
Modeling Turbulence

12.4 Standard, RNG, and Realizable k-ε Models Theory

This section presents the standard, RNG, and realizable k-ε models. All three models
have similar forms, with transport equations for k and ε. The major differences in the
models are as follows:

• the method of calculating turbulent viscosity

• the turbulent Prandtl numbers governing the turbulent diffusion of k and ε

• the generation and destruction terms in the ε equation

The transport equations, methods of calculating turbulent viscosity, and model constants
are presented separately for each model. The features that are essentially common to all
models follow, including turbulent production, generation due to buoyancy, accounting
for the effects of compressibility, and modeling heat and mass transfer.

12.4.1 Standard k-ε Model

Overview

The simplest “complete models” of turbulence are two-equation models in which the so-
lution of two separate transport equations allows the turbulent velocity and length scales
to be independently determined. The standard k-ε model in FLUENT falls within this
class of turbulence model and has become the workhorse of practical engineering flow
calculations in the time since it was proposed by Launder and Spalding [196]. Robust-
ness, economy, and reasonable accuracy for a wide range of turbulent flows explain its
popularity in industrial flow and heat transfer simulations. It is a semi-empirical model,
and the derivation of the model equations relies on phenomenological considerations and
empiricism.

As the strengths and weaknesses of the standard k-ε model have become known, improve-
ments have been made to the model to improve its performance. Two of these variants
are available in FLUENT: the RNG k-ε model [408] and the realizable k-ε model [330].

The standard k-ε model [196] is a semi-empirical model based on model transport equa-
tions for the turbulence kinetic energy (k) and its dissipation rate (ε). The model trans-
port equation for k is derived from the exact equation, while the model transport equation
for ε was obtained using physical reasoning and bears little resemblance to its mathe-
matically exact counterpart.

In the derivation of the k-ε model, the assumption is that the flow is fully turbulent, and
the effects of molecular viscosity are negligible. The standard k-ε model is therefore valid
only for fully turbulent flows.
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12.4 Standard, RNG, and Realizable k-ε Models Theory

Transport Equations for the Standard k-ε Model

The turbulence kinetic energy, k, and its rate of dissipation, ε, are obtained from the
following transport equations:
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In these equations, Gk represents the generation of turbulence kinetic energy due to the
mean velocity gradients, calculated as described in Section 12.4.4: Modeling Turbulent
Production in the k-ε Models. Gb is the generation of turbulence kinetic energy due
to buoyancy, calculated as described in Section 12.4.5: Effects of Buoyancy on Turbu-
lence in the k-ε Models. YM represents the contribution of the fluctuating dilatation in
compressible turbulence to the overall dissipation rate, calculated as described in Sec-
tion 12.4.6: Effects of Compressibility on Turbulence in the k-ε Models. C1ε, C2ε, and C3ε

are constants. σk and σε are the turbulent Prandtl numbers for k and ε, respectively. Sk
and Sε are user-defined source terms.

Modeling the Turbulent Viscosity

The turbulent (or eddy) viscosity, µt, is computed by combining k and ε as follows:

µt = ρCµ
k2

ε
(12.4-3)

where Cµ is a constant.

Model Constants

The model constants C1ε, C2ε, Cµ, σk, and σε have the following default values [196]:

C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3
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Modeling Turbulence

These default values have been determined from experiments with air and water for funda-
mental turbulent shear flows including homogeneous shear flows and decaying isotropic
grid turbulence. They have been found to work fairly well for a wide range of wall-
bounded and free shear flows.

Although the default values of the model constants are the standard ones most widely
accepted, you can change them (if needed) in the Viscous Model panel.

12.4.2 RNG k-ε Model

Overview

The RNG k-ε model was derived using a rigorous statistical technique (called renormal-
ization group theory). It is similar in form to the standard k-ε model, but includes the
following refinements:

• The RNG model has an additional term in its ε equation that significantly improves
the accuracy for rapidly strained flows.

• The effect of swirl on turbulence is included in the RNG model, enhancing accuracy
for swirling flows.

• The RNG theory provides an analytical formula for turbulent Prandtl numbers,
while the standard k-ε model uses user-specified, constant values.

• While the standard k-ε model is a high-Reynolds-number model, the RNG theory
provides an analytically-derived differential formula for effective viscosity that ac-
counts for low-Reynolds-number effects. Effective use of this feature does, however,
depend on an appropriate treatment of the near-wall region.

