 8), given by function w(<) (X.11), 
that it is not possible to obtain the solution 6Cp, 0) of equation (X.23) in 
the form (X.37) for all shells1. An exception is a spherical shell for parti- 
cular forms of coordinate systems, and therefore we will proceed to the 
analysis of the possibility of separating the variables into equations for a 
spherical shell. 

For a spherical shell 

By substituting (X.38) into (X.15) and (X.23) we find the equation 

the solution of which can be represented in the form of the sum 

+aB, (X. 40) 

2 
where is the solution of Laplace's equation V = 0 ;  a2 is the solution of 
Helmholtz's equation 

( X .  41) 
-- - - -- -- - - - - 

'BY substituting (X.37) into (X.23) we obtain an infinite system of ordinary 
differential equations, which cannot be represented in convenient form. 



The variables in Laplacefs equation are separated for any coordinate 
system given by mapping function w(C) (X. 11) , while the variables in Felmholtz 's 
equation are separated only for polar and elliptical coordinate systems; the - /713 
solution in the latter systems is represented through the hlathieu function. 
Certain problems for a spherical shell in an elliptical coordinate system are 
examined in the works of G. A .  Van Fo Fy [l-41, G. N. Savin and G. A ,  Van Fo 
FY [I' 21.. 

The "Perturbation o f  Boundary Form" Method. The use of the method of 
separating the variables, as indicated above, can be successful only in an 
individual and extremely limited case, and therefore, for the solution of the 
examined problem, it is convenient to use approximation methodsA In this sec- 
tion we will examine the "perturbations of boundary formff approximation method 
in the form first proposed by A .  N. Guz r2-71 for elliptical, square, ar d 
triangular holes with rounded corners. The analogous method for the plane 
problem of elasticity theory of an anisotropic medium was proposed earlier by 
S. G. Lekhnitskiy [I]. This method is extended in the work of A .  N. Guz' r51  
to double-connected regions, while in another work [ 8 ] ,  several problems con- 
cerning stress concentration near certain curvilinear holes in a round cylin- 
drical shell were examined. In the work of G. N. Savin and A .  N. Guz' rl], 
the "perturbations of boundary form" method is used for the solution of problems 
of stress concentration near arbitrary holes whose contours have no angular 
points. 

For convenience we will substitute the positive directions w, G 
C R ,  OD P ' 

and Qe by the opposite, and equation (X.23) we will relate to dimensionless 

coordinates. Then this equation becomes 

where 

r is a real. number characterizing the dimensions of the hole; R is the least 
0 
radius of curvature. 

We will examine the plane of variables to which the middle surface of the 
shell is related. In Figure X.7 (x y) is a rectangular coordinate system; f (r, 8) is a polar coordinate system ; ( p ,  9 )  is an orthogonal coordinate system; 

1Here all coordinates are dimensionless, related to some magnitude ro, which is 

characteristic of the examined hole. Thus, in the case of a round hole ro is 

the radius of the hole in plane P (Figure X.5), in the case of an elliptical 
hole ro = (a + b)/2, where a and b are the semiaxes of the ellipse (see 
Figures X. 8 and X.9). 



A 

Figure  X.7. 

y is the contour of the hole in plane P - /714 
of variables @ , 0) to which the middle 
surface of the shell is related. Con- 
tour r in the shell corresponds to 
contour y on plane P (Figure X . 5 3 .  The 
( p) axis is directed along the external 
normal to contour y (Figure X .  7) ; Ois 
the angle by which coordinate system 
@)Ace) is rotated in relation to polar 
coordinate system (r)A($) . We will 
introduce the formulas for the stress 
components and deformatim state, 
expressed through function 6 in the 
polar coordinate system (r, 4). In 
accordance with the assumed positive 
directions, we obtain for displacements, 
forces, and moments 

1 d3 Im @ ( I ,  cp) . sro=-- .  -. , G,=-- 
n f r 

D "I 1 - v dl Re 0 ( r ,  9) . (X .  4.7) 
G,= - 5 [ v 2 - ( 1 - ~ ) d 7 ,  ReO(r,p); H r Q = -  D-. r arc% -. r ' 

The variables u and v are found by way of integration of the following 
equation system: 

Let the contour r of the hole in the shell (Figure X.5) have a form such 
that the function 

z = o (6); o (5)  = 6 + ef'(5) (z = reip; 6 = eei@) (X. 45) 



maps conformally the  i n f i n i t e  plane (C) with a round hole of u n i t  radius  on the  
i n f i n i t e  plane P with a hole whose contour i s  y (Figure X . 5 ) .  

The function f(C) depends on t h e  form of T (€4 l ) ,  and the  roo t s  of  t h e  
equation 1 + c f l ( C )  = O should l i e  i n  plane C within the  c i r c l e  of u n i t  radius .  
Under these l imi ta t ions  t h e  function G(c) maps conformally t h e  e x t e r i o r  of  the  
u n i t  c i r c l e  onto the  e x t e r i o r  of the  examined hole.  

The values r ,  @ and 9 (Figure X .  7) on coordinate l i n e  0 = const  and, i n  j715 - 
p a r t i c u l a r ,  on contour y of the  hole (P = 1) w i l l  be1 

In order  t o  have i n  each o f  t h e  s e r i e s  approximations a boundary problem with 
separable va r i ab les ,  i t  i s  necessary t h a t  t h e  so lu t ion  of  equation (X.42)  i n  
po la r  coordinate system ( r ,  4) y i e l d  t o  representa t ion  i n  the  form 

sin 6 + f (<) --!(a 
Y 2ip cp = arctall; = arctan - . . 

CD 

@ ( r ,  9) t-- If ( r )  COS k q  3. gk ( r )  sin krp]. 
k=o 

t 

Q=C ons t 

We w i l l  represent  t h e  so lu t ion  of  equation (X.42) i n  po la r  coordinate system 
( r ,  4) and components of  the  s t r e s s  and deformation s t a t e s  i n  c u r v i l i n e a r  
orthogonal coordinate system2 ( P, 9 ) i n  the  form of  s e r i e s  with respect  t o  
parameter E: 

1 See Chapter V I ,  where t h e  deriv.ation of  these  formulas i s  given. 
coordinate l i n e  p = 1 coincides with contour y of the  hole on plane P 

(Figure X .  5) . 



( X .  49) 

After finding the solution of equation (X.42) in the form (X.47), we can find, /716 - 
in accordance with formulas (X.43) and (X .  44), the components of the stress and 
deformation states in the polar coordinate system (r, 4). To determine the 
corresponding components in the curvilinear coordinate system (p, 8), we will 
use the formulas for the transformation of the components of the stress and 
deformation states for the case of the rotation of coordinate system (p, 8) in 
relation to coordinates (r, 4) by angle 9 (Figure X.7) :  

T, .= T, cos2 6 $ T, sinz 6 + 2S,, sin 6 cos 6; 

T, = T, sinZ 6 $ T, cos2 6 - ZS,, sin 6 cos 6. 

SQo -3 (T, - T,) sin 6 cos 6 + S,, (cos2 6 - sins 6); 

G, = G, cosZ 6 + Go sin2 6 + 2H,, sin 6 cos &, 

G( = G, sin2 6 - Go, cost 6 -- 2Hr, sin 6 cos 6; 

H,@ = (G,- G,) sin ecos.6 + H,,(cos26- sina*); 
N dH~0 . Q,=Q,cosfi+ Qqsin6+T, 

&I h dre, sin 6 
= 5 ~ 0 ~ 6  + -. - 

r 

(S - arc). 

It is necessary to substitute in the expressions obtained the values r, 4 and 8 
from (X.46). 

By substituting (X.48) into equation (X.42), after first relating it to 
polar coordinate system (r, $1, we ohtain the infinite chain of equations 

v2vWj ( r ,  9) - ~x~Rv:@~ ( r ,  9) = 0. (X.51) 



In accordance with (X.47) the solution of equation (X.51) becomes 

0 

Qj P, T) = C fr i  (4 cos k'p + gki ( I )  sin &. 
k=O 

Relations (X.46) are also expanded into series with respect to parameter E, 

while expressions (X.50) are expanded into series as complex functions. By 

equating the coefficients for ~j of the left and right sides of ( X . 5 0 ) ,  we 
obtain 

1-1 tn = ,tn + y [L~I+'~'"' (I-"' '"1 
ILf2 Y + L6 v 1;' 

-0 



In order to find in (X.53) the values of the components of the stress and 
deformation states on the contour of the hole, it is necessary to assume in 
them that p = 1. 

The values with the indices j and m found in the right hand sides of (X.53) 
are of the following form 

Displacements u (m) and v(') are determined by integrating the equation 
system 

where R 1  R' and R 1  are equal to R R and R respectively, in which r i s  
r J  4 r$ rJ 9 r4J 

substituted by p and @ by 0. We will notice that (X.54) and (X.55) coincide 
with (X.43) and (X.44), respectively, if in the latter we substitute r by p and 
@ by 0, i.e., if we replace the letters r and 4 in the corresponding formulas 
by and 0 .  

(j-') (k = 1, a ,  ..., In (X.53)  there are six other differential operators Lk 

..., 6), the order of which is specified by the superscript. We will write in 

(j-m) which will be required for the solution of inverted form the operators Lk 

the problems in the zero, first and second approximations ( 1 2 ~ )  E 0) : 



,lo , i6n) +fr (i)12 . d' + im+ a (i) J,(b) -Til) 8 - 1 Be2 dea (?a [ ,i 

- f ( 1  + i '  sin 8% l i p  I sin 2 - I ( 5  - 1 sin 20 d 
4 I d&3f.3 4ipZ do 

.- - 
- lbfm- cf (j)lg a 2if (5) fo- i [ f 2  (;)+f2(t)l cos 20-[f2 (6)-f2(5)1 sin 20 as . 

8QS nap + &'QS 'Ws * 
-- I lit (C) - m)12 - rtrm- tr (1;)i2 + 26-t 1 c . f  - ~f (:)I IY (6) - f7)1 . 

4 4tzp 

~ : l ) = f ' ( 6 ) - 7 r i T ) +  Gf(T)-Ll(i) . 
i i66 9 (X. 56)  

Using relation (X.46), we also expand the right hand sides of boundary 
conditions (X. 29) - (X. 33) into series with respect to E. 

The functions 8) in (X. 54) and (X .  55) should be regarded as the 

solution of equation (X.50) in the m-th approximation, in which r is substituted 
by pand 4 by 8. In the j-th approximation only the function @;(p, 8) is 

J 
unknown, whereas the functions 4, (p, 8) (m < j) are known from the preceding m 
approximations. 



By placing from (X.53) the expansions of the corresponding components into 
the examined boundary conditions, we obtain algebraic equation systems for the 
determination of the coefficients in the functions f (r) and qk,j (r). 

k j 

We see from (X.53) - (X.55) that in each of the following approximations 
(for each j), the problems are reduced formally to a series of boundary condi- 
tions for a round hole in plane 1: (in curvilinear coordinates p , 0) . Thus, 
the problem for a noncanonic region (infinite plane with a curvilinear hole) 
can be solved if the total solution of the basic equation for the canonic 
region (infinite plane with a round hole) is known. 

The universe form of function f(C) (X.45) for the various forms of holes 
is found from the function w(<) (X.45), which maps conformally the exterior of 
the unit circle onto the exterior of a hole of the form under consideration. 

Any value, for instance Tg, obtained in the n-th approximation will he 

regarded as follows : 

(X. 57) 

We will examine the application of the '%boundary form perturbations" method - /729 
to the analysis of the stress state of shells weakened FY a hole whose edge is 
reinforced by a thin elastic ring. The latter will he regarded as a material 
thread which resists stretching, bending and twisting. The boundary conditions 
for this case were found by N. P. Fleyshman [2 ] ,  Considering that one of the 
axes of inertia of the cross section of the reinforcing ring lies in the middle 
area of the shell, and using the basic assumptions of the theory of sloping 
shells, the boundary conditions can be written in the following form: 



Here u" u: and w a r e  the  components of the  bas ic  s t r e s s  s t a t e ;  (0) " (0) 
P ' To , * , o.D 

a r e  ex te rna l  loads on the  re inforc ing r ing;  R* i s  the  radius  o f  curvature of  
the  contour o f  t h e  hole i n  t h e  plane of  var iables  ( p ,  8), t o  which i s  r e l a t e d  
the  middle a rea  of  the  s h e l l ;  A,  B and C a r e  the  r i g i d i t i e s  of  t h e  r i n g  t o  
bending r e l a t i v e  t o  two axes and t o  twis t ing;  F is  the  area  of  cross  sec t ion  o f  
the  r ing;  El and v i s  Young's modulus and Poisson's r a t i o  f o r  t h e  mater ia l  I 
from which t h e  r i n g  i s  made. 

By s u b s t i t u t i n g  (X.48) and (X.49) i n t o  (X.58) and comhining t h e  

c o e f f i c i e n t s  f o r  E', we obta in  



where T O W  , spe O W  , '(j) are the coefficients of expansions of the com- , Q p  
ponents of the basic stress state; , . . . , 6:) (j) are the coefficients 

0 0 of expansions of the external forces acting on the ring; u , v , wo are the 
components of the basic deformation state in the polar coordinate system, in 

which r and 4 are substituted by p and 0; respectively; Ll(j -m) s ..., ~ ~ ( i - ~ )  are 

11; k = n ,  
differential operators ; 6: = !O: k+n. 

From relations .(x. 53) - (X. 55) and boundary conditions (X. 59) we see that 
the problem is reduced to a series of boundary problems for a round hole in 
plane 5. 

We will examine the case where the forces on the contour of a curvilinear 
hole are known. Then the boundary condftions become 

(X. 60) 

By expanding the functions g (0 ,  E) , g2 (0, E) , g3 (0, E) , g4 ( 6 ,  E) into series 
1 /72: - 

with respect to E and substituting (X.49) into (X.60), we obtain, in the j-th 
approximation, 

By substituting (X.53) in (X.61), we obtain the boundary conditions for the 
determination of the function 6. (r, 4) : 

3 



Application of Method of Series Approximations with the Use of the Basic 
Equations In Integral Form. It is easy to see that in certain cases equation 
(X.25) with conditions (X.26), i.e., the basic equation system in integral 
form, is more convenient in applications than equation systems (X.14) or (X.23) 
in differential form. This is related to the fact that the solution V(S ,  v) of 
integral equation (X.25) always exists and it can be found..by the method of /723 - 
series approximations by using as the zero (initial) approximation the function 

Eh' A 

v12 ( I  - v2) 

A 

where OO is Airy's function of stresses for a plate weakened hy the same kind of 
hole, under the very same basic stress state, and subject to the very same boun- 
dary conditions in relation to tangential components on the contour of the hole, 
as exist in the shell under examination, while the function w0 is deflection of 
a plate weakened by the same kind of hole as in the shell under examination, 
found under the very same nontangential boundary conditions on the contour of 
the hole as in the given khell. 



A 0 
For numerous more interesting cases the functions @,, and w for plates 

weakened by a hole are known1; consequently2, we also know the function Vo(E, 11) 
which is the zero approximation. By substituting this function into integral 
equation (X. 25) , we find the first approximation, i .e., \I1 (5, '1) . Proceeding 

in the analogous manner, we obtain the function Vn(E, n) which is the n-th 
approximation for the desired solution; hence in each of the approximations 
there are four holomorphic functions, i . e. , q0 ( 5 )  , $6 (n) , vj1 (5) and $i (TI), 

which can be found from the boundary conditions of the problem when conditions 
(X. 26) are satisfied. 

Application of Method of Finite Differences. As shown by experimental 
studies (Figures X .  3 and X .4), the conditions "at infinity" (X. 35) will be 
satisfied with an accuracy known a priori, as soon as coordinate line p = - 

p1 - 
= const reaches contour L* (Figure X.2); the latter, however, w$-11 remain at 
some distance from the contour of the hole, not exceeding four times the 
greatest dimension of the hole. This can be made use of in approximating the 
solution of equation (X. 23) , and specifically, under the conditions "at infi- 
nity" (X.35), we may assume that p = 1.5-2.0 for a hole of any shape, the 
contour of which is given in parametric form by analytical function a + iP = 
= w(c) (X. 11) of complex variable 5, where 5 = e~'~~. For instance, by substi- 
tuting by the method of finite differences the differential equation by a 
system of linear algebraic equations, it is necessary to add to the resultant 
system, in addition to the equations derived from the boundary conditions and 
conditions "at infinityvv of the problem, six equations for functions 4 ( p .  8) 
and w(p, 8) derived from vector condition (X.28), which insures the single- 
valuedness of the displacement vector of the middle surface of the shell. 

Numerical integration of equation (X.23) of 51 in variables p and 8 should 
be performed in rectangle OABC, which is the conformal mapping of a doubly- 
connected region bounded by contours r and L onto planes (p, F1) (Figure X.6). 

The at.ove-described problem was solved in I. 0 .  Bugeman's work [11, in - /724 
which the boundary problems for differential equation (X.23) in the case of a 
spherical shell weakened by elliptical and square holes (with rounded corners), 
are reduced to finite-difference boundary problems. 

Presentation of Solution of Basic Equation for Spherical Shell. In order 
to analyze the stress state in shells near curvilinear holes it is necessary to 
have the solution of basic equation (X.42) in the form (X .47 ) .  We will con- 
sider such a solution for a spherical shell for which basic equation (X.42) has 
the form 

'see G. N. Savin [8] , Chapter VI . 
2 ~ h e  case of a square hole was analyzed by S. Mokhbaliyev r 2 ]  by this method. 
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Equation ( X . 6 4 )  is represented as a sum-of the solutions of Laplacers and 
Helmholtz's equations. For the j-th approximation 

(X .  65) 

+ (civk + ids'') Jk (rx + 
+ (c!" + id!.") Hk (rx 1/=)] zz kg. 

where J~ ( r ~  j/=) = berk rx  4- i beik r x  is Bessel IS  function of the first kind of 

the k-th order; H!' ( r x  I=) = her,rx + ihei, r x  - is Hankel s function of the 

first kind of the k-th order; ber,rx, beikrx, herkrx and hei rK is Thompsonfs k 
function; we will omit the index 0 for the null function. The asymptotic 
representations of the Bessel and tiankel functions are 

(1) 
- 

Hk ( rx  c/'-i = 2 i ( r x ~ i -  k-:). 

From asymptotic representations (X.66) and the solution in the form (X.65) ,  we 
see that in order to satisfy the conditions "at infinity" (X.35) it is necessary 
to assume 

The solution can be used in such form to analyze the stress state in a spherical 
shell weakened by any curvilinear hole, the contour of which has no angular 
points. We will notice that the solution in the form (X.65) can he found by - /725 
regrouping the terms from the complete solution, presented in the monograph of 
I. N. Vekua [Z] . From (X.  44) when 

we obtain the equation system for the determination of the variables u and v: 



Into the right hand sides of (X.69) it is necessary to substitute 6(r, $) from 
(X.65), considering (X.67). The system obtained can be integrated. Omitting 
the intermediate calculations and recalling (X.67), we present the values of 
the variables : 

1.0 
(I) u (r,@ = - % (I '-+ V )  [& + r@ (her xr - 

- hein x r )  - rd io  (hei w + her" xr ) ]  + 

-- I +' (dk hei; r x  + d iek  her; r x ) }  tFE kp; 
X 

+ k (d'heb r x  + d t k  herk x r ) )  (-::) kq. 

If system (X.69) is integrated for k = 1, then a logarithmic term appears in 

cj", therefore, in order to satisfy the conditions "at infinity" (X.35), it is 2 
necessary to assume 

Thus, conditions (X. 70) and (X. 71) insure that the conditions "at infinitytt 
are satisfied. 

We will discuss now the question of selecting the law of distribution of - 1726 
shear force for a curvilinear hole in a spherical shell, loaded by uniform 
internal pressure, where the hole is covered by a roof of special construction, 
which transmits only the action of the shear force. We will examine holes for 
which 



The function f*(B) i n  the f i r s t  condition of (X.33), generally speaking, 
can be an a rb i t r a ry  in tegrated function, but f o r  the  above-stated curv i l inear  
holes it should be taken i n  a form such t ha t  when E + 0 the  d i s t r i bu t i on  of 
shear force can be found f o r  a round hole. The function f * ( 0 )  i n  t he  work of 
G .  N .  Saving and G .  A .  Van Fo Fy [ I ]  f o r  an e l l i p t i c a l  hole was se lected as  t he  
outcome of analys is  of s t r e s s  d i s t r i bu t i on  on the  contour of an e l l i p t i c a l  
p l a t e .  The shear force is  represented i n  the  form of two components, the  f i r s t  
of which corresponds t o  shear force on the  contour of an inscribed c i r c l e ,  and 
the  second of which corresponds t o  an addit ion which approaches zero when the  
contour approaches the  c i r c l e .  This addit ion i s  assumed t o  be proport ional  t o  
the  r e l a t i v e  difference between the  areas of the  e l l i p s e  and inscribed c i r c l e ,  
and i s  mult ipl ied by a trigonometric function, which insures the  maximum shear 
force  on the  ends of the  small axis ,  i . e . ,  a t  the  points  c loses t  t o  the  cen te r  
of the hole,  and the  minimum shear force on the  ends of the  large  ax i s ,  i .e. ,  
a t  the  points  f a r t h e s t  from the  center  of the  hole .  

We w i l l  generalize these considerations f o r  the  case of an a rb i t r a ry  hole 
1 

whose contour i s  given by the  function (5) = I, 8 - f o r  Q = 1 (C = edo). We cN 
w i l l  assume t ha t  E > 0; then r = r O ( l  - E) i s  the  radius of the  inscribed 1 
c i r c l e .  The points  of the  contour c loses t  t o  the  center  of  the  hole a r e  found 

1 +21 
f o r  6 = n -  N +  I ( 2  i s  a whole number), and f o r  the shear force we w i l l  obtain 

the  following d i s t r i bu t i on  law: 

2 3 2 where De = r r o ( l  - E)* is  the  area  of the inscrihed c i r c l e ;  D = m i ( l  - Nc ) i s  

2 2 the  area  of the  hole; S = 2 r r0 ( l  + E N /4 + .. .) is  t he  length of the  a r c  of 
n 

contour of  the  hole; a l l  these  values a r e  ca lcula ted with an accuracy up t o  E'. 

Final ly ,  f o r  shear force:  



Representation of Solutions of Basic Equati~n for Small Hole2 I n  a Round 
Cylindrical Shell. If, instead of the function 4, we introduce -4, and for 
function @ the earlier representation (O = w + in$) remains valid, then equa- 
tion (X .42 )  for a round cylindrical shell acquires the following form: 

(X.  75) 

h 53(1-9) 
where = - ; R is the radius of the middle surface of the shell; 

13% 2 
the Ox axis is directed along the generatrix, and the Oy axis is directed along 
the guide. This change in definitions is made so that our definitions will 
coincide with those used in numerous works concerning the stress state near 
small holes in cylindrical shells. Then in relations (X .43 )  and (X.44) the 
sign in front of Im @ should be changed to the opposite. From (X.44),  consi- 
dering this comment, we obtain an equation system for the determination of the 
variables: 

- vv3] Irn cD (r. q); 

For a round cylinclrical shell 

Following the example of A .  I. Lurfye [I], the solution of equation 0 . 7 5 )  
will be represented in the form of the sum 

where 

(X. 78) 

(X. 79) 



We will introduce new (unknown) functions: 

By substituting (X.80) into (X.79) we find that functions and q j 2  satisfy the 
equation: 

023, + Zip2$ = 0. CX. 81) 

The solution of Hemholtzls equation (X.81) will be represented in the polar /728 - 
coordinate system (r, @) : 

(X. 82) 

where J k @ r  bf%) = berk (pr v2) - i beik(Pr l/2) is Bessel' s function of the first kind 

of k-th order; ~ k "  (fir 11 2i) =herk@ v2)-i hei,(@r C/ 2) is Hankel Is function of the 

first kind of k-th order. We will write out the principal terms of the 
asymptotic representations of the Bessel and Hankel functions: 

From the conditions "at infinity'' (X.35) and asymptotic representations (X.83) 
we see that 

By substituting (X.82) into (X.80) and (X.78), recalling (X.84), we obtain a 
more general solution of equation (X.75) in the form 

00 COS 

= [(Ak -k iBk) e'- ('-')fix + (Ck + iDh) e(l-''BX] Hk (rp m) sin k ' ~ .  
L 

(X .  85) 

From the asymptotic representation of Hankel's function (X.83) and the solution 



in the form (X.85), we see that along the generatrix (when Q, = 0) the function 
@ is damped such that 

Consequently, this function satisfies conditions "at infinityt1 (X.35). We will 
note that the solution in form (X.85) is the solution with undivided variahles. 

A .  I. Lurlye [ I ,  2) proposed an approximation method for the solution of 
the problem of stress concentration near a "roundt' hole; this method represents 
the approximate representation of the solution of equation (X.75) in the form 
(X.85) with an accuracy up to p2,  i.e., for holes of small dimensions. We will 
present the solution obtained by A .  I. Lur'yets method, following the example 
of I. M. Pirogov [20], where this solution is represented in the form of a 
Fourier series and in a more complete form. First we will make a few trans- 
formations of the solution of (X.85). This solution can be represented in the - /729 
form the sum of the following solutions: 

/ - COS 
O n  = [KI ($4 - 2iKS (Bx)] Hn (Br 1 2i) sin nq, 

where K1(f3x), K2(f3x), K3(f3x) and K4(Bx) is A. N. Krylov's function which is the 

combination e -(l-i)Bx and (l-i)Rx. We expand A.  N. Krylov's and Hankelfs 
functions in the vicinity of the origin of the coordinate system into series. 
In order to simplify the following study we will analyze separately the stress 
states corresponding to each of solutions (X.87). 

Let us consider the solution of equation (X.75) in the form 

a,, I [K, (px)  - 2iK, (bx)] H, (br v%) cos nq (n =. 0,2,4, . . .), 
(X. 88) 

@, = [K, (Bx) - 2iK4 (Px)] H, ($r 1/ %) ( 1  + i) ccs ncp (n= 1,3,5, . . .). 

We will find the complex function of stresses which correspond to (X.88) in the 
form 

(X. 89) 



where, following A. I. Lur'yefs example, we will represent the arbitrary 
constants in the form 

a,, = + Bnpn+2 + . . . 
(n = 0,2,4,. . .), 

b,, = Cng" + DnfW2 f . . . 

a,, = Anfln-1 + B,P+l - t  . . . ' 
I ( n =  1,3,5 , . . .  1. 

b,, = Cng"-' + Dnp+l + . . .I 
( X .  PO) 

By substituting (X.90) and (X.88), as well as A.  N. Krylovls and Hankel1s 
functions, expanded in the vicinity of the origin of the coordinate system, 
into (X.89), we obtain the solution represented in the form of a series with 
respect to small parameter P .  Combining the coefficients for identical degrees 
of f3 and introducing the new definitions of the constants, we obtain, with an 
accuracy up to B ~ ,  this solution in the form 

+ BJ i (Inr + yf)- f + 4Co + nA2 + BI) r2 4- [(c. + 
+ B2) r20n r + y') - - : (n4+ fiA2 ++, f + F 2 +  1 

2 1 n - 2  
R e g =  -,xCo(lnr + y') - FB,ms2q- E [ ~ 2  Bn + 

n-2.4,6.... 

(X.  91) 

where y' = ; y are Eulerl s constants. 
1'2 



This s o l u t i o n  and t h e  so lu r ion  f o r  t h e  o t h e r  s t r e s s  s t a t e s  were obtained 
by I .  b l .  Pirogov [20] by A .  I .  JJur1ye's method [ l ]  : 

The s o l u t i o n s  of  (X.91) and (X.92) a r e  represented  i n  t h e  form of  a 
Four ie r  s e r i e s  with r e spec t  t o  t h e  cos ines ;  s i m i l a r l y ,  we may cons t ruc t  t h e  
s o l u t i o n s  i n  t h e  form of  s e r i e s  wi th  r e spec t  t o  s i n e s .  These s o l u t i o n s  w i l l  
d i f f e r  from t h e  s o l u t i o n s  of  (X.91) and (X.92) only i n  t h a t  numbers f o r  n  = 1 ,  2 
( the  terms corresponding t o  n = O a r e  missing) which, i n  t h e  case a t  hand, have 
t h e  form 



The other coefficients for the trigonometric functions remain unchanged. 

We will present the solution of equation (X.75) in the j-th approximation, 
which can be used for analysis of the stress state near a curvilinear free hole 
having two axes of symmetry, coinciding with the generatrix and the guide, in 
the basic stress state, symmetrical with respect to the axes: 

1 
Re Olj ( r ,  p) = fit ( - 2Dhi) (In r 4- y') 4- (2Ai1) f 

+ A f l  r2 (In r + y') - -!- (4Ayl + Ah/)) r2 + [(AF + 
4 

A:]) + Ail)) rt (In r + y ' )  - --- r? +  ti) -+ -. cos 2q + 6 2 Y rY 

The function (X.94) can be obtained from (X.88)-(X.90) after the 
corresponding substitution of the constants. 

53. Spherical Shell with Curvilinear Hole 

Let us consider the stress state in a spherical shell weakened by a 
curvilinear hole and under the effect of a uniform internal pressure of inten- 
sity p. The basic stress state will be assumed to be momentless. The compo- 
nents of the basic stress state will be represented in the form 

(X. 95) 
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Round Hole, Consider the case where a hole is covered by a roof which 
transmits only the action of the shear force; then the boundary conditions 
become 

(X. 96) 

The problem is axisymmetrical, and therefore the solution can be taken in the 
form (X.65) for j = k = 0 .  By substituting (X.43) and (X.65) into boundary 
conditions (X.96), we determine the constants in (X.05) for j = k = 0: - /733 

pr; 
G . O = : - - .  x hei"x + v hei' x 

2 h S  x (her'x herRx + hei'x hei"x) j v  (herf2x f heif2x) 
. 

(X .P7) 
pr; ,,y = - - . x hernx + v her'x 

~ D X '  x (her'x her"% + hei'x heinx) + v (her1% + heiIax) ' 

By substituting (X.97) into (X.43) and (X.65), we obtain the values of the 
components of the stress state on the contour of the hole1: 

x (hein% hew - hei x herRz) -k v (hei'x her z - her'x hei x)  . Ti = 2p,h - pohx 
x (her'x her"% -+ hei'x heiWx) + v (herf'x -+ heif2x) 

(X .98) 
xh (1  - v2) (her x her'% + hei x hei'x) -- G; Poh f-:i ' x (her1 x her"% hei'x heiUx) + v (herf2% + heiQx) ' 

This problem was first solved by Yu. A .  Shevlyakov [S,  61, who used some- 
what different symbols: 

1 - v  x1 = - herx + - x hej'x; 

1 - v  x z =  -hein- - 
x 

her ' x  ; 

'4 a x2 her'x -xlheirx. 

The value TGlrZl can be represented in the form 

'If we assume R = a in (X.98), we obtain the values T * in a flat plate in the 4 
case of three-dimensional uniform tension. 



(X. 100) 

For the shell R = 200 cm; r = 10 cm; h = 0.2 cm; v = 0.3; k = 1.65. 
0 

Thus, the concentration coefficient k = T* 
@ I p0h on the contour of the hole 

in the given shell is 2.65 times greater than k for a plate. 

We present the values.of concentration coefficient k for certain values of 

x = 3 ~ ' / 1 2 ( 1  - v 3  m as determined by Yu. A .  Shevlyakov ( 5 ,  61: 

E l l i p t i c a l  Hole. For this hole 

We will assume that the hole is covered by a roof of special construction, 
which transmits only the action of the shear force; then boundary conditions 
( X .  74), with an accuracy up to E * ,  have the following form 

(X. 102) 

By expanding (X.103) into a series with respect to E, we obtain the right hand 
sides of the boundary conditions for the series approximations. The solution 
will be found in the form (X.65). The solution of this problem was found by 
the "boundary form perturbations" method by G. N. Savin and A.  N. Guzl [21. 
This problem was also analyzed by G. N. Savin and G. A.  Van Fo Fy [I], where the 
solution was represented through Mathieu's function, although the latter was 
used for relatively small values of eccentricity. 

(X. 101) 

The solution in the zero approximation coincides with that for a round 
hole (X.96) - (X.98), and therefore we will proceed to the determination of the 
functions @.(r, $), making use of the results of 52. 

1 



To determine the constants ~$2;  dk2; c:.2; dy; 5 - 0 ;  eO; 4.O; d22; $2; 43; 4.2; 8 . 4 ;  2 . d2.4; .A- e . 4  

and d:'4, we obtain a system of algebraic equations which, in view of their 

cumbersomeness, we will not introduce here. The other constants in (X.65) are 

equal to zero for j = 1 and j = 2. To determine T;~) and '!';*I on the contour 
of the hole, we obtain 

6d;2 + x c t 2  heiix + xZd:.2 her;% + 

x4R 
t po (xl heir"x - 2% herWx)J cos 28 ; 

xZR - (her2%) + p, F~ [X1 (- 8% hei'x + xahei'x + 

(X. 103) 

+ x2heiWx + 8 hei'x) - 2, (- 8% her'x 'f- xaherXvx $ 

I + x%erl"x + 8her8x]} + (6n,1.2 + x2c~-2hei~x + 
nro 

+ q.'x2her;x - 30d:.2 + ci.2 hei';'x - x2hei;x + 
x2R 

( "' 
+. 4x hei4 - 4 hei,x + po [ X, (8% heiwx + x3hei1"x - ) 
- x2hei"'x - 8heirx) - X ,  (8% her"% + xaherlvx - (X. 104) 

-x%erWx - 8 herr%)]) cos 48. 

The values of force TQ on the contour of the hole are defined with an accuracy 
2 up to E ,  : 

a - b  T ; = T ; , + ~ - T ( I )  I '(a+b) a ! ! b 3 ~ ( 2 ) ,  I 

where T* is given by formula (X.98) ; T;') -- (X .  103) and T;~) -- (X.104). + 



As we see, foxmula (X.105) makes it possible, by chariging the ratio a/b, 
to calculate the values Tg for a fixed r = (a + b)/2 for any family of 
elliptical holes. 0 

As an example we will consider the value of concentration coefficient 
k = T;/pOh for a shell with the parameters R = 200 cm; (a + b)/2 = 10 cm; h = 

= 0.2 cm and v = 0.3. In this case 

T; a- b k = - = % 3 0 + -  
poh , + 

19.44 cos 20 + 
(X. 106) 

The approximate solution for a plate under three-dimensional uniform tension 
by forces of intensity poh was also found by this method. 

The values of k calculated by formula (X.105) are listed in Table X.l for 
a plate and shell when 8 = 0 (at the end of the large semiaxis). As we see, 
the maximum value of k (when 0 = 0) in the plate, obtained in the second 
approximation, even for a/b = 1.5, differs by 1.5% from the value of k obtained 
from the precise solution. 

The formula for Tg on the contour of a hole in a plate with consideration 
of the second approximation has the form 

T; = 2p& [ I  + 2e cos 20 + 2eZcos 40 + . . .I. (x .  107) 

while the formula for TCj on the contour of the hole, obtained from the precise 

solution is 

(X. 108) 

If Tg (X.108) is expanded into a series with respect to c ,  then we obtain the /736 
2 

- 
formula for Ti) (X.107) with an accuracy up to E . 

For square and equilateral triangle holes with rounded corners, we will 
have the analogous situation in the plate, i.e., the values of k from the pre- 
cise solution, expanded into a series with respect to E, will coincide with an 
accuracy up to E *  with the value of k found from the approximate solution with 
consideration of the second approximation. 

Table X.1 gives the representation of the rate of convergence of the solu- 
tion found for a shell weakened by an elliptical hole. Even for a/b = 1..5, the 
rate of convergence of the solution found should be regarded as satisfactory, 



since the maximum value of k in the first approximation is 73% greater than 
that in the zero approximation, while k in the second approximation is 11% 
greater than in the first approximation. 

Figure X . 8  illustrates the distribution of Tg/pOh found from (X.106) 

through cross sections 0 = 0 (curve I); 8 =  IT/^ (curve 11) for a round hole, 
i.e., when a/b = 1 ( 2  is dimensionless, related to rn, the distance from the 

contour of the hole), while Figure X.9 illustrates the distribution1-of 
k = T;/poh on the contour of an elliptical hole when R = 200 cm; ro = 10 cm; 

h = 0.2 cm; v = 0.3; a/b = 1.5. 

TABLE X. 1 

- 
Tr. Note: Commas indlcate decimal points. 

alb 

recisesolution 2,00 2.21 2.44 2,62 2,80 3.00 
2,oo 2.00 2.00 2,oo 2.00 2.00 

First 2,00 2,19 2.39 2,52 2.66 2.80 a 2.00 2.20 2.43 2,59 2,76 2.96 

- in shell 1~ I I I  --- i n  pla te  

e 1 1 5.30 5,30 
-5 Second 
e I 

1 5.30 

Figure X.8. Figure X.9. 

 he value of k in Figures X . 9 ,  X .  11, X. 13, X.20-X.29 is set forth (in some 
scale) with respect to the vector radius with its sign indicated (+ or -). 

5.30 1 5.30 
6.27 7.05 
6,31 / 7.25 5.30 

7.53 
8.03 

5.30 
8.23 
8.81 

5.30 
9.19 

10.10 



Square Hole w i t h  Rounded Corners. We will examine the stress state in a 
spherical shell weakened by a square hole with rounded corners and loaded by a 
uniform internal pressure of intensity p. We will assume that the hole is 
covered with a roof which transmits the pressure imparted to it only in the 
form of a shear force, and the basic stress state we will assume to be moment- 
less. 

The solution of this problem was found by A.  N. Guzt [lo!. For a square 
hole with rounded corners we have 

(X. 109) 

In accordance with (X.109) the boundary conditions, recalling (X.74), can be /737 - 
written in the form 

T ,  = - poh; S,, = 0; 

.y 

G,=O; 2 (e - 2e2) cos 41, . I (X. 110) 

By expanding .(X.110] into series with respect to E, we obtain the boundary 
conditions for any approximation. The solution in the zero approximation coin- 
cides with the solution for a round hole (X.96)-(X.98). Let us turn to the 
determination of the function Qii(r, 4) for j = I and j = 2, which we will write 

in the form (X . 6 5 )  . To determiie the constants c?: d:.'; i4; dj"; d$@; ci.0; rii90ic?.4; d:.'; 
, . .- 4 2 -  

c2g4; J d2.4; 4 2 . 6 ;  2 d 2 . ~ - $ - ~  2 ' 4  and d: *, algebraic equation systems have been derived, 

which we will not present here because of their awkwardness. 

The other constants in (X.65) are equal to zero when j = 1 and j = 2. For 

thb determination of T:') and T:~) on the contour of the hole, we obtain the 
formulas 

x'R + PO (xlhei'"x - ~~her"'x) cos 48, . . . 1 
- q0 + $Ox2hei"x +. dq.OxZhernx + 6 0 d i . 4  + 



x"-R + pnrY [% (- 32% hei'r 4- x3heiIvx 4- xzhei"x + 

+ 32 hei'x) - xz (-- 32% her'x + xaher"% + xaher"x + 

20dt.4 + x2 (c;.'heijc + 

I -I- dt4her;x) I cas 45 + 4 \72d:.8 ; deax*hei j + 
nro I 

- x2hei"'x .- 32 hei'x) - X, (32% her'x + 
-k x%eriVx - x2her"'x - 32 her'x) cos 86 . 3 1 (X. 112) 

The values of Tg on the contour of the .hole are determined with an accuracy up 
2 to E by the formula 

where T* is given by formula (X.98) ,  T:') -- ( X  111, and -- (X. 112). 
@ 

As an example, let us consider the value of the concentration coefficient 
k = T6/poh on the contour of a hole as calculated by formula ( X l )  for a 

shell with the parameters R = 200 cm; r0 = 10 cm; h = 0.2 cm; v = 0.3; E = 1/9. 

With consideration of the second approximation 

k =- 4 8 5  + 3.22 cos 48 + 1.01 cos 88. (x. 114) 

The values kmax for a plate and shell are presented in the tahJe (for 0 = 
= 0 ) .  



TABLE X.2 Table X.2 gives a - /73O 
representation of the 

hole, and in a plate, 89% greater by the approximate solution and 180% greater 
by the precise solution. 

/ Approximation Precise 
5 I rate of convergence of -- 

/ 7ero 1 F I  rst \Second lsolut ion the solution ohtained. 
-. As we see, the value of k 

Figure X.10 shows the distribution of Ta/poh for the given example through 

In plate for e=o 
In she1 1 for 0==0 

cross sections 0 = 0 (curve I); 0 = ~ r / 4  (curve 11), and for a round hole ( 2  is 
dimensionless, related to ro, the distance from the contour of the hole), while 

::B i 1::: 1 :  1 '? in the second approxima- 
tion for a plate differs 

Figure X.ll shows the distribution of Tt/pOh found by formula (X.114) on the 

from that found from the 

Tr. Note: Comas indicate decimal points. precise solution hy 5.7%. 
The maximum value of k in 
a shell in the first 

approximation is greater than the zero approximation by 61&, while the value of 
k in the second approximation is 18% greater than k in the first approximation. 
The value of kmax in a shell for a square is 92% greater than that for a round 

contour of a hole for E = 1/9R = 200 cm; h = 0.2 cm; rg = 10 cm; v = 0.3. 

Figure X.lO. Figure X.ll. 

