AA535/ME500 Advanced Composite Structural Analysis

Instructor:	Prof. M MEB R (206)54 tuttle@	lark Tuttle m 210 i3-5710 u.washington.edu			
Office hrs:	MWF,	2:30-3:20pm	Office hrs:	T, Th, 1:30-3PM	
Class Schedule:		MWF: 1:30-2:20pm, Loew Hall Rm 206			
<u>Prerequisites</u> : <u>Course Web Site</u> :		ME450 or AA532 (or equivalent), or permission of instructor http://courses.washington.edu/mengr500/			
Course Textbook:		M. E. Tuttle, <i>Structural Analysis of Polymeric Composite Materials</i> , edition, CRC Press/Taylor and Francis Group (2013).			

Topics Covered (Subject to Change!):

- Brief Review:
 - Hooke's Law for anisotropic materials (e.g., the $[S], [\overline{S}], [Q]$, and $[\overline{Q}]$ matrices)

 2^{nd}

- Classical lamination theory (e.g., the [ABD] and [abd] matrices)
- Macromechanical failure theories
- Composite beams:
 - Effective axial & bending stiffnesses of composite beams w/various cross-sections
 - Comparisons with finite-element predictions
- Stress/strain concentrations near elliptical holes
 - The Savin solution
 - Elliptical and circular holes in unidirectional and multiangle laminates
 - Comparisons with finite-element predictions
 - Point-stress failure theories
- Deflections of transversely-loaded orthotropic plates:
 - Governing equations of thin plates
 - Exact solutions for simply-supported specially orthotropic plates
 - Approximate solutions for simply-supported generally orthotropic plates (Rayleigh-Ritz analyses)
 - Comparisons with finite-element predictions
- Buckling
 - Thermal buckling of cross-ply laminates with free-edges (the Hyer solution)
 - Thermo-mechanical buckling of simply-supported laminates

Grading Policy:

Homework:	30%
Midterm Exam:	35%
Final Exam:	35%