These features make the RNG k-ε model more accurate and reliable for a wider class of
flows than the standard k-ε model.

The RNG-based k-ε turbulence model is derived from the instantaneous Navier-Stokes
equations, using a mathematical technique called “renormalization group” (RNG) meth-
ods. The analytical derivation results in a model with constants different from those in
the standard k-ε model, and additional terms and functions in the transport equations
for k and ε. A more comprehensive description of RNG theory and its application to
turbulence can be found in [59].
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12.4 Standard, RNG, and Realizable k-ε Models Theory

Transport Equations for the RNG k-ε Model

The RNG k-ε model has a similar form to the standard k-ε model:
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∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

(

αkµeff
∂k

∂xj

)

+Gk +Gb − ρε− YM + Sk (12.4-4)

and

∂

∂t
(ρε)+

∂

∂xi
(ρεui) =

∂

∂xj

(

αεµeff
∂ε

∂xj

)

+C1ε
ε

k
(Gk + C3εGb)−C2ερ

ε2

k
−Rε+Sε (12.4-5)

In these equations, Gk represents the generation of turbulence kinetic energy due to the
mean velocity gradients, calculated as described in Section 12.4.4: Modeling Turbulent
Production in the k-ε Models. Gb is the generation of turbulence kinetic energy due
to buoyancy, calculated as described in Section 12.4.5: Effects of Buoyancy on Turbu-
lence in the k-ε Models. YM represents the contribution of the fluctuating dilatation in
compressible turbulence to the overall dissipation rate, calculated as described in Sec-
tion 12.4.6: Effects of Compressibility on Turbulence in the k-ε Models. The quantities
αk and αε are the inverse effective Prandtl numbers for k and ε, respectively. Sk and Sε
are user-defined source terms.

Modeling the Effective Viscosity

The scale elimination procedure in RNG theory results in a differential equation for
turbulent viscosity:

d

(

ρ2k√
εµ

)

= 1.72
ν̂√

ν̂3 − 1 + Cν
dν̂ (12.4-6)

where

ν̂ = µeff/µ

Cν ≈ 100

Equation 12.4-6 is integrated to obtain an accurate description of how the effective tur-
bulent transport varies with the effective Reynolds number (or eddy scale), allowing the
model to better handle low-Reynolds-number and near-wall flows.
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Modeling Turbulence

In the high-Reynolds-number limit, Equation 12.4-6 gives

µt = ρCµ
k2

ε
(12.4-7)

with Cµ = 0.0845, derived using RNG theory. It is interesting to note that this value
of Cµ is very close to the empirically-determined value of 0.09 used in the standard k-ε
model.

In FLUENT, by default, the effective viscosity is computed using the high-Reynolds-
number form in Equation 12.4-7. However, there is an option available that allows you
to use the differential relation given in Equation 12.4-6 when you need to include low-
Reynolds-number effects.

RNG Swirl Modification

Turbulence, in general, is affected by rotation or swirl in the mean flow. The RNG model
in FLUENT provides an option to account for the effects of swirl or rotation by modifying
the turbulent viscosity appropriately. The modification takes the following functional
form:

µt = µt0 f

(

αs,Ω,
k

ε

)

(12.4-8)

where µt0 is the value of turbulent viscosity calculated without the swirl modification
using either Equation 12.4-6 or Equation 12.4-7. Ω is a characteristic swirl number eval-
uated within FLUENT, and αs is a swirl constant that assumes different values depending
on whether the flow is swirl-dominated or only mildly swirling. This swirl modification
always takes effect for axisymmetric, swirling flows and three-dimensional flows when the
RNG model is selected. For mildly swirling flows (the default in FLUENT), αs is set to
0.07. For strongly swirling flows, however, a higher value of αs can be used.

Calculating the Inverse Effective Prandtl Numbers

The inverse effective Prandtl numbers, αk and αε, are computed using the following
formula derived analytically by the RNG theory:
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(12.4-9)

where α0 = 1.0. In the high-Reynolds-number limit (µmol/µeff � 1), αk = αε ≈ 1.393.
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12.4 Standard, RNG, and Realizable k-ε Models Theory

The Rε Term in the ε Equation

The main difference between the RNG and standard k-ε models lies in the additional
term in the ε equation given by

Rε =
Cµρη

3(1 − η/η0)

1 + βη3

ε2

k
(12.4-10)

where η ≡ Sk/ε, η0 = 4.38, β = 0.012.