Equilateral Triangle Hole w i t h  Rounded Corners. We will examine the stress 
state of a spherical shell weakened by an equilateral triangle hole with 
rounded corners and loaded by a uniform internal pressure' of intensity p.  We 
will assume that the hole is covered by a roof of special construction, which 
transmits the pressure imparted to it only in the form of a shear force, and 
the basic stress state in the shell we will assume to be momentless. 

'see A .  N. Guzl [ J ] .  



For an equilateral triangle hole with rounded corners we have 

In accordance with (X.115) the boundary conditions, recalling (X.74), can be - /740 
written in the form 

(X. 116) 

By expanding the boundary conditions (X.116) into series with respect to 
E we obtain the boundary conditions for series approximations. 

The solution in the zero approximation coincides with that for a round 
hole (X.96)-(X.98), and therefore we will proceed to the determination of the 
function @(r, 4) for j = 1 and j = 2, which we will taken in the form (X.63). 
By substituting (X.65) in the boundary conditions for the first approximation, 

we obtain a system of algebraic equations for the determination of the constants 

1 .3. dl ,3. ~ 1 . 3 .  dl .3. d2.0.  ~ 2 . 0 .  d2 o C2 2.1. 2.6 and d : ~ ~ ,  which, in view of their 
C2 9 2 * 4 9 4 + 2 9 , , ,. ; 1.3; d;s3; c : + ~ ;  c;v6; d2 , c4 
awkwardness, we will not present here. 

The other constants (X.65), for j = 1 and j = 2, are equal to zero for an 
equilateral triangle hole with rounded corners. For the determination of 

T;') and T:~) on the contour of the hole the following expressions are obtained: 

( X .  117) 

-;a 9 herj* + $ [ r, ( I  8% heinx + xaheilvx -1- ) 
$ x2hei "'x + 18 hei ' x )  - 2, (- 18% her% + xaher'vx + 



+ xZherwx + 18 her'w) -+ L, ( 1 2d$3 -+ eJx2heijx + 1) 
+ d,2s3x?herjx cas 36 + 1 

+ ~:.~x%eiLx + d:Wher& - 84dJ.3 + ~ 1 . 3  (X$ heiyx - 

xz - 3 heiix + 9% heiix - 9 hei;*) + di.3 ($ heryx - 

x1 
) 

x2 - 3 herin -b 9% her;% - 9 herg + p, f i~i [ (18% heiwx + 
+ x3hei'"x - x2hei"'x - 18 hei'x) - X ,  (18% herwx + 

( X .  118) 

The value T6 on the contour of the hole is given hy the formula 

T; = Ti + E T ~ ' )  + ez~b2' $- e3~(e3' .+ . . . , (X. 119) 

where T* is determined by formula (X.98), T;') by (X. 117, and 'Ti2) by (X. 118). 4 
As an example we will consider the values of the concentration coefficient 

of forces k = T;/poh on the contour of the hole as calculated by formula (X.119) 

for a shell with the parameters P = 200 cm; r = 10 cm; h = 0.2 cm; v = 0.3 cm. 0 
2 

In this case, with an accuracy up to E , 

The values of kmax are presented in Table X.3 for a plate in the case of 

multilateral uniform tension by forces of intensity poh and for a shell (for 

8 = 0). Table X.3 gives a representation of the rate of convergence of the 
solution obtained. The value (kmax) in the second approximation foraplate 

8=0 
differs from (kmax) obtained from the precise solution by 16.7%. The valie 

8=0 

(kmax) in a shell in the first approximation is.122.1% greater than the zero 
8=0 

approximation, and 30.4% greater in xhe second approximation than in the first. 
The value k in a shell for an equilateral triangle hole with rounded corners 

max 7 (when E = 1/4), found with an accuracy up to E-, is 189.6% greater than k for max 



a mund hole1. The values of knax in a plate for an equilateral triangle hole 

(with rounded corners) is 200% greater for a round hole in comparison with the 
precise solution, and 150% greater in comparison with the approximate solution 

2 
(with an accuracy up to E ) . 

from the contour of the hole), 
Tr. Note: Commas indicate decimal points. and Fipure X.13 shows the 

9 distribution of Tg/poh as 

TABLE X. 3 The distribution of 
T;/pnh is given in Figure X.12 

calculated by formula (X.120) on the contour of the hole when R = 200 cm; h = 
= 0.2 cm; r = 10 cm; v = 0.3; E = 1/4. 0 

L 111- in shell 

Prec 1 se for the given example through 
solution cross sections f3 = 0 (curve I) ; 

8 = 7~/4  (curve 11) and for a 
6,OO 
- round hole ( 2  is dimensionless, 

related to ro, the distance 

&mu 
ApprOx mat O? 

I x r o  I ~i rst ,Second 

I n  plate 

1 .  

I n  plate f o r g , ~  
I n  she1 1 for 0=0 

I 

Figure X.13.  

Effect o f  Anisotropy of Material. 
We will analyze the stress state in a 
spherical orthotropic shell weakened by 
a round hole and under load by uniform 
internal pressure of intensit; p. The 

Figure X.12. shell has three surfaces of elastic 
symmetry, which coincide with the coor- 

dinate surfaces of the spherical coordinate system, the origin of which is 
located at the center of the shell. We will assume that the hole is covered by 
a roof of special construction, which transmits the pressure imparted to it in 
the form of a shear force, and we will further assume that the basic stress 

S,OO 
15.35 

2.00 
5,30 

 h he value ro was assumed to be identical for the round and for the examined 
(equilateral) triangle holes. 

4,00 
11,77 



s t a t e  i s  momentless. Moreover, we w i l l  assume t h a t  t h e  contour  of t h e  hole  
co inc ides  with one of  t h e  coord ina te  l i n e s  o f  t he  ah'ove-specif i e d  spherj.ca1 
coord ina te  system1. 

To analyze t h e  add i t i ona l  s t r e s s  s t a t e  caused by t h e  ho le ,  we w i l l  r e l a t e  
t h e  middle sur face  t o  p o l a r  coord ina te  system ( r ,  @), t h e  o r i g i n  of  which i s  
placed a t  t h e  c e n t e r  o f  t h e  hole .  

Analysis leads  t o  t h e  s o l u t i o n  of  t h e  equat ion 

under boundary condi t ions  

A PR . where @ = w + i n+ ;  r i s  t h e  r ad ius  of  t h e  hole ;  po= % ,  0 

( X .  121) 

( X .  122) 

( X .  123) /743 - 

r = ka; a i s  a v a r i a b l e ;  E Fr and vr, v a r e  Young's modulus and Poisson 's  
$ ' 0 

r a t i o ,  r e s p e c t i v e l y .  

The s t r e s s  s t a t e  components a r e  found by t h e  formulas 

(X. 124) 

We w i l l  in t roduce  t h e  parameter E = (E - E )/E and assume t h a t  c < 1. 4 r r  
If E > 1 for t h e  given material, t hen  equat ion (X.  121)  and r e l a t i o n  (X. 124) a r e  

'A.  N .  Guzl [ l ]  considered t h i s  problem i n  such a s ta tement .  

837 



readily reconstructed and the parameter E '  = (Er - E )/E for which, under the 
$ 6 

condition (E - Er)/Er > 1, we obtain (Er - E )/E 1, is also readily iso- 4 0 4 
lated. Thus, for any relationship between Young's moduli, we can carry out 
expansion with respect to one of two parameters E or E'. 

Let us consider the solution.for the case & 1; for the case E '  < 1, 
however, the results obtained remain in force if Er is substituted by F in 6 
(X.123) and (X.124). We will represent the function @ in the form 

@(a, e) 3 ej@, (a). 
1-0 

(X. 125) 

By substituting (X.125) into (X.123) and (X.124), recalling (X.125), we 
obtain a series of bdundary problems for the equation 

under such boundary conditions, i.e., when a = aO: 

(X. 126) 

(X .  127) 

The solution of equation (X.126) in the j-th approximation, which satisfies 
the conditions "at infinity" (X.35), are represented in the form 

9, (a) - iC, lna + (A i  + iB$ HI? ( a v z )  + fj(a). (X. 128) 

r- 
where H!' (a l/ - i) = her a 4- i hei a is Hankel s funcation of the zero order and of 

the first kind; 5 .  (a) is the partial solution of equation (X.126). 
J 



In the zero approximation we will find the function bo(a)  (X. 128) from 
A 

boundary conditions (X. 127) for j = 0 (a0 E 0) : 

D, = D ' 0 1  - i X ~ 2  H&') (a 1/-71, 
Yo 

(X. 129) 

where 

I - v  
X O ~  = - her a, + 4 hei' a,; 

a0 

I - v  xO2 -2 - hei a, - 'P her' a,; 
a0 

'Po --. xO2 her'a, - x,, hei' a,. 

When Er = E the functioa (X.129) coincides with the solution for an iso- 9 
tropic shell in the form (X. 96) - (X.98). 

For the determination of the function Ql from (X.126), we obtain the 
equation 

va (v2 - i) =. D 201 - ixw * 1 
YO a , (X. 130) 

the solution of which, in accordance with (X.128), can be represented in the 
form 

Q, (a) = iC1 In a + (Al + iB1) HA') (a v z )  .- 

2 ' Y o  
da. 

By determining the constants C1, A1 and B1 from boundary conditions (X. 127), /745 - 
when j = 1, we obtain for Ql(a) 

her' a,, ' hei' anJ +[- - 1 

(X. 133) 
x ~ 4 ' )  (a vr:), 



where 

= x,,, her a, + hei a,, 

XIS =: xol her' a, + xO2 hei' a,; 

W1 = - xol hei a, C xoz her a,. 

( X .  13.3) 

(X. 1.74) 

By using (X.129) and (X.132), we can determine the  values T* on the  contour of 
t h e  hole with an accuracy up t o  E i n  the  form1 4 

her a. her' a" + hei a, hei' an 

yo ,'I . 

( X .  135) 

By way of example l e t  u s  examine the  values k = T*/p h ca lcula ted  by 6 0 
formula (X.135) on the  contour of a hole f o r  various r a t i o s  between Er and E @ ' 
v and v f o r  a spher i ca l  s h e l l  with a round hole ,  the  parameters of which a r e  
r 6 

R = 25 cm; ro = 2 cm; h = 0 . 4  cm. The r e s u l t s  of  ca lcu la t ions  a r e  presented i n  

Table X . 4 .  The accurate so lu t ion  of equation (X.121) i s  given i n  t h e  work of  
V .  2. Karnaukhov [ I ] ,  although it i s  expressed through untahulated funct ions .  

T A B L E  X.4 

Tr .  Note: Cdmmas indica te  decimal points .  

I n  she l l  f o r  v,=o,3 
I n  she1 1 f o r  ~,=0,15 

I n  p l a t e  . . . . . . . 

Round Hole Whose EAge Is Reinforced by T h i n  E l a s t i c  Ring. We w i l l  examine 
the  s t r e s s  s t a t e  of  a spher ica l  s h e l l  weakened by a round hole and loaded by a 
uniform i n t e r n a l  pressure  of i n t e n s i t y  p. The edge of the  hole  i s  reinforced - /74f 
by a t h i n  e l a s t i c  r i n g ,  which we w i l l  regard a s  a mater ia l  thread t h a t  r e s i s t s  

'The e r r o r s  i n  formula (X.135) which occur i n  the  corresponding formulas i n  the  
work of  A.  N.  Guzl [ I ] ,  concerning which the  author generously commented, have 
been correc ted .  

3.17 
3,10 
2,22 

2.90 
2,86 
2,00 

2-85 
2,80 
1,95 

2 ,7812 .76  
2,76 2,73 
1,91 

2.51 
2.38 
1,71 

2.11 
2,68 
1,85 1,88 

2.58 
2,66 
1,81 



tension, bending and twisting; one of the axes of inertia of the cross section 
of the reinforcing ring lies in the middle area of the shell. We will assume 
that the hole is covered by a roof of special construction, which transmits the 
action of pressure imparted to it to the ring in the form of a shear force. 
The basic stress state will be regarded as momentless. This problem is 
examined in the works of V.  N. Buyvol, S. A.  Goloborodlko and K. I. Shnerenko 
[I]; A .  N. Guz' and G. N. Savin [I]. This problem was examined in the latter. 
work as the zero approximation for the solution of problems of the stress state 
in shells near a curvilinear hole, the edge of which is reinforced by a thin 
elastic ring. Here we will follow the example of A .  N. Guzl and G .  N. Savin 
[I]. The boundary conditions for this problem can be obtained from (X.59) for 
j = 0, assuming 

(X.  136) 

The function @(r, 4) is taken in the form (X.65), considering (X.67) and (X.72; ; 
the variables are taken in the form (X.70). As we see from the boundary condi- 
tions, the problem is axisymmetric, and therefore, in (X.65) and (X,70) remain 
terms only for k = 0. By substituting (X.65) and (X.70) into the boundary 
conditions (X. 59) for j = 0 and considering (X. 67), (X. 72) and (X. 136), we 
determine the constants 

pr; 
c . 0  = - - . r,xD hei" x + (Dr,v - A )  hei ' x  

2Dxa roxD (her' x herw x + heiy.x hei' x)+(Drov - ~ ) ( h e r " x + h ~ i * ~ x )  ; (x .1J7) 
r, ,xD her" x $- (Dr,,v - A )  her' x 

d"O - roxD hei" x + ( b a r  - A )  hei1 x Ct0. 

By substituting (X.65) in (X.43) and considering (X. 127), we obtain the stress 
state components on the contour of the hole 

2ElF Ehro $- v E ,  F 
Tr = pOh Ehr. + EIF (1 + V )  ' T q = 2 p 0 h  E h r 0 + E , F ( ~ + v ) -  

-- (X. 138) 
(r0xD (heiw x her x - hei x her" r) + (Dr,v- A)(heifx her x - herp x hei x)]:  M 

G; = - xhA (hei' x her" x - her ' x  heiw x);  
MI4 1 2 ( 1 - v Z )  



G; = poh'x (Dr, - Dr0v2 + Av)(her x her' x + hei x hei' x ) ,  
M f12(1 - vZ) 

where 

M = r,xD (her' x her" x 4- hei" x hei' x )  + (Dr,,v - A)(herl'x + hei" x) .  

We will notice that T; (X.138) for a shell in the case of a round hole 

does not depend on the radius R of the sphere and coincides with T: for a 

round hole in a plate under multilateral tension by forces of intensity poh. 

If we assume in (X.138) that R = w, we obtain the values of the stress 
state components for a flat plate; if we assume El = 0 or El = " (El enters the 
expressions for rigidities A, B and C linearlly), we obtain the values of the 

components that characterize the stress 
state on the contour not reinforced or 
reinforced, respectively, by an abso- 
lutely rigid ring, of a round hole in a 
spherical shell. 

The calculations of Tc for a 

spherical shell with the parameters R = 
= 200 cm; h = 0.2 cm; r = 10 cm; v = 

0 
= 0.3 and vl = 0.3 (for a ring) and fox 

a reinforcing ring of square cross sec- 
tion, the length of whose side is O.lrO, 

are made in accordance with formula 
(X. 138). 

Figure X.14. 

Figure X.14 shows the dependences of T:/poh found from (X.138), -- curve I 
for a plate and shell (it coincides in accordance with (X.138)); T*/p h (X.138) 

2 @ 0 -- curve I1 for a plate; curve 11' - -  for a shell; 6G*/p h (X.138) --  curve Iff; 
2 r - 0  

6G*/p h (X.138) -- curve 11" as a function of the parameter ci = E1/(E1 + E). 
$ 0  

We see from the above-mentioned graphs that change in rigidity of the reinfor- 
cing ring can alter considerably the stress state near the hole. 

In accordance with (X.43) the components characterizing the stress state 
in a shell near a hole can be represented in the form 



x' 
(X. 139) 

0; = -- D - {eo [ ( I  - v )  her" xr - v hei x r ]  - d:.O [(l -- v )  hei' w + v  her w ] } ;  
4 
x ' G; = D - {<.o [hei xr + ( I  - v )  hernxr]  + d:' [her xr - ( I  -,v) hei" r r ] ) .  
4 

0,0 0,o 
If we assume in (X.139) that r = 1 and substitute the values d2 ; c4 and - /748 
do J' from (X. 137) , we obtain the formula (X. 138) . 

4 

E l l i p t i c a l  Hole Whose Edge I s  Reinforced by E l a s t i c  Ring. We will 
consider the stress state in a spherical shell weakened by an elliptical hole 
and loaded by a uniform internal pressure of intensity p. The edge of the hole 
is reinforced by a thin elastic ring, which we will regard as a material fiber 
that resists tension, bending and twisting, whereupon one of the axes of 
inertia of the cross section of the reinforcing ring lies in the middle surface 
of the shell. We will assume that the hole is covered by a roof of special 
construction, which transmits pressure imparted to it to the reinforcing ring 
in the form of a shear force, and that the basic stress state is momentless'. 

The law of distribution of the shear force is taken in the form (X .102) .  

The boundary conditions are found from (X.58) in the form 

By expanding (X.140) into series with respect to E and substituting into ( X . 5 9 ) ,  
we obtain the boundary conditions for series approximations. 

'%is problem was examined 'by A. N. Guzl and G. N. Savin [I]. 
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The zero approximation coincides with the solution for a round hole 
(X.136) and (X.139), and therefore we will proceed to the determination of the 
first approximation. The function (6. (r, 4) is taken in the form (X.65), 

7 
considering (X .  67) and (X. 72), and the variables in the form (X. 70) for j = 1. 
By substituting (X.65) and (X.70) into boundary conditions (X.59) for j = 1 and 
considering (X.67), (X.72) and (X. 140), we obtain a system of algebraic equa- 

l 2  dl"; cip2 and dis2, which, tions for the determination of the constants c2 , 
due to their awkwardness, will not he presented here. The other constants in 
(X.65) and (X. 70) for j = 1 for the examined case are equal to zero. 

For small values of eccentricity e = (a - b)/(a + b), we will confine 
ourselves to the zero and first approximations. Thus we have formulas for the - /749 
stress state components in a shell with an accuracy up to E in the form 

1 , d;*O ~ ~ ~ ~ ~ h e i ' x ~  + d': 'her' X Q  
T: = poh + - , -7- .+ x 

tar: P- @ 

d$' 
- 6 + cj.2 (her,xp - 4hei;xp) -- 

nr; 

2 4.O - dI.2 (hei, x~ + 4her" xq) - -. - x2 p4 - t 

+qo(h-+ , Q' - +- d4. j- . vL - -)]ms2~; X Q ~  
0 o ' her" xe her' xp 

4 - O  n.0 2 - T ; ; . P ~ , + + ( - -  cZ 3- c ,  x hei xq + d; 0 0  x 2 her - x ~ j  -1- 
"'0 

x2  d;* + e-- 1 6 -- + cl.2 hei; XQ + 
r , x2e' 

d:p0 hei"' XQ 0 0 herf"xp + d>2her;xe + 2 - + c,OsOx - 
+el e + n; x - e ] cor 26; 

G: .= - D $ ~c;" [ ( I -  V) her" xp - v hei up] - d:.' 1(1 - v)  heiWxp + 
'0 

+. v her xe]) -- eD - f6c1s2 !-? + c:J [(I - v) her;xp - v hei, xp] - \ 2 X ~ Q '  

1 2  - d,' [ (I  - v )  hei,xe $- v her2 xp] + 
++4.0[(1 - v) herWxp--vhei' u ~ j  - 

0 x - 4. ((I - v )  hei"' xp -t v her' x ~ ]  

(X. 141) 



+ d:,' [her xp -- (I - v) heiwxQll 4- eD X( Icl,2 5 + 
J 2 .x'e4 

+ c t 2  [ ( I  - V )  her; xe + hei, xp] + dls2 [her, xp - (I - V )  hei; xpl + 
I( x 0 0  + p4O [hei' xp f (1 - v) her"' xpl + - d; Iher' XQ -(I - v)heil"xel a 21. 

Q I 
In order  t o  f ind  the  values of  s t r e s s e s  on t h e  contour of  t h e  hole we must 
assume i n  (X. 141) t h a t  P = 1. 

Figure X.15. 

8 c#Poh2 

Figure X.17. 

i l / 
/ 

- 

Figure X.18. 



By way of example we have determined the coefficients a*; Ti; G>through /751 - 
cross sections 0 = 0 and 0 = n/2 of a round hole for El = 0; E1/E = 2.632; El = 

= for a shell and a ring with the parameters R = 200 cm; ro = 10 cm; h = 

= 0.2 cm; v = 0.3; v = 0.3 (for a ring); a/b = 1.2. A ring of square cross 1 
section with a side of length 0.1 r was used. The dependences T* poh; Tr)/pOh; 

2 2 0 d 
6Gypoh and 6G;/poh are shown graphically in Figures X.15-X.18, respectively, 

as calculated by formulas (X.141), as functions of the dimensionless parameter 
2 (distance from the contour of the hole), related to r0 = (a + b)/2. The 

solid lines in these figures correspond to a round hole, the broken lines, 
through cross section 0 = 0 near the elliptical hole, and the dot-dash lines, 
through cross section 8 = ~r/2 near an elliptical hole, whereupon curves I 
correspond to the value E = m -  

1 , curves 11, to the value %/E = 2.632; curves 

111, to the value El = 0. 

We see from these graphs that even a hole of small ellipticity (a/b = 1.2) 
has a considerable effect on the stress distribution around it. At a distance 
of 1.5 ro-2.0 5 from the hole the distribution of forces and moments around a 
curvilinear hole in a shell is very similar to the stress state near a round 
hole, and by measure of distance approaches the basic stress state. 

A change in rigidity of the reinforcing ring has a strong effect on the 
stress distribution along the contour of the hole. When the reinforcing ring 
has a low rigidity the basic effect on stress concentration is manifested hy 
membrane stresses; as the rigidity of the reinforcing ring increases the effect 
of bending stresses from G* on the stress concentration increases, although the 

0 

concentration coefficient bf bending stresses from G * ,  even in the case of an 
P 

absolutely rigid ring, is only one half that of the concentration of stresses 
from T* and G;. 

P 

As the rigidity of the reinforcing ring increases, the concentration of 
forces and moments increases at the end of the small semiaxis and diminishes 
on the end of the large semiaxis. 

Similarly, stress concentration in a spherical shell near reinforced holes 
of different form can also be analyzed, particularly when the hole is a square, 
equilateral triangle, right polygon with rounded corners, etc, although the 
calculation for these forms of holes is quite complicated. 

54.  Round Cylindrical She1 1 Weakened by a Small Curvi 1 lnear Hole 

We will discuss the stress state in a round cylindrical 'sheill near rouhd, 
elliptical, square and equilateral triangle holes with rounded corners for 
various cases of reinforcement of the holes and for various external loads. The 
holes will be regarded as small. By small we mean such holes for which is valid 
the inequality 



(X. 142) 

where r is a value characterizing the absolute dimensions of the hole; in the 
0 

case of a round hole this is the radius of the hole, in the case of an ellipti- 
cal hole, this is the half sum of the principal semiaxes, etc; R is the radius 
of the middle surface of the cylindrical shell; h is the thickness of the shell. 
The Ox axis will be directed along the generatrix and the Oy axis along the 
guide. 

Round Hole. The stress state near a small round hole in a cylindrical 
shell under uniform internal pressure and under uniaxial tension is analyzed 
in the works of A. I. ~ u r  lye1 11, 21 ; in the work of Yu. A. Shevlyakov and 
F. S. Zigel' [1] for torsion. We will need these results as the zero approxi- 
mation for curvilinear holes, since the zero approximation coincides with the 
solution for a round hole under the corresponding load. Numerous interesting 
problems for a cylindrical shell weakened by a small round hole under various 
boundary conditions and various loads are examined in the works of I. M. 
Pirogov [I-241. It is pointed out in these works that in the case of small 
nonreinforced round holes under the momentless basic stress state, the maximum 
bending stresses are much less than membrane stresses. There is no basis to 
expect deviations for curvilinear holes from the above conclusion, and there- 
fore, for the latter, we will analyze only the stress concentration from forces 
Te and determine only Ima Re@. includes a sufficient number of undefined 

j ' J 
constants to insure that boundary conditions for G and 6 are satisfied. 

P P 

'(O) on the contour of a round hole We will give the values of T:') + T 

under various loads; T 
0 

'(j) is the coefficient for $j in the expansion Te. 8 

Uniaxial tension along the generatrix by forces of intensity ph 

Uniform internal pressure of intensity p 

where 

( X .  143) 

(X. 144) 

An error appears in this work, which was discovered by N. P. Fleyshman [l! . 
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Torsion by forces of intensity ~h 

(X. 145) 

Ef fec t  of Reinforcing Ring on Stress Concentration Near Round Hole. 
Assuming that the basic stress state is momentless with components 

TO, = ph; T: = qh; $, = 0, (X. 146) 

and regarding the reinforcing ring as the material fiber that resists stretching, 
bending and twisting, i .e., taking the boundary conditions in the form (X.58), - /753 
N. P. Fleyshman [l] analyzed the stress state of a cylindrical shell weakened 
by a small round hole. Here we will not discuss the cumbersome intermediate 
calculations, but introduce only the final results of the numerical example 
which he analyzed. 

We will consider the case where the shell is loaded by a uniform internal 
pressure of intensity pO, and the hole is covered by a roof of special construc- 

tion, which transmits to the contour of the hole only the action of the shear 
force. In this case 2p = q = poR/h. The numerical example is examined for 

the following parameters : r = 0.5 ; 

v = 0.3, where hl and b are the height 

and width of the ring; E and El are 

Young's moduli for the materials of the 
shell and ring, respectively; El/E = 

2 
= 6 /  (1 - v ) ; K = 6/ (6 + 20). The values 
of the total stresses on the contour of 
the hole for the external surface of the 
shell are given in Figure X.19 as func- 

I 

Figure X.19. tions of r :  :!T'w)q=o -- curve 1; 
1 

( $ or lp = *I? - - curve 2 and (7 o ~ ) ~ = ~  - - 
curve 3. The curves show that the rigidity of the reinforcing ring has a 
considerable effect on the stress concentration. 

E l l i p t i c a l  Hole. Uniform Internal Pressure. We will consider the stress 
state of a round cylindrical shell weakened by a small elliptical hole and 
loaded by uniform internal pressure of intensity p. We will assume that the 
hole is covered by a roof of special construction, which transmits the action 
only of the shear force. In such a statement the problem is solved in the work 
of A. N. Guzl 181, which we will reconstruct here. For an elliptical hole 



a + b .  a-b  r, = - e -3 - 1 
2 '  . + b .  f ( O = f '  (X. 147) 

where a and b are the semiaxes of the ellipse. 

We will assume that the basic stress state is momentless; then the 
components of. the basic stress state, expanded into series with respect to 
E = (a - b)/(a + b), acquire the form 

4h = T [3 + cos 28 + e (cos 48 - 1) + s2 (COS 63 - cos 2ti)l; 

4, = p [sin 28 + c sin 40 + e2 (sin 60 - sin 2b)l. 

Boundary conditions 

(X. 148) 

1754 - 

(X .  140) 

where D is the area of the hole; y is the contour of the hole (see Figure X.5), 
must be satisfied on the contour of the hole. From (X.148) and (X.149), equa- 
ting the coefficients for identical degrees of c, we obtain the boundary condi- 
tions for series approximations. 

The solution of basic equation (X.75) in the j-th approximation will be 
found in the form (X.94). We will determine only the concentration of forces, 
i.e., in the solutions of the form (X.94) we will take only1 Im@. 

Recalling the discussion presented in 52, we obtain on the contour of the 
hole2 

T:) + fl ') = qh [(3 cos 20 f cos 46) +$- <p (5 + 16 cor 20 f 5 cos 40)]; 
(X. 150) 

(X. 151) 

-- . - 

'R~Q includes a sufficient quantity of constants to insure th.at boundary condi- 
tions are satisfied for Gp and &. 
2 ~ h e  zero approximation coincides with the solution for a round hole (X. 144).  



2 The values T; on the contour of the hole with an accuracy up to E , 
considering (X. 144), (X. 150) and (X. 151) , are found by formula 

T; = T?) + TO(') + e (TI ' )  + T:")) -+ e2 ( ~ i ~ )  + f12)) + P (. . .I+... . (X. 152) 

Formula (X. 152) is ~onvenien'tl~ represented in the form 

T ;  = rihel$ p d d  
0 9 

where Te (*I) are the values of forces in a flat plate under the corresponding 

load, while Te is an addition which occurs in the shell as a consequence of 
distortion of its surface. 

(add)/qh) in the numerators and (T The values of (To (add) 8=0 8 /qh) eq/2 in the 
denominators are presented in Table X.5 for various ratios between R ;  h; ro = 

= (a + b ) / 2 ;  a/b for v = 0.3, when semiaxis a of the ellipse is directed along 
the generatrix and b is directed along the guide. 

TABLE X . 5 .  

Tr. Note: Comas indicate decimal points. 

We will write out the formula for the concentration coefficients k = T6/qh /755 - 
obtained from (X.152) for 8 = 0 and 0 = x/2: 



5 - b 2 xpz a - b  a - b  2 
( k ) , = 0 = ~ + 4 ~ + 4 ( ~ )  a t b  +7[9+26x + SO(-) ]+.-:.' (X. 154) 

1 a-b a - b  2 npa a - b  
a + b  ( 1  (X.155) 

(k)0=.,2=f -2- -b2(-) f -i-[-1--6- -t 10 - 

We see from (X. 154) and (X.155) that (k)e=O and (k)e=,,2 depends greatly on 

the ratio a/b, while the concentration coefficient (kg) e=O, moreover, depends 

strongly on radius R of the shell. 

The values of T;/qh on the contour of the hole in both a shell and a plate 

are presented in Table X . 6  for a/b = 1.3; v = 0.3; r o / m  = 0.5 for various 
values of 0 .  

TABLE X.6 

T r .  Note: Commas indicate decimal points. 

The values of T*/qh on the contour of a hole in both a shell and in a 

plate are presented in Table X.7 for b/a = 1.3; v = 0.3; r O / m  = 0.5 for 
various values of 8. 

plate 
T qh 

~ ; ~ ~ ~ ~ l q h . + 4 , 1 7  

TABLE X .7  

+2,82 

+3.76 

+3,10 

T r .  Note: Commas Indicate decimal points. 

+2,11 

+2,73 

+1,57 

+1,85 

-+0,70 

+O.99 

+0,37 

++27 

-i-0.28 

+0,15 



We s e e  from Tables X.6 and X.7 t h a t  the  curvature of the  s h e l l  has a - / 756 
considerable e f f e c t  on the  concentration of forces when 8 = 0. Thus, when 
a/b = 1.3  concentrat ion c o e f f i c i e n t  k (X.154) i n  the  s h e l l  is 34% higher  than 
i n  a p l a t e ,  bu t  only 25% higher  f o r  b/a = 1.3.  

In order  t o  make a judgment concerning the accuracy of the  so lu t ion  

obtained, we w i l l  compare the  values (k (concentrat ion 

c o e f f i c i e n t s  of force  i n  the  p l a t e ) ,  obtained from the  approximate s o l u t i o n  
with an accuracy up t o  E *  and from the  p rec i se  so lu t ion .  

From (X. 154) and (X. 155) f o r  R = we obta in  the  approximate value from 
the  approximate so lu t ion  

plate 5 
(k ) o - o  -- y + 4 

plate 
(k 

(X .156) 

(X. 157) 

We w i l l  show the  values of these coe f f i c i en t s  as found from the  p rec i se  solu-  
t i o n '  of the  problem: 

plate 5 - 2e - 3es . 
(k )@=o a 2-4e + 
plate I -2e  -3ea 

(k h=~,2 = 2 + 4e + ze* (E = z!) 
(X. 158) 

(X. 159) 

(PI) (PI)  We s e e  from (X. 156) - (X. 159) t h a t  the  expansions of (k  ) e=O and (k  ) e=n/z 
obtained from the  p rec i se  so lu t ion  of (X.158) and (X.159) coincide with (X.156) 
and (X.157) with an accuracy u p . t o  E ~ .  

The r e s u l t s  of  ca lcula t ions  f o r  a/b = 1.3  and a/b = 1.3  ( tm 
a r e  presented i n  Table X .  8. 

TABLE X.8 

Tr .  Note: Commas i n d i c a t e  decimal po ints .  

- 

k 

n p l a t e  fore=o 
I n  p l a t e  for1 
e=n/2 . . . . . . 

'see S. G .  Lekhnitskiy [l] o r  G . N .  Savin [8]  . 

Approximat ion P rec i se 
so lut ion  

a/bP1.3 a/bP1/1.3 I 
Zero 

a/b-1.3 a/b=1/1,3 I 
3,097 

0.269 

2,500 

0,500 

2,039 

0,798 

2.500 

0,500 

F i  r s  t 

V h 1 . 3  a/b=1/1,3 I 
Second 

3,020 

0,240 

a/b=1.3 

3,088 

0,274 

1,980 

0,760 

a/b=1/1.3 

2,048 

0,794 



We s e e  from Table X .  8 t h a t  t he  concent ra t ion  c o e f f i c i e n t s  k (P') f o r  a /b = 
= 1.3  and b / a  = 1 .3  a t  t h e  ends of t h e  small  and l a rge  semiaxes of an e l l i p -  
t i c a l  ho le ,  as  found from the  approximate s o l u t i o n  of (X. 156) and ( X .  157),  
d i f f e r  from those  obtained from the  p r e c i s e  s o l u t i o n  (X. 158) and (X. 159) by no 
more than  2%. Figure X.20 g ives  t h e  d i s t r i b u t i o n  of Tg/qh on t h e  contour  of 

t h e  ho le  f o r  a/b = 1.3 andX.21  f o r b / a =  1 .3 ;  = - i - b  - -- 0 5  
21' Rh 

- in  she1 1 
--- in p l a t e  

t - i n  s h e l l  

Figure X.20. Figure X.21. 

Uniaxial Tension. We w i l l  examine t h e  s t r e s s  s t a t e  of  a  round c y l i n d r i c a l  - /757 
s h e l l  weakened by a  small  e l l i p t i c a l  ho le1  and subjec ted  t o  t ens ion  along t h e  
g e n e r a t r i x  by forces  of i n t e n s i t y  ph. We w i l l  assume t h a t  t h e  ho le  i s  no t  
r e in fo rced .  

The b a s i c  s t r e s s  s t a t e  is momentless with t h e  fol lowing components 

(X. 160) 

We w i l l  in t roduce  formulas f o r  t h e  components of  t h e  b a s i c  s t r e s s  s t a t e  i n  t h e  
coordinate  system ( f i  e), expanding them i n t o  power s e r i e s  with r e spec t  t o  E: 

(X. 161) 

GI = - [sin 28 + e sin 48 + e2 (sin 66 - sin 28) -+ . . .]; 2 

The following boundary condit ions must b e  s a t i s f i e d  on t h e  contour of a. non- - /758 
r e in fo rced  hole :  

' see A .  N . Guz' [6] . 
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From ( X .  161) and ( X .  162) we obtain the  boundary condit ions f o r  s e r i e s  approx- 
imations.  

We w i l l  determine only the  concentrat ion of s t r e s s e s  f ran  forces  To, T 
P 

and SDe, s i n c e  i n  the  case of a round nonreinforced hole  the  moments a r e  

neg l ig ib le  i n  absolute value. The same should a l s o  be expected f o r  the  case of 
an e l l i p t i c a l  ho le .  

The s o l u t i o n  of b a s i c  equation ( X . 7 5 )  w i l l  be found i n  the  form (X.94). 

The s o l u t i o n  i n  the zero approximation coincides with s o l u t i o n  (X .143) 
f o r  a round hole .  

Recalling the  r e s u l t s  of 5 2 ,  we obta in  f o r  ~ ( j )  + T:") ( j  = 1, 2) on the  
contour of the  hole  

8 

(X. 163) 

The values of  Tt on the  contour of the  hole ,  r e c a l l i n g  ( X .  143), ( X .  163) and 

(X.164), a r e  found with an accuracy up t o  c 2  by the  formula 

T; = T:O' -I- T:") + e (T? + c')) + e2 (T:) + c2)) + . . . . ( X .  165) 

The values of T$ on the  contour of  the  hole,  r eca l l ing  ( X .  143) , ( X .  163) and 

( X .  164) a r e  found f o r  v = 0 . 3  by the  formula 

ea ( X  .166) - 1 cos 68)] - 0.649 - 2 4Rh [ c 0 ~ 2 8  f & ( I  -I- ~ 4 6 )  + e2(3cos28 + cos68) 

a - b  (.= m). 



Formula (X. 166) can be  represented  i n  t h e  form 

add 
T; = <lare+ T I  * (X. 167) 

(P') a r e  t h e  values of fo rces  i n  a f l a t  p l a t e  under t h e  corresponding where Te 

is  an a d d i t i v e ,  which occurs i n  t he  s h e l l  as a consequence of  d i s -  load, To 

t o r t i o n  of i t s  su r f ace .  

(add) (add)/ph)~ e=O i n  t h e  numerator and (Te The values of (Te /ph) e=n/2 i n  t he  - /759 

a r e  presented  i n  Table X.9 f o r  v = 0 . 3  (on t h e  contour of t h e  hole)  f o r  var ious  
values of ( a  + b) /2 ;  R; h and a/b.  

TABLE X.9 

Tr. Note: Commas i n d i c a t e  decimal p o i n t s .  

We w i l l  n o t i c e  t h a t  the  semiaxis  a i s  d i r e c t e d  along t h e  g e n e r a t r i x  and 
semiaxis  b ,  along the  guide of  t h e  middle su r f ace  of  t h e  c y l i n d r i c a l  s h e l l .  

From (X.166) i t  is  easy t o  f i n d  f o r  concent ra t ion  c o e f f i c i e n t  k = Ti/ph,  

f o r  8 = 0 and 8 = ~ / 2 ,  t h e  formulas 

(X. 168) 

(X. 169) 

a-b  e = -) ( . +b  



We see  from (X. 168) and (X. 169) t h a t  (k) e,O and (k) s=n/Z depend g r e a t l y  on the  

r a t i o  a/b,  whi le  (k)e=O a l s o  depends s t r o n g l y  on R .  When 0 = 0 we obta in  a 

q u a l i t a t i v e  d i f f e r e n c e  i n  t h e  d i s t r i b u t i o n  of forces  i n  t h e  s h e l l  i n  comparison 
t p l )  wi th  the  p l a t e .  Thus, i n  t h e  p l a t e  (kg ) e=O = -1 and does not  depend on t h e  

r a t i o  a/b, whi le  i n  t he  s h e l l  (k) e=O (X. 168) depends considerably on the  r a t i o  
a/b . 

The values of Te/ph on the  contour of t h e  ho le  f o r  ( a  + b ) / 2 m  = 0.5;  

v = 0 . 3 ;  a/b = 1 . 4  a r e  presented  i n  Table X .  10 f o r  var ious po in t s  of t h e  con- 
t o u r  of  t h e  ho le .  

TABLE X .  10 

Tr. Note: Commas ind ica t e  decimal p o i n t s .  

(sh) We s e e  from Table X.10 t h a t  (k  )0=0  i s  23% g r e a t e r  than  the  va lue  of / 760 - 
(,$PI) ( sh ) )  

)e=o '  whi le  (k (j=n/2 i s  only 5% g r e a t e r  than (k  )B=n,2. We w i l l  
(P 1) 

n o t i c e  t h a t  i n  t h e  case a t  hand k (sh) = (k (sh) 0=n/2' In  the  zero approximation m ax 

k:~,:) = 3.16, i n  t h e  f i rs t ,  k(sh) = 2.43, while  i n  the  second, kmax m ax (sh) = 2.57, 

i . e . ,  t h e  f i r s t  approximation d i f f e r s  by 23% from t h e  zero,  while  t he  second 

approximation d i f f e r s  by 5% from t h e  f i r s t .  We w i l l  a l s o  no te  t h a t  kg-0 (P') and - . . 

(P') ob ta ined  by the  approximate s o l u t i o n  with an accuracy up t o  c2  coincide 
ke=n/2 

Cpl) with t h e  expansions (k ) 0=0 and (k (P 1) )8=n /2  obtained from t h e  p r e c i s e  so lu-  
t i o n .  

The d i s t r i b u t i o n  of T;/ph found from (X.166) on t h e  contour of  an 

e l l i p t i c a l  ho le  is  given i n  Figure X . 2 2  f o r  a /b = 1 . 4  and i n  Figure X.23 f o r  
a/b = 1 . 4  and ( a  + b ) / 2 m  = 0 . 5 .  

Square Hole w i t h  Rounded Corners. Uniform i n t e r n a l  p re s su re .  We w i l l  
examine t h e  s t r e s s  s t a t e  of a round c y l i n d r i c a l  s h e l l  weakened by a smal l  
square ho le  wi th  rounded corners  and loaded by uniform i n t e r n a l  p re s su re  of  



i n t e n s i t y  p .  We w i l l  assume t h a t  t he  ho le  i s  covered by a  rotif o f  s p e c i a l  
cons t ruc t ion ,  which t ransmi ts  only t h e  a c t i o n  of t h e  shea r  fo rce1 .  

Figure X . 2 2 .  Figure X . 2 3 .  

For a  square  ho le  wi th  rounded corners  

( X .  170) 

when E = +1/9 the  diagonal  of t h e  square is  d i r e c t e d  along the  g e n e r a t r i x ,  
whi le  f o r  E = -1/9, it i s  d i r e c t e d  a t  angle  n/4 t o  t h e  gene ra t r ix .  

We w i l l  assume t h a t  t he  b a s i c  s t r e s s  s t a t e  is momentless; then /761 

1 TO,= T g h ;  T" 0 - qh; 

R = q = p x .  

