Chapter 9 Special Problem

- (a) Using program CLT and the properties for graphite-epoxy listed in Table 3.1, confirm that the effective compliance terms listed in Table 9.2 for a [0/90]_{2s} laminate are correct.
- (b) Calculate the principal roots for the characteristic equation for a $[0/90]_{2s}$ laminate "by hand", using the exact solution discussed during class and listed below:

$$s_{1,2} = \pm \sqrt{\frac{-b + \sqrt{b^2 - 4dc}}{2d}}$$
 $s_{3,4} = \pm \sqrt{\frac{-b - \sqrt{b^2 - 4dc}}{2d}}$ $b = (2\overline{a}_{12} + \overline{a}_{66})$ $c = \overline{a}_{22}$ $d = \overline{a}_{11}$

Compare your answer to those listed in Table 9.2

(c) Consider a a $[0/90]_{2s}$ laminate with a 20 mm diameter circular hole, subjected to stress resultants $N_{xx} = 150 \ kN/m$, $N_{yy} = 100 \ kN/m$. Calculate the effective stresses induced at the point x = 0, y = 10mm "by hand" (use a calculator or software package such as Maple, Mathematica, Matlab, EXCEL, etc, as needed). Compare your results with those predicted by program HOLES.