The effects of this term in the RNG ε equation can be seen more clearly by rearranging
Equation 12.4-5. Using Equation 12.4-10, the third and fourth terms on the right-hand
side of Equation 12.4-5 can be merged, and the resulting ε equation can be rewritten as
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(12.4-11)

where C∗
2ε is given by

C∗
2ε ≡ C2ε +

Cµη
3(1 − η/η0)

1 + βη3
(12.4-12)

In regions where η < η0, the R term makes a positive contribution, and C∗
2ε becomes

larger than C2ε. In the logarithmic layer, for instance, it can be shown that η ≈ 3.0,
giving C∗

2ε ≈ 2.0, which is close in magnitude to the value of C2ε in the standard k-ε
model (1.92). As a result, for weakly to moderately strained flows, the RNG model tends
to give results largely comparable to the standard k-ε model.

In regions of large strain rate (η > η0), however, the R term makes a negative contribu-
tion, making the value of C∗

2ε less than C2ε. In comparison with the standard k-ε model,
the smaller destruction of ε augments ε, reducing k and, eventually, the effective viscosity.
As a result, in rapidly strained flows, the RNG model yields a lower turbulent viscosity
than the standard k-ε model.

Thus, the RNG model is more responsive to the effects of rapid strain and streamline
curvature than the standard k-ε model, which explains the superior performance of the
RNG model for certain classes of flows.

Model Constants

The model constants C1ε and C2ε in Equation 12.4-5 have values derived analytically by
the RNG theory. These values, used by default in FLUENT, are

C1ε = 1.42, C2ε = 1.68
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12.4.3 Realizable k-ε Model

Overview

The realizable k-ε model [330] is a relatively recent development and differs from the
standard k-ε model in two important ways:

• The realizable k-ε model contains a new formulation for the turbulent viscosity.

• A new transport equation for the dissipation rate, ε, has been derived from an exact
equation for the transport of the mean-square vorticity fluctuation.

The term “realizable” means that the model satisfies certain mathematical constraints
on the Reynolds stresses, consistent with the physics of turbulent flows. Neither the
standard k-ε model nor the RNG k-ε model is realizable.

An immediate benefit of the realizable k-ε model is that it more accurately predicts
the spreading rate of both planar and round jets. It is also likely to provide superior
performance for flows involving rotation, boundary layers under strong adverse pressure
gradients, separation, and recirculation.

To understand the mathematics behind the realizable k-ε model, consider combining
the Boussinesq relationship (Equation 12.2-5) and the eddy viscosity definition (Equa-
tion 12.4-3) to obtain the following expression for the normal Reynolds stress in an
incompressible strained mean flow:

u2 =
2

3
k − 2 νt

∂U

∂x
(12.4-13)

Using Equation 12.4-3 for νt ≡ µt/ρ, one obtains the result that the normal stress, u2,
which by definition is a positive quantity, becomes negative, i.e., “non-realizable”, when
the strain is large enough to satisfy

k

ε

∂U

∂x
>

1

3Cµ
≈ 3.7 (12.4-14)

Similarly, it can also be shown that the Schwarz inequality for shear stresses (uαuβ
2 ≤

u2
αu

2
β; no summation over α and β) can be violated when the mean strain rate is large.

The most straightforward way to ensure the realizability (positivity of normal stresses
and Schwarz inequality for shear stresses) is to make Cµ variable by sensitizing it to
the mean flow (mean deformation) and the turbulence (k, ε). The notion of variable
Cµ is suggested by many modelers including Reynolds [303], and is well substantiated
by experimental evidence. For example, Cµ is found to be around 0.09 in the inertial
sublayer of equilibrium boundary layers, and 0.05 in a strong homogeneous shear flow.
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12.4 Standard, RNG, and Realizable k-ε Models Theory

Both the realizable and RNG k-ε models have shown substantial improvements over the
standard k-ε model where the flow features include strong streamline curvature, vortices,
and rotation. Since the model is still relatively new, it is not clear in exactly which
instances the realizable k-ε model consistently outperforms the RNG model. However,
initial studies have shown that the realizable model provides the best performance of all
the k-ε model versions for several validations of separated flows and flows with complex
secondary flow features.

One of the weaknesses of the standard k-ε model or other traditional k-ε models lies with
the modeled equation for the dissipation rate (ε). The well-known round-jet anomaly
(named based on the finding that the spreading rate in planar jets is predicted reasonably
well, but prediction of the spreading rate for axisymmetric jets is unexpectedly poor) is
considered to be mainly due to the modeled dissipation equation.