( X .  171) 

By represent ing  t h e  components of t h e  b a s i c  s t r e s s  s t a t e  i n  coord ina te  system 

(p ,  8), and expanding them i n t o  s e r i e s  with r e spec t  t o  E, preserv ing  t h e  terms 

wi th  E', we f i n d  

9h f i  = 13 - cos 20 - 3e (cos 69 - cos 29) - 98' (cos 103 - ms 29) + . . .I; 

4h f i  =T [3+  cos28+ 3e(cos68-ms28) + 9ez(cos IOH-ms26)+. . .I; 
-- 

' see A.  N .  Guzl and S .  A .  Goloborod'ko [I]. 



$, - f [sin 28 + 38 (sin 69 + sin 26) + 9ea (sin 106 - sin 26) + . . .] 

(X. 172) 

The following boundary condi t ions  must be s a t i s f i e d  on the  contour of  t h e  ho le :  

(X. 173) 

where D is the  a r e a  of t h e  region bounded by contour y ( s ee  Figure X.5) of t he  
ho le .  

From (X. 172) and (X. 173) , equat ing t h e  c o e f f i c i e n t s  f o r  i d e n t i c a l  degrees 
of E, we o b t a i n  the  boundary condit ions f o r  s e r i e s  approximations. The so lu -  
t i o n  of the  b a s i c  equat ion  (X .75) w i l l  be  found i n  the  form (X .94) . 

Since  we a r e  i n t e r e s t e d  only i n  t h e  concent ra t ion  of fo rces  nea r  t h e  h o l e ,  
it is s u f f i c i e n t  t o  analyze i n  func t ions  @ I m  @. The func t ion  Re@ inc ludes  a s  
many cons tan ts  a s  a r e  r equ i r ed  t o  s a t i s f y  the  boundary condi t ions  f o r  Q and 
G .  P 

P 

The zero approximation coincides with t h e  s o l u t i o n  f o r  a round ho le  ( X .  44) . 

On the  b a s i s  of t h e  r e s u l t s  of 5 2 ,  we ob ta in  f o r  T L ~ )  + ~i(j) ( j  = 1, 2) 
on the  contour  of the  ho le  

(X. 174) 

+?(lo+ 4 . 5 ~ 0 ~ 2 0  + Gcos.40 + 21 cos66 + 7 2 ~ 0 ~ 8 8  -+ 45ms 106)). ( X .  175) 

I t  i s  easy t o  f i n d  from (X.144), (X.174) and (X.  175) t he  values Tg on t h e  

contour o f  t h e  ho le  wi th  an accuracy up t o  E 
2 

(X. 176) 



Formula (X.176) f o r  V = 0 . 3  and E = 1/9,  i . e . ,  i n  the case  where t h e  diagonal 
of the square i s  d i r e c t e d  along t h e  g e n e r a t r i x  of a c y l i n d r i c a l  s h e l l ,  w i l l  
acqui re  the  form 

T ;  = qh [ 1,5 + 1,125 cos 26 -k cos 48 4- 0.37 cos 68 + 0.335 cos 88 + 

(X. 177) 

+ 1.93 cos 68 3- 0.89 cos 88 + 0.56 cos 103)l. 

When E = -1/9, i . e . ,  when t h e  diagonal  of t he  square  i s  d i r e c t e d  a t  angle  
? ~ / 4  t o  t h e  g e n e r a t r i x ,  

T; = qh [ 1.5 + 0.9 cos 28 - cos 48 - 0,295 cos 60 + 0,335 cos 88 + 
? + 0.11 cos 105 + 0.325&(4.01 i 4.44~0~28 -2.59ms48 - (X. 178) 

- 1,4 1 cos 68 + 0.89 cos 88 + 0.56 cos 1 OO)]. 

We w i l l  p r e sen t  t h e  values o f  k = Tg/qh at c e r t a i n  p o i n t s  of t h e  contour 

of t h e  ho le ,  i . e . ,  f o r  c e r t a i n  values of t he  parameter 8: 

f o r  E = 1/9 

(X. 179) 

f o r  E = -1/9 

(X. 180) 

The values of k f o r  a and f o r  a s h e l l  a r e  presented  i n  Table X . l l  /763 
f o r  ro/m = 0.6;  E = 1/9 and v = 0 . 3  i n  t h e  zero,  f i r s t ,  and second approxima- 

t i o n s  f o r  var ious  values of 0 .  

' s ee  S .  G .  Lekhnitskiy [ l ]  o r  G .  N .  Savin [8]. 
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TABLE X . l l  

Approximation I P r e c i s e  
k 

i ~ r o  / Fi  r s t  !second 

Tr. Note: Commas indica te  decimal points .  

1 n p la t e  fo r  e=o . . . 
I n  she1 1 fore=o . . . 
I n  p l a t e  f o r  e=n/2 . . 

I n  she1 1 f o r  e=..r/2 . . 

We see  f run  (X. 179) and (X. 180) t h a t  the  curvature of the  s h e l l  has its 
g r e a t e s t  e f f e c t  on the  concentrat ion c o e f f i c i e n t  when 8 = 0 and 0 = n/4, b u t  
when 0 = .rr/2, it has almost no e f f e c t .  

From the da ta  presented i n  Table X. 11 we may conclude t h a t  k (p '1 f o r  
8 = 0 and 8 = ~ r / 2  calcula ted  by the  approximate so lu t ion  d i f f e r s  by 4-5% from 

2 , s  
3.55 
0.50 
0,38 

k ( ~ ' )  a t  the  very same points  as  ca lcula ted  by the  p rec i se  so lu t ion .  When 
8 = 0 ,  both i n  the  p l a t e  and i n  the  s h e l l ,  (k)e,O = kmax. In the  f i r s t  approx- 

imation kmax (Sh) is 58% g r e a t e r  than kmax (Sh) i n  the  zero approximation, and i n  the  

3,94 
5.61 
1,05 
0,97 

second approximation kmax (Sh) i s  12% g r e a t e r  than k (Sh) i n  the  f i r s t  approximation. m ax 
I t  should be noted t h a t  kmax (Sh) f o r  a square hole  is  77% g r e a t e r  than kmax (Sh) f o r  

a round hole.  

4 , 4 4  
6,13 
1.23 
1,24 

The values o f  k ca lcula ted  by formulas (X. 177) and (X. 178) a r e  presented 
i n  Table X .  12 f o r  various values ro/m when v = 0 . 3  f o r  0 = 0, 0 = n/4 and 
0 = ~ / 2 .  

4,68 - 
L,30 - 

TABLE X .  12 

Tr. Note: Comas indica te  decimal points .  



The curves t h a t  c h a r a c t e r i z e  Tg/qh, c a l c u l a t e d  by formulas (X.177) and 

(X.178), on t h e  contour  of  t h e  ho le  a r e  presented  i n  Figure X.24 f o r  E = 1/9 
and X.25 f o r  E = -119 when ro/m= 0.5.  

---in p l a t e  

A 

Figure X.24 .  Figure X . 2 5 .  

Uniaxial Tension. Let us examine t h e  s t r e s s  s t a t e  of a round c y l i n d r i c a l  - /764 
s h e l l  weakened by a smal l  square ho le  wi th  rounded corners  and under t ens ion  
(along the  gene ra t r i ce s )  by forces  of i n t e n s i t y  ph. We w i l l  assume t h e  ho le  
t o  be  nonre inforcedl .  

The b a s i c  s t r e s s  s t a t e  i s  momentless with t h e  components 

c= ph; c= 0; .!& = 0. (X. 181) 

Components ( X .  181) i n  coord ina te  system Go , 0) i s  represented  i n  t h e  form of  
s e r i e s  wi th  r e spec t  t o  E: 

pfr 
7: = [ 1 + cos 20 + 3e (cos 69 - cos 28) + 9e2 (cor 1 09 - cos 20) + . . .]; 

ph T I  = I1  - cos 28 - 3.3 (cos 60 - cos 26) - 9e2 (cos I08 - cas 28) + . . .I; (X .182) 

0 Spe =-- ph [sin 20 + 3e (sin 69 + sin 28) + 9e2 (sin 108 - sin 26) + . . .]. 
2 

On t h e  contour o f  a nonreinforced h o l e  t he  fol lowing boundary condi t ions  must 
be s a t i s f i e d :  

(X. 183) 

' see G .  N .  Savin and A. N .  Guzl [ I ] .  



From (X. 182) and (X. 183) we obtain the  boundary condit ions f o r  s e r i e s  approxi- 
mations. 

We w i l l  determine only the  s t r e s s  concentrat ion from forces  T T and 
8' P 

Spes s i n c e  i n  t h i s  case the  values of the  moments on the  contour of  the  hole  

w i  11 be negl ig ib  l e  . 
The so lu t ion  of b a s i c  equation (X. 75) w i l l  be taken i n  t h e  form (X.94). 

In  the  zero approximation the  des i red  s o l u t i o n  coincides with the  solu- 
t i o n  f o r  a round hole  (X. 143) . 

On the  b a s i s  of the  r e s u l t s  of 52 we w i l l  f i nd  the  expressions 

I$'' + el' = ph {- 2cos 28 + 6 cos 48 - 6 cos 68 - 
-- "P' [I + 3 cos 28 + 3 cos 681 ; 

2 I 

/765 

(X. 184) 

T:) + p) k ph(-2eos28-6cos68 +18cos 188 - 

4' - 18c?s108+ T[[4--4cos28- 12cos48--18cos68--18cos108]]. (X. 185) 

Forces T; on the  contour of the  hole ,  as follows from (X.143), (X.184) 

and (X .  185), a r e  determined with an accuracy up t o  E* by the  formula 

T; = T:' + TO'" + ~ ( T V '  .!- c(')) + e2 (T (~ '  + p2)). (X. 186) 

The values T; (X. 186) f o r  v = 0.3,  found with an accuracy up t o  E*, w i l l  

have the  following form: 

f o r  E: = 119 

T; =- ph [ l  - 2-24 cos 28 + 0.66 cos 40 f 0.73 cos 68 -I- 
4 +. 0.22 cos 89 - 0,22 cos 108 - 0.65 (0.08 + 

+ ,1,34 cos 28 -+ 0.06 cos 48 - 0.44 cos 66 + 0.1 1 cos 1091; 

T; ;= ph [ I  - 1.8 cos 28 - 0.66 cos 48 + 0.59 cos 68 + 

(X. 187) 

- 0.7 cos 20 - 0.06 cos 40 + 0.22 cos 68 - 0.1 I cos 106) 1. (X. 188) 



We present  the  values of concentration coef f i c ien t  k = T$/ph, found from 

(X. 187) and (X. 188), on the contour of t h e  hole  f o r  ce r t a in  values of the  
parameter 0: 

f o r  E = 1/9 

f o r  E = -1/9 

(X. 189) 

(X. 190) 

The values of k f o r  a p l a t e  and f o r  a s h e l l ,  obtained i n  the  zero, f i r s t  /766 
and second approximations f o r  0 = n/2; r = 0 5 ;  E = 1/9 and v = 0.3  a r e  

presented i n  Table X .  13. 

TABLE X. 13 

Approximation ]precise 
b 1- .. I Zero / F i r s t  ~ ~ e c o n d l s o l u t i o n  

Tr .  Note: Commas indicate  decimal points .  

I n p l a t e  for  e=n/2 . . 
I n  she1 1 for  0=n/2 . . 

The d i s t r i b u t i o n  of Ti/ph (X.187) and (X.188) on t h e  contour of the  hole 

is shown i n  Figure X.26 f o r  E = 1/9 and i n  X.27 f o r  E = -1/9 when r0/m = 0.6. 

Torsion. Let us examine the  s t r e s s  s t a t e  of a round c y l i n d r i c a l  p l a t e  
weakened by a square, nonreinforced hole with rounded cprners.  The s h e l l  is  
twisted by moments applied t o  i t s  ends1. The b a s i c  s t r e s s  s t a t e  w i l l  be 
assumed as  momentless with the  components 

3,00 
3,16 

4.55 
4,80 

5,09 
5,37 

5.38 - 



We w i l l  r ep re sen t  the  components of t h e  b a s i c  s t r e s s  s t a t e  i n  coord ina te  system 
(p, 0) ,  expanding them i n t o  power s e r i e s  with r e s p e c t  t o  E and r e t a i n i n g  the  

2. terms with E . 
7: = r h  [sin 2d -+ 3 e  (sin 68 + sin 26) + 9e2 (sin 103 - sln 26) + . . .I; 

G = - e  (X. 192) 

S& := rh [cos 28 -+ Be (cos 68 - cos 28) + 9e2  (COS 1 OY - cos 26) + . . .]. 

On t h e  contour  of t he  ho le ,  f r e e  of  t h e  e f f e c t  of  e x t e r n a l  fo rces ,  t h e  
fol lowing boundary condi t ions  must be s a t i s f i e d :  

(X. 193) 

By equat ing t o  zero t h e  c o e f f i c i e n t s  f o r  i d e n t i c a l  degrees of  E, we o b t a i n  from 
(X. 192) and (X. 193) t h e  boundary condi t ions  f o r  t h e  zero, f i r s t  and second 
approximations . 

The s o l u t i o n  of  t h e  b a s i c  equat ion (X.75) w i l l  be  taken i n  t he  form (X.91) 
and (X.94). 

We w i l l  n o t i c e  t h a t  he re ,  a s  i n  t he  preceding problems, we a r e  i n t e r e s t e d  
only i n  t he  concent ra t ion  of  fo rces ,  and t h e r e f o r e  we w i l l  determine only t h e  
func t ion  ImQ The magnitudes of t h e  moments G o  on t h e  contour of t h e  ho le  i n  /767 

j. - 
t h e  case  of i on re in fo rced  holes  a r e  n e g l i g i b l e .  

Figure X.26. Figure X.27. 



The zero approximation coincides with the  so lu t ion  f o r  a round hole 
(X. 145) . 

Proceeding s imi la r ly  as indica ted  i n  the  preceding cases, we obta in  on 
the  contour of the  hole,  on the  b a s i s  of the  discussion i n  52, 

T? + TO'" = Irh [sin 26 .- 3 sin 60 + (sin 26 - 1.5 sin 66)]; (X .194) 

7f)+ e' = -~h[6sin26 - 12sin69 + 38sin 103 + 
(X. 195) + np2(7sin 20 - 12sin 66 + 19sin lob)]. 

Forces T* on the  contour of the  hole  a r e  determined with an accuracy up t o  E 2 
8 

with considerat ion of  (X. 145), (X. 194) and (X. 195) by formula (X. 186) . 
We w i l l  p resent  the  values of T;j (X.186) ( f o r  the  case of to r s ion  of t h e  

s h e l l )  on the  contour of the  hole  with an accuracy up t o  c2: 

f o r  E = 1/9 

3.63 sin 28 i 1 ,18 sin 68 $- 0A7 sin 108 +- 

r t  f 478 1 '3 (1 - v2) (1.65 sin 28 -I- 0.5 1 sin 68 + 0.23 sin I Otl)]; 

f o r  E = -1/9 

T; = - rh 4.51 sin 28 - 1.48 sin 60 + 0.47 sin 106 $. 

4 
[ 

(X ,197) 
4- 0.78 1 3  9 I - va) (2.53 sin 28 - 0.8 1 sin 60 + 0.23 sin 10 8)] . 

As we see  from (X. 196) and ( X .  197), the  maximum concentrat ion c o e f f i c i e n t  
k = T i / ~ h  on the  contour of the  hole  i s  achieved when 6 = s/4: 

f o r  E = 1/9 

f o r  E = -1/9 



The values of (k)  e=71,4 (X. 198) a r e  presented  i n  Table X .  14 f o r  E = - 1/9, 

v = 0 . 3  and f o r  var ious  values rO/m. When r /& we ob ta in  t h e  values o f  
0 

concent ra t ion  c o e f f i c i e n t  k  f o r  a  p l a t e .  

TABLE X.14 

Concen t  r a t  i or 
c o e f f i c i e n t  

T r .  Note: Commas ind ica t e  decimal po in t s .  

r. /t 'Gi - 
0.0 0.10 1 0,20 ! 0.30 1 0.40 1 0.50 1 0.60 

In I 
p l a t e  I I n  she1 1 

The values of  (k) e=71/4 (X.199) a r e  presented  i n  Table X.15 f o r  E = -1/9, 

v = 0.3, r = 0.6, both i n  a  p l a t e  and i n  a  s h e l l ,  i n  t h e  zero, f i r s t  and 

second approximations, and t h e  va lue  of (k)e=a,4, obtained from t h e  p r e c i s e  

-6,46 

1 ,00 

s o l u t i o n ,  i s  a l s o  presented  f o r  a  p l a t e .  I t  fol lows from Table X.15 t h a t  t h e  
(P 1) ) value (k g=n/4 = -6.46,  obtained i n  the  second approximation, d i f f e r s  by 

(PI)  4.3% from i t s  p r e c i s e  va lue  (6.75),  while  (k 
) 8=0 

(p 1) and (k 1 0=n/2,  a s  t he  

c a l c u l a t i o n s  show, co inc ide  with the  p r e c i s e  va lue .  The value of 
(k(sh)  

) e=n/ 4 f o r  a  s h e l l  i n  t he  f i r s t  approximation i s  g r e a t e r  by 46% than i n  

t h e  zero approximation, while  i n  t he  second approximation i t  i s  12% g r e a t e r  
(sh) than  i n  t h e  f i r s t  approximation. The magnitude of  (k  )e=rr /4  f o r  a  square 

ho le  d i f f e r s  by 65% from t h e  same value f o r  a  round h o l e .  

TABLE X .  15 

-6,51 

1,Ol 

Approximation P rec i se  
k n p ~  g=n/l 

i ~ r o  F i r s t  !Second~ro lu t ion  

-6,64 

1,03 

-6,87 

1,06 

T r .  Note: Commas ind ica t e  decimal po in t s .  

-7.20 

1 , 1 1  

I n  p l a t e  . . . . . . .  
I n s h e l l  . . . . . . .  

-7.61 

1.18 

-8.11 

1.25 

-6.75 - 
-436 
-8,ll 

-4,oo 
-4,92 

-5,77 
-7,20 



The d i s t r i b u t i o n  o f  k found from (X. 196) and (X. 197) on the  contour  of  a 
square ho le  i s  shown i n  Figure X.28 f o r  E = 1/9 and i n  Figure X.29 f o r  E = 
= - 1 9  f o r  s h e l l  and p l a t e  when v = 0 . 3  and rO/m = 0.6 .  

- in she l  1 
--- in p l a t e  

- i n  shel  1 
---- in p l a t e  

Figure X.28. Figure X.29. 

Torsion of Cyl indr ica l  She l l  Weakened by Equ i l a t e r a l  T r i ang le  Hole. We / 769 
w i l l  cons ider  t he  s t r e s s  s t a t e  of  a c y l i n d r i c a l  s h e l l  sub jec t ed  t o  t o r s i o n  by 
moments appl ied  t o  i t s  ends. The s h e l l  i s  weakened by a nonreinforced equi-  
l a t e r a l  t r i a n g l e  ho le  wi th  rounded corners1 .  For such a ho le  

The holes  a r e  d i s t r i b u t e d  i n  t h e  
s h e l l  as shown i n  Figure X.30, a f o r  
E = 1/4 and Figure X.30, b f o r  E = -1/4. 

The b a s i c  s t r e s s  s t a t e  w i l l  b e  
regarded a s  momentless with components 

Figure X.30. 
We w i l l  w r i t e  out  t h e  components o f  

t h e  b a s i c  s t r e s s  s t a t e  i n  coord ina te  system (p, 8) i n  t h e  form of power s e r i e s  
with r e spec t  t o  E, r e t a i n i n g  i n  t hese  expansions only t h e  terms wi th  c 2 .  The /770 - 
expansions of components ( X .  201) on the  contour  of t h e  ho le  a r e  



TO, - t h  [sin 26 + 2e (sin 56 + sin 6) + 4e2 (sin 88 - sin 28) + . . .]; 
T ~ = - - T O , ;  

s :~  = th [COS 28 - 2e (cos 6 - cos 50) - 
TABLE X .  16 - 4e2 (cos 28 - cos 86) + . . .]. 

On the  contour of the  hole  upon which 
ex te rna l  forces do not  a c t ,  boundary 
condit ions (X. 193) must be s a t i s f i e d .  
From (X.193) and (X.202), equating t o  
zero the  c o e f f i c i e n t s  f o r  i d e n t i c a l  
degrees of E ,  we obta in  the  boundary 
conditions f o r  t h e  zero, f i r s t  and 
second approximations. 
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The so lu t ion  of the  b a s i c  equation 
(X.75) w i l l  be taken i n  the  fonn 
(X.91)-(X.94). 

The zero approximation coincides 
with the  so lu t ion  f o r  a round hole 
(X. 145) . 

Approximat ion 
Zero I F i  r s  t /second 

On the  b a s i s  of the  r e s u l t s  of  52, 
we obta in ,  on the  contour of the  hole ,  

~ f ) +  T?)= - 16rh sin88. (X. 204) 

0,00 - 
0.00 
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6 ,12  
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0.00 
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- 4 . 1 2  
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1.04 
4.94 
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2.84 - 
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2-03 
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0,oo - 
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-3,89 - 
-3,89 

O,OO 
0.00 

3.89 - 
3.89 

4,52 
4.52 
0.00 
0,oo 

-4.52 
--4,52 

3,89 
3,89 

0.00 - 
0.00 

3,89 
3,89 

4,52 
4,52 

The values of T*, on the  contour of the  

0.00 - 
0,00 

-2,92 - - -  
-6.12 

-1.95 - 
- 5 , ~  

-2,26 - -  
2,26 

5,83 - 
1.95 

6.12 - -  
2,92 

0.00 - -  
0,oo 

-6,12 - -  
-2,92 

1.95 - -  
5.83 

-2.26 - 
2.26 

1,93 -- 
5,83 

2,92 - -  
6,12 

u 
Tr. Note: Commas indica te  hole  a re  determined with an accuracy up 
decimal points .  2 

t o  E , with considerat ion of (X. 145), 
( X .  203) and (X. 204) ,  by formula (X. 186) . We w i l l  p resent  these  values on the  

'l 

contour of the  hole  (with an accuracy up t o  E'): 

f o r  c = 1/4 (see Figure X.30, a) 

T; = - 45h [sin 26 + 0.5 sin 59 + 0.25 sin 84 + OSnpa (sin 29 + 
+ 0.5 sin 58 + 0.0625 sin 8b)j; 

(X .  205) 



f o r  E = - 1 / 4  ( see  Figure X.30, b) 

T; = - 4rh [sin 2b - 0.5 sin 56 + 0.25 sin 88 + 
(X .206) 4 0.5nfi"sin 28 - 0 5  sin 50 -+ 9P625 sin 85)]. 

The values of  k = T g / ~ h  a t  c e r t a i n  p o i n t s  of the contour of t h e  h o l e ,  /771 

c a l c u l a t e d  by formulas (X.205) and (X.206), a r e  presented i n  Table X.16. The 
values o f  k f o r  E = 1/4 a r e  given i n  t h e  numerators, and i n  t he  denominators 
f o r  E = -1/4, f o r  v = 0 . 3  and ro/m. As we see ,  kmax i s  achieved when 8 = 

= 2n/3 i n  t h e  case  where E = 1/4 and f o r  8 = n/3 i n  the  case where E = -1/4. 

A t  t h e s e  values o f  8 ,  t he  magnitude o f  k (Sh) is  12% g r e a t e r  than  k ( ~ ' ) .  A t  
t h e  po in t s  8  = 0; 8 = n/4; 8 = ~ / 2 ;  8 = 31~/4; 8  = TT; 8  = 5 ~ / 4  and 8 = 3n/2 the  
second approximation coincides wi th  t h e  f i r s t ;  a t  o t h e r  po in t s  t h e  convergence 

1 

is  not  s o  good. Thus, kmax (Sh) i n  t h e  f i r s t  approximation is  50% g r e a t e r  than 

t h e  zero approximation, and 15% g r e a t e r  i n  the  second approximation than i n  
t h e  f i rs t .  

55. Conclusions 

In  t h i s  chapter  we have examined the  problems of s t r e s s  concent ra t ion  
nea r  a  s i n g l e  f r e e  o r  r e in fo rced  h o l e  i n  s p h e r i c a l  and c y l i n d r i c a l  s h e l l s .  
The s o l u t i o n s  given he re in  do n o t  exhaust  the  family of problems being i n v e s t i -  
ga ted  a t  t he  p re sen t  time, and t h e s e  s o l u t i o n s  a r e  presented  i n  extremely b r i e f  
form. Therefore,  i n  o rde r  t o  a f f o r d  the reader  with t h e  p o s s i b i l i t y  of 
becoming more f a m i l i a r  wi th  works of which we have spoken, and wi th  works 
which we could not  mention, a r a t h e r  d e t a i l e d  l i s t  of  l i t e r a t u r e  has been 
compiled. This b ib l iography a l s o  inc ludes  works t h a t  p e r t a i n  t o  t h e  problem 
of s t r e s s  concent ra t ion  n e a r  ho le s  i n  s h e l l s  which, due t o  t h e  l imi tedness  of  
t h e  monograph, could n o t  b e  d iscussed  i n  the  given chapter .  

Important r e s u l t s  a r e  now being obtained from t h e  a n a l y s i s  of s t r e s s  
concent ra t ion  near  ho le s  i n  s h e l l s  of pos i t i ve ,  zero and nega t ive  gauss curva- 
t u r e s .  These r e s u l t s  can be c l a s s i f i e d  as follows: 1) a n a l y s i s  of  s t r e s s  s t a t e  
i n  s h e l l s  n e a r  l a r g e  ho le s ;  2) app l i ca t ion  of v a r i a t i o n  methods t o  t h e  problem 
of s t r e s s  concent ra t ion ;  3) a n a l y s i s  of  s t r e s s  s t a t e  nea r  a  h o l e  i n  an e l a s t o -  
p l a s t i c  s ta tement ;  4) a n a l y s i s  of geometr ical ly  non l inea r  problems, i . e  . , of  
s t r e s s  s t a t e  i n  s h e l l s  n e a r  ho le s  during s u p e r c r i t i c a l  deformation; 5) a n a l y s i s  
of t h e  e f f e c t  of phys i ca l  n o n l i n e a r i t y  of t h e  ma te r i a l  of t h e  s h e l l  on t h e  
s t r e s s  concent ra t ion  n e a r  h o l e s  ; 6) ana lys is  of multiply-connected reg ions ,  i . e . ,  
i n  t h e  case  of both a  f i n i t e  and i n f i n i t e  number of h o l e s ,  i n v e s t i g a t i o n  of 
t h e i r  i n t e r a c t i o n ,  e f f e c t  of t h e  edge of t he  s h e l l ,  r i g i d i t y  of  r e in fo rc ing  
r i n g s ,  e t c ;  7) p e r i o d i c  problems f o r  s h e l l s  weakened by ho le s ,  e t c .  

A s p e c i a l  monograph w i l l  b e  devoted t o  the  d iscuss ion  of t he  above 
mentioned r e s u l t s  o f  a n a l y s i s  and t o  more d e t a i l e d  a n a l y s i s  of t h e  r e s u l t s  of 
t h e  given chap te r .  
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CHAPTER X I .  DYNAMl C PROBLEMS OF STRESS D l  STRl B U T 1  ON 
NEAR H O L E S  

Abs t rac t .  This chapter  i s  devoted t o  the  inves t iga t ion  of 
the  s t r e s s e d  s t a t e  in t he  v i c i n i t y  of a hole  i n  the case  of 
dynamic problems. Problems a r e  considered on d i s t r i b u t i o n  
of the  t r a n s i e n t  c y l i n d r i c a l  e l a s t i c  waves, generated on a 
c i r c u l a r  hole  i n  a t h in  i n f i n i t e  p l a t e .  The p l a t e  mater ia l  
was assumed t o  be both i s o t r o p i c  and a n i s o t r o p i c  and non- 
uniform of  spec i a l  type.  The s t r e s s e s  a t  t he  hole  contour 
and wave f r o n t  a r e  determined. 

The preceding chapters  have been devoted t o  t h e  problem of  s t r e s s  
concent ra t ion  near  ho le s  under s t a t i c ,  i . e . ,  extremely slow loading.  In  prac-  
t i c e ,  however, cases  a r e  o f t e n  encountered where t h e  c h a r a c t e r  o f  e x t e r n a l  
loading i s  such t h a t  i t  is no t  p o s s i b l e  t o  d i s c a r d  t h e  i n e r t i a l  terms i n  t h e  
equi l ibr ium equat ions .  This i s  r e l a t e d  t o  t h e  f a c t  t h a t  t h e  app l i ed  fo rces  
change i n  t ime q u i t e  r ap id ly ,  while  t h e  i n t e r v a l  of  t ime o f  observa t ion  i s  
l e s s  t han  t h a t  during which t h e  body experiences t h e  s t a t e  o f  s t a t i c  e q u i l i -  
brium. I n  t h e s e  case  we w i l l  have propagat ion wi th in  t h e  body (continuous 
medium) o f  pe r tu rba t ions ,  o r  waves moving a t  c e r t a i n  v e l o c i t i e s .  

Some of  t h e  commonest problems r e l a t e d  t o  t h e  a n a l y s i s  of  e l a s t i c '  wave 
motions i n  reg ions  weakened by ho le s  w i l l  b e  considered below. 

5 1 .  Statement of Problem 

In t h e  case  of  t h e  plane problem of  e l a s t i c i t y  theory  it i s  convenient t o  
+ -F 

in t roduce  two func t ions  9(x, y) and 3 = k+(x, y ) ,  where k i s  t h e  u n i t  vec to r  o f  
t h e  n o m a l  t o  p lane  xOy, r e l a t e d  t o  displacement v e c t o r  d by t h e  r e l a t i o n  

-* -* 
u = gradcp + rot I). (XI. 1) 

Then, from t h e  known Lame equat ions2 ,  we f i n d  t h a t  t h e  func t ions  @(x,  y, t )  
and $(x, y,  t )  should s a t i s f y  t h e  fol lowing two wave equat ions:  

 o or more d e t a i l e d  accounts of  nonl inear ,  e l a s tov i scous  and p l a s t i c  waves, t h e  
reader  i s  r e f e r r e d  t o  t h e  r e p o r t s  o f  H. Kolsky [I];  Kh. A .  Rakhmatulin and 
G .  S. Shapiro [ l ,  21; V.  Ol 'shaka, 2. Mruz and P. Pezhina [l] and t h e  mono- 
graphs of Kh. A. Rakhmatulin and Yu. M .  Dem'yanova [ I ] .  

2 ~ h e  mass fo rces  a r e  omit ted i n  t h e s e  equat ions .  The motion o r i g i n a t i n g  from 
t h e  mass forces  a r e  descr ibed  by A .  Lyav [ l ] ,  pp. 317-319. 



(XI. 2) 

2 
where V i s  t h e  Laplace ope ra to r .  

Equations (XI.2) desc r ibe  two types of e l a s t i c  waves t h a t  occur  i n  an - /781 
unbounded homogeneous medium. The func t ion  $(x, y, t )  corresponds t o  t h e  vor-  

-P 
t e x - f r e e  wave (u = grad $), i . e . ,  t o  such a s  f o r  which 1 

-b 
rot U1 = 0, 

while  t h r e e  dimensional expansion is  

-+ 
A = div u, = v2q. 

-f -P 
The func t ion  $(x, y,  t )  corresponds t o  equivoluminal wave (u = r o t  kq). 

For t h i s  type  of  waves 2 

-b -b -* -b 
div u, = 0, St =- rot u, = - kv2*. 

Here 6 i s  t h e  vec to r  o f  ins tan taneous  r o t a t i o n 1 .  

I n  equat ions (XI.2) c  i s  t h e  v e l o c i t y  of  t h e  vo r t ex - f r ee  wave and c2  i s  
1 

t h e  v e l o c i t y  of t h e  equivoluminal wave. 

I n  t h e  case  of p lane  deformation 

(XI . 3 )  

and i n  t h e  case  of t h e  (genera l ized)  p lane  s t r e s s  s t a t e  

E 
c1= 2L/J A' = - 

X + ~ P  ' (XI. 4) 

Here A ,  p a r e  Lame's cons tan ts ;  g is t h e  dens i ty  of t h e  medium. 

' ~ l s o  o f t e n  used a r e  t h e  terms " longi tudina l  wave" and " t r ansve r se  wave," s i n c e  
i n  t h e  f i r s t  ca se  p a r t i c l e s  of a  continuous medium accomplish motion i n  t h e  
d i r e c t i o n  of propagat ion of t h e  e l a s t i c  wave, and i n  t he  second, perpendicular  
t o  i t .  I n  t h e  fol lowing d i scuss ion  we w i l l  use  t h e  terms "compression o r  
t ens ion  wave" and "displacement wave." 



I f  t h e  external  load changes i n  time harmonically, i . e . ,  i f  t h e  funct ions  
t h a t  describe the  wave f i e l d  a r e  of the  form 

9 = (P (M) ei'J't, 11, = 11, (M) 

where w is the  ro ta ry  frequency, then f o r  $(M), +(M), w!lich depend on the  
s p a t i a l  coordinates of the  point  M ,  we obta in  from (XI.2) t h e  Helmholtz equa- 
t i o n s  

(XI .5) 

I f  the  so lu t ions  of equations (XI .5) a r e  mul t ip l ied  by e 
- i w t  and the  r e a l  

p a r t  i n  t h e  l a t t e r  i s  separated,  we obta in  the  so lu t ion  of  equations (XI.2) 
f o r  t h e  case of  s teady wave motions. 

I n  the  case of the  unsteady process the  region occupied by the  propagating /782 - 
per turbat ion  i s  bounded by a closed c y l i n d r i c a l  su r face  (curve) i n  the  plane 
xOy, which moves i n  the  d i r e c t i o n  of  i t s  normal a t  a ve loc i ty  of  c o r  c 1 2 ' 
During motion on it, c e r t a i n  condit ions of a kinematic and dynamic charac ter1  
must be s a t i s f i e d .  I t  follows from the  condit ions of con t inu i ty  t h a t  the  d i s -  
placement vector  on t h i s  surface  should be equal t o  zero. 

I f  an e l a s t i c  wave of  one type with a f r e e  boundary i s  encountered, then 
the re  w i l l  be r e f l e c t e d  waves of  both types2 .  

I f  the  boundary i s  the  l i n e  (surface)  of  separa t ion  of  two media with 
d i f f e r e n t  e l a s t i c  proper t ies ,  e l a s t i c  waves of both types w i l l  a l s o  occur i n  
t h e  second medium. 

For diverging waves, both r e f l e c t e d  and re f rac ted ,  c e r t a i n  condit ions t h a t  
preclude the  p o s s i b i l i t y  of waves a r r i v i n g  from i n f i n i t y  must be s a t i s f i e d .  
For unsteady motions t h i s  is  a condit ion o f  damping o f  per turbat ions  a t  i n f i -  
n i t y .  For s teady motions, however, they c o n s i s t  of the  following. 

-+ 
We w i l l  represent  t h e  displacement vector  u i n  the  form of  t h e  sum 05 i t s  

-b -b 
p o t e n t i a l  u and solenoidal  u p a r t s :  S R 

'see A .  Lyav [ I ] ,  pp. 308-310. 
2 ~ e e  H. Kolsky [2] . 



+ + -+ 
Whereas t h e  component of  t h e  vec to r s  uR, u f o r  r - tm,  where r i s  t h e  v e c t o r  

S 
r ad ius ,  i s  cons t ruc ted  from t h e  o r i g i n  of t h e  coord ina te  system, t h e  following 
condi t ions  must be s a t i s f i e d 1 :  

(XI. 6 )  

which w i l l  be  r e f e r r e d  t o  below a s  t h e  "emission condit ions."  Here [g,p.78] 
1 " 

i s  a func t ion  which, f o r  r -t +-, has t h e  va lue  0 , M-const, and 

O [+) i s  a func t ion  f o r  which t h e  r a t i o  0 approaches zero uniformly 

+ 
i n  r e l a t i o n  t o  t h e  d i r e c t i o n  of vec to r  r ad ius  r.  

The propagat ion of waves i n  t h e  middle s u r f a c e  of  t h i n  p l a t e s  i s  descr ibed  
s a t i s f a c t o r i l y  by t h e  equat ions of  t h e  gene ra l i zed  p lane  s t r e s s  s t a t e  i n  t h e  
case  of  long waves, t h e  length  o f  which is g r e a t e r  than  t h e  th ickness  o f  t h e  
p l a t e .  I n  terms of  frequency t h i s  s i g n i f i e s  t h a t  t h e  theory  of  t h e  gene ra l i zed  
p lane  s t r e s s  s t a t e  produces good r e s u l t s  f o r  f requencies  t h a t  a r e  much lower - / 783 
than  t h e  b a s i c  frequency of  v i b r a t i o n s  through th i ckness .  The f requencies  o f  
t h e  f i r s t  types o f  v i b r a t i o n s  through th i ckness  a r e  determined by t h e  formulas 

where h is  t h e  th ickness  of  t h e  p 1 a t e ; ; g  i s  t h e  dens i ty  of  t h e  m a t e r i a l  o f  t h e  
p l a t e .  

92.  Round Hole. Axisymmetric Problems 

I f  t o  t h e  contour  of a round ho le  o f  r ad ius  a ,  l oca t ed  i n  an i n f i n i t e  
e l a s t i c  plane,  a uniform p res su re  o r  displacement ,  changing i n  t ime, i s  appl ied ,  
a c y l i n d r i c a l  e l a s t i c  wave of  compression o r  displacement ,  r e s p e c t i v e l y ,  w i l l  
occur  i n  t h i s  p lane .  I n  t h e  given case  it is  convenient t o  s o l v e  t h e  problem 
i n  displacements,  s i n c e  due t o  a x i a l  symmetry, one of  t h e  c:omponents o f  t h e  
displacement vec to r  w i l l  b e  equal  t o  zero.  

Let us  examine t h e  case  of  dynamic p re s su re .  

I n  p o l a r  coord ina tes  r, 8, t h e  c e n t e r  o f  which co inc ides  wi th  t h e  c e n t e r  
of  t h e  hole ,  we ob ta in  t h e  equat ion f o r  r a d i a l  displacement u: 

1 See V .  D .  Kupradze [Z] . 



(XI. 7) 

I n  t h e  case  o f  s teady  v i b r a t i o n s  t h e  genera l  s o l u t i o n  of  equat ion (XI.7) has 
t h e  form 

u ( r ,  t )  = PH;" ($ r )  -+ B H : ~ )  ( q r ) ]  e-iut, 

H(*) a r e  Hankel 's  func t ions  of  kinds I  and I I ;  A, B a r e  undefined where H1 , 1 
cons t an t s .  

From emission condi t ions  (XI.6) i t  fol lows t h a t  B = 0. By s a t i s f y i n g  
harmonic cond i t i on  

(I I - - a,e-iWf, r r=a - (XI. 8) 

we ob ta in  

H:') (+ r )  e-iut 1 .  ( X I  .9) 
(: a) + + HA') ($ a )  1 

For an e l a s t i c  wave of d i f f e r e n t  conf igura t ion  we may use t h e  supe rpos i t i on  
of t h e  s o l u t i o n s  o f  (XI.9), t ak ing  t h e  d e s i r e d  s o l u t i o n  i n  t h e  form o f  a  
Four ie r  s e r i e s  o r  i n t e g r a l .  Also e f f e c t i v e  i s  t h e  Laplace t ransform' .  I f  / 784 

equat lon  (XI.7) i s  m u l t i p l i e d  by e - P t ( ~ e p  > 0) and t h e  r e s u l t  i s  i n t e g r a t e d  
with r e spec t  t o  time from zero t o  i n f i n i t y ,  we o b t a i n  i n  t h e  reg ion  of  t h e  
Laplace t ransformat ions ,  f o r  zero i n i t i a l  condi t ions ,  t h e  fol lowing equat ion2:  

(XI. 10) 

Here U(r, p) i s  t h e  t ransformat ion  u ( r ,  t ) ,  wi th  t h e  form 

QD 

U (r, p) = 1 e-ptu ( r ,  t )  d t t t  u (r, t). (XI. 11) 

0 

- - - -  - 

' see  M.  A. Lavrent Iyev and B. V. Shabat [I] .  
2 ~ e e  A.  Kromm [ I ,  21;. I .  Miklowitz [ I ] .  



If the material of the plate is cylindrically anisotropic, such that the 
axis of anisotropy passes through the center of the hole, the propagation of 
the cylindrical compression wave in the space of the transformations is 
described by the equation1 

(XI .12) 

where 

If, on the other hand, the material is continuously heterogeneous, such 
that Young's moduli are gradual functions of the radial coordinate r, i.e., 

E, = E f m .  E8 = Egm, vrv, = const, (XI .13) 

then, for the transformation of displacement U we have the following equation2: 

d2U m + l  dU m v 8 - k  -+-.- g (1 - vrv#) r-mp2u, 
dr' r dr + rz 

u=  
El 

(XI. 14) 

Equations (XI.10), (XI.12) and (XI.14) reduce to Bessel's equation. Let 
us examine equation (XI.14), a particular case of which are equations (XI.lO) 
and (XI.12). Introducing the dimensionless values 

we write, in the space of transformations, the general solution of equation 
(XI. 14) : 

/785 - 

(XI. 15) 

'see G. Eason [I]. 
2 ~ e e  V. D. Kubenko [l , 21. 



In the solution of (XI.15) Kn is McDonald's function; In is a modified Bessel 
function1. 

