ME-573 Homework 3

(Note: Do all problems for full credit (25 points each))

Problem 1:

Use truncated Taylor series expansions to estimate the relations for mean and variance of the following arbitrary functions of random variables. Note:

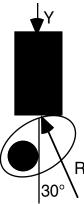
If
$$y = f(X_1, X_2, ..., X_n)$$

then
$$E[y] = f(E[x_1], E[x_2], E[x_n])$$

and
$$V[y] = s.d._y^2 = \sum_{i=1}^n \left(\frac{\partial y}{\partial x_i}\right)^2 s.d._{x_i}^2$$

a) Y =
$$\sqrt{X_1^2 + X_2^2}$$
 (Pythagorean theorem where X₁and X₂ are R.V.'s)

b)
$$I = \frac{1}{12}bh^3$$
 (Moment of inertia for a rectangular section where b and h are R.V.'s)


c)
$$\omega = \sqrt{\frac{k}{m}}$$
 (Natural frequency where k and m are R.V.'s)

Problem 2:

A description of the likely load statistics are needed for a proposed design. The definition should be quite precise; thus 20, 30, and 50 measurements are proposed to be made from a population with a known variance, (s.d. 2 = 10 kN 2). Use the central limit theorem to determine the a priori probability (for each proposed sample set size) that the sample mean will be obtained for which L will differ from μ_L by less than 1 kN. If 95% probability is required, which of the proposed sample set sizes should be employed? As the number of samples in a set increases, what is the trend in the dispersion of the sample mean about the population mean?

Problem 3:

For a certain cam/follower system, determine the statistics of the vertical force acting through the follower if the force acting at the cam surface at this instant is \overline{R} , s_R (39000, 7070) N at 30° to the vertical. Assume the vertical and horizontal reaction forces are correlated random variables.

Problem 4:

Given the 50 load values shown:

- a) Determine the mean and standard deviation of the load using the usual formulae.
- b) Estimate the mean and standard deviation of arbitrarily selected sample sets of 5, 10, and 25 loads using Table 3.4 and the ranges of each sample set?
- c) Can reasonable estimates of statistics be made from the ranges alone?

Load values (N)

						/			
3.7	5.4	4.4	4.4	3.4	4.8	4.9	5.1	3.5	4.1
4.3	3.7	1.6	2.7	7.4	2.9	3.9	0.6	2.7	4.7
4.6	4.1	3.3	6.5	3.0	3.1	5.2	3.7	1.7	5.0
2.3	3.7	4.2	3.6	3.4	4.0	2.7	3.8	4.1	2.6
2.9	1.9	3.1	4.7	4.5	5.9	3.0	4.1	4.3	5.3