Chapter 12: Structures of Ceramics

Outline

- Introduction
- Crystal structures
 - Ceramic structure
 - AX-type crystal structures
 - A_mX_p-type
 - $A_m B_n X_p$ type
- Silicate ceramics
- Carbon

Ceramics

- Two or more different elements
- More complex than metal structures
- Ionic and/or covalent bonds
- A mix of ionic and covalent bonds electronegativity
- Ionic bonds form ions
 - Metals donate electrons --metallic ions--cations--positively charged
 - Non-metals gain electrons --nonmetallic ions--anions--negatively charged
- Crystals must be electrically neutral, e.g. CaF₂

Ceramic Bonding

- Bonding:
 - -- Mostly ionic, some covalent.
 - -- % ionic character increases with difference in electronegativity.
- Large vs small ionic bond character:

IA																	0
Н		CaF ² : large										He					
2.1	IIA	_				U u	' 2'		90			IIIA	IVA	VA	VIA	VIIA	-
Li	Be					C i(.	mo				В	K	Ν	0	F	Ne
1.0	1.5							2.0	2.5	3.0	3.5	4.0	-				
Na	Mg							VIII				Al	Si	Р	S	CI	Ar
0.9	1.2	HIB	IVB	VB	VIB	VIIB	<u> </u>		$ \longrightarrow $	IB	IIB	1.5	1.8	2.1	2.5	3.0	—
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	—
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	-
Cs	Ba	La–Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
0.7	0.9	1.1–1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	-
Fr	Ra	Ac–No															
0.7	0.9	1.1-1.7															

Adapted from Fig. 2.7, *Callister 7e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University. Chapter 12 -

Ionic Bonding & Structure

 Charge Neutrality:
--Net charge in the structure should be zero.

--General form:

Ceramic structures

Factors that influence crystal structure

- Magnitude of electrical charge of ions
- Relative size of ions (Non-metal > metal ions Rc /Ra<1)
 - Cations must be next to anions--maximize # of nearest neighbors that are anions
 - Stable structure--anions and cations must contact each other

The # of anions depends on ratio of Rc/Ra

Coordination numbers and geometries for various cation-anion radius ratios (R_c/R_a)

Table 13.2 Coordination Numbers and

Table 13.2 Coordination Numbers and

Geometries fo Radius Ratio	or Various Cation- s (r _c /r _A)	-Anion	Geometries for Various Cation–Anion Radius Ratios (r_c/r_h)							
Coordination Number	Cation–Anion Radius Ratio	Coordination Geometry	Coordination Number	Cation–Anion Radius Ratio	Coordination Geometry					
2	< 0.155									
			6	0.414-0.732						
3	0.155-0.225									
4	0.225-0.414		8	0.732-1.0						
					Chapter 12 -					

AX-type crystal structure

Rock Salt NaCl structure

Adapted from Fig. 12.2, *Callister 7e.*

 $c_{I} = r_{c_{I}} = 0.181 \text{ nm}$

$$r_{\rm Na}/r_{\rm Cl} = 0.564$$

C # =

Unit cell: FCC arrangement of anions with one cation at center of each of 12 cube edges

Two interpenetrating FCC lattices

AX Crystal Structures

AX–Type Crystal Structures include NaCl, CsCl, and zinc blende

Cesium Chloride structure:

Adapted from Fig. 12.3, *Callister 7e.*

AX Crystal Structures

Zinc Blende structure

$$\frac{r_{\rm Zn^{2+}}}{r_{\rm O^{2-}}} = \frac{0.074}{0.140} = 0.529$$

C#=4, FCC structure of S with Zn at interior tetrahedral

Adapted from Fig. 12.4, *Callister 7e.*

A_m**X**_p **Crystal Structures**

Fluorite structure (AX₂)

Adapted from Fig. 12.5, *Callister 7e.*

- Calcium Fluorite (CaF₂)
- cations in cubic sites
- UO_{2} , ThO_{2} , ZrO_{2} , CeO_{2}
- •Rc/Ra=0.8, C #_{Ca}=8, C#_F=4
- •Ca atoms at center of cubes with F atoms at cube corners.
- •Unit cell consists of 8 cubes

A_m**B**_n **X**_p **Crystal Structures**

Perosvkite (ABX₃)

- Ba at cubic corner, O at center of 6 faces, Ti at body center
- CN_O=12, CN_{Ba}=6, and CN_{Ti}=6
- Large A cation and oxygen form an FCC lattice
- Cubic--tetragonal at 130°C (Curie points)
- Cubic -- orthrhombic and rhombohedral at low T

Adapted from Fig. 12.6, *Callister 7e.*

Ceramic density computations

$$\rho = \frac{n'(\Sigma A_{\rm C} + \Sigma A_{\rm A})}{V_{\rm C} N_{\rm A}} \tag{13.1}$$

where

n' = the number of formula units¹ within the unit cell $\Sigma A_{\rm C}$ = the sum of the atomic weights of all cations in the formula unit $\Sigma A_{\rm A}$ = the sum of the atomic weights of all anions in the formula unit $V_{\rm C}$ = the unit cell volume $N_{\rm A}$ = Avogadro's number, 6.023×10^{23} formula units/mol

Ceramic density computation

(example Rock Salt)

Silicate Ceramics

Most common elements on earth are Si & O

- SiO₂ (silica) structures are quartz, crystobalite, & tridymite
- The strong Si-O bond leads to a strong, high melting material (1710°C)

Amorphous Silica

- Silica gels amorphous SiO₂
 - Si⁴⁺ and O²⁻ not in well-ordered lattice
 - Charge balanced by H⁺ (to form OH⁻) at "dangling" bonds
 - very high surface area > 200 m²/g
 - SiO₂ is quite stable, therefore unreactive
 - makes good catalyst support

Silicates

Combine SiO₄⁴⁻ tetrahedra by having them share corners, edges, or faces

 Cations such as Ca²⁺, Mg²⁺, & Al³⁺ act to neutralize & provide ionic bonding

Layered Silicates

- Layered silicates (clay silicates)
 - SiO₄ tetrahedra connected together to form 2-D plane

- (Si₂O₅)²⁻
- So need cations to balance charge

Carbon Forms

- Carbon black amorphous surface area ca. 1000 m²/g
- Diamond
 - tetrahedral carbon
 - hard no good slip planes
 - brittle can cut it
 - large diamonds jewelry
 - small diamonds
 - often man made used for cutting tools and polishing
 - diamond films
 - hard surface coat tools, medical devices, etc.

Carbon Forms - Graphite

• layer structure – aromatic layers

- weak van der Waal's forces between layers
- planes slide easily, good lubricant

Carbon Forms – Fullerenes and Nanotubes

- Fullerenes or carbon nanotubes
 - wrap the graphite sheet by curving into ball or tube
 - Buckminister fullerenes
 - Like a soccer ball C_{60} also C_{70} + others