When m = 2 the solution of equation (XI.14) becomes 

(XI. 16) 

The boundary conditions consist in the assignment of on the contour of the 

hole and in the damping condition of perturbations at infinity, i-e., 

(XI. 17) 

Here H(t) is Heavisidels function 

In the space of transformations conditions (XI.17) will acquire the form 

(XI .18) 

In the case m < 2 the solution of equation (XI.14) under conditions (XI.18) 
becomes * 

where 

(XI .19) 

'see M. A. ,Lavrentfyev and B. V. Shabat [I]. 
'~rorn the second condition (XI.18) it follows that B = 0. 



Trans i t i on  t o  t h e  space o f  t h e  o r i g i n a l s  can be accomplished by var ious  
means1. For i n s t ance ,  by represent ing  t h e  func t ion  K through Laplace1s n 

/ 786 - 
i n t e g r a l  and us ing  t h e  theorem of  convolut ion o f  o r i g i n a l s ,  we f i n d 2  t h a t  t h e  
displacement,  v e l o c i t y ,  and d i r e c t i o n  s a t i s f y  V o l t a i r e l s  i n t e g r a l  equat ion of 
kind I :  

( X I .  20) 

- - - - 
Here s ( f ,  r) denotes  t h e  func t ions  u, u  = au / a t ,  or, oe.  "e kerne l  K w i l l  be 

t h e  same f o r  a l l  equa t ions  (XI. 20) : 

I - a + a n - v 0  
K ( x )  = 2n [(ax + 1 + (ax  + I)%-- 1)" - 

- (ax  -+  1 - l / ( a x  + - 1)"l-F 
(ax + 1 4 ,/(ax + 1)" I)"-' + ( a x  + I - ]'(ax + 1)'- 1Y-l + 2 W+Fl 

The r i g h t  hand s i d e  of  (XI. 20) has  t h e  form 

- --a-1 
R ; = z ( z , f P  , 

% = l ) ~ c ; , i j r ~ + ~ ~ c ; , ~ ) ; ~ - .  
- - -  - - 'l-a Rae - (av, + k - v e )  z (r, f) r-a + V@Z' (r, t )  r , 

' - - -a-l . R: = z(r, f)r , 
Y 

where 
--- 

ra a7 + I (a? + 1)' 
n-I 

ra  - 1 6. fi  = H (i - I<-) 2an - 1 )  ((7 + I I 7 -1 )  x 
- 

a i  4- I ,' ( a t +  1)2 
x [(n- I ) ~ ( ~ F +  I/ 1 > -2" I - 

n-l 
a?+ 1 

- 1 )  [ ( n - ~ ) ~ x  
(a? f 1 ) 2  

(XI. 21) 

(XI. 22) 

' see H .  L.  Se lberg  [ l ] ;  I .  Miklowitz [I].  
2 ~ e e  A .  Kromm [ I ] ;  V. D .  Kubenko [ I ] .  



f o r  n = 1 

During i n t e r v a l  of time 

(XI. 23) 

the  r i g h t  hand s ides  of  (XI.20), on the  b a s i s  of  (XI.22), (XI.23), a r e  equal 
t o  zero. 

On the  wave f ron t  we have 

Hence t h e  ve loc i ty  of the  wave f r o n t  i s  

o r ,  i n  t h e  i n i t i a l  symbols: 

(XI. 24) 

ra- 1 
By s u b s t i t u t i n g  i n t o  i n t e g r a l  equations (XI .20) t=  - +, , where E 

a 

approaches zero, we obta in  t h e  following r e l a t i o n s  on the  wave surface:  

- - m 1 - --- - , m  I . - 1 1  - --- u =  0, a, = -r4 2 ,  a o = - v o r ~ - ~ ,  u - r  2 4 "  (XI. 25) 

From (XI.25) it follows t h a t  t h e  d i scon t inu i ty  of s t r e s s e s  on the  wave f r o n t  
depends on nonhomogeneity index m, and not on t h e  anisotropy of the  ma te r i a l .  

Equations (XI.20) can be solved numerically by reducing them t o  a system 
of a lgebra ic  equations. The s t r e s s e s  and 7 as solved by t h i s  method i n  the  0 



work o f  A.  Kromm [ l ]  a r e  shown i n  Figures  XI.l-XI.3 a s  func t ions  of t ime and 
t h e  r a d i a l  coord ina te  f o r  a  homogeneous i s o t r o p i c  medium, i . e . ,  f o r  m = 0.  
For t h e s e  c a l c u l a t i o n s  it was assumed t h a t  vr = ve = 0.25. 

If t h e  o r d e r  o f  t h e  c y l i n d r i c a l  func t ions  i n  (XI.15) i s  equal  t o  a whole 
number p lus  one-half ,  it i s  poss ib l e  t o  make t h e  t r a n s i t i o n  t o  t h e  s ace  o f  P o r i g i n a l s  by way o f  contour  i n t e g r a t i o n  using t h e  remainders theorem . Then 
t h e  expressions f o r  displacement .and s t r e s s e s  can be found i n  c losed  form. 
Some of  t he  r e s u l t s  ob ta ined  by t h i s  method a r e  i l l u s t r a t e d  i n  Figures  XI.4- 
XI.6. 

When m = 2 we have t h e  s o l u t i o n  o f  (XI.16). I f  boundary condi t ions  
(XI.18) a r e  s a t i s f i e d ,  we o b t a i n  

where 

Converting t o  t h e  o r i g i n a l ,  we ob ta in2  

(XI. 26) 

(XI. 27) 

'see G .  Eason [I]; V .  D .  Kubenko [ I ] .  
2 ~ e e  V.  D.  Kubenko [2].  



Figure  X I . l .  

F igure  X I . 3 .  F igure  X I . 4 .  

Figure  X I . 5 .  F igure  X I . 6 .  



The wave f r o n t  propagates  a t  t h e  v e l o c i t y  c  = 7, whereupon, on t h e  f r o n t ,  

- - - 
u = 0, t 7 T-', a, = - I ,  a,=- v 8 .  (XI. 28) 

Hence t h e  d i s c o n t i n u i t y  o f  s t r e s s e s  on t h e  wave f r o n t  remains cons tan t  during 
t h e  propagat ion of  t h e  wave. The change of  < with  t ime i s  shown i n  Figure 

XI.7. For t h e  c a l c u l a t i o n s  it was assumed t h a t  v - 1/4, vr = 1/14. 8 -  

Fina l ly ,  i n  t h e  case  m > 2 t h e  wave reaches an i n f i n i t e l y  d i s t a n t  p o i n t  
beyond which t h e  te rmina l  t ime i n t e r v a l  i s  

V.  D.  Kubenko [2] demonstrated t h a t  t h i s  circumstance n e c e s s i t a t e s  t h e  
use  of  a condi t ion  o t h e r  than  t h e  condi t ion  o f  damping o f  pe r tu rba t ions1 ,  
s p e c i f i c a l l y ,  t o  assume t h e  absence o f  displacement a t  i n f i n i t y ,  s i n c e  i n  
accordance wi th  (XI.13) f o r  r -too t h e  m a t e r i a l  ( a t  i n f i n i t e  p o i n t s )  becomes 
r i g i d .  Then t h e  s o l u t i o n  found f o r  t h e s e  new condi t ions  w i l l  converge upon 
t h e  s t a t i c  s o l u t i o n  wi th  t ime2:  

I n  t h e  case  where t h e  d e n s i t y  of  t h e  medium a l s o  changes by a gradual  law 
as  a  func t ion  o f  r, t h e  s o l u t i o n  o f  t h e  problem does not  d i f f e r  i n  p r i n c i p l e  
from t h e  above. 

If  t h e  dependence o f  t h e  boundary condi t ion  on time is  def ined  not  by / 790 - 
Heavis ide ' s  func t ion ,  b u t  by some func t ion  P ( t ) ,  then  i n  t h i s  case  we may use 

Duhamel's formula for the determination 
of  t h e  so lu t ion .  I f  through fH(F,  7) we 

denote t h e  s o l u t i o n  der ived  from 
Heaviside 's  func t ion ,  then  f o r  t h e  func- 
t i o n  P ( t )  we w i l l  have 

Figure X1.7. 
I n  l i k e  manner we may s o l v e  problems 

i n  t h e  case  where a  suddenly appl ied  

'The second condi t ion  i n  (XI. 18 ) .  
2 ~ e e  S .  G .  Lekhnitskiy [ I ] .  



uniform f o r c e  of displacement a c t s  upon t h e  contour  o f  a  round ho le  o r  a  
r a d i a l  o r  c i r c u l a r  v e l o c i t y  i s  imparted t o  t h e  p o i n t s  o f  t h e  contour1.  
E .  S te rnberg  and I .  C .  Charkraborty [l] examined t h e  problem of  t h e  propaga- 
t i o n  of  a  c y l i n d r i c a l  wave o f  displacement i n  an e l a s t i c  medium whose d i s -  
placement modulus i s  a  gradual  func t ion  of  t h e  r a d i a l  coord ina te .  

5 3 .  Round Hole. Incident  Plane Harmonic Wave 

Of g r e a t  importance i n  a p p l i c a t i o n  i s  t h e  problem which i s  t h e  dynamic 
analog of  t h e  problem of  s t r e s s  concent ra t ion  nea r  a  ho le  i n  t h e  case  o f  t h e  
b i a x i a l  b a s i c  s t r e s s  s t a t e .  In  t h e  dynamic case  t h e  l a t t e r  i s  accomplished by 
means o f  a  plane e l a s t i c  wave2, i nc iden t  upon t h e  ho le ,  which is loca t ed  a t  
t h e  o r i g i n  of t h e  coord ina te  system. The inc iden t  wave genera tes  r e f l e c t e d  
waves, and t h e  t o t a l  wave f i e l d  determines t h e  s t r e s s  s t a t e  i n  an e l a s t i c  
p lane .  

Y .  H .  Pao [ I ] ,  Y .  H .  Pao, C. C .  Mow [ I ] ,  C. C.  Mow, L .  J .  Mente [ l ]  
examine dynamic problems o f  s t r e s s  concent ra t ion  near  a  round f r e e  ho le  o r  near  
a  so ldered  r i g i d  i n c l u s i o n  (Figure XI.8) i n  a  t h i n  i n f i n i t e  p l a t e ,  w i th in  which 
a  plane wave of  compression o r  displacement ( s teady  v i b r a t i o n s )  propagates .  
The gene ra l i zed  p lane  s t r e s s  s t a t e  is  assumed, i . e . ,  t h e  case  o f  a  t h i n  p l a t e  
i s  examined. 

Reflected waves o f  both compression and displacement occur  on t h e  contour  
o f  t h e  h o l e .  Thei r  p o t e n t i a l s  4 and $ s a t i s f y  Helmholtz equat ions  (XI.5) ,  t h e  /791 
gene ra l  s o l u t i o n  of which, i n  p o l a r  coord ina tes  ( r ,  8), can be represented  i n  
t h e  form 

9' (r ,  q = (A, cos me 3- B, sin me) H:) 
m=O 

(XI. 30) 
$* (r ,  6) = (C, COT me + Dm sin m6) H:' 

m=O 

Here Am, Bm, Cm, Dm a r e  undefined (cons tan t )  c o e f f i c i e n t s ;  a = w/cl, 6 = w/c2 

a r e  wave numbers; = Jm + iN i s  Hankel1s func- Hm m 
t i o n  o f  kind I ,  o f  t h e  m-th o rde r ;  w i s  r o t a r y  f r e -  
quency. Hankel1s func t ion  o f  k ind  I1 is  d iscarded  

-C 

i n  formulas (XI.30), a s  it does not  s a t i s f y  emission 
condi t ions  (XI.6). The a s t e r i s k  i n  t h e  @ and $ func- 
t i o n s  i n  (XI.30) i n d i c a t e s  t h a t  t h e s e  a r e  t h e  poten-  

-C 

t i a l s  o f  r e f l e c t e d  waves. - 
Figure XI.8. 

1 See A. Kromm [2]  ; I .  N .  Godier, W .  E .  Johsman [ I ] .  
2 ~ e e  F. M.  Mors, G .  Feshbakh [ I ] .  



l n f i n t e  Compression Wave. Free Hole. A plane harmonic compression wave 
propagating i n  t h e  d i r e c t i o n  of increas ing values of  x i s  defined by t h e  
following po ten t i a l s :  

(XI. 31) 

The supersc r ip t  I i n  the  $ and $ functions (XI.31) ind ica tes  t h a t  these  func- 
t i o n s  cha rac te r i ze  t h e  b a s i c  s t r e s s  s t a t e  

A plane wave i n  po la r  coordinates i s  represented1 i n  the  form 

eflw4) = &imJm (ar) cm m9e-imt, 

(XI. 32) 

(XI. 33) 

where J i s  t h e  Bessel functkon; m 

In  the  case o f  a f r e e  round hole of radius  a the  boundary condit ions on the  ;792 - 
contour of the  hole  a r e  

(XI. 34) 

From (XI.30), (XI.32)-(XI.34) we obta in  a lbegra ic  equation systems f o r  the  
determination o f  c o e f f i c i e n t s  Am, Bm, Cm, Dm. Consequently the  expressions f o r  

s t r e s s e s  and displacements a r e  obtained i n  t h e  form of Fourier-Bessel s e r i e s .  
For ins tance ,  the  s t r e s s  ag on the  contour of the  hole  i s  

'see F .  M. Mors, G .  Feshbakh [ I ] .  
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-- 

~,,,i~s,,, cos m8e-lot 

(XI. 35) 

I f  i n  formulas (XI.35) a approaches zero and we use an asymptotic Hankel1s 
funct ion  f o r  small values o f  the  argument, then we ob ta in  a t  t h e  l i m i t  a known 
s t a t i c  so lu t ion  of the  corresponding problem. 

For a l l  waves except "very long" and "very short"  waves ( the  convergence 
of s e r i e s  deprecia tes  a s  the  frequency increases) ,  the  s t r e s s e s  a r e  determined 
by summing s e r i e s  (XI.35). Consequently we obta in  f o r  ag on t h e  contour of 

t h e  hole t h e  expression 

08 I,,, = Re { ( R  f il)e-'@*) = 1/~-+ JPe e-'(d4), 
I 8 = arctan - (XI. 36) 
R 

During t h e  t o t a l  period o f  v ib ra t ion  (0, T = 27r/w) t h e  r e a l  p a r t  o f  R 
represents  t h e  s t r e s s  a t  t h e  moment t = 0; during t h i s  moment t h e  s t r e s s e s  i n  
the  inc ident  wave achieve t h e i r  maximum f o r  8 = ~ / 2 .  The imaginary p a r t  I 
gives the  s t r e s s  a t  t h e  moment t = T/4; the  s t r e s s e s  a r e  equal t o  zero i n  t h e  
inc ident  wave a t  t h i s  moment when 8 = n/2. The absolute  value of gives 
t h e  maximum value o f  s t r e s s  ag. 

I t  follows from (XI.32) t h a t  t h e  maximum s t r e s s e s  i n  t h e  inc ident  wave a r e  

- 
The r e l a t i o n  (5 ) ,=, can be regarded a s  t h e  dynamic s t r e s s  concentrat ion 

c o e f f i c i e n t .  

The concentrat ion c o e f f i c i e n t  on the  contour of  a round hole  i s  shown i n  /793 
Figure XI.9 a s  a funct ion  of  frequency (a = w,!c ) when 8 = 7~/2 f o r  an inc ident  

1 
compression wave f o r  various Poisson's r a t i o s .  



I f  an  a d d i t i o n a l  f i e l d  i s  superimposed on s t r e s s  f i e l d  (XI.32) s u c h ' t h a t  
t h e  t o t a l  wave produces t h e  b a s i c  s t r e s s  s t a t e  of t h e  form 

(XI. 37)  

then ,  from (XI.37) f o r  a -t 0, we w i l l  have the  un iax ia l  s t r e s s  s t a t e  

The concent ra t ion  c o e f f i c i e n t  a s  a  func t ion  of  frequency is  represented  
i n  t h i s  ca se  i n  F igure  XI.lO. 

F igu re  X.9. F i g u r e  XI.lO. 

The d i s t r i b u t i o n  o f  ag along t h e  contour  of a  f r e e  round ho le  f o r  var ious  

va lues  o f  aa i n  b a s i c  s t r e s s  s t a t e  (XI.32) i s  i l l u s t r a t e d  i n  F igure  X I . l l  (v = 
= 0.35). 

These graphs show t h a t  t h e  s t r e s s  s t a t e  depends cons iderably  on t h e  r a t i o  
between t h e  wavelength and t h e  dimension o f  t h e  h o l e  and on Poisson 's  r a t i o .  
In  a  c e r t a i n  range o f  wave numbers t h e  concent ra t ion  c o e f f i c i e n t  is  about 10% 
g r e a t e r  than  i n  t h e  s t a t i c  case.  



Figure XI.ll. 

Incident Compression Wave. R i g i d  Inclusion. The dynamic pattern of 
stress distribution in a plate with a rigid soldered circular nucleus during / 794 - 
the action of plane harmonic compression wave (XI.31) is examined by Y. H. Pao, 
C. C. Mow [I] .  

In static problems, as we know, the boundary conditions consist in the fact 
that the displacements along the soldered joint between the plate and rigid 
inclusion are equal to zero. In dynamics this condition is valid only when the 
inclusion is fixed in space by the corresponding external forces or possesses 
infinite density. If, on the other hand, these two factors do not obtain, the 
inclusion, when acted upon by the incident wave, will be displaced in space -- 
it will oscillate as a rigid body. In this case the kinematic boundary condi- 
tions will be such1 that the displacements caused by the incident and reflected 
waves will produce a linear displacement and rotation of the inclusion, which 
moves as a rigid body. 

Fixed Rigid Inclusion. For stresses on the boundary r = a of the seam we 
obtain the following formulas: 

OD 

2 , $DH; (b) 
arl,=o == R p@,,P2 &irn- cos m8e-'ot. 

A #., 

00 

2 im-1 m H m  (Ba) 
z,8lr== = ; pa&2 c m  sin moe-lo', 

m.=O 
Am 

'see H. Lamb [I], K. Sezawa [I]. 



A, - aba2ff; (aa) HI ,  ($a) - m 2 ~ ,  (4 Hm ($a)* 
(XI. 38) 

/795 - 

since 0 < v < 1/2 and a2/82 = (1 - v)/2, oe/r=a is always less than 

Nonfixed Rigid Inclusion. If u and v are radial and tangential compo- 
nents of the displacement vector, then the boundary conditions will acquire the 
form 

I ' U I , = ~  = u + U = U cos 6 ,  
1 '  ~l,,~ = v -+. v = - U sin 6 ,  (XI. 39) 

where U is displacement of the nucleus in the direction of propagation of the 
wave, and is found from the motion equation for r = a 

. . zn 
mag1U = [ (urcos 6 - zro sin 8 )  ado, 

0 

(XI. 40) 

where g is the density of the material of the nucleus. 1 

Since the desired stresses are represented in the form of series with 
respect to sin me, cos me, by substituting them into (XI.40), using the ortho- 
gonality of the trigonometric functions, we obtain 

(XI. 41) 

Here g is the density of the medium. 

Consequently we have for displacements and stresses on the boundary, the 
following expressions: 

vIr=a - - 40' T PHI (Pa) - PaH, (pa)] sin 8. 
~ 6 1  



00 

- eoH0 (@)I ;, cos 8 + 2z im-' tiff; (Bo) cos rno} , 
Am (XI .42) 

Figure XI.12 shows t h e  d i s t r i b u t i o n  of s t r e s s  or on t h e  boundary r = a f o r  /797 - 
q = 0, v = 0.25, a a  = 0.10, determined by formulas (XI. 38), and Figure XI. 13 
shows the  same a s  found by formulas (XI.42) f o r  q = 0.5, a a  = 0.10 and aa = 2.0, 
v = 0.25. 

The change of  the  p r inc ipa l  s t r e s s  ol, ca lcu la ted  by formula 

is  shown i n  Figures XI.14 and XI.15 a s  a function of aa a t  the  po in t s  0 = 0 and 
0 = T f o r  the  case q = 0 and q = 0.5. 

We s e e  i n  Figure XI.14 t h a t  i n  the  case o f  an inc lus ion t h a t  i s  f ixed  i n  
space, as  t h e  wave number approaches zero a t  t h e  points  9 = 0 and 0 = T, the  
s t r e s s e s  a become i n f i n i t e l y  la rge .  

r 

I f  t h e  force  applied t o  t h e  boundary r = a and d i rec ted  along t h e  Ox a x i s  
is  ca lcula ted  on the  b a s i s  o f  (XI.38), we obta in  

2f 
X = \ (o,cos8 - r r ,  sin 6) ad8 = 

A s  aa approaches zero we w i l l  have the  following asymptotics: 

(XI. 43) 



Figure  XI.12 Figure  XIi11  

Fi gure XI.14. 



These expressions show t h a t  when t h e  values of  a a  a r e  small  t h e  f o r c e  t h a t  
keeps t h e  i n c l u s i o n  f i x e d  has t o  be g r e a t .  I n  t h e  case  o f  s tanding  waves t h i s  
does not  occur1 s i n c e  we a r e  not posed with t h e  ques t ion  of  whether o r  not t h e  
inc lus ion  moves. Standing waves a r e  r e a l i z e d  i n  t he  fol lowing manner. 

If  on wave f i e l d  ( X I .  31) we / 798 
141 

- 
superimpose a  wave with t h e  same 

2 amplitude and frequency, bu t  which 
moves i n  t h e  oppos i te  d i r e c t i o n ,  we 
ob ta in  t h e  displacement p o t e n t i a l s  

I q1 = 2@, cas axe-lYt. 
(XI. 44) 

g' = 0. 

0 
@ 02 a P These a r e  s tanding  waves. I n  t h e  

given case ,  only t h e  terms t h a t  
Figure XI.15. correspond t o  even m r e m a i n ~ i n  t h e  

expansion o f  t h e  p lane  wave (XI. 33) .  
The s t r e s s e s  and displacements a r e  given by formulas (XI.35), (XI.38) and 
(XI .42) ,  i n  which the  terms with even m a r e  omit ted.  

Incident  Displacement Wave. Free Hole. A plane harmonic displacement 
wave moving i n  t h e  d i r e c t i o n  of t h e  x a x i s  is  given by wave p o t e n t i a l s  

(XI .45) 

In  t h e  case  o f  a  round ho le ,  t h e  s t r e s s  and deformation s t a t e s  a r e  
determined i n  t h e  same manner a s  f o r  an inc iden t  compression wave. A s  a  r e s u l t  
we o b t a i n  f o r  t he  s t r e s s  oO on t h e  contour o f  t h e  ho le  

8 
+ - ( 1  - $) p2py0 ins, sin m ~ e - ' ~ ,  

n 

( ' J I sm = im m2 - 1 - -i fJ2a2 Hm (aa)  A, , 

(XI. 46) 

l ~ u e  t o  symmetry with r e spec t  t o  t h e  y  a x i s .  



Figure XI.16. 

upon the  inc lus ion from t h e  d i r e c t i o n  o f  
determined by t h e  formulas 

rtle values -- a r  - *mar %I,=U -pB2yo - '70 

a r e  shown i n  Figure XI.16 a s  func- 
t i o n s  of  the  parameter Ba f o r  
8 = n/4 (Figure XI.16,a) and 8 = 
= 3 ~ / 4  (Figure XI. 16,b), f o r  
various values of V. 

Incident Displacement Wave. 
R i g i d  Inclusion. I n  t h e  case o f  a 
r i g i d  soldered nucleus ( inc lus ion)  
o f  a r b i t r a r y  dens i ty ,  t h e  r e s u l t a n t  
forces and torque ac t ing  on t h e  
contour of the  soldered j o i n t  r = a 

the  inc ident  and r e f l e c t e d  waves are  

2 n '  

X = I (ar cos8 - T,, sin b) ado, 
i 

2n 

From Newton's second law 

(where 9 is  r o t a t i o n  of  the  nucleus) and from r e l a t i o n s  

u = u,cose + u, sin 6, 
v ;- -uxsin8 +u,cos8 + a 8  

(XI .47) 

(XI. 48) 

(XI. 49) 

we obta in  t h e  condit ions f o r  the  determination of the  constants  i n  the  general  
so lu t ion  of  (XI.30). The s e r i e s  obtained, due t o  i t s  awkwardness, w i l l  not be 
w r i t t e n  out  here1. Figure XI.17 i l l u s t r a t e s  the  change of rre on t h e  boundary 

r = a of the  seam f o r  8 = n/2 and 8 = -K as a function o f  frequency f o r  various 
tl = g./g when v = 0.25. 1 

'see C. C. Mow, L. I .  Mente [ I ] .  

90 2 



Nonstationary Asymmetric Problems. Round Hole. Ya. M. Mindlin [l] 
constructed an integral of the wave equation that is a generalization of the 
Lamb-dlAlembert formula for the case of the asymmetric problem: 

(XI. 50) 

where n is a whole positive number or zero, and the function Q(r, 0) satisfies 
the wave equation 

The functions A:'), A:~) obey the conditions 

(XI. 51) 

n+e (1) 1 im p A, (p) rz 0, I im p+c (*) A n  (14 = 0, 
p+-= Ir- 

where E: is any positive number. Ya. A. Mindlin [2] applies the solution in the 
form (XI.50) to the problem of plane elasticity theory, where the displacements 

on the boundary of a round hole are given and 
represented in the form of a Fourier series with 
respect to an angular coordinate. When the 
initial and boundary conditions are satisifed, 
integral Voltaire equations1 of kind I are 
obtained for functions A n ' 

In certain works the plane problem with a 
nonstationary external action for a round hole 
(cavity) is examined with the aid of integral 
transformations. Briefly, the essence of the 
solution method is as follows. 

In the space of the Laplace transformations 
equations (XI.51) acquire the form 

Y 

2 84 

Figure XI.17. 

(XI. 52) 

'M. M. Sidlyar [I] examines the analogous problem in stresses by this method. 



where 

w 

r ( r ,  el p) = ( c - P ! ~  (r. 0, f )  dl. 
0 

Equations (XI.52) i n  p o l a r  coord ina tes  have a  s o l u t i o n ,  damping a t  
i n f i n i t y ,  o f  t h e  fol lowing form: 

0 = K.  (5  r )  (A. eos n0 + 8. sin no). 

(XI. 53) 

where K i s  McDonald's func t ion .  n 

Equations (XI.52) should be  s a t i s f i e d  both  by t h e  p o t e n t i a l s  of  t h e  waves 1801 - 
r e f l e c t e d  on t h e  ho le  and by t h e  p o t e n t i a l s  t h a t  desc r ibe  t h e  b a s i c  s t r e s s  
s t a t e ,  i . e . ,  t h e  s t a t e  caused by t h e  load appl ied .  

The b a s i c  s t r e s s  s t a t e  i s  represented  i n  t h e  form Four ie r  s e r i e s  

(XI. 54) 

From t h e  boundary condi t ions ,  subjec ted  t o  Laplace t ransformation,  we f i n d  
An, Bnl  Cn, D a s  func t ions  of p, a f t e r  which we must convert  t o  t h e  space of n  
t h e  o r i g i n a l s .  A s  we know, t h e  func t ion  f ( t )  i s  def ined  through i t s  t r a n s f o r -  
mation F(p) us ing  t h e  opera tor :  



J"P 
I n  the  problems1 a t  hand we have a branching 

point  of the  function under the  i n t e g r a l  a t  the  
o r i g i n  o f  the  coordinate system and of the  semi- 
a x i s  i n  t h e  l e f t  hand h a l f  plane, s ince  the  s t r e s s  
s t a t e ,  a s  time passes, should approach t h e  s t a t i c  

8 
s t a t e  asymptotical ly.  Therefore, as  the  contour 
of in teg ra t ion  we may use the  contour represented 

E Rep i n  Figure XI.18. A s  t he  radius o f  a rcs  AB and EF 
increases t h e  functions under the  i n t e g r a l  approach 
zero uniformly with respect  t o  arg p. Then the  
value o f  the  i n t e g r a l  f o r  s t r a i g h t  l i n e  AF i s  
equal t o  i ts  values ca lcula ted  f o r  the  s i d e s  of  

Figure XI.18. sec t ion  BC and ED, t o  t h e  sum of  remainders o f  
t h e  i n t e g r a l  function a t  i t s  poles,  and t o  t h e  
i n t e g r a l  f o r  the  i n f i n i t e l y  small v i c i n i t y  a t  t h e  
o r i g i n  of  the  coordinate system. 

M .  L. Baron and A.  T. Mattews [ l ,  21 analyzed t h e  s t r e s s  and deformation 
s t a t e s  i n  t h e  v i c i n i t y  of  a c i r c u l a r  plane2, where a plane s t r e s s  wave of  a 
stepped form moves within t h e  mediwn ( i n  the  points  o f  the  medium which reach 
t h e  wave f r o n t  t h e  s t r e s s e s  increase  suddenly, and then remain cons tan t ) .  The 
expansion o f  t h e  bas ic  s t r e s s  s t a t e  on t h e  contour of t h e  hole i n t o  a Four ier  
s e r i e s  shows t h a t  t h e  harmonics n = 0 and n = 2 i n  formulas (XI.54) continue 
t o  be nonzero values from t h e  moment the  wave f ron t  passes the  cavi ty .  The 
ca lcu la t ions  made by t h e  above-cited authors show t h a t  during c e r t a i n  moments 
of time ( a f t e r  the  wave has passed the  cavi ty)  t h e  s t r e s s  concentrat ion exceeds 
the  s t a t i c  value by 9-11%, and then approaches t h e  s t a t i c  value a s  time passes.  

54. Curvil inear  Hole w i t h  Rather Smooth Contour 

The problems examined i n  the  preceding sec t ions  o f  t h i s  chapter  p e r t a i n  
only t o  a round hole. They a r e  a l l  r e l a t e d  t o  the  separa t ion  of va r i ab les ,  
which i n  boundary problems o f  e l a s t i c i t y  theory is done only i n  Cartesian,  
cy l indr i ca l  (polar)  and spher ica l  coordinate systems. Therefore, i n  order  t o  
so lve  dynamic problems f o r  holes whose shapes a r e  not c i r c u l a r ,  it i s  necessary 
t o  f i n d  d i f f e r e n t  methods. One such method3 is t h e  conversion t o  a system of  
i n t e g r a l  equations f o r  the  determination of  displacement po ten t i a l s .  However, 
the  determination of the  so lu t ion  t o  i t s  completion by t h i s  method, i . e . ,  t he  
determination o f  s u f f i c i e n t l y  accura te  numerical r e s u l t s ,  necess i t a t e s  t h e  
so lu t ion  of voluminous a lgebra ic  equation systems4. Simultaneously, f o r  a row 
of  holes t h a t  a r e  "close" ( i n  a given sense) t o  round it i s  poss ib le  t o  a r r i v e  
a t  a more o r  l e s s  compact approximate so lu t ion  t h a t  y ie lds  t o  q u a l i t a t i v e  
ana lys i s .  Such a so lu t ion  f o r  a s teady process was found by t h e  "boundary form 
perturbat ions" method by V.  D. Kubenko 13-61, 

'see M. M .  S id lyar  [ Z ] .  
. 2 ~ . e . ,  i n  t h e  case of plane deformation. 
3 ~ e e  V. D. Kupradze [ Z ] .  
%ee R .  P. Banaugh, W. Goldsmith [ I ] .  



Solution Method. We will outline briefly the idea of this method in 
application to dynamic problems ' . 

We introduce the dimensionless values 

(XI .55) 

-+ 
where r, 8 are polar coordinates; u(u, v) is the displacement vector; a. is 

a linear dimension (radius of round hole, close to the examined contour); QO 

is the intensity of the stress state. 

In the new symbols, the bar above which we will omit, we find that the 
displacement potentials satisfy Helmholtz equations 

(XI. 56) 

where 

The stresses in polar coordinates are found through the functions $ and $ from - /803 
formulas 

(XI. 57) 

Consider an infinite plane z weakened by a hole with contour r ,  whose 
center of gravity coincides with the origin of the coordinate system (Figure 
XI.19). Let the function 

  he application of this solution method to static problems is described in 
Chapters VI and X. 



z - ~ ~ ( 5 )  = 5 + ef (c), z = re f@.  
(XI. 58) 

f - ~ e ' '  (IEt<<l), 

map conformally the infinite plane 5 with a 
hole in the form a unit circle onto infinite 
plane z with hole r .  The choice of the func- 
tion f (S) in (XI.58) enables us to find a 
hole of rather arbitrary form without angular 
points. 

Figure XI.19. 
From (XI.58) we obtain the following 

relations : 

(XI. 59) 

where a is the angle between the radial direction in plane z and the direction 
of the external normal to the curves into which the circles constructed from 
the origin of the coordinate system in plane < are transformed by the function 
m1 (0 (XI. 58) 

The boundary conditions in the case of the first basic problem consist in 
assigning the stresses on r 

(XI. 60) 

As we know, the general solution of equations (XI.56) (with consideration /804 - 
of the emission conditions) in polar coordinates r, 8 has the form 

(r, 0) = (A. cos m 0 i- B, sin m0) H,,, (cob). 
mPO 

(XI. 61) 

Ip (r .€I) = (C, cos me + Dm sin me) H,,, (w). 

  he rigorous derivation of these relations is given in Chapter VI. 



S t r e s s e s  or, a8, T (XI.57) a r e  r e l a t e d  t o  s t r e s s e s  a a T by t h e  known r e  n' s '  ns 
t ransformat  ion  formulas: 

on = a, cos2 a + a. sin2 a $ 22,& sin a cos a, 

us = or sin2 a + a. cos2 a - 22,# sin a cos a, 

z,, = (a6 - or) sin a cos a + z,o (d a - sina a). 
(XI .62) 

We w i l l  r ep re sen t  t h e  s o l u t i o n  of equat ions (XI.56) and s t r e s s  components 

On' as and T,, i n  t h e  form of  s e r i e s  with r e spec t  t o  parameter E: 

OD 0 

% k .  0) = e'ub" (r. O), a, (r, 0) = 2: (r, 8). 
I== 0 I-0 

(XI. 63) 

We expand func t ions  h and g i n  (XI.60) by degrees of  t h e  small  parameter E 

00 a0 

h (8, E )  = 2: e1hi ( B ) ,  g (8, e) -; eig, (g. 
1-0 i=o (XI. 64) 

By s u b s t i t u t i n g  (XI. 63)' (XI. 64) i n t o  (XI. 56), (XI. 57) and (XI. 62), a s  
well  a s  t h e  expansions (XI.59) with  r e spec t  t o  E,  equating t h e  c o e f f i c i e n t s  f o r  
i d e n t i c a l  degrees o f  E ,  we o b t a i n  equat ions f o r  t h e  j - t h  approximation 

(v' + 02%) cpi (r, 0)  = 0, 

(v' + m2) qj (r. 0) = 0 
(XI. 65) 

and t h e  boundary condi t ions  

d/' 1, = hj (8). qj$ lr = g (@)- (XI. 66) 

The gene ra l  s o l u t i o n  o f  (XI.65), i n  accordance wi th  (XI.61)' has t h e  form - /805 



- -  

9, ( r ,  9) = H, (WE~) (A: cos m0 + B:) sin me), 
m=O 

.- 

$, (r,  9) = H,,, (wr) (c:) cos me + D!) sin m0). 
L 

m=O 

I n  t h e  j - t h  approximation t h e  s t r e s s e s  a r e  given by t h e  formulas 

(XI. 67) 

(XI. 68) 

where f o r  b r e v i t y  t h e  p a i r  o f  func t ions  TS (Q,*) and 9 Q 6 )  is  expressed 

through Qs, i . e . , 0, -- 9, (e,  8). $, (e, 0). 

The d i f f e r e n t i a l  ope ra to r s  i n  (XI.68) have t h e  form 

where ' 

(XI .69) 

 or b r e v i t y  we w i l l  w r i t e  f i n  formulas (XI. 70) i n s t e a d  o f  f (5) . 



- cT+ 51 . aa ('2 cos d - - d' 
QS apa6 I+Fsin 2~ 8)- ; 

4i fg-  2i (f;' + p) cos 2 6  - 2 (1%- F)sin 20 d -i- .-- 
8iq3 dW 

- - (u - g ) ~  a (p +?) i sin 26- (p - p) cos 2 6  d . 
8qa .G + .- 

4iqa d 0  * 

- 
4i j j  - 2i (f2 -t p) cos 26 - 2 ( f l -  P) sin 2 6  # 

i- .-- 
8ipz ~ Q W ? L  

- (fn - ( f i3  . + ( fa  +?z) i sin 2 6  - (12 -k) cos 2 0  8 . .- 
89' aes 4 i ~ ~  ae'de ' 

- 
4 i f r -  2i ( j2  + F) cos 26 - 2 ( f 2  - P) sin 26 i- .- 

&Q' a$@ + 

- - 4ifr1 2 ~ _ ( ~ ~ ~ ) 2 s  26 - 2 ( [a  - p) sin 26 d 
8i Q* a~ 

In (XI . 6 8 )  we denote through 2;) t h e  values 

(XI . 70 )  



I n  t h e  j - t h  approximation, a s  fol lows from (XI.68), on ly  t h e  func t ions  q . i (~ ,  0 )  
and gj(p, 0)  remain unknown. 

Comparing (XI.68) with (XI.57), we s e e  t h a t  a l l  va lues  of  t h e  j - t h  o r d e r  
a r e  determined through t h e  func t ions  4 .  (P,  8) and $. (p, 8 ), j u s t  a s  i n  (XI.57), 

J J 
i f  we s u b s t i t u t e  formally i n  them r by P and 8 by 9. The func t ions  4; ( P , a  ) 

J 

and $ , (p ,8  ) themselves .a re  found by s imple s u b s t i t u t i o n  of r, 8 by P ,  8 i n  
J 

func t ions  @ . ( r ,  0 ) ,  $.(r, 8 ) ,  which a r e  t h e  s o l u t i o n s  o f  equat ions (XI.65). 
3 3 

Thus, i n  each of  t h e  s e r i e s  approximations t h e  problem reduces t o  t h e  
de te rmina t ion  of  t h e  s o l u t i o n  f o r  t h e  e x t e r i o r  of t h e  h o l e  i n  t h e  form o f  a 
u n i t  c i r c l e ,  which enables  us  t o  use the  method o f  v a r i a b l e  s epa ra t ion .  

We w i l l  e x m i n e  a few s p e c i f i c  problems. 

Oscillating Pressure  Applied to Contour of Hole. We w i l l  assume t h a t  a 
uniform pressure ,  changing harmonically wi th  t ime, is app l i ed  t o  t h e  contour  o f  
ho le  r i n  an i n f i n i t e  e l a s t i c  p l a t e .  The boundary condi t ions  on t h e  ho le  have 
t h e  form 

(XI. 71) 

By expanding t h e  r i g h t  hand s i d e  of (XI. 71) with r e s p e c t  t o  E, we w i l l  have, i n  
accordance wi th  (XI. 60) and (XI. 64), 

k c -  1, h , = h , =  ... = h , =  . . .  =g,=g ,=  ...- = g m =  . . .= 0. (XI.72) 

Thus, t h e  boundary condi t ions  a re :  



i n  t h e  zero approximation 

i n  t h e  f i r s t  approximation 

i n  t h e  second approximation 

(XI .73) 

(XI. 74) 

(XI .75) 

I n  boundary condi t ions  (XI.73)-(XI.75) t h e  l e f t  hand s i d e s  a r e  represented  by /808 - 
expansions (XI. 68) . 

The func t ion  f (5) i n  (XI. 58) is  taken  i n  a more convenient1 form: 

where N i s  a whole p o s i t i v e  number. 

(XI. 76) 

The func t ion  (XI. 76) enables  us t o  ob ta in  var ious  holes  with rounded 
co rne r s2 .  Thus, when N = 1 we have an  e l l i p t i c a l  ho le  with semiaxes a and b ,  
i . e . ,  

when N = 3 and E = 21/9 o r  E = +1/6, a square ho le  with rounded corners ;  when 
N = 2 and E = +1/4 ,  a t r i a n g u l a r  ho le  wi th  rounded co rne r s .  The s i g n  of  para- 
meter  E determines t h e  o r i e n t a t i o n  of t h e  h o l e  i n  r e l a t i o n  t o  t h e  x and y axes.  

Proceeding t o  t h e  s o l u t i o n  o f  t h e  problem we s e e  t h a t  i n  t h e  zero 
approximation i t  i s  s u f f i c i e n t  t o  t ake  a s  t h e  s o l u t i o n  of equat ions (XI.65) 

- - 

 o ore complex express ions  f o r  t h e  func t ion  f ( 5 )  do no t ,  i n  p r i n c i p l e ,  add any- 
th ing  new, b u t  simply impede t h e  mathematical c a l c u l a t i o n s .  

' G .  N .  Savin and N .  A .  S h u l ' g i  [ I ]  proposed f o r  such forms o f  ho les  t h e  method 
o f  s o l u t i o n  of  analogous dynamic problems f o r  a ma te r i a l  whose e l a s t i c  s t a t e  
is cha rac t e r i zed  by an asymmetric s t r e s s  t enso r  (Chapter VI). 



go -- A ~ O ' H ~  (a@), q0 0. (XI .77) 

In the zero approximation the solution of the problem as stated for 
boundary conditions (XI.65) is the solution of the axisymmetric problem for a 
round hole. 

In the first approximation the displacement potentials should be taken 
in the form 

q1 = D$!+]HN+I (ar) sin (N + 1) 8. 
(XI .78) 

We see from (XI.78) that even in the first approximation a displacement wave 
appears. 