The realizable k-ε model proposed by Shih et al. [330] was intended to address these
deficiencies of traditional k-ε models by adopting the following:

• A new eddy-viscosity formula involving a variable Cµ originally proposed by
Reynolds [303].

• A new model equation for dissipation (ε) based on the dynamic equation of the
mean-square vorticity fluctuation.

One limitation of the realizable k-ε model is that it produces non-physical turbulent
viscosities in situations when the computational domain contains both rotating and sta-
tionary fluid zones (e.g., multiple reference frames, rotating sliding meshes). This is due
to the fact that the realizable k-ε model includes the effects of mean rotation in the
definition of the turbulent viscosity (see Equations 12.4-17–12.4-19). This extra rotation
effect has been tested on single rotating reference frame systems and showed superior be-
havior over the standard k-ε model. However, due to the nature of this modification, its
application to multiple reference frame systems should be taken with some caution. See
Section 12.4.3: Modeling the Turbulent Viscosity for information about how to include
or exclude this term from the model.

c© Fluent Inc. September 29, 2006 12-19



Modeling Turbulence

Transport Equations for the Realizable k-ε Model

The modeled transport equations for k and ε in the realizable k-ε model are
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where

C1 = max

[

0.43,
η

η + 5

]

, η = S
k

ε
, S =

√

2SijSij

In these equations, Gk represents the generation of turbulence kinetic energy due to the
mean velocity gradients, calculated as described in Section 12.4.4: Modeling Turbulent
Production in the k-ε Models. Gb is the generation of turbulence kinetic energy due
to buoyancy, calculated as described in Section 12.4.5: Effects of Buoyancy on Turbu-
lence in the k-ε Models. YM represents the contribution of the fluctuating dilatation in
compressible turbulence to the overall dissipation rate, calculated as described in Sec-
tion 12.4.6: Effects of Compressibility on Turbulence in the k-ε Models. C2 and C1ε are
constants. σk and σε are the turbulent Prandtl numbers for k and ε, respectively. Sk and
Sε are user-defined source terms.

Note that the k equation (Equation 12.4-15) is the same as that in the standard k-
ε model (Equation 12.4-1) and the RNG k-ε model (Equation 12.4-4), except for the
model constants. However, the form of the ε equation is quite different from those in
the standard and RNG-based k-ε models (Equations 12.4-2 and 12.4-5). One of the
noteworthy features is that the production term in the ε equation (the second term on
the right-hand side of Equation 12.4-16) does not involve the production of k; i.e., it does
not contain the same Gk term as the other k-ε models. It is believed that the present
form better represents the spectral energy transfer. Another desirable feature is that
the destruction term (the next to last term on the right-hand side of Equation 12.4-16)
does not have any singularity; i.e., its denominator never vanishes, even if k vanishes or
becomes smaller than zero. This feature is contrasted with traditional k-ε models, which
have a singularity due to k in the denominator.
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12.4 Standard, RNG, and Realizable k-ε Models Theory

This model has been extensively validated for a wide range of flows [183, 330], including
rotating homogeneous shear flows, free flows including jets and mixing layers, channel
and boundary layer flows, and separated flows. For all these cases, the performance of
the model has been found to be substantially better than that of the standard k-ε model.
Especially noteworthy is the fact that the realizable k-ε model resolves the round-jet
anomaly; i.e., it predicts the spreading rate for axisymmetric jets as well as that for
planar jets.

Modeling the Turbulent Viscosity

As in other k-ε models, the eddy viscosity is computed from

µt = ρCµ
k2

ε
(12.4-17)

The difference between the realizable k-ε model and the standard and RNG k-ε models
is that Cµ is no longer constant. It is computed from

Cµ =
1
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kU∗

ε

(12.4-18)

where
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√

SijSij + Ω̃ijΩ̃ij (12.4-19)

and

Ω̃ij = Ωij − 2εijkωk

Ωij = Ωij − εijkωk

where Ωij is the mean rate-of-rotation tensor viewed in a rotating reference frame with
the angular velocity ωk. The model constants A0 and As are given by
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√
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It can be seen that Cµ is a function of the mean strain and rotation rates, the angular ve-
locity of the system rotation, and the turbulence fields (k and ε). Cµ in Equation 12.4-17
can be shown to recover the standard value of 0.09 for an inertial sublayer in an equilib-
rium boundary layer.

i In FLUENT, the term −2εijkωk is, by default, not included in the
calculation of Ω̃ij. This is an extra rotation term that is not com-
patible with cases involving sliding meshes or multiple reference frames.
If you want to include this term in the model, you can enable it by using the
define/models/viscous/turbulence-expert/rke-cmu-rotation-term?

text command and entering yes at the prompt.

