Chapter 9: Phase Diagrams II

- When we combine two elements... what equilibrium state do we get?
- In particular, if we specify...
 - --a composition (e.g., wt% Cu wt% Ni), and --a temperature (*T*) then...
 - How many phases do we get? What is the composition of each phase?
 - How much of each phase do we get?

The Lever Rule

 Tie line – connects the phases in equilibrium with each other - essentially an isotherm

How much of each phase? Think of it as a lever (teeter-totter)

$$M_{\alpha} \cdot S = M_{L} \cdot R$$

Binary-Eutectic Systems

2 components

has a special composition

- Ex.: Cu-Ag system
- 3 single phase regions (L, α, β)
- Limited solubility: α : mostly Cu
 - β : mostly Ag
- T_F : No liquid below T_F
- C_F : Min. melting T_F composition
- Eutectic transition

 $L(C_E) \iff \alpha(C_{\alpha E}) + \beta(C_{\beta E})$

Adapted from Fig. 9.7, Callister 7e.

Chapter 9 -

Binary eutectic systems (Example)

 Explain how spreading salt on ice that is at a temperature below 0°C can cause the ice to melt.

EX: Pb-Sn Eutectic System (1)

• For a 40 wt% Sn-60 wt% Pb alloy at 150°C, find...

Microstructures in Eutectic Systems: I

Microstructures in Eutectic Systems: II

Microstructures in Eutectic Systems: III

- $C_o = C_E$
- Result: Eutectic microstructure (lamellar structure) --alternating layers (lamellae) of α and β crystals.

Lamellar Eutectic Structure

Adapted from Figs. 9.14 & 9.15, *Callister 7e.*

Microstructures in Eutectic Systems: IV

- 18.3 wt% Sn < C_o < 61.9 wt% Sn
- Result: α crystals and a eutectic microstructure

Hypoeutectic & Hypereutectic

Intermetallic Compounds

Note: intermetallic compound forms a line - not an area - because stoichiometry (i.e. composition) is exact. Chapter 9 - 12 $\sqrt{3}$

Eutectoid & Peritectic

• Eutectic - liquid in equilibrium with two solids

$$\frac{1}{1} \qquad \frac{\cos \alpha}{\cos \alpha} + \beta$$

- Eutectoid solid phase in equation with two solid phases
- Peritectic liquid + solid 1 \rightarrow solid 2 (Fig 9.21)

$$S_{1} + L \iff S_{2}$$

$$\delta + L \qquad \frac{cool}{\overline{heat}} \gamma \qquad (1493^{\circ}C)$$

Chapter 9 - 13

Eutectoid & Peritectic

Chapter 9 - 14