Finally, the displacement potentials in the second approximation have the 
form 

q2 = D & ~ H ,  (01) sin 2 (N + I) 8. 
(XI. 79) 

The boundary conditions (XI.73)-(XI.75) are used for the determination of the 
( 1 )  constants A ~ O ' , A ~ + ~ , D $ $ , . A ~ ) , A ~ $ + ~  H D:$+~. 

max Figure XI.20 shows the stress un6) along the x axis for v = 0.28 for 

a round (curve 1)) elliptical (curve 2) E = 1/5 and square (curve 3) E = 1/9 
hole when w = 1. As we see, the curvilinearity of the hole has an effect on /809 - 
the stresses only in the vicinity of the contour. 

Figure XI.21 shows the stress umax as a function of frequency w on the 
S 

contour of a round (curve l), elliptical (curve 2) E = 1/5 and square (curve 3) 
E = 1/9 hole at the point of maximum concentration of the stresses. As we see, 
in a certain range of frequencies the stress a exceeds its static value by an 
average of 15%. S 

The convergence of the series approximations for the elliptical E = 1/5 
and square c = 1/9 holes is illustrated in Table XI.l. 



Figure XI. 20. Figure XI.21. 

TABLE XI. 1 

I 1 I Approximation 

Hole I IZero F i r s t  / Se- I lcond 

Incident Compression 
Wave. E l l i p t i c a l  and Square 
Free Holes. We w i l l  g ive  a 

Precise p l a n e h a m o n i c w a v e b y d i s -  
sol  u- placement p o t e n t i a l s 1  
t ion  

0,"" 

1 (Wb-t) ~ ' = - ~ e  v 

( X I .  80) 

t o  which corresponds. the  - /810 
Tr. Note: Commas indica te  decimal points .  bas ic  s t r e s s  s t a t e  of  the  

form 

E l l i p t i c a l  

Square 

(XI. 81) 

The a s t e r i s k  denotes t h e  p o t e n t i a l s  of the  r e f l e c t e d  waves and the  s t r e s s e s  
corresponding t o  them. 

0 
0,6 

0 
0.8 

The boundary condit ions on the  contour of  a  f r e e  hole have t h e  form 

I '  I *  
( a n  i- un)r = 0, (rnr + ~ r r r ) ~  = 0. (XI. 82) 

1,000 
1,261 

1.000 
1,307 

'see V.  D . Kubenko [4,  51 . 

914- 

1,800 I 1.960 
2,215 

2,333 
2,894 

2,395 

2,777 
3,637 



The p o t e n t i a l s  $*, $J* a r e  t h e  s o l u t i o n s  o f  Helmholtz equat ion (XI.5). 

According t o  t h e  s o l u t i o n  method descr ibed  above, we w i l l  r ep re sen t  

o1 r1 i n  a form of  s e r i e s  with r e spec t  t o  p r a m e t e r  E.  For t h i s  purpose 
On' s' ns  
we w i l l  use  t h e  expansion o f  t h e  p lane  wave i n  p o l a r  coord ina tes  (XI.32) and 

i a expand t h e  func t ions  r, 8 and e (XI.59) with  r e spec t  t o  E.  We then  o b t a i n  
1 formulas f o r  o and r1 with cons ide ra t ion  o f  t h e  zero,  f i r s t  and second n ns 

approximations: 

$. krcos(m+ N + 1)6 + kE'cos(rn +- N 4-3)6]+ 

i- E~IK:' cos (m - 2N - 4) 6 +K:' cos (m - 2N - 2) 6 + 

a0 

~ i ~ / ~  = g (6, E) = e-'a emim sin (m - 2) 6 - 
-0 

I - - sin (m + 2) B] + c [kc' sin (m - N - 3) 6- &:'sin (m - N + 1) -!- 4 

+ kg'sin(m + N  + 1)6 - kz ' s in (mf  N +3)61 4- 

(XI. 83) 



where 

(XI. 84) 



By s u b s t i t u t i n g  (XI. 83) i n t o  (XI. 82) ,  r e c a l l i n g  t h a t  a:'') , * a r e  n s  
def ined by formulas (XI .68) ,  we ob ta in  a l g e b r a i c  equat ion systems f o r  t h e  

determinat ion of  t h e  c o e f f i c i e n t s  A:), B:), c,?, D:' (m=O, 1.2,. . . ; j =O ,  1.2 ,... ). 

The s t r e s s e s  a a and T a r e  ca l cu la t ed  by formulas (XI .63) .  Hence i n  
n' s ns 

each of t h e  approximations t h e  r e a l  and imaginary p a r t s  have been ca l cu la t ed ,  
t h e  phys ica l  sense  of which was explained i n  53. During t h e  c a l c u l a t i o n s  
s e r i e s  (XI.83) were terminated a t  t h e  17-th term, which in su res  s u f f i c i e n t  
accuracy i n  t h e  frequency range under cons idera t ion .  A BESM-2M computer 
was used f o r  t h e  c a l c u l a t i o n s  and i t  was assumed t h a t  v = 0.28. 

Figure XI.22 shows t h e  change o f  a with frequency on t h e  contour  o f  an  
S 

e l l i p t i c a l  ho le  with t h e  semiaxes a  = 2 and b = 3 when 8 = ~ / 2 .  The broken 
curve corresponds t o  s t r e s s e s  a t  t h e  o r i g i n  o f  t h e  per iod ,  t h e  dot-dash curve, 
t o  stresses fol lowing one-fourth of t h e  per iod ,  and t h e  s o l i d  curve,  t o  maximum 

I 1 max 
as A s  we s e e ,  i n  a  c e r t a i n  frequency range a exceeds i t s  s t a t i c  va lue .  I n  

S max - 
p a r t i c u l a r ,  when w = 0 . 4  t h e  s t r e s s  a - 4.106, which i s  8.2% g r e a t e r  than  
t h e  s t a t i c  value.  

2 U' 

Figure XI. 22. 

TABLE XI.2. 

Approximation P re -  
0 I Se- ci  s e  

s o l  u- 
t i o n  

TABLE XI.3. 

T r .  Note: Commas i n d i c a t e  decimal po in t s .  

I Approximation P re -  

The convergence of  approximations f o r  an e l l i p t i c a l  ho le  when & = -1/5 a t  - /813 
t h e  po in t  8 = n/2 is  shown i n  Table XI.2. 

s t  I 

The d i s t r i b u t i o n  of  a on t h e  contour  of  t h e  ho le  a t  t h e  beginning o f  t h e  
S 

c i s e  
solu-  

per iod  ( r e a l  p a r t  of t h e  s o 1 u t i o n ) ' i s  shown i n  Figure XI.23. On t h e  b a s i s  o f  
t h e  graphs presented he re in  we may conclude t h a t  t h e  s t r e s s  s t a t e  changes 
cons iderably  with frequency. 

I I I I 
, t  ion 



Figure XI. 23. Figure XI. 24. 

Figure XI.24 shows ( j u s t  a s  i n  Figure XI.23) as a s  a function of w on the  

contour o f  a square hole f o r  E = 1/9 when 0 = ~ / 2 .  Here too  t h e r e  i s  a f r e -  
quency range i n  which the  s t r e s s  exceeds i t s  s t a t i c  value.  ?he values of  the  
s e r i e s  approximations f o r  a square hole  (E = 1/9, 8 = ~ / 2 )  a r e  presented i n  
Table XI.3. 

Incident Displacement Wave. Square Free Hole. Let the  b a s i c  s t r e s s  s t a t e  
be r ea l i zed  i n  a p l a t e  with the  a i d  of a plane harmonic displacement wave whose 
displacement p o t e n t i a l s  have the  form 

To these  p o t e n t i a l s  corresponds the  s t r e s s  s t a t e  

(XI. 85) 

(XI. 86) 

A s  i n  the  preceding case,  f o r  boundary condit ions (XI. 82) we obta in  a - / 8 14 
representa t ion  of the  bas ic  s t r e s s  s t a t e  i n  the  form of the  s e r i e s  



w 
1 ~ i l ~  = h (8, e) = riuf 2: €,im ( T Jm (a) [sin (m + 2) 6 - 

ncE0 

-sin(m-2)6] + e 2 [ - ~ ~ ' s i n ( m - ~ - 3 ) 6 +  

(XI. 87) 

The values , ) 0 , .  . . 8 m  = 0 , 2 )  a r e  given by formulas (XI. 84), 

i n  which UE must b e  replaced by w, and the  f a c t o r s  1 + v, 1 - v a r e  omitted. 

By s u b s t i t u t i n g  (XI.87) and (XI.68) i n t o  (XI.82) we obta in  an equation 
system f o r  the  determination of a r b i t r a r y  constants .  The ca lcu la t ions  were 
made a s  i n  t h e  case of  a compression wave. The graphs f o r  os on t h e  contour of  

a square hole f o r  E = -1/6 a t  the  points  8 = n/4 and 8 = 3n/4 a r e  presented i n  
Figures XI.25 and XI.26, In  t h i s  example we see  c l e a r l y  t h e  asymmetry i n  t h e  
d i s t r i b u t i o n  of s t r e s s e s  i n  t h e  "shadow" and "illuminated" regions ' . Thus, i f  - /815 
oS drops t o  4 when 8 = 3n/4 and w = 1, then when 8 = n/4 and w = 1 it exceeds 7. 

In t h e  tfshadow" region t h e  frequency range with t h e  high concentrat ion 

- - 

 he "illuminatedff pa r t  o f  the  contour i s  d is t inguished from t he  "shadow" by 
t h e  g r e a t e s t  diameter of the  hole ,  perpendicular  t o  t h e  d i rec t ion  of propaga- 
t i o n  of t h e  inc ident  wave. 



c o e f f i c i e n t  i s  extended more than i n  t h e  " i l luminated" p a r t .  This d i f f e r ence  
i s  even more marked when t h e  r e a l  o r  imaginary va lues  of  a_ a t  t h e s e  p o i n t s  

J max a r e  compared. In  p a r t i c u l a r ,  when 8 = n/4 and w = 0 . 4 ,  s t r e s s e s  0 = 9.234,  
i . e . ,  15.4% g r e a t e r  than  t h e  s t a t i c  va lue .  S 

55 .  Some Comments Concerni ng Problems f o r  Mu1 t iply-Connected ~ e g i  ons 

The s o l u t i o n  of  t h e  problems o f  s teady  o s c i l l a t i o n s  o f  an e l a s t i c  body 
t h a t  occupies a  multiply-connected reg ion  can be found i n  t h e  monograph of V .  D .  
Kupradze [ 2 ]  and i n  t h e  a r t i c l e  of  D. I .  Sherman [I].  In  V .  D .  Kupradze's 
monograph [2]  a l l  b a s i c  boundary problems o f  e l a s t i c  v i b r a t i o n s  a r e  reduced t o  
i n t e g r a l  equat ions .  I n  D .  I .  Sherman's work [ l ]  only t h e  f i r s t  boundary prob- 
lem i s  examined. The s o l u t i o n  i s  obtained i n  t h e  form of  a  system o f  two 
i n t e g r a l  Friedholm equat ions of  t h e  second o rde r .  

Figure XI.25. F i g u r e  XI.26. 

A.  N .  Guzl [ I ,  21 g ives  t h e  s o l u t i o n  of t h e  dynamic p lane  problem f o r  an 
i n f i n i t e  multiply-connected region bounded by c i r c u l a r  contours when t h e  d i sp l ace -  
ments of  t h e  p o i n t s  of t h e  boundary a r e  known. An i n f i n i t e  system of a l g e b r a i c  
equat ions  i s  ob ta ined  f o r  t h e  cons t an t s  of  t h e  s o l u t i o n ,  represented  i n  t h e  
form of a  s e r i e s .  A f t e r  s u b s t i t u t i o n  of t h e  unknowns, t h e  l a t t e r  i s  transformed /817 - 
i n t o  an i n f i n i t e  quas i r egu la r  system with a  normal determinant .  

Basic  p lane  boundary problems of  th,e theory  of s teady  v i b r a t i o n s  a r e  
so lved  f o r  a  f i n i t e  multiply-connected reg ion  by an analogous method i n  t h e  a r t i -  
c l e  of V .  T .  Golovchan [ I ] .  

When t h e  method proposed by A. N.  Guzt [ I ]  i s  used t h e  approximate s o l u t i o n  
o f  f i n i t e  a l h e b r a i c  equat ion  systems can b e  found by t h e  reduct ion  method. The 
computer makes i t  poss ib l e  t o  f i n d  t h e  s o l u t i o n  t h a t  s a t i s f i e s  t h e  boundary con- 
d i t i o n s  wi th  t h e  r equ i r ed  degree of  accuracy. 



F i g u r e  XI. 27. 

Figure  XI.28. Figure  XI.29. 

Figure  XI .30. F i g u r e  XI.31. 



V.  T. Golovchan [2, 31 so lved  t h e  
problem o f  t he  dynamic concent ra t ion  
of  s t r e s s e s  i n  an i n f i n i t e  p l a t e  wi th  
two i d e n t i c a l  round holes  (Figure XI.27), 
t h e  contours of which a r e  s t r e s s e d  by 
harmonic pressure ,  by t h i s  method. 
Numerous graphs a r e  presented  i n  t h e s e  
a r t i c l e s  f o r  s t r e s s e s  a t  po in t s  on t h e  
c e n t e r  l i n e  of  t h e  ho le s  a s  a func t ion  
o f  t h e  d i s t ance  between t h e  holes  and 
t h e  parameter a = 2rR/L, where R i s  t h e  
r ad ius  o f  t h e  ho le s ,  and L i s  t h e  lengt1 
of  an  a r b i t r a r y  wave. 

The r e s u l t s  obtained show..that t h e  
c h a r a c t e r  o f  d i s t r i b u t i o n  of  s t r e s s e s  

oio2 
i n  a p l a t e  f o r  a given 6 ( 6  = -x-) 

Figure XI.32. -- r e l a t i v e  d i s t ance ;  ( see  Figure XI.27) 
depends g r e a t l y  on t h e  parameter a, i . e . ,  

on t h e  length  of  t h e  wave propagat ing i n  t h e  p l a t e .  Figures  XI.28, XI.30 
i l l u s t r a t e  t h e  graphs o f  s t r e s s e s ,  r e l a t e d  by p, a t  t h e  h a l f  way po in t  between 
t h e  ho le s  f o r  6 = 5, f o ~  c e r t a i n  c h a r a c t e r i s t i c  value$ of  t h e  parameter a. 

E The s p e c i f i c  values o f  a a r e  c l o s e  t o  t hose  f o r  which log 1 (Figure XI. 28) o r  
0 

la  I (Figure XI. 29 and X I .  30) acqu i r e  t h e i r  maximum values  i n  t h e  range r 
0 cl 3.2.  

Figures  XI.31 and XI.32 show t h e  curves o f  change o f  amplitude of s t r e s s e s  
0 o: and o a s  func t ions  o f  6 .  r 

I t  can be concluded from t h e s e  graphs t h a t  t h e  s t r e s s  s t a t e  i n  a p l a t e  
nea r  ho les  during dynamic loading d i f f e r s  g r e a t l y ,  both q u a l i t a t i v e l y  and 
q u a n t i t a t i v e l y ,  from t h e  s t a t i c  loading corresponding t o  t h e  case a = 0 .  
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CHAPTER XII. EFFECT OF V l  SCOELASTI C PROPERTIES O F  M A T E R I A L  
ON STRESS D l  STRl B U T I O N  NEAR H O L E S  

Abstract .  The e f f e c t  of v i s c o e l a s t i c  proper t ies  of the  
material  on the  s t r e s s  d i s t r i b u t i o n  near holes i s  discussed. 
The general r e l a t ions  of the l inea r  theory of the visco- 
e l a s t i c  media and the boundary value problems a r e  formulated. 
The s t r e s s  concentrat ion is  s tudied  near the c i r c u l a r  and 
e l l i p t i c a l  holes i n  the an i so t rop ic  v i s c o e l a s t i c  p l a t e  made 
of unidi rec t ional  g lass- re inforced p l a s t i c .  

5 1 .  Basic Relations of Linear Theory of Viscoelas t ic  Media 

Statement of Problem. Numerous experiments show t h a t  the  time f a c t o r  /820 - 
plays a considerable p a r t  i n  the  deformation of such mate r i a l s  as  concrete,  
wood, high polymers, and even metals,  p a r t i c u l a r l y  a t  high temperatures. In  
bodies of  such mate r i a l s ,  i f  a f t e r  the  app l i ca t ion  of a load, des t ruct ion  does 
not  occur, the  steady s t a t e  i s  achieved a f t e r  a  c e r t a i n  period of time, which, 
depending on t h e  method of loading and o the r  f ac to r s ,  can l a s t  from a few 
seconds t o  many years.  

During a period commensurate with the  se rv ice  l i f e  o f  a  machine o r  
i n s t a l l a t i o n ,  t h e  s t r e s s  s t a t e  i n  p a r t s  of these  machines o r  elements of f a c i -  
l i t i e s  w i l l  change considerably, and the re fo re  it cannot be  regarded as  s teady.  
The time f a c t o r  a f f e c t s  t h e  deformation process a s  a  whole, i . e . ,  it a f f e c t s  
a l l  t h ree  s t ages  -- e l a s t i c ,  p l a s t i c  and f rac tu r ing .  

Hence it becomes necessary t o  use, ins t ead  of the  known r e l a t i o n s  of 
e l a s t i c i t y  i n  the  form of Hookets general ized law, which assume the  i n s t a n t a -  
neous establishment within a body of  completely defined and unchanging, i n  
time, s t r e s s  and deformation s t a t e s ,  such r e l a t i o n s  and laws t h a t  w i l l  
c o r r e l a t e  the  s t r e s s e s  and deformations with time. 

The b e s t  r e l a t i o n s  f o r  the  descr ip t ion  of  the  process of deformation i n  
time a r e  those t h a t  contain time i n t e g r a l  operators  with r e l axa t ion  and conse- 
quence kernels .  Such r e l a t i o n s  were f i r s t  applied by V.  Volterra [ I ] ,  and 
then by Yu. N .  Rabotnov [ I ] ,  M .  I .  Rozovskiy [ I ] ,  N .  Kh. Arutyunyan [ I ] ,  and 
o the r s .  

For many mate r i a l s  t h e  processes of deformation during time can be 
described s a t i s f a c t o r i l y  on t h e  bas i s  of  l i n e a r  theor ie s  of v i s c o e l a s t i c  media, 
the  most important of  which i s  V. Vol te r ra l s  theory of v i s c o e l a s t i c  heredi ty .  

The equations of  V. V o l t e r r a v s  he red i ty  theory of e l a s t i c i t y  a r e  found1 
by s u b s t i t u t i n g  i n  t h e  r e l a t i o n s  of c l a s s i c a l  e l a s t i c i t y  theory, the  constants  
E ,  G and v by i n t e g r a l  operators  8, and 7: 

lSee Yu. No Rabotnov [ I ] .  
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where 

(XII.  1) 

(XII. 2) 

(XI I . 3 )  

* 
I n t e g r a l  operators  Ri ( i  = 1, 2, 3) with re l axa t ion  kernels  Ri(t,  s )  

- 

ac t ing  on some function f (x, y, z, t )  of  coordinates (x, y,  z )  and time t ,  
have the  form 

I n  r e l a t i o n s  (XII.3). Go and Eo a r e  the  instantaneous moduli of  displacement 

and normal deformation, respect ive ly ;  vo is t h e  instantaneous Poisson's r a t i o .  

The symbol (x, y, z) shows t h a t  the  o ther  r e l a t ionsh ips  i n  (XII. 1) and (XII. 2) 
between s t r e s s  components ox, o ..., r and deformation canponents cx, 

Y '  XY 
E . . ., E a r e  obtained by t h e  c i r c u l a r  permutation of the  l e t t e r s  x, y and z. 

Y'  xy 
The o ~ e r a t o r s  and a r e  c a l l e d  the  r e l axa t ion  operators .  The creep 

operators  P1 and F2 a r e  defined as  t h e  opera tors  t h a t  a r e  inverse  t o  operators  
- 
G and E, respect ive ly :  

where 



* 
In expansion (XII.7) t h e  degrees of  ope ra to r  Ri a r e  expressed through repea ted  

* 
kerne ls  o f  t h e  o r i g i n a l  kerne l  Ri a s  fol lows:  

where 

* 
The ke rne l  P l ( t ,  s )  o f  i n t e g r a l  ope ra to r  P1 and t h e  ke rne l  Rl ( t ,  s )  o f  

* 
i n t e g r a l  ope ra to r  R a r e  found by means o f  twist t e s t i n g  specimens: t h e  f i r s t  /822 

1 - 
from t h e  creep curve, and t h e  second from t h e  r e l a x a t i o n  curve.  The ke rne l  
P ( t ,  S)  i s  t h e  r e so lvan t  of  t h e  ke rne l  Rl ( t ,  s )  . S e r i e s  (XI I .  7 ) ,  as we know1, 
1 

converges uniformly f o r  any f i n i t e  range of  change of  arguments t and s f o r  a 
r e g u l a r  o r  s l i g h t l y  s i n g u l a r 2  ke rne l .  

I n  expression (XII.6) t h e  ke rne l s  P 2 ( t ,  s )  and R ( t ,  s )  o f  i n t e g r a l  
* * 2 

ope ra to r s  P and R2 ,  i n  c o n t r a s t  t o  t h e  above-mentioned ke rne l s ,  a r e  found from 
3 

s t r e t c h  t e s t s  o r  pure bending t e s t s  of  samples: t h e  f i r s t  from t h e  c reep  curve, 
and t h e  second from t h e  r e l a x a t i o n  curve. 

Operator can be expressed through t h e  above i n t e g r a l  ope ra to r s .  Thus, 
d i s r ega rd ing  t h e  e f f e c t  of  t h e  t ime f a c t o r  (he red i ty )  during three-dimensional 
compression, i . e . , cons ider ing  t h e  three-dimensional deformat ion  t o  be e l a s t i c ,  
Yu. N .  Rabotnov [ 2 ]  ob ta ined  t h e  formula 

The ope ra to r  7 cannot be expressed through ope ra to r  il. According t o  

M.  I .  Rozovskiy 121 ,  we w i l l  have 

p--~ 

' see  N .  N .  Dol inina [ I ] .  
2 ~ . e . ,  f o r  ke rne l s  o f  t h e  form (XII .12)-(XII .14) .  



* 
where t h e  ke rne l  H( t ,  s )  of i n t e g r a l  ope ra to r  H r ep re sen t s  t h e  r e so lvan t  of 
ke rne l  0 .5 (1  - 2vo)Rl(t, s ) .  

The use of ke rne l s  R ( t ,  s )  and R ( t ,  s ) '  f o r  express ing  ope ra to r  5 i n  t h e  
1 2 

gene ra l  case,  i . e . ,  with cons idera t ion  of  t h e  e f f e c t  of  t h e  time f a c t o r  on 
expansion, r equ i r e s  t h e  c a l c u l a t i o n  of  t h e  r a t i o  o f  t h e  opera tors1  and d. 

The time i n t e g r a l  opera tors  c, and 7 ( X I  I .  3) and s p a t i a l  opera tors  of  
d i f f e r e n t i a t i o n  and i n t e g r a t i o n  with r e spec t  t o  t h e  coord ina tes ,  a f t e r  mu l t i -  
p l i c a t i o n ,  possess  p r o p e r t i e s  of  commutativity. Therefore any2 problem t h a t  
cons iders  t h e  e f f e c t  of  t h e  time f a c t o r  (he red i t a ry  e l a s t i c i t y )  can b e  so lved  
as  a problem of  ord inary  e l a s t i c i t y  theory,  and only i n  t h e  f i n a l  r e s u l t  i s  it 
necessary t o  s u b s t i t u t e  t h e  e l a s t i c  cons t an t s  G ,  E and v by ope ra to r s  d, E /823 - 
and 3, def ined  by r e l a t i o n s  (XI1 . 3 )  . The b a s i c  d i f f i c u l t y  encountered when 
using V.  V o l t e r r a ' s  p r i n c i p l e  i s  i n  t h e  determinat ion o f  t h e  var ious  func t ions  
of  t h e  ope ra to r s ,  appearing a s  t h e  r e s u l t  of t h e  above-mentioned s u b s t i t u t i o n  
o f  t h e  e l a s t i c  cons tan ts  E ,  G and v i n  t h e  s o l u t i o n  o f  t h e  three-dimensional  
( o r  plane)  problem f o r  an i d e a l  e l a s t i c  body, by ope ra to r s  E, and 7. 

S e l e c t i o n  o f  K e r n e l s  of  l n t e g r a l  O p e r a t o r s .  ?he func t ions  t h a t  a r e  
c h a r a c t e r i s t i c  of  a given ma te r i a l ,  which r e f l e c t  t h e  e f f e c t  o f  u n i t  s t r e s s  
a c t i n g  during a u n i t  per iod  of  t ime T, on deformation a t  t h e  moment of t ime t 
a r e  used a s  t h e  ke rne l s  of  t h e  i n t e g r a l  opera tors .  The form o f  t h e s e  func t ions  
i s  e s t a b l i s h e d  on t h e  b a s i s  o f  a n a l y s i s  of  given experimental s t u d i e s  o f  c reep  
o r  r e l axa t ion .  The consequence and r e l a x a t i o n  ke rne l s  exper imenta l ly  de t e r -  
mined i n  t h i s  manner possess  a s i n g u l a r i t y  when t - T = 0 .  

We w i l l  p r e sen t  t h e  a n a l y t i c a l  expressions of  t h e  ke rne l s  f o r  c e r t a i n  
ma te r i a l s ,  ob ta ined  on t h e  b a s i s  of  t e s t s .  

Through h i s  t e s t s  on b e l t s ,  G .  Duffing [l] e s t a b l i s h e d  t h a t  t h e  conse- 
quence kerne l  should b e  taken i n  t h e  form 

'see M .  I .  Rozovskiy [2]. 
* ~ x c e ~ t  f o r  those  problems i n  which t h e  boundaries change with t ime. See, f o r  
i n s t ance ,  A. B .  Yefimov [l] and G .  A. C .  Graham [I] .  I n  p a r t i c u l a r ,  t h i s  
change of  boundaries w i l l  occur  i n  t h e  case  of t h e  so -ca l l ed  "contact  problems 
of  s t r e s s  concentrat ion" -- problems of  s t r e s s  concent ra t ion  nea r  r e in fo rced  
hoJes,  -- where t h e  r e in fo rc ing  r i n g  i s  simply p laced  i n  (and no t  sea led! )  a 
ho le  i n  an e l a s t i c  p lane  without " t igh ten ing ."  For i n s t ance ,  when a p l a t e  
with a hole  r e in fo rced  by t h i s  method i s  subjec ted  t o  u n i a x i a l  t ens ion ,  t h e  
ma te r i a l  o f  t h e  e l a s t i c  p l a t e  w i l l  s e p a r a t e  from t h e  r i n g  i n  some p l aces ,  and 
i n  t h i s  case t h e  a r e a  o f  con tac t  between t h e  r i n g  and t h e  e l a s t i c  p l a t e  w i l l  
no t  b e  known beforehand; due t o  c reep  of  t h e  ma te r i a l  it w i l l  change wi th  t ime.  
The l a t t e r  ( a r ea  of contac t )  should be determined a s  t h e  r e s u l t  of t h e  s o l u t i o n  
o f  t h e  problem. 



where a = 4 /5 ;  A i s  a  cons t an t .  

(XII. 12) 

A s  t h e  r e s u l t  of t h e  a n a l y s i s  of t h e  r e l a x a t i o n  curves o f  r e s i n ,  A .  P.  
Bronskiy [I] found t h a t  t h e  des i r ed  kerne l  i s  convenient ly represented  i n  t h e  
f  o m  

A (t exp [- (t - z)"a], a > 0. 
(XI I .  13) 

The r e so lvan t  of  ke rne l  (XII.13) could not  be found. 

For t h e  cons ide ra t ion  of t he  e f f e c t  of  i nc reas ing  change of  concre te ,  
N .  Kh. Arutyunyan [l] proposed a  ke rne l  o f  t h e  form 

where A, C and y a r e  cons t an t s .  

I n t e g r a l  ope ra to r  (XII.14) is  not  i n v a r i a n t  i n  t h e  case  of  change o f  t h e  
o r i g i n  of  t ime measurements, and t h i s  makes it poss ib l e ,  using t h i s  opera tor ,  
t o  r e f l e c t  t h e  e f f e c t  of physico-chemical processes  i n  c e r t a i n  "aging" 
m a t e r i a l s ,  p a r t i c u l a r l y  concrete ,  occur r ing  wi th  t h e  pass ing  of  time, on t h e i r  
mechanical p r o p e r t i e s .  

To i n s u r e  t h a t  V.  Vo l t e r r a ' s  p r i n c i p l e  w i l l  be  an e f f e c t i v e  means of 
so lv ing  problems wi th  cons ide ra t ion  of  t h e  e f f e c t  of  t h e  time f a c t o r ,  Yu. N .  
Rabotnov [2]  proposed f o r  t h e  cons t ruc t ion  of  t h e  r e l a x a t i o n  ope ra to r  t h e  
exponent ial  func t ion  of  f r a c t i o n a l  order  

(XI I .  15) 

S e r i e s  (XII.15) converges f o r  any f i n i t e  t - T. A kerne l  o f  t h e  type (XII.15) - /824 
possesses  t h e  same s i n g u l a r i t y  as does ke rne l  (XII.13),  and encompasses a s  a 
p a r t i a l  case  t h e  ke rne l  (XII. 12) .  

Yu. N .  Rabotnov [2]  showed t h a t  i n t e g r a l  ope ra to r s  wi th  ke rne l s  o f  t h e  
type  (XII.15) possess  t h e  fol lowing p r o p e r t i e s :  



(XI I .  16) 
83, (4 $=- ax f o r  x = g ;  

M. I .  Rozovskiy [3, 51 e s t a b l i s h e d  t h a t  

where pk(k = 1. 2 ,  3. . . . , m) a r e  t h e  r o o t s  o f  t h e  equat ion 

(XII.  18) 

( X I  I .  19) 

and t h e  c o e f f i c i e n t s  ak a r e  determined from a system of  m l i n e a r  a l g e b r a i c  
equat ions 

Formula (XII.21) makes it p o s s i b l e  t o  express  t h e  product of  var ious  degrees of 

t h e  opera tors  through d e r i v a t i v e s  wi th  r e spec t  t o  parameters xi o f  t h e  o r i g i n a l  
* 

ke rne l  b3u ( x i )  1 
Af te r  t h e  f i n a l  c a l c u l a t i o n  of  t he  d e s i r e d  s t r e s s e s  and deformations a s  

func t ions  of  t h e  coord ina tes  and time, it i s  poss ib l e  i n  p r a c t i c a l  c a l c u l a t i o n s  
* 

t o  use  an approximation o f  t h e  3dopera tor '  i n  t h e  form /825 - 

' s ee  M .  I .  Rozovskiy [4] ,  and a l s o  V.  D. Annin [ I ] .  



where 

The (-B)-operator can be expressed1 during ac t ion  on un i ty  through the  a 
Mittag-Lefler  function of the  order  ( 1  + a) i n  the  form 

'+a) The numerical values2 of the  function El+u(-S) (5  = $ t  i n  (XII. 23) a r e  

presented below f o r  a = -0.7: 

In  t h e  l i m i t  case a = 0 the  function 3 ( f3 ,  t - T) (XII.15) changes i n t o  an a 
ordinary exponential function.  

Exponential kernels  of the  form 

e-b~( t -~)  . . , (XI I .24)  

a r e  the  s imples t ,  but  they, as  i s  evident ,  do not possess a s i n g u l a r i t y  when 
t - T = 0 .  

I t  i s  r e a d i l y  shown by simple d i f f e r e n t i a t i o n  t h a t  when c e r t a i n  l imi ta t ions  
a r e  imposed on t h e  constants  bk and t h e  i n i t i a l  condit ions,  i n t e g r a l  operators  

with exponential kernels  a re  equivalent  t o  d i f f e r e n t i a l  ope ra to r s3  of  t h e  form 
S e e  M.  I .  Rozovskiy [ 2 ] .  
'see M . I .  ~ o z o v s k i y  [ 6  J . 
3 ~ .  R. Radok [ I ] ,  using r e l a t i o n s  of the  form (XII. 25), i nves t iga tes  t h e  s t r e s s  
concentrat ion near  a round (both f r e e  and with a sea led  e l a s t i c  o r  absolute ly  
r i g i d  c o l l a r )  hole  under the  condit ions of plane deformation i n  an incompres- 
s i b l e  mater ia l  of the  Voight and Maxwell types. 



( X I  I .  25) 

Experimenta 1 Determination of Rheolog i c  Parameters.  The ana lys i s  of 
experimental creep ( a f t e r e f f e c t )  curves and r e l a x a t i o n  curves can be accomp- 
l i s h e d  by means o f  approximation (XII.22) o r  p r e c i s e  r ep re sen ta t ion  (XII .23) .  /826 - 

Such a n a l y s i s  i s  most r e a d i l y  accomplished by using approximation (XII .22) .  
In  t h i s  case  t h e  curve of  simple creep i s  opera ted  upon i n  accordance wi th  
formula 

(*I - Oo = (1 [ l  - exp (- byt1+Y],  
Eo (XII. 26) 

where ~ ( t )  i s  deformation (during s t r e t c h i n g  o r  simple d e f l e c t i o n )  a t  moment 
of t ime t ;  E i s  ins tan taneous  deformation; a and b a r e  creep parameters.  

0 

The r e l a x a t i o n  curves a r e  processed by analogous formulas.  I f  t h e  
r e l a x a t i o n  curve i s  not  ava i l ab l e ,  then t h e  r e l a x a t i o n  parameters T and X can 
be  ca l cu la t ed  by formulas 

- 
a 

jL2 =3 - 
1 + a  and r2= [  (1 + Y a ) b  

f o r  known values of c reep  parameters a and b .  

The c reep  and r e l a x a t i o n  curves obtained from t w i s t  t e s t s  of samples 
a r e  processed s i m i l a r l y  a s  descr ibed above. 

9 2 .  S t r e s s  D i s t r ibu t ion  Near Hole i n  Homogeneous Vi scoe la s t i c  Mater ia l s  

D i s t r ibu t ion  of Deflect ion Moments Near Holes During Twisting of T h i n  
P l a t e s .  Let a t h i n  i s o t r o p i c  p l a t e  of  th ickness  h be subjec ted  t o  t h e  a c t i o n  
o f  moments of to rque  H = cons t ,  appl ied  on t h e  e n t i r e  edge of t h e  p l a t e .  I f  
t o  four  faces  o f  a r ec t angu la r  p l a t e  a r e  appl ied  d i s t r i b u t e d  moments of  torque 
H, then1 t h e  d i s t r i b u t i o n  of moments on t h e  contour  of  an e l l i p t i c a l ,  square 
o r  t r i a n g u l a r  ho le  can be represented  i n  t h e  form 

Me -- e (v )  9 (0). (XI I .  28) 

The e x t r a c t i o n  of t h e  func t ion  $(8) t h a t  cha rac t e r i ze s  t h e  d i s t r i b u t i o n  of  
d e f l e c t i n g  moments M on t h e  contour of  t h e  ho le ,  i n  t h e  form of a co fac to r  0 

' s ee  G .  N .  Savin [I], Chapter V I ,  54. 
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denotes t h a t  t h e  d i s t r i b u t i o n  Me on t h e  contour of  t h e  hole w i l l  be  geometri- 

c a l l y  s i m i l a r  f o r  successive f ixed moments of time. 

Let us consider ,  by way of example, the  dependence of Me on t h e  contour 

of a square hole  on time. To s impl i fy  f u r t h e r  ca lcu la t ions  i n  t h e  f o m u l a 1  

48 (1 + v) -% sin 28 
Me = 19+5v . S+CosB * 

which g ives  the  d i s t r i b u t i o n  of bending moments M e  f o r  t = 0 (e las to- ins tan-  - 1827 

taneous s t a t e ) ,  it is  convenient t o  e x t r a c t  from the  r i g h t  hand s i d e  of  
(XI1 .29) the  term t h a t  does not depend on v: 

(XI I .  30) 

where 

48 %? sin 20 
9 (') " 25 + 20cos 40 ' 

By s u b s t i t u t i n g  i n  (XII.30), in s t ead  of  v, the  operator  

where v i s  Poisson's r a t i o  f o r  t = 0, 6 and 6 a r e  rheologic c h a r a c t e r i s t i c s ,  0 
we obta in  

here  

Conversion of the  operators  is  accomplished by formula (XI1 .17) . 
Ry i n t eg ra t ing  with considerat ion of formula (XII.22), we obta in  

(XII. 32) 

'see G .  N .  Savin [ I ] ,  formula (6.96), and a l s o  Figure 152. 



1 4 ~ ~ 6  [ I  - exp (- yj31t'Sa)~ 1 
M , ( ~ ) = M , ( o ) ( ~ +  ( ~ + ~ . ) [ 1 9 , 3 + 5 " ~ ( ~ + ( 1 ) ,  , 

The parameters B ,  6 ,  a and v from experimental da ta  obtained under t h e  0 
condition of simple re laxat ion  of  copper and aluminum samples a t  room 
temperature1, a r e  presented i n  Table XI1 .1. 

TABLE XI1 .1 

T r .  Note: Commas indica te  decimal points .  

~ a t e r i a l l  r. I a I I 

The r e s u l t s  of ca lcu la t ions  made by formula (XII.33) f o r  t h e  values o f  
the  rheologic c h a r a c t e r i s t i c s  presented i n  Table X I I . l ,  show t h a t  i n  t h e  
steady ( l i m i t )  s t a t e  the  bending moments f o r  an aluminum p l a t e  a r e  12% higher,  
and f o r  a copper p l a t e ,  10% higher. When t 2 300 h r ,  t h e  s t r e s s  s t a t e  i n  the  
p l a t e  near  a hole  can be regarded a s  p r a c t i c a l l y  s teady.  

A 1  umi  num 

Copper 

For t -t i n  ( X I I . 3 3 ) ,  we obtain 

(XI I .34) 

Deflection of Triangular  P l a t e  Weakened by a Round Hole. Let us examine 
the  change i n  time of t h e  s t r e s s  s t a t e  near  a round hole during the  bending of 
a t h i n  p l a t e  i n  the  form of an e q u i l a t e r a l  t r i a n g l e 2 .  Let uniformly d i s t r i -  
buted bending moments M be applied t o  t h e  ou te r  contour of  the  p l a t e .  The 
expression f o r  t h e  bending moments i n  opera tor  form w i l l  be 

0,25 

o,% 

Hence, r eca l l ing  formula (XII.31), we f ind  

6 , 6 5 . 1 0 - i ~ c ~ ' ~  

9,2.10-~,;~~~ 

--0,50 

-0.50 

'see B .  M.  Rovinskiy and V .  G .  i yu t t sau  
2 ~ e e  G .  N .  Savin [ I ] ,  Chapter VI, 95, formula (6.108). 

6 , 1 5 . 1 0 - i ~ c ~ . ~  

6 , 6 5 . 1 0 ~ ~ ~ ~ * ~  



where 

2R 
'o' . 9 (6) = - cor 30. P 1 = P - + = 7  C 

The conversion of t h e  opera tors  i s  accomplished by formula (XII.17).  

I t  is  easy t o  s e e  t h a t  t h e  geometr ic  s i m i l a r i t y  of  d i s t r i b u t i o n  of  
d e f l e c t i o n  moments M e  (X11.36) on t h e  contour  of t h e  ho le  w i l l  now be absent ,  
s i n c e  t h e  change o f  M e  with time depends on 8. 

* 
By c a l c u l a t i n g  ope ra to r s  3 i n  (XII.  36)  i n  l i k e  manner a s  above f o r  t h e  ct 

case  o f  t h e  t w i s t i n g  of  t h i n  p l a t e s ,  and by performing t h e  c a l c u l a t i o n s  f o r  
t h e  very same rheologic  c h a r a c t e r i s t i c s ,  r e c a l l i n g  R / C  = 0.1, we f i n d  t h a t  t h e  
maximum value  o f  Me,  which i s  achieved when 0 = 0, is 16% h ighe r  f o r  aluminum 

when t +- whi le  t h e  minimum (when 8 = 180") i s  20% h ighe r  when t + 03. Thus, 
t h e  d i f f e r e n c e  between t h e  g r e a t e s t  and l e a s t  va lues  of  M e  decreases  wi th  t ime. 

Pla te  w i t h  T r i a n g u l a r  Hole. During t h e  pure c y l i n d r i c a l  d e f l e c t i o n  of a  
p l a t e  weakened by a t r i a n g u l a r  ho le ,  t h e  d e f l e c t i o n  moments on t h e  contour of  
t h e  hole1  a r e  

where 

Reca l l ing  express ion  (XII.31) and performing conversion by formula (XII.17),  we - /82 I  
f i n d  

' see G .  N .  Savin [ I ] ,  Chapter VI, 93, formula (6.84) .  



where 

Hence, on the  b a s i s  of approximation (XII.22), we obtain 

The extremal values of  Me/M,  found on t h e  b a s i s  of  formula (XII.39) f o r  

aluminum f o r  the  rheologic parameters l i s t e d  i n  Table XI I . l  a r e  given i n  
Table XII.2. 

TABLE XII. 2 We see  from Table XII.2 t h a t  the  d i f fe rence  
between t h e  g r e a t e s t  and l e a s t  magnitudes of  t h e  
de f l ec t ion  moments Me  (XII.39) on the  contour of  

t h e  hole increases  with time1. m e  " c r i t i c a l "  
values of angles Bcr a t  which Me(t) w i l l  be2  equal 

t o  Me(0) f o r  any value of  t ,  a s  seen i n  formula 

(XII. 39), is  found from t h e  condit ion 

Tr. Note: Commas indica te  
decimal points .  