Model Constants

The model constants C2, σk, and σε have been established to ensure that the model
performs well for certain canonical flows. The model constants are

C1ε = 1.44, C2 = 1.9, σk = 1.0, σε = 1.2

12.4.4 Modeling Turbulent Production in the k-ε Models

The term Gk, representing the production of turbulence kinetic energy, is modeled iden-
tically for the standard, RNG, and realizable k-ε models. From the exact equation for
the transport of k, this term may be defined as

Gk = −ρu′iu′j
∂uj
∂xi

(12.4-20)

To evaluate Gk in a manner consistent with the Boussinesq hypothesis,

Gk = µtS
2 (12.4-21)

where S is the modulus of the mean rate-of-strain tensor, defined as

S ≡
√

2SijSij (12.4-22)

i When using the high-Reynolds number k-ε versions, µeff is used in lieu of
µt in Equation 12.4-21.
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12.4.5 Effects of Buoyancy on Turbulence in the k-ε Models

When a non-zero gravity field and temperature gradient are present simultaneously, the
k-ε models in FLUENT account for the generation of k due to buoyancy (Gb in Equa-
tions 12.4-1, 12.4-4, and 12.4-15), and the corresponding contribution to the production
of ε in Equations 12.4-2, 12.4-5, and 12.4-16.

The generation of turbulence due to buoyancy is given by

Gb = βgi
µt
Prt

∂T

∂xi
(12.4-23)

where Prt is the turbulent Prandtl number for energy and gi is the component of the
gravitational vector in the ith direction. For the standard and realizable k-ε models, the
default value of Prt is 0.85. In the case of the RNG k-ε model, Prt = 1/α, where α
is given by Equation 12.4-9, but with α0 = 1/Pr = k/µcp. The coefficient of thermal
expansion, β, is defined as

β = −1

ρ

(

∂ρ

∂T

)

p

(12.4-24)

For ideal gases, Equation 12.4-23 reduces to

Gb = −gi
µt
ρPrt

∂ρ

∂xi
(12.4-25)

It can be seen from the transport equations for k (Equations 12.4-1, 12.4-4, and 12.4-15)
that turbulence kinetic energy tends to be augmented (Gb > 0) in unstable stratification.
For stable stratification, buoyancy tends to suppress the turbulence (Gb < 0). In FLU-
ENT, the effects of buoyancy on the generation of k are always included when you have
both a non-zero gravity field and a non-zero temperature (or density) gradient.

While the buoyancy effects on the generation of k are relatively well understood, the
effect on ε is less clear. In FLUENT, by default, the buoyancy effects on ε are neglected
simply by setting Gb to zero in the transport equation for ε (Equation 12.4-2, 12.4-5, or
12.4-16).

However, you can include the buoyancy effects on ε in the Viscous Model panel. In this
case, the value of Gb given by Equation 12.4-25 is used in the transport equation for ε
(Equation 12.4-2, 12.4-5, or 12.4-16).
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The degree to which ε is affected by the buoyancy is determined by the constant C3ε.
In FLUENT, C3ε is not specified, but is instead calculated according to the following
relation [140]:

C3ε = tanh
∣
∣
∣
∣

v

u

∣
∣
∣
∣ (12.4-26)

where v is the component of the flow velocity parallel to the gravitational vector and
u is the component of the flow velocity perpendicular to the gravitational vector. In
this way, C3ε will become 1 for buoyant shear layers for which the main flow direction is
aligned with the direction of gravity. For buoyant shear layers that are perpendicular to
the gravitational vector, C3ε will become zero.

12.4.6 Effects of Compressibility on Turbulence in the k-ε Models

For high-Mach-number flows, compressibility affects turbulence through so-called “di-
latation dissipation”, which is normally neglected in the modeling of incompressible
flows [403]. Neglecting the dilatation dissipation fails to predict the observed decrease
in spreading rate with increasing Mach number for compressible mixing and other free
shear layers. To account for these effects in the k-ε models in FLUENT, the dilatation
dissipation term, YM , is included in the k equation. This term is modeled according to
a proposal by Sarkar [315]:

YM = 2ρεM2
t (12.4-27)

where Mt is the turbulent Mach number, defined as

Mt =

√

k

a2
(12.4-28)

where a (≡ √
γRT ) is the speed of sound.

This compressibility modification always takes effect when the compressible form of the
ideal gas law is used.
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12.4 Standard, RNG, and Realizable k-ε Models Theory

12.4.7 Convective Heat and Mass Transfer Modeling in the k-ε Models

In FLUENT, turbulent heat transport is modeled using the concept of Reynolds’ analogy
to turbulent momentum transfer. The “modeled” energy equation is thus given by the
following:

∂

∂t
(ρE) +

∂

∂xi
[ui(ρE + p)] =

∂

∂xj

(

keff
∂T

∂xj
+ ui(τij)eff

)

+ Sh (12.4-29)

where E is the total energy, keff is the effective thermal conductivity, and

(τij)eff is the deviatoric stress tensor, defined as

(τij)eff = µeff

(

∂uj
∂xi

+
∂ui
∂xj

)

− 2

3
µeff

∂uk
∂xk

δij

The term involving (τij)eff represents the viscous heating, and is always computed in the
density-based solvers. It is not computed by default in the pressure-based solver, but it
can be enabled in the Viscous Model panel.

Additional terms may appear in the energy equation, depending on the physical models
you are using. See Section 13.2.1: Heat Transfer Theory for more details.

For the standard and realizable k-ε models, the effective thermal conductivity is given
by

keff = k +
cpµt
Prt

where k, in this case, is the thermal conductivity. The default value of the turbulent
Prandtl number is 0.85. You can change the value of the turbulent Prandtl number in
the Viscous Model panel.

For the RNG k-ε model, the effective thermal conductivity is

keff = αcpµeff

where α is calculated from Equation 12.4-9, but with α0 = 1/Pr = k/µcp.

The fact that α varies with µmol/µeff , as in Equation 12.4-9, is an advantage of the RNG k-
ε model. It is consistent with experimental evidence indicating that the turbulent Prandtl
number varies with the molecular Prandtl number and turbulence [175]. Equation 12.4-9
works well across a very broad range of molecular Prandtl numbers, from liquid metals
(Pr ≈ 10−2) to paraffin oils (Pr ≈ 103), which allows heat transfer to be calculated in low-
Reynolds-number regions. Equation 12.4-9 smoothly predicts the variation of effective
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Prandtl number from the molecular value (α = 1/Pr) in the viscosity-dominated region
to the fully turbulent value (α = 1.393) in the fully turbulent regions of the flow.

Turbulent mass transfer is treated similarly. For the standard and realizable k-ε models,
the default turbulent Schmidt number is 0.7. This default value can be changed in the
Viscous Model panel. For the RNG model, the effective turbulent diffusivity for mass
transfer is calculated in a manner that is analogous to the method used for the heat
transport. The value of α0 in Equation 12.4-9 is α0 = 1/Sc, where Sc is the molecular
Schmidt number.

12.5 Standard and SST k-ω Models Theory

This section presents the standard [403] and shear-stress transport (SST) [237] k-ω mod-
els. Both models have similar forms, with transport equations for k and ω. The major
ways in which the SST model [238] differs from the standard model are as follows:

• gradual change from the standard k-ω model in the inner region of the boundary
layer to a high-Reynolds-number version of the k-ε model in the outer part of the
boundary layer

• modified turbulent viscosity formulation to account for the transport effects of the
principal turbulent shear stress

The transport equations, methods of calculating turbulent viscosity, and methods of
calculating model constants and other terms are presented separately for each model.

12.5.1 Standard k-ω Model

Overview

The standard k-ω model in FLUENT is based on the Wilcox k-ω model [403], which
incorporates modifications for low-Reynolds-number effects, compressibility, and shear
flow spreading. The Wilcox model predicts free shear flow spreading rates that are in
close agreement with measurements for far wakes, mixing layers, and plane, round, and
radial jets, and is thus applicable to wall-bounded flows and free shear flows. A variation
of the standard k-ω model called the SST k-ω model is also available in FLUENT, and is
described in Section 12.5.2: Shear-Stress Transport (SST) k-ω Model.

The standard k-ω model is an empirical model based on model transport equations for
the turbulence kinetic energy (k) and the specific dissipation rate (ω), which can also be
thought of as the ratio of ε to k [403].

As the k-ω model has been modified over the years, production terms have been added
to both the k and ω equations, which have improved the accuracy of the model for
predicting free shear flows.
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