1 - 9 ( 0 , ~ )  = 0. ( X I  I .40) 

Uniaxial Tension of P l a t e  Weakened by a Round Hole w i  t h  a ~ o l d k r e d  
Circular  Collar .  I f  i n t o  a c i r c u l a r  hole  of an i n f i n i t e  v i s c o e l a s t i c  i s o t r o p i c  
p l a t e ,  subjected t o  tens ion "at  i n f i n i t y "  by s t r e s s e s  p, a c i r c u l a r  c o l l a r  of  
a d i f f e r e n t  ( e l a s t i c )  mater ia l  is  sea led ,  then t h e  s t r e s s e s  on the  contour of 
t h e  seam f o r  r = R,  according t o  the  p r i n c i p l e  of V. Volterra,  w i l l  have t h e  
form 

's ince the  g r e a t e s t  value o f  Me (XII.39) increases with time, while t h e  l e a s t  
decreases.  

2 ~ t  which Me i n  (XII. 39) ceases t o  decrease and begins t o  increase .  

'see G .  N .  Savin [ I ] ,  Chapter V, 52, formulas (5.15) and (5.20). 



where 

- - 
x = ~ o [ l - q ~ a ( - l l ) ] .  x,=x,o[l  -9At-tll)l; (XI I .  42) 

6 a Go [ l  - Q J ~ ( -  q*)]. GI = (310 [ l  -~ lAa( -  qi)]; (XII.43) 

(XI I .  44) 

The parameters 
values of  which a r e  
a sea led  e l a s t i c  ( s  

q ,  Q ,  TI, TI* a r e  expressed through f3 and 6 ,  t h e  numerical 
given i n  Table XII.1. We w i l l  consider a t h i n  p l a t e  with 

t e e l )  c o l l a r ,  f o r  which = G = 8.10*9.81*10~ n/m2; 

Using formula (XII.17), we f i n d  

Comparison of  (XI1 -42) and (XI1 .43) shows t h a t  

9" 4v06 V O ~  

(1 + v,)(3 - v,,) ' 'I = fi + iqT 

To f ind  Q and TI*, we w i l l  use t h e  known r e l a t i o n  

(XI 1.46) 

and a l s o ,  assuming t h e  three-dimensional deformation of t h e  mater ia l  of the  
p l a t e  t o  be e l a s t i c ,  we w i l l  use the  r e l a t i o n  



Then 

and consequently, 

Analogously, 

BY substituting (XI I .  42) and (X1.I. 43) into  (XI1 .44)  we obtain 

where 

Here 

(XI I. 48) 

(XI I. 49) 



In  order  t o  convert the  aggregate o f  opera tors  (XII.28) and (XII.29) we 
w i l l  use formulas (XII.18)-(XII.20), according t o  which 

Here u a r e  the  roots  of  quadra t ic  equations i 

where 

Coefficients  Ai a r e  found from the  a lgebra ic  equation system 

Then 

( X I  I .  5 0 )  

By s u b s t i t u t i n g  (XII.50) and (XII.42) i n t o  (XII.41) and using the  formulas - /832 * 
f o r  the  mul t ip l i ca t ion  of  operators\"ga, we obta in  



On t h e  contour  of  t h e  seam, i . e . ,  when 

2rr @ (t) 2rrg (0) 
4 

--.-- - 
P P I (1 + ~ 0 )  a - ) + a i sin 2g. 

i=3 1 



where 

To s impl i fy  ca lcu la t ions  it is  convenient t o  use  a representa t ion  of ial 
t h a t  w i l l  enable us t o  express t h e  so lu t ion  of  (XII.52) through a f i n i t e  number 
o f  tabula ted  functions:  

where 

n I-1 n-l 

2: aaJ$ = n (JY- (k = 0 . 1 , .  . . , rn - 1). 

Here 

s = ( m + f - - n - 1 ) n - '  ( I =  1 ,2  ,..., n). 
(XI I. 53) 

The l i m i t  (when t + a) value of  so lu t ion  (XII.51) can be found1 f o r  

(XI I .  54) 

'see I .  I .  Krush [ I ] .  



- - 
by s u b s t i t u t i n g  i n  (XII.41) K ,  rl, 6, El by t h e i r  l i m i t  va lues  f o r  t + -. I f  

condi t ions  (XII.54) a r e  not  s a t i s f i e d ,  t h e  s o l u t i o n  (XII.51) w i l l  be  uns t ab le  
f o r  t ' =J. 

By way example we w i l l  cons ider  t h e  e f f e c t  o f  t h e  t ime f a c t o r  on s t r e s s e s  
a r ( t )  on t h e  contour  of  t he  seam, i . e . ,  when r = R,  i n  an aluminum p l a t e  with 

a  so ldered  copper c o l l a r .  The rheologic  parameters a r e  presented  i n  Table 
XI I . l .  The r a t i o  o f  t h e  displacement c o e f f i c i e n t  f o r  copper GO1 t o  t h e  d i s -  /834 - 
placement r a t i o  f o r  aluminum G i s  assumed t o  be  1.62. For a = -0.53 we f i n d  0  
from (XII.52) 

where @(BE) i s  t h e  p r o b a b i l i t y  i n t e g r a l .  

Figure XI I . l .  Figure XII.2. 

Figure XII.3. Figure XII.4. 



Figures  XII.l-XII.4 show t h e  r e s u l t s  o f  c a l c u l a t i o n s  o f  20 ( t ) / p  f o r  r 
0 =  IT/^ (Figure X I I . l ) ;  0 = 0 (Figure X11.2); 8 = 7r/2 (Figure XII.3) and t h e  
values 2aZ(0) /p  on t h e  contour  o f  t h e  hole ,  i . e . ,  a s  func t ions  o f  ang le  0 

(Figure XII.4).  The va lue  20 ( t ) / p  (dimensionless) i s  arranged i n  Figures 
r 

XII . l -XII .3  on t h e  o r d i n a t e  a x i s ,  while  t h e  time, measured i n  seconds, i s  
arranged i n  s t e p s  o f  0.5 along t h e  absc i s sa .  The broken l i n e s  i n  Figures  /835 
XII . l -XII .4  r ep re sen t  t h e  l i m i t  va lues  o f  2ar(")/p. 

The d a t a  presented  i n  t h e s e  f i g u r e s  show t h e  cons iderable  e f f e c t  o f  t h e  
c reep  o f  t h e  ma te r i a l  both on t h e  cha rac t e r  and on t h e  magnitude (of maximum 
values)  of  t h e  s t r e s s  s t a t e  near  a ho le1 .  

$ 3 .  S t r e s s  D i s t r ibu t ion  Near Holes i n  Anisotropic  and Heterogeneous Mater ia l s  

S t r e s s  D i s t r ibu t ion  i n  S t r u c t u r e  of Heterogeneous Mate r i a l s .  Syn the t i c  
m a t e r i a l s  based on g l a s s  f i b e r  and polymers, and a l s o  on o t h e r  compositions,  
possess  a wide v a r i e t y  of  physico-mechanical p r o p e r t i e s  and a r e  being widely 
used a s  cons t ruc t ion  m a t e r i a l s  i n  a l l  branches of  technology. 

Of p a r t i c u l a r  importance a r e  t h e  o r i e n t e d  g l a s s  p l a s t i c s ,  t h e  s t r u c t u r e  
o f  which c o n s i s t s  of  r e c t i f i e d  f i b e r s .  On t h e  b a s i s  o f  t h i s  "f ibrous" s t r u c t u r e  
i t  is  q u i t e  p o s s i b l e  t o  design s t rong  s t r u c t u r e s  with optimum ( i n  a c e r t a i n  
sense)  mechanical p r o p e r t i e s .  Among t h i s  type  o f  cons t ruc t ion  m a t e r i a l s  a r e  
those  obta ined  on t h e  b a s i s  o f  g l a s s  f i b e r  o r  g l a s s  t h read  ( the  so -ca l l ed  
"f ibrous" m a t e r i a l s ) ,  g l a s s  tape ,  -- "laminar" ma te r i a l s  . 

The physico-mechanical p r o p e r t i e s  o f  g l a s s  f i b e r s ,  inc luding  t h e  e l a s t i c i t y  
modulus, r e s i s t a n c e  t o  rup tu re ,  thermal expansion, e t c . ,  d i f f e r  by one t o  two 
o rde r s  from those  of  polymer bonding agents ,  and t h e r e f o r e  g l a s s  p l a s t i c s  
r ep re sen t  a heterogeneous system, t h e  p r o p e r t i e s  o f  which depend considerably 
on t h e  o r i e n t a t i o n  of  t h e  g l a s s  f i l l e r  (g l a s s  f i b e r  o r  g l a s s  t h read ) ,  t h e  form 
o f  polymer bonding agent  and t h e  manufacturing technology. 

S tud ie s  show t h a t  i n  heterogeneous m a t e r i a l s  such a s  g l a s s  p l a s t i c s ,  two 
types  o f  s t r e s s e s  can be de t ec t ed :  s t r e s s e s  i n  t h e  s t r u c t u r e  of  t h e  ma te r i a l ,  
a r i s i n g  due t o  t h e  i n t e r a c t i o n  o f  t h e  r i g i d  g l a s s  f i l l e r  and t h e  comparatively 
s o f t  polymer bonding agent ,  and medium s t r e s s e s ,  t he  d i s t r i b u t i o n  o f  which i s  
a t t r i b u t e d  t o  t h e  geometry of  t h e  p a r t i c u l a r  product .  Therefore,  i n  g l a s s  
p l a s t i c s  and o t h e r  heterogeneous m a t e r i a l s  t h e  concent ra t ion  of  medium s t r e s s e s  
t h a t  occur due t o  t h e  presence of  a ho le ,  grooves, and hollow chamfers i n  a 
p a r t ,  i s  accumulated i n t o  pe r tu rba t ions  i n  t h e  s t r e s s  s t a t e  w i th in  t h e  ma te r i a l  
i t s e l f .  

'A l a r g e  number o f  examples app l i cab le  t o  t h e  mining indus t ry  concerning t h e  
r e d i s t r i b u t i o n  of t h e  s t r e s s  s t a t e  near  both re inforced  and f r e e  ho le s ,  caused 
by t h e  c reep  o f  rocks,  i s  d iscussed  i n  t h e  monograph o f  Zh. S. Yerzhanov [ I ] ,  
and a l s o  i n  t h e  a r t i c l e s  of  Sh. M .  Aytal iyev and Zh. S .  Yerzhanov [ I ] ;  V .  S .  
Kuksina [ I ] .  

2 See G .  A.  Van Fo Fy [I]; G .  A .  Van Fo Fy, G .  N .  Savin [l, 21. 



Experimental and t h e o r e t i c a l  s t u d i e s 1  o f  t h e  i n t e r n a l  f i e l d  o f  s t r e s s e s  /836 
i n  a  l i n e a r l y  o r i e n t e d  g l a s s  p l a s t i c  i n d i c a t e  t h e  ex i s t ence  o f  a  s t r e s s  concen- 
t r a t i o n  near  t h e  f i b e r s .  The concent ra t ion  c o e f f i c i e n t  o f  t h e  s t r u c t u r a l  
s t r e s s e s  i n  g l a s s  p l a s t i c s  depends on t h e  p r o p e r t i e s  and volumetr ic  conten t  of  
t h e  f i l l e r  and bonding agent ,  mutual arrangement o f  t h e  f i b e r s  and t h e  manu- 
f ac tu r ing  technology. 

S tud ie s  o f  t h e  i n t e r n a l  s t r e s s  f i e l d  i n  l i n e a r l y  o r i e n t e d  g l a s s  p l a s t i c s  
with a  hexagonal s t r u c t u r e 2  i n d i c a t e  t h a t  t h e  l o c a l  s t r e s s e s  on t h e  contour o f  
t h e  f i b e r s  exceeds t h e  medium s t r e s s e s .  

We w i l l  cons ider  b r i e f l y 3  t h e  problem o f  t h e  d i s t r i b u t i o n  of  macroscopic 
c h a r a c t e r i s t i c s  and s t r e s s  concent ra t ion  near  f i b e r s  i n  t h e  s t r u c t u r e  of  
l i n e a r l y  o r i en t ed  g l a s s  p l a s t i c ,  t h e  base o f  which c o n s i s t s  o f  spun r e c t i f i e d  
i d e n t i c a l  f i b e r s ,  arranged i n  nodes of  r i g h t  t r i a n g u l a r  ne t ,  t h e  space  between 
which i s  f i l l e d  with a  homogeneous polymer bonding agent .  

A t  room temperature t h e  g l a s s  f i b e r  i s  e l a s t i c ,  and i t s  p r o p e r t i e s  obey 
Hookels law a l l  t h e  way t o  rup tu re .  

Thermal r e a c t i v e  polymers, used i n  t h e  manufacture o f  g l a s s  p l a s t i c s ,  a r e  
v i s c o e l a s t i c  ma te r i a l s ,  t h e  growth o f  deformations wi th in  which occurs  with 
lag .  The p r o p e r t i e s  o f  such polymers can be descr ibed  s a t i s f a c t o r i l y  by t h e  
theory  o f  e l a s t o - h e r e d i t a r y  media, discussed b r i e f l y  i n  51. 

In  t h e  case  a t  hand, t h e  f i b e r s  form a  double p e r i o d i c  s t r u c t u r e ,  and 
t h e r e f o r e  t he  s o l u t i o n  of  t h e  problem i s  found wi th  t h e  a i d  of  t h e  theory  of  
e l l i p t i c a l  func t ions  o f  t h e  complex v a r i a b l e  x + ix where t h e  Oxl a x i s  2 3' 
coinc ides  i n  d i r e c t i o n  wi th  t h e  o r i e n t a t i o n  of  t h e  f i b e r s .  

I f  an element of  t h e  volume i s  loca t ed  f a r  from t h e  edge, t h e  s t r e s s  and 
deformation s t a t e s  a r e  analyzed on the  b a s i s  o f  expansions of  t h e  Kolosov- 
Muskhel ishvi l i  complex p o t e n t i a l s :  

'see G .  A. Van Fo Fy and G.  N.  Savin [2 ] ;  G .  A. Van Fo Fy [4 ] .  
2 ~ i t h  t h e  hexagonal s t r u c t u r e ,  t h e  f i b e r s  a r e  arranged i n  t h e  g l a s s  p l a s t i c  i n  
nodes o f  t h e  proper  ne t .  

3 ~ o r  a  more d e t a i l e d  d e s c r i p t i o n  s e e  G .  A .  Van Fo Fy [ S ] .  
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Ya (2, t )  = bin (t) z2", 

where t h e  subsc r ip t s  s and a denote functions per ta in ing t o  t h e  regions 
occupied by t h e  bonding agent and by t h e  g lass  f i l l e r ,  respect ive ly ;  

(XI I .  57) 

i a P = -f no,. o, = ole ; a = n/3; o,, o2 - a r e  the  periods of  the  ne t .  

The unknown parameters a Z n ( t ) ,  b ( t )  , c ( t )  and d z n ( t )  a r e  found from 2n 2n 
t h e  condit ions of  equa l i ty  of  t h e  s t r e s s e s  and displacements on the  boundary i 0 r = r of  contact  o f  t h e  f i b e r s  with the  bonding agent,  o r  r e s i n  ( z  = r = r o e  ) .  0 

For regu la r  s t r u c t u r e s ,  due t o  the  double p e r i o d i c i t y  of t h e  problem, it 
i s  s u f f i c i e n t  t o  s a t i s f y  the  boundary conditions 

on one a r b i t r a r y  contour (of t ransverse  cross  sec t ion)  of the  f i b e r .  

The condit ions on the  contour of  an elementary c e l l  a r e  reduced t o  the  
assignment of mean s t r e s s e s  <a > o r  deformations <E i k  ik>, where 

I 1 
<alk> = T j  nlk tie <El ,>  = eik d ~ ;  F = wla2  sin a. 

c' 
(XI I .  59) 



2 
Through 5 = nro/F and = 1 - E we w i l l  denote the  r e l a t i v e  volumetric 

content of  the  g lass  and bonding a g e n t , i n  t h e  g lass  p l a s t i c .  

The d i s t r i b u t i o n  of t angen t i a l  s t r e s s e s  i n  the  s t r u c t u r e  of  a composition 
mater ia l  f o r  the  hexagonal (densest) packing o f  the  f i b e r s  i n  g lass  p l a s t i c s  
during displacement i n  the  (x x2) and (x x ) planes (Figure XI1.5) is  1' 1' 3 
i l l u s t r a t e d  by the  curves presented i n  Figure XII.6. 

/ 
111 

Figure XII.5. 

For comparison, Figure XII.6 a l s o  /a38 - 
shows broken curves t h a t  cha rac te r i ze  
t h e  d i s t r i b u t i o n  of  s t r e s s e s  f o r  a small 
volumetric quant i ty  of  g las s  f i b e r  
(5 = 0.23).  Here, on the  o rd ina te  ax i s ,  
a r e  arranged the  values of the  concen- 
t r a t i o n  coe f f i c i en t s  of t angen t i a l  
s t r e s s e s  T~~ (through cross  s e c t i o n  

8 = 0) i n  the  s t r u c t u r e  o f  the  mater ia l ,  
and on the  absc issa  i s  t h e  r e l a t i v e  
d is tance  between t h e  f i b e r s .  The 
s t r e s s e s  a r e  ca lcula ted  on planes per-  
pendicular  t o  the  Ox2 ax i s .  

Figure XII.6. Figure XII.7. 

These curves show t h a t  a s  the  volumetric content 5 of the  g l a s s  f i l l e r  
increases ,  the  s t r e s s  d i s t r i b u t i o n  i n  t h e  s t r u c t u r e  o f  t h e  ma te r i a l  becomes 
more uniform. The maximum s t r e s s  concentrat ion c o e f f i c i e n t s  a r e  achieved a t  
the  boundary between t h e  f i b e r s  and bonding agents .  

The d i s t r i b u t i o n  of  normal or and t angen t i a l  rre s t r e s s e s  on t h e  contour 

of  a f i b e r  (5 = 0.74) during displacement o f  the  g l a s s  p l a s t i c  i n  t h e  (xt,  X3) 
plane is represented i n  Figure XII.7. The values o f  the  s t r e s s  concentrat ion 



coef f i c i en t  on t h e  surfaces  perpendicular  t o  the  radius a r e  measured, a s  usual,  
from the  contour l i n e ,  i . e . ,  from t h e  c i r c l e  r = r 

0 ' 

During t h e  s t r e t ch ing  of g l a s s  p l a s t i c s  i n  the  d i r e c t i o n  of  o r i en ta t ion ,  
i . e . ,  along t h e  g lass  f i b e r s ,  t h e  d i s t r i b u t i o n  of normal a and t angen t i a l  T r r f3 
s t r e s s e s  (5 = 0.74) on t h e  contour of the  f i b e r s  on the  r a d i a l  planes i s  
i l l u s t r a t e d  by t h e  curves i n  Figure XII.8. 

The d i s t r i b u t i o n  of  t angen t i a l  T~~ and normal ae s t r e s s e s  on t h e  contour 

o f  a  f i b e r ,  both on t h e  r a d i a l  and on t h e  t angen t i a l  planes, during t h e  
s t r e t c h i n g  o f  re inforced p l a s t i c s  by s t r e s s e s  <a > o r  22 

is  represented 

by the  curves i n  Figure X I 1  . 9 .  

A s  we see,  t h e  concentrat ion of s t r e s s e s  ag on the  boundary between t h e  - /839 

f i b e r s  and bonding agent i s  s l i g h t  i f  t he  adhesion of  the  f i b e r s  t o  the  r e s i n  
i s  good. 

Because of  the  v i s c o e l a s t i c  p roper t i e s  of  the  polymer bonaing agent,  the  
r e d i s t r i b u t i o n  of  s t r e s s e s  i n  time occurs i n  the  composition o f  the  mater ia l  
between t h e  f i l l e r  and t h e  bonding agent .  

S tudies  show1 t h a t  a s  the  bonding agent undergoes creep t h e  r e d i s t r i b u t i o n  
o f  s t r e s s e s  i n  t h e  s t r u c t u r e  o f  a  composition mater ia l  does not  exceed 10% of  
the  instantaneous value. 

Figure XII.8. Figure XII.9. 

During t h e  constant  deformation of  g lass  p l a s t i c ,  no re l axa t ion  of t h e  
s t r e s s e s  occurs on t h e  boundary of the  f i b e r s .  I t  turns  out  here  t h a t  t h e  
r e l axa t ion  of t h e  s t r u c t u r a l  s t r e s s e s  is  proport ional  t o  t h e  r e l axa t ion  of t h e  
mean s t r e s s e s .  

'see G .  A. Van Fo Fy [ 4 ] .  

94 8 



The t r u e  s t r e s s e s  ax, a ..., a i n  t h e  case  o f  hexagonal s t r u c t u r e  
Y'  x  Y 

(Figure XII.5) a r e  r e l a t e d  t o  t h e  mean s t r e s s e s  <a > ( i ,  k = 1, 2, 3) by t h e  
r e l a t i o n s  i k  

(XI I .  60) 

Cx) (Y) (and analogously f o r  a ..., T ), where kci , (Xy) ( i  = 1, 2,  
Y' XY 

ci , . ' 9  kci 
3, ..., 6) a r e  t he  s t r u c t u r a l  s t r e s s  concent ra t ion  c o e f f i c i e n t s .  

Basic Relat ions of Theory o f  E l a s t i c  Heredity f o r  Heterogeneous Mate r i a l s .  
The base  o f  heterogeneous f ib rous  m a t e r i a l s  o f  t h e  o r i e n t e d  g l a s s  p l a s t i c  type  
i s  made up of  a  l i n e a r l y  r e in fo rced  l a y e r  cons i s t i ng  o f  r e c t i f i e d  f i b e r s .  

I f  t h e  a x i s  (Figure XII.5) i s  d i r e c t e d  along t h e  o r i e n t a t i o n  of  t h e  f i b e r s ,  
then t h e  r e l a t i o n s h i p  between mean s t r e s s e s  <a > and mean deformations <cik> i k  
f o r  a  l i n e a r l y  r e in fo rced  l aye r ,  t h e  f i b e r s  i n  which form a  hexagonal s t r u c -  /840 
t u r e ,  has  t h e  form 

1 
<Ell> = E;; < all> - Y E  Ell [<u22> + <%3>]; 

(XI I .  61) 

I f  t h e  f i b e r s  form a  more complex s t r u c t u r e ,  then1  t h e  number o f  e l a s t i c  
cons t an t s  i nc reases  and, i n  t h e  genera l  case,  reaches 13. 

The hexagonal d i s t r i b u t i o n  o f  t h e  f i b e r s  i s  most l i k e l y ,  and t h e r e f o r e  t h e  
r e l a t i o n s  g iven  above w i l l  be  used a s  t h e  b a s i s  o f  t h e  theory  o f  o r i e n t e d  g l a s s  
p l a s t i c s .  

In  formulas (XII.61) t h e  b a r  denotes  t h e  ope ra to r  moduli; t h e  o t h e r  va lues  
i n  t h e  case  of  v i s c o e l a s t i c  deformattons o f  t h e  polymer bonding agent can be 
assumed a s  t h e  cons tan ts  o f  t h e  ma te r i a l  wi th  an  accuracy up t o  s % ~ .  

' see  G .  A .  Van Fo Fy [ 2 ] .  
2 ~ e e  G .  A .  Van Fo Fy [3] . 



The opera tor  and ordinary moduli i n  r e l a t i o n s  (XII.61) can be expressed 
through t h e  physico-mechanical p roper t i e s  of t h e  f i l l e r  and bonding agent .  
The approximate (with an accuracy up t o  7-10%) formulas f o r  t h e  operators  and 
constants  of  a composition mater ia l  a r e  

o o - a -  bl Sa (- 0 + 6,) + o o - a - b , -  b,c .- . 
i- a,,-6, l + c  OO-b,  1 4- c 9 (- + 1' (XI I .  62)  

where 

Here t h e  subsc r ip t s  0 and a denote t h e  instantaneous e l a s t i c  cons tants  o f  the  
bonding agent  and g l a s s  f i b e r s ,  respect ive ly ;  w 0' woo a r e  the  parameters t h a t  

cha rac te r i ze  the  rheologic p roper t i e s  of  the  polymer bonding agent.  

I n  t h e  case  of  the  unsteady process o f  creep urn -+ 0. For polymers based 
l+a. 

on a maleic-epoxy composition, we may assume f o r  t = 25°C t h a t  wo = 0.052 h , 
l+a u = 0.5; w_ = 0.12 h ; vo = 0.382; Eo = 0.981 x 0 . 3 5 1 * 1 0 ' ~  n/m2. For alumi- 

numborosilicate g l a s s  f i b e r s  a t  the  same temperature, va = 0.2; Ea = 0.981-7.0- 

- 1 0 ' ~  n/m2. 

The formula fo r  t h e  operator  l/E can be represented conveniently i n  the  
form 

2 2 



The instantaneous elastic constants of a composition material are 

In order to analyze the relaxation processes of stresses, we must have - /842 
the operators 

4 a 

(XI I .  66) 

where pk (k = 1, 2, 3) are the roots of the equation 

A k  
l + ~ ~ p = o s  

krl 

and f is found from the solution of the system of three equations k 

(XI I .67) 

(XI I .  68) 
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S t r e s s  Concentration Near Round and E l l i p t i c a l  Holes i n  P l a t e  Made of 
Fibrous Mate r i a l s .  We w i l l  examine t h e  concent ra t ion  of mean s t r e s s e s  <a 

ik' 
near  round and e l l i p t i c a l  holes  i n  a  t h i n  l i n e a r l y  re inforced  p l a t e  made of  
g l a s s  p l a s t i c  based on a  maleic-epoxy bonding agent under simple t ens ion  by 
s t r e s s e s  <a >. a 

Let t h e  f i b e r s  be o r i en t ed  along t h e  Oxl a x i s .  We w i l l  use  t he  Car tes ian  

coord ina te  system (x x2 ) ,  loca ted  i n  t h e  middle s u r f a c e  o f  t h e  p l a t e ,  with 

t h e  o r i g i n  o f  t h e  coord ina tes  loca ted  a t  t he  c e n t e r  of  t h e  ho le .  

From t h e  condi t ion  of  equi l ibr ium, d is regard ing  t h e  s t r e s s e s  <a 
and <al3>, 33'' "23' 

(XI I .  69) 

and from t h e  equat ions of  c o n t i n u i t y  i t  follows t h a t  t h e  s t r e s s  func t ion  U 
should s a t i s f y  t h e  biharmonic equat ion with ope ra to r  c o e f f i c i e n t s :  

(XII. 70) 

The func t ion  U should be cons t ruc ted  such t h a t  t h e  contour of t h e  h o l e  w i l l  be 
f r e e  o f  ex t e rna l  fo rces ,  and t h e  s t r e s s e s  "a t  i n f i n i t y , "  def ined  by t h i s  func- 
t i o n ,  w i l l  approach t h e  given s t r e s s  s t a t e 1 .  The s o l u t i o n  o f  t h i s  problem is  - /843 
given i n  1, Chapter I11 with t h e  a i d  o f  func t ions  o f  complex v a r i a b l e s  z = 
= x1 + s1x2 and z2 = x l + s x  where 1 

2 2' 

Using V .  V o l t e r r a ' s  p r i n c i p l e ,  we can determine2 t h e  r e d i s t r i b u t i o n  of s t r e s s e s  
i n  t ime near  an e l l i p t i c a l  (and i n  p a r t i c u l a r ,  round) h o l e .  

Let ci be t h e  angle  of  s lope  of  t h e  d i r e c t i o n  of t h e  s t r e s s e s  o f  tens ions  
<o > t o  t h e  Oxl a x i s ;  t he  mean s t r e s s e s  i n  t h e  p l a t e  are given by t h e  formulas3 a 

' see  Chapter 11, 51. 
2 ~ e e  G .  A .  Van Fo Fy El]; G .  A .  Van Fo Fy, G .  N .  Savin [2] .  
3 See formula (111.23). 



(XI I. 72) 

where the functions are 

i (a - is,b) b (s ,  sin 2a + 2 cos2 a) iu (2s2 sin2 a + sin ? a )  
9 0  (21) = - 4 ( s ,  - s*) - -I- [', + V 4 - (a2 + sib2) 3 + Y F - ( 1 1 ' % b 2 )  

(XI I. 73) 
i (a  - is,b) b (s ,  sin 2a $ 2 cosa a)  in (2s, sin2 a + sin 2r1) + * h, = 

('1 - %) [% + v 4 - (d+ sib2) z2 + VZ; --=I; - (a2+ s:b2i 

here a and b are the large and small semiaxes of the ellipse, respectively. 

Of greatest importance is the distribution of normal stresses <a > acting 
9 

on the planes perpendicular to the tangent to the contour of the hole, and the 
distribution of tangential stresses <a > between the fibers. 12 

On the contour of the hole 

sin* 6 
cue> = <'a> (sin2 6 +k. ~ 0 ~ 2  6 + 

k (sl sin 6 + k cos 612 - (s2 sin 6 + k cos 6)' (XI1 .74) 
sin 6 - ks, cos 6 sin 6 - ks, cos 6 

where k = bja, x2 = a cos 6; x, = b sin 6. 

From (XII.74) we have: 

for (6 = 0 

for 6 = n / 2  

(XI I. 75) 

(XI I .76) 



Figure XII.10 i l l u s t r a t e s  s t r e s s e s 1  <ag> on t h e  contour of  a  round h o l e .  /844 - 
These s t r e s s e s  were ca l cu la t ed  by formula (XII.74) f o r  a  = b and a = 0, i . e . ,  
f o r  t ens ion  along t h e  g l a s s  f i b e r s 2  by s t r e s s e s  <o,>. Curves 1 and 2 charac-  

t e r i z e  t h e  d i s t r i b u t i o n  of  t h e s e  normal 
s t r e s s e s  f o r  e l a s t i c  i s o t r o p i c  and an iso-  
t r o p i c  materials, r e spec t ive ly .  The 
r e d i s t r i b u t i o n  of  mean s t r e s s e s  <a > 

19 
(XI I .  74) during t h e  prolonged ( t  -t a) 
e f f e c t  of  ex t e rna l  s t r e s s e s  <aa> during 

t h e  s t a b l e  process  of  c reep  i s  r ep re -  
sen ted  by curve 3.  This curve shows 
c l e a r l y  t h a t  s t r e s s e s  <ug, (XII.74) 

i nc rease  with time on t h e  p lanes  r e i n -  
forced by t h e  g l a s s  f i b e r ;  t h e  mean 

Figure XII.10. s t r e s s e s  on t h e  planes p a r a l l e l  t o  t h e  
o r i e n t a t i o n  of t h e  f i b e r s ,  due t o  t h e  

development of  v i s c o e l a s t i c  deformations i n  t h e  polymer bonding agent ,  d e ~  
c rease .  

In  o rde r  t o  s tudy  t h e  s t r e s s  s t a t e  i n  a  p l a t e  near a  ho le  a t  an a r b i t r a r y  
moment o f  t ime, i t  i s  convenient t o  use t h e  formula 

The d i s t r i b u t i o n  of t a n g e n t i a l  s t r e s s e s  <a > on p lane  (xZ = b ,  x  ) is  12 1 
represented  by curve 4  (Figure XI1 . l o )  . 

The t r u e  t a n g e n t i a l  s t r e s s e s  on t h e  planes p a r a l l e l  t o  t h e  f i b e r s  (5 = 0.74) 
a r e  

The r e s i s t a n c e  o f  t h e  polymer bonding agent t o  c u t t i n g  i s  l e s s  than  i t s  
r e s i s t a n c e  t o  s t r e t c h i n g ,  and t h e r e f o r e  t h e  bear ing  capac i ty  of  t h e  p l a t e  a f t e r  
t h e  t a n g e n t i a l  s t r e s s e s  <al2> have reached t h e i r  l i m i t  values i s  determined by 

t h e  r e s i s t a n c e  of t h e  unweakened p a r t  of t h e  g l a s s  p l a s t i c s  t o  rup tu re .  The 

 o ore accu ra t e ly ,  concent ra t ion  c o e f f i c i e n t s  k  of t h e s e  s t r e s s e s .  0  
 he d i r e c t i o n  of  t h e  g l a s s  f i b e r s  i s  shown i n  Figure XII.10 ( t h i r d  quadrant on 
t h e  l e f t )  and i n  Figures  XII.12-XII.15 ( fou r th  quadrant on t h e  r i g h t ) .  



shaded area in Figure XII.ll is eliminated from work due to the cutting of the 
bonding agent along the line aa', while the remainder of the material is in a 
uniform stress state. 

Change in the concentration coefficient kg of stresses <09> (XII.74) on 

the contour of an elliptical hole, the large axis of which is parallel to the 
orientation of the fibers1 (for a/b = 2) is represented by curve 1 in Figure /845 
XII.12. Curve 2 characterizes the redistribution of stresses <a > on the 
contour of the hole during the prolonged loading of the plate. 9 

F i g u r e  XII.ll. F igu re  XII.12. 

The change in the concentration coefficient of stresses <a9> in the very 

same plate, but for the case where the large axis of the elliptical hole is 
perpendicular to the direction of tension, directed along the glass fibers, is 
represented in Figure XII.13. Curve 1 corresponds to the initial stress state 
in the plate, and curve 2, to the stress state after prolonged loading (about 
500 hours), i.e., after the relaxation processes have practically concluded. 

F igu re  XI1 .13. F igu re  XII.14. 

'see the shading of part of the plate near the contour in the fourth quadrant. 



The change i n  t ime o f  t h e  concent ra t ion  c o e f f i c i e n t  of  s t r e s s e s  <a > i n  
6 

a p l a t e  r e in fo rced  along t h e  l a r g e  a x i s  o f  an e l l i p s e  (when a /b  = 2),  f o r  
t ens ion  perpendicular  t o  t h e  o r i e n t a t i o n  of t h e  f i b e r s ,  a f t e r  prolonged 
loading,  i s  shown by curve 2 i n  Figure XII.14. Curve 1 corresponds t o  t h e  
ins tan taneous  s t r e s s  s t a t e  a t  t h e  i n i t i a l  moment of  t ime. Due t o  t h e  r e d i s -  
t r i b u t i o n  of s t r e s s e s ,  t h e  maximum concent ra t ion  c o e f f i c i e n t  k o f  t h e  s t r e s s e s  /846 

0 - 
decreases  i n  t ime. 

The maximum concent ra t ion  c o e f f i c i e n t  o f  t h e  t r u e  s t r e s s e s  (5 = 0.74) i s  

kmx = k$, =: 1.9 -4.6 = 8.74. (XI I .79) 

I f  t h e  p l a t e  c o n s i s t s  o f  i n t e r s e c t i n g  r e in fo rced  l a y e r s  o f  g l a s s  tape1  of  
equal th ickness ,  arranged symmetrically with r e spec t  t o  i t s  middle su r f ace ,  
then  t h e  mechanical p r o p e r t i e s  a r e  r e a d i l y  determined f o r  t h e  e n t i r e  body a s  a 
whole . 

From t h e  condi t ions  o f  deformation 
compatabi l i ty  of  t h e  l a y e r s  we have 

F i g u r e  XII. 15. 

Let a laminar p l a t e  o f  uniform s t r e n g t h  be  weakened by a round ho le  of  
r ad ius  b and subjec ted  t o  t ens ion  along one of i t s  p r i n c i p a l  d i r e c t i o n s  of 
an iso t ropy .  

The d i s t r i b u t i o n  of  mean s t r e s s e s  <a > on t h e  contour of t h e  h o l e  is  g iven  
6 

by formula (XII. 74),  i n  which i t  i s  necessary t o  assume 

(XI I .  80) 

The ope ra to r  moduli of displacement El2 
- 

and EZ2, E l l ,  VZ1 a r e  ca l cu la t ed  on t h e  

b a s i s  of t h e  formulas g iven  above. 

'see t h e  shaded a r e a  i n  t h e  fou r th  quadrant of  t h e  p a r t  o f  t h e  p l a t e  near  t h e  
contour  i n  Figure XII.15. 
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- Ell 
s,s,=-1; s,+s,=i 2 (1 -v2~ )+= - - .  

6 1 2  (XI1 .81) 

As follows from (XI1 .75) ,  s t r e s s e s  <o 7 do not  change i n  t ime when 9 = 0 .  
9 

The d i s t r i b u t i o n  of s t r e s s e s  <a > (XII.74) on t h e  contour  of  t he  ho le  a t  

t h e  i n i t i a l  moment of time (curve 1) can be t r a c e d  by the  change of  t h e  s t r e s s  
concent ra t ion  c o e f f i c i e n t  k shown i n  Figure XII.15. Curve 2 shows t h e  

0' 
change i n  k during prolonged loading.  0 

I t  i s  i n t e r e s t i n g  t o  note  t h a t  during uns t ab le  creep of  t h e  polymer bonding 
agent ,  t h e  s t r e s s e s  on t h e  p lane  9 =  0 do not  change i n  t ime, while  t h e  
s t r e s s e s  on t h e  p lane  9 =  ~ r / 2  i nc rease .  

Therefore the  curves shown i n  Figures  XII.lO-XII.15 show t h a t  t h e  concen- /847 - 
t r a t i o n  of  s t r u c t u r a l  s t r e s s e s  near  r i g i d  inc lus ions  i n  composition m a t e r i a l s  
o f  t h e  g l a s s  p l a s t i c  type ,  because of  t h e  cons iderable  d i f f e r e n c e  i n  t h e  
mechanical c h a r a c t e r i s t i c s  of  t h e  component p a r t s ,  i s  an a d d i t i o n a l  source  of  
pe r tu rba t ion  of  t h e  s t r e s s  s t a t e .  
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A P P E N D I X  

E X P E R l  MENTAL DATA ON STRESS D l  S T R l  BUT1 ON NEAR HOLES 

5 1 .  General Comments 

I n  t h e  preceding chapters ,  f o r  t h e  t h e o r e t i c a l  s o l u t i o n  of t h e  problem of  /849 
t h e  e f f e c t  o f  var ious  holes  on t h e  s t r e s s  s t a t e  p a t t e r n  i n  a  heterogeneous 
f i e l d ,  we made an important assumption t o  s imp l i fy  t h e  problem o f  i n t e r e s t .  
We assumed t h a t  i n  p a r t s  of  t he  p l a t e  o r  s h e l l  t h a t  a r e  s u f f i c i e n t l y  d i s t a n t  
from a  h o l e  t h e  s t r e s s  s t a t e  remains t h e  same a s  i n  a  p l a t e  (beam o r  rod) o r  
s h e l l  without  a  ho le .  

I t  is obvious t h a t  t h e  t h e o r e t i c a l  s o l u t i o n s  der ived  i n  t h e s e  chapters  
w i l l  c h a r a c t e r i z e  more accu ra t e ly  t h e  s t r e s s  p a t t e r n s  i n  f i n i t e  p l a t e s  o r  
s h e l l s  weakened by some ho le  a s  t h e  dimensions o f  t h e  ho le s  decrease  i n  com- 
pa r i son  wi th  t h e  dimensions of  t he  p l a t e s  and s h e l l s .  However, t he  t h e o r e t i c a l  
s o l u t i o n  of t h e  corresponding problems f o r  doubly-connected reg ions  involves 
cons iderable  mathematical d i f f i c u l t i e s  and y i e l d s ,  a s  a  r u l e ,  t o  an approximate 
s o l u t i o n .  Therefore t h e  experimental method i s  p r e f e r a b l e  i n  many cases .  
Experimental s t u d i e s  a r e  a l s o  requi red  i n  those  cases  where it i s  impossible t o  
eva lua t e  t h e  degree of  approximation o f  t h e  t h e o r e t i c a l  s o l u t i o n  found. The 
v a s t  ma jo r i t y  of  experimental s t u d i e s  concerning s t r e s s  concent ra t ion  near  
ho le s  i n  p l a t e s  and s h e l l s  have been conducted by t h e  p h o t o e l a s t i c i t y '  and 
p h o t o e l a s t i c  coa t ings2  methods. The methods of  tensometry3 and lacquer  
c o a t i n g s 4  have a l s o  been used t o  a  l e s s e r  degree f o r  t h i s  purpose. 

In  t h i s  appendix it w i l l  not  be our  purpose t o  a t tempt  t o  desc r ibe  a l l  
experimental i n v e s t i g a t i o n s  concerning s t r e s s  concent ra t ion  near  ho les  i n  
p l a t e s  and s h e l l s ,  b u t  we w i l l  d e sc r ibe  some of those  t h a t  make it poss ib l e  t o  
e s t a b l i s h  t h e  range of a p p l i c a b i l i t y  of  t h e  t h e o r e t i c a l  s o l u t i o n s  obta ined  
above t o  p l a t e s  and s h e l l s  of f i n i t e  dimensions, a s  wel l  a s  t hose  works which 
make it p o s s i b l e  t o  eva lua t e  t h e  degree o f  e r r o r  of  t h e  approximate s o l u t i o n s  
der ived .  For many cases  t h e  i s o c l i n e s ,  i s o s t a t s  corresponding t o  them, and 
p a t t e r n  of  i n t e r f e r e n c e  bands5 a r e  presented.  I s o s t a t s  and i n t e r f e r e n c e  bands 
a f f o r d  a  g raph ic  r e p r e s e n t a t i o n  of  t h e  dimensions of  a  reg ion  t o  which spreads 
t h e  e f f e c t  of  a  ho le  on t h e  s t r e s s  s t a t e  i n  a  given p l a t e  o r  beam and thus 

' see  M .  M .  Frokht [ I ,  21;  L .  Kiker, E .  Faylon [ I ] ;  A .  M .  Pr igorovskiy [ I ] ;  H .  T .  
Jessop,  C .  S n e l l ,  J .  M .  Al isson [ I ] .  

'see A .  Ya. Aleksandrov, M .  Kh. Akhmetzyanov, A.  S .  Rakin [ I ] .  
%ee  F .  J .  Mehringer, W .  E .  Cooper [ I ]  ; M .  A. Loshkarev [ I ] .  
4 ~ e e  K .  Fink, Kh. Rorbakh [ I ] .  
'~n i s o c l i n e  i s  a  curve t h a t  passes  through p o i n t s  with p r i n c i p a l  s t r e s s e s  of  
i d e n t i c a l  d i r e c t i o n s .  An i s o s t a t  i s  a  curve, t h e  tangent  t o  which has t h e  
d i r e c t i o n  o f  t h e  p r i n c i p a l  s t r e s s  a t  t h e  given p o i n t .  An i n t e r f e r e n c e  band 
has i d e n t i c a l  maximum t a n g e n t i a l  s t r e s s e s  a t  t h e  median p o i n t s .  



makes it poss ib le  t o  judge the  range of a p p l i c a b i l i t y  of  the  t h e o r e t i c a l  
so lu t ions  obtained i n  the  preceding chapters  t o  f i n i t e  regions. 

The numerical values of s t r e s s e s  obtained t h e o r e t i c a l l y  y i e l d  t o  
convenient comparison with those experimental r e s u l t s  which were obtained under 
condit ions analogous t o  t h e  t h e o r e t i c a l  so lu t ion .  Hence, it i s  not necessary 
t o  use a s  the  b a s i s  of comparison the  values of s t r e s s e s  a t  the  r egu la r  po in t s  
of  holes and cutouts .  Near the  above-stated points  the  f i e l d  of s t r e s s e s  
changes very rapid ly .  A t  these  points ,  s l i g h t  changes i n  the  curvature of t h e  
contour, which a r e  almost impossible t o  perceive,  a r e  markedly r e f l e c t e d  i n  
the  r e s u l t s .  Therefore, f o r  comparison of  the  t h e o r e t i c a l  and experimental 
da ta ,  s t r e s s  s t r a i n  diagrams of s t r e s s e s  through c e r t a i n  cross sec t ions  w i l l  
be presented, a s  well  as the  values of s t r e s s e s  a t  t h e  nonangular po in t s  o f  
contours of  holes .  

52 .  S t re tching o f  Plate  w i t h  Holes 

Ci rcu la r  Hole. The experimental r e s u l t s  f o r  a  s t r e t ched  beam with a  
c e n t r a l  c i r c u l a r  hole  were presented i n  Figure 11.67. We w i l l  a l s o  present  
here  the  experimental da ta  found by the  pho toe las t i c i ty  method on b a k e l i t e  
models (see M .  M .  Frokht [ I ,  21). 

The pa t t e rn  of i soc l ines  and i s o s t a t s  f o r  a  beam subjec ted  t o  tens ion by 
uniform forces p along the  Oy a x i s  i s  represented i n  Figure A . 1 .  The width of 

t h e  p l a t e  i s  3 . 3  times t h e  diameter o f  
t h e  hole  ( the  width of t h e  p l a t e  i s  
26.4 mm, t h e  diameter of  t h e  c i r c u l a r  
hole  i s  8 mm). The i s o c l i n e  with t h e  
parameter 5" (or 85") passes through 
the  points  i n  which t h e  p r i n c i p a l  
s t r e s s e s  a r e  r o t a t e d  by 5" i n  r e l a t i o n  
t o  t h e  p r inc ipa l  d i rec t ions  of the  
uniform s t r e s s  f i e l d .  The g r e a t e s t  
d is tance  between t h i s  i s o c l i n e  and t h e  
cen te r  o f  the  hole does not exceed 2 .5  d  
(d i s  the  diameter o f  t h e  ho le ) .  Con- 
sequently, it may be assumed t h a t  a t  
d is tances  g r e a t e r  than 2.5 d  from t h e  
cen te r  of t h e  c i r c u l a r  hole, the  l a t t e r  
has p r a c t i c a l l y  no e f f e c t  on the  s t r e s s  
f i e l d .  This i s  a l s o  supported by the  
p a t t e r n  of  i s o s t a t s  represented i n  t h e  
upper p a r t  of  the  f igure .  By comparing 
t h e  i s o s t a t s  shown i n  t h e  f i g u r e  f o r  a  
beam with a  c e n t r a l  c i r c u l a r  hole ,  
obtained experimentally, with t h e  i so-  
s t a t  pa t t e rn  shown i n  Figure 11.37, 
found t h e o r e t i c a l l y  f o r  an i n f i n i t e  

F i g u r e  A .  1 .  p l a t e  with a  c i r c u l a r  hole,  we s e e  t h a t  
i f  t he  width of  the  s t r e t ched  beam i s  



g r e a t e r  than  5d (d i s  t h e  diameter  o f  t h e  ho le ) ,  then  f o r  t h e  t h e o r e t i c a l  
s o l u t i o n  o f  t h e  problem t h e  beam can be  regarded a s  an i n f i n i t e  p l a t e .  

In  Figure A.2 we f i n d  t h e  i n t e r f e r e n c e  bands t h a t  g i v e  a  r ep re sen ta t ion  
of t h e  d i s t r i b u t i o n  of  maximum t a n g e n t i a l  s t r e s s e s  T~~~ i n  t h e  s p e c i f i e d  beam 

wi th  a  round ho le .  By comparing t h e  p a t t e r n  o f  i n t e r f e r e n c e  bands with t h e  
l i n e s  of  equal  T~~~ shown i n  Figure 11.36, ob ta ined  t h e o r e t i c a l l y  f o r  an 

unbounded p l a t e  under t ens ion ,  weakened by a  round ho le ,  we s e e  t h a t  they  a r e  
q u i t e  s i m i l a r .  Thus, t h e  r a t i o  of (ae)max on t h e  contour o f  t h e  c i r c u l a r  ho le  

i n  t h e  s t r e t c h e d  beam t o  t h e  s t r e s s  a (w) = p a t  po in t s  t h a t  a r e  remote from 
t h e  ho le  i s  equal  t o  3.33. In  Table 11.22, f o r  X = 0.3  and 8  = 90°, t h i s  
r a t i o  i s  equal  t o  3.36. 

E l l i p t i c a l  Hole. Figure A.3 shows t h e  i s o c l i n e s  and i s o s t a t s  f o r  a  p l a t e  
under t ens ion  wi th  an e l l i p t i c a l  ho le1  (b/a  = 2/3).  The r a t i o  of t h e  width o f  
t h e  p l a t e  t o  t h e  l a r g e  a x i s  o f  t h e  e l l i p s e  is equal  t o  4.23. The r a t i o  of  t h e  
axes of  t h e  e l l i p s e  i s  a/b = 3/2. Tension is app l i ed  on t h e  small  a x i s .  By 
comparing t h e  l i n e s  of  p r i n c i p a l  s t r e s s e s  ( i s o s t a t s )  ob ta ined  experimental ly  
wi th  t h e  l i n e s  o f  p r i n c i p a l  s t r e s s e s  represented  i n  Figure 11.34 we see ,  f i r s t ,  
t h a t  they  co inc ide  s a t i s f a c t o r i l y ,  and second, t h a t  a t  a  d i s t ance  equal t o  
2.5 a from t h e  o r i g i n  of  t he  coord ina te  system, t h e  pe r tu rba t ion  caused by t h e  
e l l i p t i c a l  ho le  is  p r a c t i c a l l y  i n d i s c e r n i b l e .  

Square Hole. I n  Figure A.4, i n  t h e  upper h a l f  of t he  f i g u r e ,  a r e  t h e  
i s o c l i n e s ,  and i n  t h e  bottom h a l f ,  t h e  i s o s t a t s 2  f o r  a  u n i a x i a l l y  s t r e t c h e d  
beam wi th  a  square ho le .  The s i d e s  of  t he  square  a r e  equal  t o  a .  The rounding 
r ad ius  of  i t s  angles  is  1/6 a .  The width of  t h e  beam is twice t h e  length of  
t h e  s i d e  of  t h e  square ;  t h e  width of t h e  beam i s  0.473 cm. The load i s  20 kg. 
The d i s t r i b u t i o n  o f  p r i n c i p a l  normal s t r e s s e s  through c ros s  s e c t i o n s  x = 0, 
y  = 0,  x  = a ( i . e . ,  s t r e s s  a t  t h e  p o i n t s  of  t h e  v e r t i c a l  edge o f  t h e  beam) and 
along t h e  contour  of  t h e  ho le ,  where P and Q a r e  t he  p r i n c i p a l  normal s t r e s s e s ,  
i s  represented  i n  Figure A . 5 .  'Ihe s t r e s s e s  on t h e  middle s i d e s ,  p a r a l l e l  t o  
t h e  long i tud ina l  ax i s ,  i s  1.4 t imes g r e a t e r  than  t h e  mean s t r e s s 3  through t h e  
weakened c ros s  s e c t i o n .  I n  t h e  case  of an unbounded p l a t e ,  a s  fol lows from 
Table 11.1, t h e  s t r e s s e s  a t  t hese  po in t s  (8 = 90") of  a  square h o l e  a r e  equal  
t o  1.47. 

Rectangular Hole. For a  p l a t e  with a  r ec t angu la r  ho le  wi th  s i d e s  a  and b  
( a  > b ) ,  compressed i n  two d i r e c t i o n s ,  t h e  i s o s t a t  p a t t e r n ,  f o r  s t r e s s e s  a t  
p o i n t s  d i s t a n t  from t h e  ho le  (p and q  = 1/4 p) i s  shown4 i n  Figure A.6. The - / 854 
r a t i o  of  t h e  s i d e s  of  t h e  r ec t ang le  i s  a/b = 1/8, where t h e  l a r g e  a x i s  o f  t h e  
r ec t ang le  forms an angle  o f  20" wi th  t h e  d i r e c t i o n  of fo rces  p .  A s  we see ,  t h e  
s i z e  of  t h e  per turb ing  zone, caused by t h e  r ec t angu la r  ho le  under cons ide ra t ion ,  

' see E .  Koker and L.  Faylon [ I ] ,  p.  457. 
2 ~ b i d ,  p .  556. 
'see E .  Koker and L.  Faylon [ I ] ,  p .  417. 
4 ~ e e  L .  G .  Afendik and A.  M .  Yershov [ I ] .  



does not  depar t  from the  round region (whose c e n t e r  is a t  t h e  c e n t e r  of 
g r a v i t y  o f  t h e  square h o l e ) ,  o f  r ad ius  r = 1 .5  a .  

0 

L ines  o f  

l s o c l  ines p r i n c i p a l  
s t r e s s e s  

F i gu re  A . 3 .  

F igu re  A.2. F igu re  A.4.  
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Figure A . 5 .  Figure A . 7 .  

Figure A . 8 .  



Figure A . 9 .  

Transverse Compression o f  Wide Beam w i t h  a C i  r c u l a r  Hole Near the  Edge. 
The s t r e s s  s t r a i n  diagrams o f  s t r e s s e s  ag along t h e  contour  of a  round hole ,  

found by R. D.  Vagapov and 0. I .  Shishor ina  [ l ]  by t h e  p h o t o e l a s t i c i t y  method, 
where the  c e n t e r  of t h e  ho le  i s  loca t ed  d i s t ances  d / ro  = 1 . 3 4  (curve I ) ,  1 .54 

(curve 2) and 2.58 (curve 3) from t h e  upper edge of  t h e  beam, a r e  shown i n  
Figure A.7. Broken curve 4 corresponds t o  an unbounded p l a t e ,  i . e . ,  d / r o  = m. 

Figure A.8 shows s t r e s s e s  ag a t  po in t s  A (Figure A.8, a)  and B (Figure A.8, 

b ) ,  r e spec t ive ly ,  a s  func t ions  of d / r  where d  i s  t h e  d i s t ance  o f  t h e  c e n t e r  0' 
o f  t h e  c i r c u l a r  ho le  from t h e  upper edge o f  t h e  beam, and r is its r a d i u s .  

0 
A s  we see ,  t h e  p e r t u r b a t i o n  zone near  t h e  given hole  f o r  d / ro  > 3 d i f f e r s  l i t t l e  

from t h e  analogous zone near  a  c i r c u l a r  ho le  f o r  an i n f i n i t e  p l a t e .  

From t h e  d a t a  presented i n  Figure A.2-A.8 it i s  poss ih l e  t o  determine 
(with a  known accuracy) t h e  l e a s t  d i s t a n c e  d  of t h e  cen te r  of  g r a v i t y  o f  t h e  
ho le  i n  t h e  form o f  an  e l l i p s e  o r  r i g h t  polygon (and a l s o  r ec t ang le )  with 
rounded corners  from t h e  edge of  t he  beam, when i t  i s  poss ib l e  t o  use t h e  



corresponding ( t o  t h e  given hole)  so lu t ion  f o r  an i n f i n i t e  p l a t e ,  which 
so lu t ion  i s  given i n  Chapter 1 1 .  

Two Round Holes. The s t r e s s  s t a t e  near  two unequal round holes i n  the  
case of  the  tens ion of a p l a t e  "at i n f i n i t y "  by forces  p = const i n  the  d i rec -  
t i o n  perpendicular t o  t h e i r  cen te r  l i n e s ,  was e m i n e d  by R .  D .  Vagapov, 0 .  I .  
Shishorina and L. A. Khripina [l-31. 

Figure A.9 shows t h e  c h a r a c t e r i s t i c  p a t t e r n  of isochromes i n  t h e  case  of 
two unequal c i r c u l a r  holes,  where the  radius  o f  the  l a rge r  hole  i s  r = 14 mrn 
and o f  t h e  smaller ,  r = 6.97 mm, when t h e  width o f  the  a rea  between t h e  holes 
6 i s  5.2 mm. I t  has been es tabl i shed t h a t  i n  the  case of two unequal c i r c u l a r  
holes i n  a p l a t e  under tension,  a s  shown i n  Figure A.9, when one of t h e  holes 
i s  much smaller  than t h e  o ther ,  i . e . ,  when rl Pr2,  t h e  g r e a t e s t  s t r e s s  og 

(on t h e  contours of these  holes)  w i l l  occur on the  contour o f  the  smaller  hole  
a t  point  A2  (Figure A.10). A s  t h e  holes become c l o s e r  together ,  i . e . ,  when 

the  space 6 between them decreases,  unloading1 w i l l  t ake  p lace  on the  contour 
o f  the  l a r g e r  hole  i n  t h e  v i c i n i t y  o f  point  A Figure A.10 shows t h e  values 1 ' 

of  concentrat ion c o e f f i c i e n t s  k2 = og/p 

K~ 
a t  t h e  point  A2 a s  functions o f  6 / r l .  

The s o l i d  and broken curves a r e  con- 
12 s t ruc ted  on t h e  b a s i s  of t h e  approximate 

t h e o r e t i c a l  so lu t ion  found by the  authors 
mentioned above (which i s  i n  very good 

10 agreement with t h e  accura te  so lu t ion  
presented i n  $9, Chapter 11) f o r  r /r = 2 1 

8 = 1 ( s o l i d  curve) and r2:rl = 1: 30 

(broken curve).  The d i f f e r e n t  points  i n  
6 Figure A.10 correspond t o  concentrat ion 

c o e f f i c i e n t s  k2 = og/p  a t  point  A2, 

4 
found by the  pho toe las t i c i ty  methd f o r  
various values o f  6 / r l .  A s  we see,  

a l l  experimental po in t s  l i e  c lose  to-  /856 - 
o 42. 44 46 48 &G gether  near  the  t h e o r e t i c a l  curves f o r  - - 

Figure A .  10. 

r2/rl = 1 and r : r  - 1:30, which, i n  
2 1 -  

turn ,  a r e  located very near t o  each 
o ther .  Hence, we may use, i n  the  broad 
range 1/30 <r2/r1 < 1, and with a high 

degree o f  accuracy, concentrat ion c o e f f i c i e n t s  fo r  r2/rl = 1. 

 h his may a l s o  be used f o r  the  unloading of s t rongly  s t r e s sed  areas  near  holes.  
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Figure A .  1 1 .  

Figure A .  12 .  



Two Square Holes. The i s o c l i n e s  and i s o s t a t s  f o r  a  p l a t e  wi th  two square 
ho le s ,  l oca t ed  a t  a  d i s t a n c e  equal  t o  t h e  length  of  t h e  s i d e  of t h e  square 
from each o t h e r ,  a r e  shown i n  Figure A . l l .  The p l a t e  i s  compressed i n  two 
d i r e c t i o n s  by f o r c e s  p and q = 1/4 p. Figure A.12 shows t h e  p a t t e r n  of s t r e s s  
d i s t r i b u t i o n  through two c ros s  s e c t i o n s  f o r  t h i s  case1  . 

The i s o c l i n e s  and i s o s t a t s  f o r  a  p l a t e  weakened by two i d e n t i c a l  square 
ho le s  and compressed i n  one d i r e c t i o n  by forces  p a r e  shown i n  Figure A.13, 
and t h e  d i s t r i b u t i o n  o f  p r i n c i p a l  s t r e s s e s  along t h e  axes of  symmetry i s  shown 
i n  Figure A.14. The length  of  t h e  p l a t e  i s  assumed t o  be  10 t imes g r e a t e r  than  - /857 
t h e  s i d e  o f  t h e  square.  The d i s t a n c e  between t h e  square holes  i s  equal t o  
t r i p l e  t h e  l eng th  o f  t h e  s i d e  of  t h e  square.  When t h e  d i s t a n c e  between t h e  
c e n t e r s  of  t h e  squares  i s  taken a s  3 t imes t h e  length  o f  t h e  s i d e  of t h e  square 
( s ee  F igure  A.14), t h e  e f f e c t  o f  one square h o l e  on the  s t r e s s  f i e l d  near  t h e  
o t h e r  i s  comparatively s l i g h t .  Thus, t he  s t r e s s e s  on t h e  middle s i d e ,  perpen- 
d i c u l a r  t o  t h e  d i r e c t i o n  o f  t h e  compressive fo rces  p,  have t h e  r a t i o  0.60/0.72. 

I sos t a t s ,  I 

l soc l  i nes I 
Figure A .  13. 

t t ! P I  l ~ t  I 
Figure A . 1 4 .  

lSee L. G .  Afendik [ I ] .  



53. Pure Deflection of Beam with Hole 

Circular  Hole. Figure A.15 i l l u s t r a t e s  t h e  diagram of an adaptat ion by 
which a beam with a round hole i s  subjected t o  pure de f l ec t ion .  This f i g u r e  
a l s o  ind ica tes  t h e  dimensions of  the  beam and t h e  pos i t ion  o f  the  hole.  

Figure A . 1 5 .  

Figure A .  16 shows' the  s t r e s s - s t r a i n  
diagrams of  s t r e s s e s  a on t h e  contour o f  a 8 
round hole  o f  radius  a .  The broken curves 
correspond t o  s t r e s s e s  a as determined by 8 
formula (11.105). The maximum ere f o r  a = 6 mm 

is  12.9, and f o r  a = 5 mm, 10.77. The s o l i d  
l i n e s  with the  po in t s  correspond t o  t h e  values 
of a determined experimentally on t h e  contours 8 
of these  holes.  Here a8 = 13.7 f o r  a = 6 mm 

and a - 10.5 f o r  a = 5 mm. These values o f  a d i f f e r  from those  given by 0 - 8 
formula (11.105) by no more than 7%. 

Figure A.17 shows t h e  s t r e s s - s t r a i n  diagrams of  s t r e s s e s  a and a through 
X Y 

c ross  sec t ion  x = 0, where the  radius  o f  a round hole  i s  a = 6 mm.   he s o l i d  
l i n e s  represent  experimental data,  while the  broken curves correspond t o  
t h e o r e t i c a l  da ta  ca lcula ted  by formulas (II .104),  i . e . ,  f o r  an unbounded beam. 

Figure A.18 shows t h e  s t r e s s - s t r a i n  diagrams o f  s t r e s s e s  a a and T 
x' Y XY 

through cross  sec t ion  x = 7.5 mm, where the  radius  o f  the  c i r c u l a r  hole  is  - 
a = 6 mm. The s o l i d  l i n e s  were found experimentally and the  broken l ines ,  
from t h e  t h e o r e t i c a l  so lu t ion  of  (11.104). 

Figure A.19 represents  t h e  t r a j e c t o r i e s  of  p r i n c i p a l  s t r e s s e s  i n  a beam 
with a c i r c u l a r  hole of  radius  a = 6 mm. 

From t h e  data  presented i n  Figures A.16-A.19, we s e e  t h a t  t h e  diameter o f  
a c i r c u l a r  hole  i n  a beam does not have t o  be small;  i t  can reach up t o  2/3 of  
i t s  height ,  and here the  t h e o r e t i c a l  s o l u t i o n  of  (II .104),  within the  l i m i t s  o f  
usual accuracy, is  completely va l id .  

Square and Rectangul a r  Holes. ?he p h o t o e l a s t i c i t y  method2 was used on 
c e l l u l o i d  models t o  inves t iga te  t h e  e f fec t  o f  square and rec tangular  holes on 
the  s t r e s s  ' s t a t e  pa t t e rn  i n  a beam (rod) under pure de f l ec t ion .  The height  of  
the  hole was 1 /3  the  height  of  the  beam (Figure A.20). 

'see Z.  Tuzi [ I ] .  
*see G .  N .  Savin [ I ] .  



Figure  A .  16. 

F i g u r e  A .  17. 



Figure A .  18. 

F igure  A.20. 

F igure  A.  19. 

F igure A . 2 1 .  



Figure A.20 shows t h e  f i e l d  of  i s o s t a t s  f o r  a  square ho le .  As we see ,  
t h e  pe r tu rba t ion  caused by t h e  square  ho le  extends along t h e  n e u t r a l  a x i s  o f  
t h e  beam t o  a  d i s t a n c e  equal  t o  twice t h e  length  of t h e  s i d e  o f  t h e  square,  
s t a r t i n g  from t h e  contour  o f  t h e  hole ,  and i n  t h e  perpendicular  d i r e c t i o n ,  t o  
a d i s t ance  o f  only 113 t h e  length  of  t h e  s i d e  of  t he  square,  a l s o  s t a r t i n g  
from t h e  contour  of  t h e  hole .  

The analogous experiments were conducted f o r  a  r ec t angu la r  ho le  with t h e  
s i d e  r a t i o  a /b  = 3 and with a  he ight  equal  t o  1/3 t h e  he igh t  of  t h e  c ros s  
s e c t i o n  o f  t h e  beam. 'Ihe f i e l d  of  i s o s t a t s  f o r  t h i s  case  i s  shown i n  Figure 
A.  21. 

The experimental d a t a  presented  i n  Figures  A.20 and A.21 make it poss ib l e  
t o  e s t a b l i s h  q u i t e  r e a d i l y  t h e  range of  a p p l i c a b i l i t y  o f  t h e  t h e o r e t i c a l  so lu-  
t i o n s  i n  5 2  and 3 of  Chapter I1  t o  f i n i t e  reg ions .  

54. Deflect ion of Cant i lever  Beam Weakened by C i r cu la r  Holes 

S.  P .  Shikhobalov [I]  used t h e  p h o t o e l a s t i c i t y  method t o  i n v e s t i g a t e  t h e  
s t r e s s  d i s t r i b u t i o n  i n  a  c a n t i l e v e r  beam weakened by one o r  two c i r c u l a r  
ho le s .  The beam (rod)  is  bent by a  concentrated f o r c e  app l i ed  on t h e  f r e e  end. 
The models were made of  annealed mi r ro r  g l a s s  7.5 mm i n  t h i ckness .  The calcu-  
l a t e d  length  o f  t h e  beam 2 = 100 mm, t h e  he ight  h  = 24 mm, t h e  diameter of  t h e  
ho le s  d  = 12 nmi. 

Figure A .  22.  

L--- --- 
Figure A.23.  



Figure A . 2 4 .  

Figures A . 2 2  and A . 2 3  show the  i s o c l i n e s  and i s o s t a t s  i n  a  beam with two /861 - 
i d e n t i c a l  c i r c u l a r  holes (d = 12 mm), located a t  a  d is tance  of  36 mm from each 
o the r ;  a t  t h i s  d is tance  the  mutual e f f e c t  of  the  holes on each o the r  i s  s l i g h t .  

Figure A . 2 5 .  

The d i s t r i b u t i o n  of maximum tan-  
g e n t i a l  s t r e s s e s  through c e r t a i n  cross  
sec t ions  and of  s t r e s s e s  og on t h e  con- 

t o u r  o f  the  hole  f o r  a  beam with one 
hole  is  shown i n  Figures A . 2 4  and A . 2 5 ,  
where the  broken l i n e s  represent  t h e  
t h e o r e t i c a l  curves, while the  s o l i d  
l i n e s  represent  experimental da ta .  

Analysis of  the  i s o c l i n e s  shows 
t h a t  t h e  e f f e c t  of each hole  is spread 
along t h e  a x i s  of  t h e  beam t o  a d is-  
tance of not much more than 0.75-0.80 
t h e  diameter o f  t h e  hole,  s t a r t i n g  from 
t h e  contour o f  t h e  hole.  

From t h e  data  presented i n  Figures 
A.22-A.25 we der ive  t h e  following conclu- 
s ions  : 

1) t h e  maximum s t r e s s  ag on t h e  , 
contour of  t h e  hole w i l l  occur a t  the  
top point  ,of  the  contour, i n  the  zone 
of s t r e t c h ;  

2 )  t he  s t r e s s  concentrat ion 
coe f f i c i en t1  i n  can t i l eve r  beams with 

'The r a t i o  of  s t r e s s e s  og i n  t h e  upper point  of the  hole  t o  the  corresponding 

s t r e s s  ax i n  beam without a hole  a t  the  same po in t .  



c i r c u l a r  holes  whose cen te r s  a r e  located on t h e  neu t ra l  ax i s  ( f o r  the  given 
r a t i o s  of  the  dimensions) i s  equal t o  two; 

3) s t r e s s e s  ox on the  ou te r  contour of the  beam (rod) exceeds t h e  

corresponding s t r e s s e s  on the  contour of t h e  hole ;  

4) the  most dangerous cross  sec t ion  i s  not t h a t  c ross  sec t ion  wea1:ened 
by the  hole,  but  r a t h e r  the  one located a t  the  point  of pinching; 

5) t h e  p r i n c i p a l  normal s t r e s s e s  achieve maximum values a t  t h e  point  of 
pinching ; 

6) even f o r  t h e  r a t i o  h/d = 2 (where h i s  t h e  height  o f  t h e  beam and d is 
t h e  diameter o f  t h e  ho le ) ,  t he  s t r e s s e s  on t h e  contour of  a  c i r c u l a r  hole  can 
be ca lcu la ted  on t h e  b a s i s  o f  formula (11.105). 

5 5 .  Uniaxial Tension of P l a t e  Weakened by Circular  Hole Whose Edge Is Reinforced 
by E l a s t i c  Ring 

Holes a r e  o f t en  re inforced as  i l l u s t r a t e d  i n  Figure A . 2 6 .  In t h e  design 
of  such r ings  it is  assumed1 t h a t  t h e  e n t i r e  cross  sec t ion  of the  re inforce-  
ment, i . e . ,  t h e  e n t i r e  height  H o f  t h e  r ing ,  p a r t i c i p a t e s  i n  the  work of the  
p l a t e .  However, t h e  s t r e s s  s t a t e  i n  the  r ing  changes through i ts  height .  I t  
is c l e a r  t h a t  the  g r e a t e r  t h e  he ight  H of the  r ing  i n  comparison with th ick-  
ness h o f  t h e  p l a t e ,  the  g r e a t e r  w i l l  be t h e  d i f ference  between t h e  s t r e s s  
s t a t e  i n  i t s  extreme cross sec t ions  and the  s t r e s s  s t a t e  i n  the  cross  sec t ion  
ly ing i n  the  median plane of t h e  p l a t e .  

M 

6 
A-M,, A-u, --- dP-QS 
.-K,, 0-R, - d/D=lp 

4 

2 

Figure A.26. Figure A . 2 7 .  

- - 

'see S. P .  Timoshenko [ I ] .  



The works of  M. Se ika ,  M .  I s h i i ,  I .  Kurutsu [ I ] ;  M .  Seika, M.  I s h i i  r l l ,  
and a l s o  M .  Reiner, H.  Lerchental [ I ]  a l l  p e r t a i n  t o  the  experimental i n v e s t i -  /862 - 
gat ion  of t h e  given problem by t h e  p h o t o e l a s t i c i t y  method. 

The s t r e s s  concentrat ion c o e f f i c i e n t s  k = a /a and k3 = a /a a t  point  
1 1 0  3 0 

A (see Figure A.26) a r e  pres,ented i n  Figure A.27 f o r  b/D = 1 a s  functions of  
H/h, which changes i n  the  range 1 <H/h <5, f o r  t h r e e  r a t i o s  d/D. Here a. i s  

t h e  nominal s t r e s s  i n  an unweakened p l a t e ;  a i s  t h e  maximum (average through 
1 

height  H) s t r e s s  i n  t h e  r ing;  a3 i s  the  average s t r e s s  through t h e  thickness h 
o f  the  p l a t e .  

The s t r e s s e s  Do, ol and a3 a r e  determined by i l luminat ion  with polar ized  

l i g h t  i n  the  d i r e c t i o n  perpendicular t o  t h e  median plane of a "frozen" p l a t e  
with a reinforced hole.  I l lumination a t  point  A (Figure A.26) through height  
H g ives  t h e  s t r e s s  a and through thickness h, i . e . ,  a f t e r  t h e  removal of  t h e  1' 
protruding p a r t  of  t h e  r ing  (removal of  the  p a r t  H - h o f  the  r ing) ,  t h e  s t r e s s  /863 - 
a3, which, i n  comparison with t h e  same s t r e s s  f o r  a p l a t e  without a r ing ,  found 

by t h e  same method of i l luminat ion  of a l'frozen" p l a t e  with a nonreinforced 
hole  of t h e  same dimension, w i l l  be much l e s s ,  s ince  p a r t  o f  the  s t r eng th  o f  
t h e  r ing  i s  "spent on i t s e l f . "  The curves f o r  k and k3 a r e  i l l u s t r a t e d  i n  1 
Figures A.27-A.29 f o r  b/D, equal t o  1.0, 1.5, 2.0 and 4.0, r e spec t ive ly .  The 
dot-dash curve i n  Figure A.28 represents  C.  Curney's da ta  [ l ] ,  ca lcu la ted  
t h e o r e t i c a l l y  i n  the  assumption t h a t  t h e  s t r e s s e s  a r e  propagated uniformly 
through t h e  thickness of t h e  r ing .  The top  two curves i n  Figure A . 2 9 ,  s o l i d  
f o r  k3 and broken f o r  kl, correspond t o  b/D = 1.5, and t h e  o the r  t h r e e  p a i r s  

o f  curves, t o  b/D = 2.0. 

3 H/h 

Figure ~ . 2 8 .  

. I 2 3 4 n/n 

Figure A .29 .  



In  Figures  A.27-A.29, t he  p o i n t s  enclosed by c i r c l e s ,  t r i a n g l e s  and 
squares ,  l y ing  on t h e  o r d i n a t e  ax i s ,  i . e . ,  corresponding t o  H/h = 1, rep resen t  
d a t a  found by t h e  approximate formula of  R. B. Heywood [I] ,  which was found by 
s impl i fy ing  t h e  p r e c i s e  s o l u t i o n ,  bu t  which i s  inconvenient i n  a p p l i c a t i o n s  o f  
Howland's formula, d i scussed  i n  56, Chapter 1 1 .  We s e e  from t h e  f i g u r e s  t h a t  
t h e s e  po in t s  co inc ide  s a t i s f a c t o r i l y  wi th  experimental da t a .  

The curves i n  Figure A.27 show t h a t  t h e  r a t i o  d/D has a  cons iderable  e f f e c t  
on t h e  magnitude o f  k3. Thus, when H/h = 1.5,  t h e  concen t r a t ion  c o e f f i c i e n t  

kg = 2.0 f o r  d/D = 0 .3  and k - 4 .5  f o r  d/D = 0.7. By comparing t h e  curves 3 - 
presented  i n  Figures  A.28 and A.29, f o r  t h e  very same values o f  d/D, it i s  
easy t o  o b t a i n  t h e  r e p r e s e n t a t i o n  of  t h e  e f f e c t  of  t h e  width b of  t h e  p l a t e  on 
t h e  concent ra t ion  c o e f f i c i e n t  k3. 

A s  we s e e  from Figures  A.27-A.29, f o r  each va lue  of  t h e  r a t i o  d/D, t h e  
curves f o r  k3, s t a r t i n g  with some va lue  H/h, become nea r ly  p a r a l l e l  t o  t h e  

absc i s sa .  This i n d i c a t e s  t h a t ,  s t a r t i n g  with c e r t a i n  values o f  H/h, a  f u r t h e r  
i nc rease  i n  t h e  he ight  H o f  t h e  r ing  i s ,  f o r  
a l l  p r a c t i c a l  purposes,  u s e l e s s ,  s i n c e  only 
a  s l i g h t  decrease  i n  t h e  magnitude o f  concen- 

3 t r a t i o n  c o e f f i c i e n t  k r e s u l t s .  Thus, f o r  3  
b/D = 1 (Figure A.27), s t a r t i n g  with H/h = 3, 

3 a l l  curves f o r  k3 become nea r ly  p a r a l l e l  t o  

t h e  absc i s sa ;  f o r  b/D = 1.5 and 2.0 (Figure 
A.29) t h i s  p a r a l l e l i s m  occurs  a t  H/h = 2.5, 

2 and f o r  b/D = 4.0 (Figure A .  28) ,  a t  H/h = 2.0. 
a On t h e  b a s i s  of  t hese  experimental d a t a  i t  is  

easy t o  show t h e  e f f e c t i v e  he igh t  o f  t h e  r e i n -  
f 

2 3 b/D fo rc ing  r i n g .  We w i l l  n o t i c e  t h a t  t h e  curves 
f o r  k3 f o r  b/D = 4.0  co inc ide ,  f o r  a l l  p rac-  

Figure A.30 .  
t i c a l  purposes,  wi th  t h e  same curves cons t ruc-  
f o r  a  " i n f i n i t e "  

The graphs f o r  kj a r e  given i n  Figure A.30 a s  func t ions  o f  b/D f o r  t h e  

above va lues  o f  d/D, equal  t o  0 .7  (curve 1) , 0.5  (curve 2) and 0 .3  (curve 3) 
when H/h = 3.0. 

5 6 .  Rectangular Holes in Grav i t a t i ona l  F i e l d  

In  many problems of  technology, p a r t i c u l a r l y  mining, t h e  fo rces  t h a t  cause 
s t r e s s  concent ra t ion  near  ho les  a r e  those  o f  t he  g r a v i t y  y = const  of t h e  
m a t e r i a l .  

' see M .  Seika,  M .  I s h i i ,  I .  Kurutsu [ I ] .  

9 76 



Figure A . 3 1 .  Figure A . 3 2 .  

The pa t t e rns  of the  i s o s t a t s  f o r  two and four rec tangular  holes,  taken 
from the  work of  P. M .  Tsimbarevich [ I ] ,  a r e  shown i n  Figures A.31 and A.32, 
respect ive ly .  He analyzed the  s t r e s s  d i s t r i b u t i o n  near  t h e  above-described 
holes i n  a  massive p l a t e  using an o p t i c a l l y  a c t i v e  mater ia l  ( igdantine) ,  t h e  
e l a s t i c  constants  of  which a r e  E = 1045 g/cm2, v = 0.34 and y = 1.175 g/cm3. 
These f igures  show c l e a r l y  the  s i z e  of  t h e  per turbat ion  zone.near  the  holes ,  
i . e . ,  the  e f f e c t  of the  holes on the  stress d i s t r i b u t i o n  i n  t h e  plane f i e l d  
under the  e f f e c t  of the  forces of gravi ty .  

57 .  Effec t  of Gauss Curvature on S ize  of Perturbat ion Zone Near Hole 

Experimental s tud ies  of  the  s t r e s s  s t a t e  near  r a t h e r  smooth holes (contours 
of  which have no angular points )  show t h a t  t h e  per turbat ion  s t r e s s  zone near  a  
hole i n  a  s h e l l  has a  loca l  charac ter1 ,  occupying a  small (encompassing t h e  
hole) sec t ion  of t h e  s h e l l .  

The pa t t e rns  of  t h e  per turbat ion  zones near  a  l lc i rcular"  ho le2  i n  a  
c i r c u l a r  t o r e ,  which was located i n  the  zones of  p o s i t i v e  (Figure A.36, I ) ,  
n u l l  (Figure A .  36, 11), and negative (Figure A. 36, 111) gauss curvature,  respec- 
t i v e l y ,  a r e  i l l u s t r a t e d  i n  Figures A.33-A.35. The t o r e  i s  subjec ted  t o  
i n t e r n a l  hydros ta t i c  pressure p  = 0.45 atm. The dimensions of  the  t o r e  a r e : a s  
follows: external  diameter 850 mm, cross sec t iona l  diameter 200 mm, th ickness  
of wall ( s h e l l )  2 mm. The diameter (outer)  of  the  c i r c u l a r  cyl inder ,  by means 
of which t h e  ' lc i rcular"  hole i s  cut  on the  su r face  o f  t h e  to re ,  i s  32 mm. This 

'see G .  N.  Savin 131. 
2 ~ o u n d  a t  the  i n t e r s e c t i o n  of the  t o r e  and c i r c u l a r  cyl inder ,  the  ax i s  o f  which 
i s  d i rec ted  along the  normal t o  t h e  surface  of the  t o r e  a t  i t s  corresponding 
point .  





Thus, from t h e  above f igures  we see  t h a t  t h e  per turbat ion  zone near  a 
hole has a l o c a l  charac ter  i n  a l l  cases, although the  dimensions of these  
zones depend on t h e  s ign  of t h e  gauss curvature of  the  s h e l l .  I f ,  therefore ,  
t h e  maximum dimension of t h e  per turbat ion  zone f o r  case I (Figure A.36) i s  
assumed t o  be uni ty ,  then it w i l l  of  t h e  order  of 1.5 f o r  case I1  and 2.0 f o r  
case 111. 

A s h e l l  i n  the  form of a t o r e  makes i t  poss ib le  t o  observe simultaneously 
the  per turbat ion  zones near  a given1 ( p r i o r  t o  deformation) hole  located i n  
zones with d i f f e r e n t  gauss curvature.  

58. Cylindrical Shell Weakened by a Single  Hole 

Circular  Hole. Axial Compression. Experimental s t u d i e s  of  s t r e s s  
concentratiorl near  c i r c u l a r  holes i n  c y l i n d r i c a l  (round) s h e l l s ,  conducted by 
the  pho toe las t i c i ty  method2 on models of s h e l l s  made o f  o p t i c a l l y  a c t i v e  
ma te r i a l ,  a s  well a s  on models of s h e l l s  made of metal by t h e  pho toe las t i c  
coat ings method3, show t h a t  f o r  small holes,  f o r  which t h e  inequa l i ty  

i s  va l id ,  experimental da ta  agree s a t i s f a c t o r i l y  with A. I .  Lur 'ye 's  so lu t ion  
1 Here ro is  the  radius  of t h e  hole i n  the  s h e l l ;  R i s  the  radius  of  t h e  

median surface  of the  s h e l l ;  h is t h e  thickness o f  t h e  s h e l l .  

The s t r e s s  concentrat ion coe f f i -  

Figure A.37. 

c i e n t s  a r e  k = oe/oo (ae a r e  the  

maximum s t r e s s e s  on t h e  contour o f  the  
hole and a a r e  normal s t r e s s e s  i n  t h e  

0 
s h e l l  i n  the  zone of  t h e  uniform s t r e s s  
s t a t e )  acquire t h e i r  maximum values a t  
points  A (see Figure A.50) during t h e  
s t r e t ch ing  of t h e  s h e l l  along t h e  
genera t r i ces  of  the  cyl inder  by uniform- 
l y  d i s t r i b u t e d  forces p = 

The dependence of  the  maximum 
s t r e s s  concentrat ion c o e f f i c i e n t  k on 
the  magnitude o f  parameter w is  repre-  
sented i n  Figure A.37 by curves 1 and 2, 

l I . e . ,  near a hole located a t  the  i n t e r s e c t i o n o f  the  same surfaces:  of the  
to re  and of the  ( c i r cu la r )  cyl inder .  

2 ~ e e  N .  A. Fledrova [ I ] ;  D. S. Houghton [I];  D. S .  Houghton, A. Rothwell [ I ] ;  
H. T. Jessop, C.  Sne l l ,  J .  M.  All ison.  

3 ~ e e  A.  Ya. Aleksandrov, M .  Kh. Akhmetzyanov, A. S .  Rakin [ I ] .  



constructed on t h e  b a s i s  of experimental points  f o r  the  median and i n t e r n a l  
surfaces ,  respect ive ly .  A s  we see,  these  curves do not  coincide, a s  should be 
expected, s ince  ins tead  of the  t angen t i a l  components of forces i n  t h e  zone of 
s t r e s s  concentrat ion around t h e  hole  i n  t h e  s h e l l ,  t he re  a r e  moments t h a t  
produce s t r e s s e s  of  de f l ec t ion ,  depending on the  parameter w of  the  s h e l l .  
Curves 3 and 4 a r e  constructed on the  b a s i s  of  the  so lu t ions  obtained by A.  K. 
Privarnikov, V. N. Chekhov, Yu. A.  ~ h e v l ~ a k o v '  and J .  G .  Lekkerkerker [ I ] ,  
obtained f o r  la rge  holes.  Curve 5 corresponds t o  A. I .  Lur tye t s  so lu t ion  [ l ]  
f o r  small c i r c u l a r  holes .  A s  we see ,  the  t h e o r e t i c a l  so lu t ions  f o r  la rge  
holes agree q u i t e  well with the  experimental da ta  up t o  values of t h e  parameter 
w = 12. 

I t  follows from the  above mentioned work of A. Ya. Aleksandrov, e t  a1  [ I ]  
t h a t  the  per turbat ion  zone around the  hole ,  even when w = 12.5, propagates 
from t h e  edge of  t h e  hole t o  a d is tance  not  exceeding 3.5 the  radius  of  the  
hole  ro. According t o  N .  A. Flerova 's  da ta  [ I ] ,  t h i s  zone of per turbat ion  i s  

even smal ler  and propagates from t h e  edge of t h e  hole  t o  a d is tance  not 
exceeding one radius  r of the  hole.  0 

The r e s u l t s  of  experimental s tud ies  mentioned above show t h a t  the  
per turbat ion  zone, even around a r a t h e r  la rge  hole,  has a loca l  charac ter .  
Therefore, f o r  t h e  t h e o r e t i c a l  so lu t ion  of the  problem, the  hole ,  i n  many 
cases,  can be assumed t o  be "small," and t h e  region, i n f i n i t e .  

E l l i p t i c a l  Hole. A x i a l  Compression. The p a t t e r n  of the  s t r e s s  s t a t e  
around nonreinforced e l l i p t i c a l  holes i n  c i r c u l a r  c y l i n d r i c a l  s h e l l s 2  under 
a x i a l  compression (Figure A.38), f o r  the  case of four  s h e l l s  whose parameters 
a r e  presented i n  Table A . l ,  was examined by Yu. I .  Vologzhaninov and S. G .  
Shokotlko [ l ]  by t h e  pho toe las t i c i ty  method using t h e  "deformation freezing" 
method. 

TABLE A. 1 

Paktersl Number of she1 1 

and hole 
* 

I I I I 

Figure A.38 .  
T r .  Note: Comas indica te  decimal 
points .  

'see A. Ya. Aleksandrov, M .  Kh. Akhmetzyanov, A. S. Rakin [l] . 
2 ~ e e  a l s o  D.  S. Houghton [ I ] .  



The following parameters a r e  given i n  Table A. 1: R, t h e  r ad ius  o f  t h e  /867 - 
mean su r f ace  of  t h e  s h e l l ;  h ,  t h e  th ickness  of  t h e  s h e l l ;  H,  he igh t  of  t h e  
s h e l l ;  a  and b y  semiaxes of  t h e  e l l i p t i c a l  ho le  ( s ee  Figure A.38)  ( a l l  l i n e a r  
dimensions a r e  given i n  mm). 

I n  t h e  cases  under examination, t h e  pe r tu rba t ion  zone around an e l l i p t i c a l  
h o l e  occupied a  small  region,  extending along t h e  gene ra t r i ce s  of  t h e  c y l i n d e r  
(Figure A.38). The d i s t ance  t o  which t h e  pe r tu rba t ion  propagated d i d  no t  
exceed two l a rge  axes of  t h e  e l l i p s e  from t h e  edge of t h e  ho le .  Here t h e  
pe r tu rba t ion  from t h e  ho le s  extended along t h e  g e n e r a t r i c e s  (a  > b) was 
propagated t o  a  l e s s e r  d i s t ance .  

Figure A.39 shows t h e  d i s t r i b u t i o n  o f  s t r e s s  concent ra t ion  c o e f f i c i e n t s ,  
equal  t o  t h e  r a t i o  of contour  fo rces  T t o  t h e  fo rces  o f  t h e  b a s i c  s t r e s s  s t a t e  s 

TZ. 
The s o l i d  l i n e s  a r e  cons t ruc ted  on t h e  b a s i s  of  experimental d a t a ,  and t h e  

broken, i n  accordance with formula ( X .  165) .  

t 

-g9 
-U' 

0 
Shell No. 3 $ 

-la -&7 
-436 - 123 

0 0 

Shell No. 2 z3 Shell No. 4 3 3 

Figure A.39 .  

For t h e  case  under examination, formuia (X.165) has t h e  form 

where 

T I  pth I = ? = -  

Tl 
((2 - enS2) + (4e - (4 + nSa) - e2(2 + 3np)] cos26+ 

$ [4e2 - (4 4 srp) el cos 4 6  - (2 + npZ) 8% cos 661, 



In comparing t h e  experimental r e s u l t s  with the  t h e o r e t i c a l ,  given by 
formula {A.l), it i s  necessary t o  take  i n t o  account the  r e l a t ionsh ip  between 
angle 4 of t h e  plane system of coordinates,  the  o r i g i n . o f  which coincides with 
t h e  geometrical cen te r  (of gravi ty)  of  the  ho le ,  and the  parameter19. Angle 4 
is read o f f  from t h e  Z ax i s  (see Figure A.38): 

I - e  
arctan - I + e  tan 9 .  

For the  da ta  presented i n  the  four th  column of Table A. 1, formula (A.l) ,  
f o r  v = 0.5 (Poisson's r a t i o  f o r  "freezing") acquires the  form 

k'th = 097 - 1.805 cos 2 8  - 0.349 cos 46 - Op46 cos 66. (A. 2) 

The values of concentrat ion coe f f i c i en t s  k a t  the  po in t s  of i n t e r s e c t i o n  
o f  the  contour of  the  hole with the  I ax i s  ( d =  0) (see Figure A.38) and t h e  
d a x i s  ( 9 =  ~ / 2 )  a r e  presented i n  Table A.2. The values kexP and k th  were 

ca lcula ted  on the  b a s i s  of formula (A. 2) . For comparison, the  value kpl , t he  

concentrat ion c o e f f i c i e n t  of forces  T found by formula (11.63) f o r  o r )  = 0, s ' 
C J ( ~ )  = -p i s  a l s o  presented.  

Y 

TABLE A .  2 The data  presented i n  Figure A. 39 - /868 
and Table A.2 show t h a t  t h e  maximum 

-- divergence of the  experimental da ta  with 
Concen- - 

Number of she1 1 t h e  corresponding approximate theore t -  
t r a t i o n  - - i c a l  so lu t ion  i n  Chapter X, does not 
Coeffi- exceed 3-5%. 
cients 

1,27 For a  c y l i n d r i c a l  s h e l l ,  on the  
2,45 bas i s  of ( theore t i ca l )  s t u d i e s  of 

seve ra l  problems1, it is concluded t h a t  
1.23 
2,47 i n  determining the  maximum s t r e s s  con- 

cen t ra t ion  c o e f f i c i e n t s  i n  a  c y l i n d r i c a l  
1 ,oo 
2.33 

s h e l l  near  small holes ( the  contours o f  
which a r e  f r e e  of ex te rna l  forces)  of 
a r b i t r a r y  form, but  not  possessing 

T r .  Note: Commas indica te  decimal angular  po in t s  when the  c y l i n d r i c a l  
s h e l l  i s  under tens ion o r  compression points .  along the  genera t r ix ,  it i s  poss ib le ,  
with an accuracy of 7-lo%, t o  use the  

corresponding so lu t ions  of  the  plane problem; described i n  Chapter 1 1 .  

Square Hole w i t h  Rounded Corners. Axi a1 Compression. A round hole of 
radius  r was f i r s t  cut  i n  a  s h e l l ,  and the  hole  was then gradually transformed 

0 

'see G. N. Savin, A .  N .  Guz' [ I ] ,  and a l s o  G .  N .  Savin [2] .  
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from experiment t o  experiment i n t o  a square hole  with angles,  rounded with a 
given radius ' . 

Figure A.40 represents  the  curves f o r  t h e  value k as a function of  r/ro 

( r  i s  t h e  radius of  rounding of  the  corners) f o r  two parameters w = 5.08 and 
.l 0 

w = 8.0 when w = ri/Rh. 
0 0 The s o l i d  curves correspond t o  t h e  value k on the  

ins ide  surface ,  and the  broken curves, i n  the  median surface  of  the  s h e l l .  A s  
we see ,  f i r s t ,  as  t h e  radius  of  rounding of the  corner decreases, the  value k 
decreases a l so ,  reaching i ts  minimum a t  r/r = 0.45-0.50. A f u r t h e r  reduction /869 

0 - 
i n  t h e . r a d i u s  of round of the  corners r e s u l t s  i n  an increase  i n  the  value of k. 
The maximum s t r e s s e s  a on the  contour of the  hole  a r e  concentrated a t  the  

8 
points  of contact  of t h e  r e c t i l i n e a r  p a r t s  of  the  contour of  t h e  hole with the  
rounding curves of  the  corners on the  s i d e s  of the  square, p a r a l l e l  t o  t h e  
a x i s  of  s t r e t c h i n g .  

Figure A.40. 

The law of change of the  value of k along t h e  contour of  the  hole  f o r  
w = 8.0 and r/ro = 0.5 and f o r  t h e  case where the  s h e l l  i s  under tens ion along 0 
t h e  x axis  is shown i n  Figure A.41 .  The broken curve corresponds t o  t h e  value 
of k f o r  t h e  mean surface ,  and the  s o l i d ,  f o r  t h e  i n t e r n a l  su r face  o f  t h e  s h e l l .  
The pos t ive  values of k correspond t o  the  s t r e t c h i n g  s t r e s s e s  and a r e  arranged 
from t h e  ou te r  s i d e  of t h e  contour of the  hole .  

Round Hole. Twisting of Cylindrical  Shel l .  Curves 1 and 2 i n  Figure A.42 
were constructed on the  b a s i s  of  experimental2 da ta  and correspond t o  s t r e s s e s  
i n  the  median and ou te r  surfaces  of the  s h e l l .  Curve 5 was constructed from 

'see A. Ya. Aleksandrov, M. Kh. Akhmetzyanov, A. .  S .  Rakin [ I ] .  
2 ~ e e  A. Ya. Aleksandrov, M .  Kh. Akhmetzyanov, A. S .  Rakin [ I ] .  



t h e  s o l u t i o n  of  Yu. A .  Shevlyakov, F. S. Zigel [l] f o r  t h e  mean su r f ace  of  t h e  
s h e l l .  Curves 3 and 4 were cons t ruc ted  on t h e  b a s i s  of J .  G .  Lekkerkerker 's 
d a t a  [ I ] ,  and curve 6, corresponding t o  s t r e s s e s  on t h e  i n n e r  s u r f a c e  o f  t h e  
s h e l l ,  on t h e  b a s i s  of  D .  Withum's d a t a  [ I ] .  J .  G .  Lekkerkerker 's s o l u t i o n  [ l ]  
f o r  parameters w ,< 10 demonstrates t h e  b e s t  agreement with t h e  experimental 
r e s u l t s .  0 

The d i s t r i b u t i o n  of  s t r e s s e s  ae on t h e  contour  o f  a c i r c u l a r  ho le  f o r  

f o u r  parameters u, equal  t o  1 .0 ,  7 .1,  15.0 and 20.0, a r e  presented  i n  Figure 
A.43, where t h e  s o l i d  l i n e s  i l l u s t r a t e  t h e  d i s t r i b u t i o n  of s t r e s s e s  i n  t h e  
median s u r f a c e  of t h e  s h e l l ,  and t h e  broken curves r ep re sen t  t h e  bending 
s t r e s s e s  on t h e  i n n e r  s u r f a c e  o f  t h e  s h e l l .  

Tension and Torsion of Cyl indr ica l  She l l  w i t h  Reinforced Holes. The 
curves f o r  t h e  va lue  k as a func t ion  of t h e  magnitude of reinforcement  

max 
v = H/h f o r  p o i n t s  ly ing  on t h e  i n n e r  contour  of a ho le  i n  t he  median su r f ace  
a r e  presented  i n  Figure A.44. These curves were cons t ruc ted  experimental ly  
wi th  t h e  a i d  of s t r i p s  of o p t i c a l l y  a c t i v e  ma te r i a l .  These s t r i p s  were glued 
onto t h e  end nea r  t h e  ho le  a t  t h e  l e v e l  of  t h e  median s u r f a c e .  Curves 1 and 2 
correspond t o  a c i r c u l a r  h o l e  f o r  w = 4.0 and r / r  = 0.6 .  Curves 3 and 4 0 
correspond t o  a r ec t angu la r  ho le  wi th  parameters ab/Rh = 13.3;  a/b = 1 . 5 ;  
c/b = 0.48 and r t O / b  = 0.20. Curves 5 and 6 correspond t o  a square ho le  with 

-, 
parameters a L / ~ h  = 8.85; c / a  = 0.48 and r' / a  = 0.12.  Here t h e  s o l i d  l i n e s  

0 
/871 - 

correspond t o  t ens ion  and t h e  broken l i n e s  t o  t o r s i o n .  As we see1 ,  a s  t h e  
parameter v = H/h i n c r e a s e s ,  t h e  concent ra t ion  of  maximum s t r e s s e s  on t h e  con- 
t o u r  of  t h e  ho le  f i r s t  decreases  s h a r p l y 2 ,  and then,  s t a r t i n g  approximately 
wi th  v = 5.0,  t h i s  decrease  slows down. Therefore,  f o r  each form of ho le  it i s  
poss ib l e  t o  s e l e c t  t h e  optimal magnitude of  he igh t  H o f  t h e  r i n g .  

S t r e s s e s  around C i rcu la r  Hole in Cyl indr ica l  She l l  during the E l a s t o p l a s t i c  
Stage of Deformation. The stress concent ra t ion  around a c i r c u l a r  ho le ,  f r e e  of  
e x t e r n a l  f o r c e s ,  i n  duraluminwn and s t e e l 3  s h e l l s  under t ens ion  by fo rces  
p = a /h along t h e  g e n e r a t r i c e s ,  was examined by A .  Y a .  Aleksandrov, M .  Kh. 

0 
Akhmetzyanov, A. S .  Rakin [ l ]  by t h e  p h o t o e l a s t i c  coa t ings  method. 

The experimental  s t u d i e s  show t h a t  a s  t h e  loading parameter A = a /a 0 0 , 2  
inc reases ,  t h e  s t r e s s  concent ra t ion  c o e f f i c i e n t s  k i n  po in t s  of  t h e  median 
su r f ace  of  t h e  s h e l l  decrease sha rp ly .  Here a i s  t h e  nominal p r i n c i p a l  s t r e s s  0 
a t  p o i n t s  of t h e  s h e l l  t h a t  a r e  r a t h e r  remote from the  ho le ,  i . e . ,  i n  t h e  zone 

'The analogous p i c t u r e  i s  seen a l s o  f o r  t h e  r e in fo rc ing  r ing  of  a ho le  i n  t h e  
case  of a f l a t  p l a t e  ( see  Figures  A.  26-A. 29) . 

2 ~ n  Figures  A.44 and A.45, f o r  g r e a t e r  c l a r i t y ,  t h e  s c a l e s  a r e  somewhat d i s -  
p laced  i n  r e l a t i o n  t o  each o t h e r  along t h e  absc i s sa .  

3The s t r e s s  diagram of t he  given s t e e l  d id  not  possess  an a rea  of  flow. 



of t h e  uniform s t r e s s  s t a t e  of  t h e  s h e l l ;  a is  t h e  cond i t i ona l  y i e l d  po in t  
0,2 

of t h e  ma te r i a l  o f  t he  s h e l l .  

Figure A . 4 1 .  

Figure A . 4 3 .  

Figure A . 4 2 .  

Figure A . 4 4 .  



Curves 1, 2 and 3 i n  Figure A.45 correspond t o  duraluminum s h e l l s  wi th  
t h e  parameters  wl = 0.142, w = 2.0 and w = 4.0 ,  and curves 4 and 5,  t o  s t e e l  2 3 
s h e l l s  with t h e  parameters w = 4.0 and w5 = 10.0. 4  

Figure A.45. 

P i----~~-l: 

Figure A.46. 

59. Conical She l l  Weakened by a S i n g l e  Hole 

Axial Compression o f  Shel l  with a C i r cu l a r  Hole. Two con ica l  s h e l l s  made 
of  ED-6M m a t e r i a l ,  which i s  o p t i c a l l y  a c t i v e ,  were i n v e s t i g a t e d  by Yu. I .  
Vologzhaninov [I]  . 

The mer id iona l  c ros s  s e c t i o n  pass ing  through t h e  c e n t e r  o f  t h e  ho l e  and 
element o f  t h e  s h e l l ,  conta in ing  a  round ho le  o f  r ad ius  r i s  shown i n  

0 ' 
Figure A.46.  The parameters  ( i n  mm) o f  t h e  examined s h e i l s  a r e  presen ted  i n  
Table A . 3 ,  where t h e  fo rce  P is  given i n  Newtons and t h e  angle  a, i n  degrees .  

TABLE A.3 

Tr .  Note: Comas i n d i c a t e  decimal p o i n t s .  



The s t r e s s  s t a t e  i n  t he  s h e l l  was recorded by "freezing."  The 
determinat ion of  t h e  s t r e s s  s t a t e  was accomplished by normal through i l lumina-  
t i o n ,  which made it p o s s i b l e  t o  f i n d  t h e  forces  T along t h e  contour of  t h e  

S 

ho le  and t h e  d i f f e r e n c e  T - T between t h e  c i r cumfe ren t i a l  and meridional  z 0 
fo rces  beyond t h e  range of i n f luence  of t h e  hole ,  i . e . ,  i n  t h e  zone of t h e  
b a s i c  s t r e s s  s t a t e .  

The b a s i c  s t r e s s  s t a t e  i n  conica l  s h e l l  No. 1 (Table A.3), under t h e  
e f f e c t  of  compressive fo rces  P (Figure A.46), found1 with t h e  a i d  of numerical 
i n t e g r a t i o n  on the  BESM-2M computer, i n  t h e  b a s i c  p a r t  of t h e  s h e l l ,  no t  i n  
contac t  with t h e  edges, i . e . ,  when 0.2 a < Z < 0.7  a ,  w i l l ,  f o r  a l l  p r a c t i c a l  
purposes,  be momentless, i . e . ,  M z ,  Me and T0 i n  t h i s  p a r t  o f  t h e  s h e l l  w i l l  be  
absent .  

Thus, t h e  experimental ly  determined d i f f e r e n c e  Tz - To i n  t h e  middle p a r t  

of t h e  s h e l l ,  on t h e  p a r a l l e l  passing through t h e  c e n t e r  of  t h e  hole ,  bu t  a t  
a s u f f i c i e n t  d i s t ance  from i t ,  w i l l  p r a c t i c a l l y  correspond t o  t h e  f o r c e  Tz. 

The d i s t r i b u t i o n  of  forces  T (n/cm) along t h e  contours  of  t h e  holes  i n  
S 

s h e l l s  No. 1 and 2 a r e  presented  i n  Figure A.47, a .and b ,  r e s p e c t i v e l y .  The 
s o l i d  l i n e  i n  Figure A.47,a corresponds t o  t h e  upper h a l f  o f  t h e  contour  o f  t h e  
ho le  ( t o  > 0 ) ,  while  t h e  broken l i n e  corresponds t o  t h e  lower h a l f  (Figure A.46) 

o f  t h e  contour of  t h e  ho le  ( l o  < 0 ) .  

Figure A . 4 7 .  

The values of  fo rces  Ts on t h e  contours o f  t h e  holes  i n  t h e  most charac-  

t e r i s t i c  p o i n t s  A, B and C (Figure A.46), a s  wel l  a s  t h e  values Tz - T0 o f  t h e  

b a s i c  s t r e s s  s t a t e  on t h e  p a r a l l e l  l i n e  passing through t h e  c e n t e r  of  t h e  /873 
ho le s ,  and t h e  concent ra t ion  c o e f f i c i e n t s  kexP of  fo rces ,  c a l c u l a t e d  on t h e  
b a s i s  of t h e s e  da t a ,  a r e  presented  i n  Table A.4; here  a l s o  a r e  t h e  va lues  o f  

kth, c a l c u l a t e d  under the  condi t ion  t h a t  a conica l  s h e l l  wi th  a round ho le  is  
subjec ted  t o  t ens ion  by t h e  corresponding forces  along t h e  g e n e r a t r i c e s .  

' see  A .  D .  Kovalenko, Ya. M .  Grigorenko, L. A. I 1  ' i n  [ I ] .  



TABLE A . 4 .  

'I 
Number Point of I I TS / rl-r1 IKrXP. 
of shells contour 

Tr .  Note: Comas ind ica t e  decimal po in t s .  

Figure A . 4 8 .  

We s e e  from t h e  d a t a  presented  i n  Table A . 4  t h a t  keXP and*kth agree 
s a t i s f a c t o r i l y  f o r  a small ho le  ( s h e l l  No. 2) .  This  can be a t t r i b u t e d  t o  t h e  
cons ide ra t ions  g iven  above, s p e c i f i c a l l y  t h e  g r e a t e r  degree of  accuracy o f  
observa t ion  o f  t h e  momentlessness o f  t h e  b a s i c  s t r e s s  s t a t e  i n  t h e  middle 

p a r t s  of t h e  s h e l l 1  during t h e  experiment. The g r e a t e r  divergence of  keXP and 

kth f o r  a l a r g e  ho le  ( s h e l l  No. 1) can be  explained by t h e  f a c t  t h a t  t h e  per-  
t u r b a t i o n  zone around t h e  ho le  i n  t h i s  case  extends beyond t h e  middle zone o f  
t h e  s h e l l ,  i n  which t h e  condi t ion  o f  momentlessness of-  t h e  b a s i c  s t r e s s  s t a t e  
was s a t i s f i e d  wi th  a c e r t a i n  degree of  accuracy. 

510. S h e l l s  of Negative Gauss Curvature 

Circular Hole. Axial Compression of Shell. The s t r e s s  concent ra t ion  
around "c i r cu la r "  ho le2  i s  examined i n  t h e  works o f  Yu. I .  Vologzhaninov, 
V .  I .  Savchenko, M .  D.  Fenchak [ l ]  and Yu. I .  Vologzhaninov [ I ]  by t h e  photo- 
e l a s t i c i t y  method wi th  t h e  a i d  of deformation "freezing."  

A s i n g l e - c a v i t y  hyperboloid,  t h e  o u t e r  s u r f a c e  of  which is  def ined  by t h e  
2 2 

equat ion x + y - z = a2 ,  where a i s  t h e  r ad ius  (ou te r )  o f  t h e  neck of t h e  
hyperboloid (z  = 0) equal  t o  55 mm, is examined i n  t h e  f i r s t  of t h e s e  works. 

In  t h e  second work is examined a s h e l l  whose o u t e r  s u r f a c e  i s  formed by 
t h e  r o t a t i o n  of  p a r t  of an a r c  of a c i r c l e  of  r ad ius  115 mm around t h e  z a x i s  
(Figure A.48 ) .  ?he o u t e r  r ad ius  o f  t h e  neck of  t h e  hyperboloid i s  a = 40 mm. 

'we w i l l  r e c a l l  t h a t  i n  t h e  t h e o r e t i c a l  s o l u t i o n  o f  t h i s  problem it was 
assumed t h a t  t h e  s h e l l  was sub jec t ed  t o  t ens ion  by forces  ph along t h e  gen- 
e r a t r i c e s .  

2 ~ u c h  a ho le  is  found by i n t e r s e c t i n g  each o f  t h e  su r f aces  given below with a 
c i r c u l a r  cy l inde r ,  t h e  a x i s  o f  which i s  d i r e c t e d  along t h e  normal t o  t h e  
s u r f a c e  (Figure A.48)  . 



The th ickness  of  t h e  s h e l l  i n  both cases  was cons t an t ,  h  = 5 mm, and t h e  
he ight  of these  s h e l l s  was a l s o  i d e n t i c a l ,  H = 116 mm. The r a d i i  (ou te r )  o f  
t h e  cy l inde r s  were r = 4 mm, and a t  t h e  i n t e r ~ e c t i o n ~ o f  t h e s e  cy l inde r s  with 

0 
t h e  above-mentioned su r f aces ,  ' ' d i rcu lar"  ho le s  were formed on t h e  neck. This 
makes it poss ib l e  t o  compare t h e  r e s u l t s  of  experimental s t u d i e s  f o r  two 
s h e l l s .  

I n  t h e  i n v e s t i g a t i o n  of  t h e  meridionals  Zn and sec t ions  0 o f  t h e  "frozen" n 
b a s i c  s t r e s s  s t a t e  orthogonal t o  them, i t  was shown ( i n  t h e  second work) t h a t  
t he  d i s t r i b u t i o n  of  s t r e s s e s  aZ,  ae along t h e  l i n e s  normal t o  t h e  median s u r -  

f ace  ( l i n e s  C.D. i n  Figure A.48), i . e . ,  through t h e  th ickness  of  t h e  s h e l l ,  
1 1  

has a l i n e a r  na tu re .  The analogous conclusion was der ived  through inves t iga -  
t i o n  of a  s i n g l e - c a v i t y  hyperboloid i n  t h e  f i r s t  o f  t h e  above-mentioned works. 

Di Di Ci c : ~  a r e  g iven  i n  Table A.5 f o r  t h e  The values of  s t r e s s e s  a2 , ae , ae , 
i n t e r i o r  and o u t e r  su r f aces ,  and f o r  s h e l l  No. 2 f o r  var ious  z (Figure A.48). 

i 
The fo rces  ( i n  n/cm) i n  t h e  d i r e c t i o n  o f  g e n e r a t r i x  T and i n  t h e  circum- 2 

2 f e r e n t i a l  d i r e c t i o n  Te were ca l cu la t ed  on t h e  b a s i s  o f  t h e s e  s t r e s s e s  (n/cm ) .  

TABLE A . 5  

T r .  Note: Commas indicate decimal 
po in t s .  

Figure A.%. 

Analysis of t h e  d a t a  presented  i n  Table A.5 shows t h a t  t h e  d e f l e c t i n g  - /874 
moments M determined by s t r e s s e s  oZ, a r e  i n s i g n i f i c a n t  when z = 0, bu t  2' 
i nc rease  a s  z i nc reases .  The moments M e ,  on t h e  o t h e r  hand, a r e  g r e a t e s t  when 

z = 0,  and then  decrease  a s  z i nc reases .  Forces TZ and To a r e  cons tan t  when 

-20 G z < 20. A s  t h e  d i s t ance  t o  t h e  edges of  t h e  s h e l l  decreases ,  t h e  f o r c e s  
T cont inue t o  be about cons tan t ,  while f o r c e s  T change s i g n s .  This  i n d i c a t e s  2 0 
t h a t  p a r t  o f  t h e  s h e l l ,  t h a t  which l i e s  near  t h e  suppor t ing  edges, i s  sub jec t ed  
t o  t ens ion  i n  t h e  c i r cumfe ren t i a l  d i r e c t i o n  during compression (Figure A.48). 



Contour forces  T were determined by normal ( t o  the  median surface  of  t h e  
S 

s h e l l )  through i l luminat ion  i n  a  row of  po in t s  of  the  contour o f  the  hole .  
The s o l i d  l i n e  i n  Figure A.49 corresponds t o  concentrat ion c o e f f i c i e n t s  k = 
= T /T of s h e l l  No. 2, where T a r e  forces  along the  contour of  the  hole,  and 

s Z S 

Tt i s  meridional force  of t h e  b a s i c  s t r e s s  s t a t e  on the  p a r a l l e l  l i n e  passing 

through the  cen te r  of the  hole (z = 0 ) .  The broken l i n e s  ind ica te  t h e  concen- 
t r a t i o n  c o e f f i c i e n t s  kpl f o r  a  p l a t e  with t h e  same c i r c u l a r  hole,  subjected t o  
load "a t  i n f i n i t y "  by mutually perpendicular  forces ,  corresponding t o  forces  
TZ and Te of  t h e  b a s i c  s t r e s s  s t a t e  o f  a  s h e l l  when z = 0 (see Table A.5). 

For t h e  s h e l l  examined i n  the  f i r s t  work, the  r a t i o  of forces TZ and To 

f o r  z = 0 was 3.15, while f o r  t h e  s h e l l  examined i n  the  second work, t h i s  
r a t i o  was only 1.15. In  s p i t e  of  such a g r e a t  d i f ference ,  the  cha rac te r  of  
d i s t r i b u t i o n  of the  concentrat ion c o e f f i c i e n t s  on t h e  contour of  t h e  hole  i n  
both cases,  f o r  s h e l l s  and f o r  p l a t e s ,  coincided, However, the  numerical 
value of  the  concentrat ion c o e f f i c i e n t s  k f o r  the  s h e l l s  was somewhat h igher .  

On t h e  b a s i s  of the  above experimental s t u d i e s  of s h e l l s  with holes of  
negative gauss curvature,  the  following conclusions can be  made: 

1) the  per turbat ion  zone around a hole i s  of loca l  (encompassing t h e  hole)  
charac ter  and is propagated from the  edge of t h e  hole  t o  a  d is tance  not 
exceeding 3 r a d i i  of the  hole ;  

2) the  maximum concentrat ion c o e f f i c i e n t  of forces T i n  a s h e l l  with a 
S 

hole  w i l l  be (with a f r e e  hole)  on t h e  contour of the  hole,  and w i l l  not  be  
g r e a t e r  than 1 .3  times the  concentrat ion c o e f f i c i e n t  f o r  a p l a t e  w i t h . t h e  same 
hole,  but loaded "at i n f i n i t y "  by forces t h a t  correspond t o  the  b a s i c  s t r e s s  
s t a t e  i n  a  s h e l l  a t  the  point  z = 0 (see Figure A.48). 

5 1 1 .  Effec t  of Creep of Material on S t ress  Concentration   round a Circular  
Hole 

The s t r e s s  concentrat ion with considerat ion of  the  creep of  a  mater ia l  a t  

points  of a  c i r c u l a r  hole  (Figure A.50), located wi th in  a p l a t e ,  which p l a t e  i s  

subjected t o  forces  of tension oLm) = p, = q (p 2 q ) ,  was analyzed by t h e  
Y 

o p t i c  method by I .  I .  Bugakov [ I ] .  

The change i n  s t r e s s e s  u8 a t  the  point  A (Figure A.50) i n  time was - / 875 

analyzed by the  photocreep method on models made of  two d i f f e r e n t  "age" l o t s  of 
t echn ica l ly  t ransparent  c e l l u l o i d .  The f i r s t  model was made of  c e l l u l o i d  with 
an "age" of  1-1/2 years ,  and the  second with an age of ha l f  a year .  

I t  was es tabl i shed experimentally t h a t  the  dependence 



e, = s1 'p ( t )  ebSl 

where t i s  time; b i s  a constant of the  ina ter ia l ;  s i s  the  i n t e n s i t y  of tan-  i 
g e n t i a l  s t r e s s e s ;  

S@ 
a r e  s t r e s s  devia tor  components; E i s  the  i n t e n s i t y  of 

i 
displacement deformations, is  v a l i d  f o r  these  ce l lu lo ids  i n  the  case of t h e  
b i a x i a l  s t r e s s  s t a t e  under t h e  conditions of s t e a d y , - o r  more accurately,  quasi- 
steady creep. 

For small ranges of change of t h e  
s t r e s s e s  it is more convenient t o  use a 
simpler function: 

= * .  
el - Bsy. (A. 4) - 

C- '0 - where B i s  t h e  time function t .  - I - 
I1i 1 . 1 1  Samples of these  mater ia ls  were 

t e s t e d  under uniaxia l  tension a t  a 
temperature o f ,  20°C ( the  bas ic  t e s t s  

Figure A.50. were a l s o  conducted a t  t h i s  temperature).  
The t e s t s  showed t h a t  f o r  t h e  mater ia l  

of t h e  f i r s t  model t h e  constant b = 0.011, where s changes i n  t h e  range 
2 i 

85-210 kg/cm , and m = 2.2. For the  mater ia l  of  the  second model, however, t h e  
2 

constant b = 0.016, where s changes i n  the  range 100-180 kg/cm and m = 3.0. i 

Both models were taken i n  the  form of a cross of thickness 4 mm. In t h e  
cen t ra l  p a r t  of t h e  crosses,  which measured 60 x 60 mrn, a c i r c u l a r  hole of 
diameter 7 mm was made. The values used f o r  t h e  parameters p, q and a i n  the  
t e s t s  a r e  presented i n  Table A . 6 .  

TABLE A . 6  TABLE A . 7  

T r .  Note: Comas indicate  decimal points .  



The i n t e n s i t y  of  t h e  t a n g e n t i a l  s t r e s s e s  a t  " i n f i n i t y "  si'"'= 1/ d--pq + q2 

was 100 kg/cm2 i n  a l l  t e s t s .  

The s t r e s s  concent ra t ion  c o e f f i c i e n t  k a t  po in t  A (Figure A.50) was 
determined by t h e  formula k = a / p ,  where a a r e  s t r e s s e s  a t  p o i n t  A, found by 
t h e  o p t i c a l  method. 

The s t u d i e s  revea led  t h a t  t h e  r e d i s t r i b u t i o n  of  s t r e s s e s  around holes  was 
p r a c t i c a l l y  concluded f o r  t h e  f i r s t  model a f t e r  about 25 h r ,  and a f t e r  only 
about 5  h r  f o r  t h e  second model, a f t e r  t h e i r  loading.  A f t e r  t h e  pass ing  of  
t h e  above-mentioned time, t h e  models were subjec ted  t o  t h e  condi t ions  of s teady  
creep,  f o r  which t h e  va lues  found f o r  k  a r e  presented  i n  Table A.7. 

Simple (approximate) formulas were found by I .  I .  Bugakov [ l ]  f o r  t h e  
concent ra t ion  c o e f f i c i e n t  k  a t  po in t  A (Figure A.50): 

t h e  f i r s t  o f  which is suggested f o r  use  with dependence (A.3) and t h e  second, - /876 
f o r  use with dependence (A.4). 

The g r e a t e s t  s t r e s s e s  during t h e  b i a x i a l  s t r e t c h i n g  of  a  p l a t e  wi th  a  
round ho le ,  i l l u s t r a t e d  i n  Figure A.50 (p 2 q ) ,  w i l l  no t  always be a t  p o i n t  A 
of t h e  contour  of  t h e  ho le ,  i . e . ,  not  f o r  a l l  values s and m .  S tudies  show 

0 
t h a t  s t a r t i n g  wi th  c e r t a i n  values so and m,  t h e  g r e a t e s t  s t r e s s e d  p o i n t s  a r e  

d i sp l aced  from t h e  contour  o f  t h e  ho le  t o  wi th in  t h e  reg ion  i n  t h e  d i r e c t i o n  of  
t h e  Ox a x i s  (Figure A.50). Apparently, t h e s e  maximum tens ion  s t r e s s e s  w i l l  
d i f f e r  only s l i g h t l y  from s t r e s s e s  ae a t  p o i n t  A. Thus, i n  t h e  axisymmetric 

case  (p = q ) ,  t h e  g r e a t e s t  s t r e s s  p o i n t s  nea r  t h e  ho le  f o r  t h e  "limit s t a t e  of  
creep" w i l l  loca ted '  on a  c i r c l e  of r ad ius  r = 2.07 r (where r i s  t h e  r ad ius  

0 0 
o f  t h e  ho le )  and t h e s t r e s s  a c t i n g  wi th in  them ( the  g r e a t e s t ,  p r i n c i p a l )  w i l l  
b e  15% g r e a t e r  than s t r e s s  0 a t  p o i n t  A.  I n  t h e  experimental determinat ion of  8 
t h e  values of  k ,  p resented  i n  Table A.7, t h e  g r e a t e s t  t ens ion  s t r e s s e s  were 
found a t  po in t  A (Figure A.50). 

512. Glass P l a s t i c  P l a t e  Weakened by a C i r cu la r  p ole^ 

The geometric dimensions of t h e  t e s t e d  samples and t h e  o r i e n t a t i o n  of  t he  
p r i n c i p a l  s t r e s s e s  of an iso t ropy  i n  r e l a t i o n  t o  t h e  d i r e c t i o n  of t ens ion  a r e  
presented  i n  Figure A.51. The arrows with t h e  numbers 1 and 2 i n d i c a t e  t h e  
p r i n c i p a l  s t r e s s e s  of an iso t ropy ,  where, f o r  samples of  type  A, t h e  moduli o f  
e l a s t i c i t y  along both p r i n c i p a l  d i r e c t i o n s  of  an iso t ropy  a r e  nea r ly  equal  

- -  - 

' s ee  L .  M .  Kachanov [ I ] ,  p.  227 .  
2 ~ h e  d a t a  a r e  taken from t h e  works o f  T. Hayashi [ l ,  21 . 



(Table A.8), while  f o r  samples of type  B ,  t h e  r a t i o  of  t h e  moduli i s  3.5 
(Table A.9). The e l a s t i c  cons tan ts  of t h e s e  samples, given i n  Table A . l O ,  /877 - 
were found by t h e  tensometry method on samples subjec ted  t o  t ens ion .  

Figure A . 5 1 .  

TABLE A . 8  TABLE A . 9  

Young's . 
Poisson's 

Action of force l ~ f l $  I ratio 

T r .  Note: Commas i n d i c a t e  decimal po in t s .  

vl=0,188 

~,=0,171 
v,,=0,547 

I 

In direction 
.I I(? 1 . . . . . 

In direction 
2 ( 'W) . . . . . 

At angle 45,' . . 

I 
Young's - -  

Action of force rnoduluq I PoisionVs 
kg/rnm ratio 

The samples were cu t  from a ma te r i a l  made of  10 p a r a l l e l  l ayered  s h e e t s  o f  
g l a s s  f a b r i c ,  s a t u r a t e d  wi th  polys tyrene  r e s i n ,  where, f o r  samples o f  type  A, 
o r i e n t e d  g l a s s  p l a s t i c ,  bearing t h e  Japanese trademark BHVT EC-181 was used, 
and f o r  samples of type  B, nonoriented g l a s s  p l a s t i c  wi th  t h e  trademark 
BHAAX ECF-18. I n  both cases ,  po lys tyrene  r e s i n  o f  t h e  Rigolac 15532 type  was 
used a s  t h e  bonding agent .  The s i m i l a r  c o e f f i c i e n t s  o f  r e f r a c t i o n  of  t h e  g l a s s  
f a b r i c  and t h e  bonding agent r e s u l t e d  i n  good t ransparency  f o r  t h e  i n v e s t i g a t i o n  /878 - 

EI=971 

Es=957 
E,,=519 

In direction 
1 (@) . . . . . 

In direction 
2 (900) . . . . . 

At angle 45" . . 

E,=2110 

E2=604 
EIS=602 

v,=0,260 

v,=O. 104 
v4,=0,421 



i n  which t h e  g l a s s  f a b r i c ,  which causes or thot ropy  i n  p r o p e r t i e s ,  had no e f f e c t  
on t h e  o p t i c a l  a c t i v i t y  of t h e  bonding agent .  

Figure A.52.  

TABLE A. 10 
Elastic 

Constants for Sam- 1 for Sam- 
kg/mrn2 (Pie A : ple B 

T r .  Note: Comnas ind ica t e  decimal 
po in t s .  

Figure A . 5 2  shows t h e  diagrams of  
d i s t r i b u t i o n  o f  og/om on t h e  contour1 

of  a c i r c u l a r  ho le  f o r  f o u r  types of  
analyzed samples. ?he s o l i d  l i n e  with 
t h e  shaded c i r c l e s  r ep re sen t s  exper i -  
mental d a t a  and t h e  broken l i n e  with t h e  
unshaded c i r c l e s  r ep re sen t s  t h e o r e t i c a l  
values of  oe/o,, c a l c u l a t e d  by T. 

Hayashi [l] by a formula2 taken from t h e  
work of  A.  E .  Green, G .  J .  Taylor [ I ] .  
This work i s  noteworthy i n  t h a t  due t o  

-- - 

'we w i l l  no t e  t h a t  om = P/bh, where P i s  t h e  fo rce  t h a t  s t r e t c h e s  t h e  p l a t e  

along t h e  a x i s ;  b i s  width, h i s  t h e  th ickness  of t h e  p l a t e .  
2 ~ h i s  formula i s  t h e  p a r t i a l  case of  more genera l  formula ( 1 1 1 . 2 5 ) .  



t h e  good agreement between the  t h e o r e t i c a l  and experimental d a t a ,  i t  becomes 
p o s s i b l e  t o  analyze more complex problems of  s t r e s s  concent ra t ion  around holes  
i n  g l a s s  p l a s t i c s ,  f o r  which t h e  t h e o r e t i c a l  s o l u t i o n s  a r e  not  y e t  known, and 
t o  use  t h e  p h o t o e l a s t i c i t y  method. 

And so,  from t h e  da t a  presented  i n  Figure A.52, i t  i s  concluded t h a t  i n  
determining t h e  mean components of  s t r e s s e s  i n  g l a s s  p l a s t i c s ,  r e in fo rced  by 
g l a s s  f i b e r  o r  g l a s s  f a b r i c s ,  i t  poss ib l e1  t o  rep lace  them with a continuous 
e l a s t i c  a n i s o t r o p i c  body and t o  apply t o  them t h e  corresponding formulas of  
e l a s t i c i t y  theory of  an a n i s o t r o p i c  medium, presented i n  Chapter 111. 
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