CHAPTER 3: Crystal structures and properties

ISSUES TO ADDRESS...

- How do atoms assemble into solid structures? (for now, focus on metals)
- How does the density of a material depend on its structure?
- When do material properties vary with the sample (i.e., part) orientation?

Materials and packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals

-many ceramics -some polymers

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: -complex structures
 -rapid cooling

"Amorphous" = Noncrystalline

crystalline SiO₂ Adapted from Fig. 3.18(a), *Callister 6e.*

• Si • Oxygen

noncrystalline SiO₂ Adapted from Fig. 3.18(b), *Callister 6e.*

Metallic crystals

- tend to be densely packed.
- have several reasons for dense packing:
 - -Typically, only one element is present, so all atomic radii are the same.
 - -Metallic bonding is not directional.
 - -Nearest neighbor distances tend to be small in order to lower bond energy.
- have the simplest crystal structures.

We will look at three such structures...

Simple Cubic (SC) structure

- Rare due to poor packing (only Po has this structure)
- Close-packed directions are cube edges.

 Coordination # = 6 (# nearest neighbors)

(Courtesy P.M. Anderson)

• APF for a simple cubic structure = 0.52

Body Centered Cubic (BCC) structure

 Close packed directions are cube diagonals.
 --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

• Coordination # = 8

Adapted from Fig. 3.2, *Callister 6e.*

Atomic Packing Factor: BCC APF for a body-centered cubic structure = 0.68

Face Centered Cubic (FCC) structure

Close packed directions are face diagonals.
 --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

• Coordination # = 12

Adapted from Fig. 3.1(a), Callister 6e.

(Courtesy P.M. Anderson)

Atomic Packing Factor: FCC APF for a body-centered cubic structure = 0.74

FCC stacking sequence

- ABCABC... Stacking Sequence
- 2D Projection

A sites B sites

C sites

FCC Unit Cell

Hexagonal Close-Packed (HCP) structure

- ABAB... Stacking Sequence
- 3D Projection

Adapted from Fig. 3.3, *Callister 6e.*

- Coordination # = 12
- APF = 0.74

Theoretical density, p

Example: Copper

Data from Table inside front cover of Callister (see next slide):

- crystal structure = FCC: 4 atoms/unit cell
- atomic weight = 63.55 g/mol (1 amu = 1 g/mol)
- atomic radius R = 0.128 nm (1 nm = 10 cm)

 $V_c = a^3$; For FCC, a = 4R/4; $V_c = 4.75 \times 10^{-23} \text{ cm}^3$

Result: theoretical
Compare to actual: $\rho_{Cu} = 8.89 \text{ g/cm}$ 3 $\rho_{Cu} = 8.94 \text{ g/cm}$ 3

Characteristics of Selected Elements at 20C

		At. Weight	Density	Crystal	Atomic	radius
Element	Symbol	(amu)	(g/cm^3)	Structure	(nm)	
Aluminum	Al	26.98	2.71	FCC	0.143	
Argon	Ar	39.95				
Barium	Ba	137.33	3.5	BCC	0.217	
Beryllium	Be	9.012	1.85	HCP	0.114	
Boron	В	10.81	2.34	Rhomb		Adapted from
Bromine	Br	79.90				teristics of
Cadmium	Cd	112.41	8.65	HCP	0.149	Selected
Calcium	Ca	40.08	1.55	FCC	0.197	inside front
Carbon	С	12.011	2.25	Hex	0.071	cover,
Cesium	Cs	132.91	1.87	BCC	0.265	Callister 6e.
Chlorine	Cl	35.45				
Chromium	Cr	52.00	7.19	BCC	0.125	
Cobalt	Со	58.93	8.9	HCP	0.125	
Copper	Cu	63.55	8.94	FCC	0.128	
Flourine	F	19.00				
Gallium	Ga	69.72	5.90	Ortho.	0.122	
Germanium	Ge	72.59	5.32	Dia. cubic	0.122	
Gold	Au	196.97	19.32	FCC	0.144	
Helium	He	4.003				
Hydrogen	Н	1.008				15

Densities of material classes

Polycrystals Most engineering materials are polycrystals.

Adapted from Fig. K, color inset pages of *Callister 6e*. (Fig. K is courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

- Nb-Hf-W plate with an electron beam weld.
- Each "grain" is a single crystal.
- If crystals are randomly oriented, overall component properties are not directional.
- Crystal sizes typ. range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

Single vs polycrystals

- Single Crystals
 Properties vary with
 - direction: anisotropic.
 - -Example: the modulus of elasticity (E) in BCC iron:
- Polycrystals
 - Properties may/may not vary with direction.
 - -If grains are randomly oriented: isotropic. (E_{poly iron} = 210 GPa)
 - -If grains are textured, anisotropic.

E (edge) = 125 GPa

Data from Table 3.3, *Callister 6e*. (Source of data is R.W. Hertzberg, *Deformation and Fracture Mechanics of Engineering Materials*, 3rd ed., John Wiley and Sons, 1989.)

Adapted from Fig. 4.12(b), *Callister 6e*. (Fig. 4.12(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC [now the National Institute of Standards and Technology, Gaithersburg, MD].)

Anisotropy

Table 3.3Modulus of Elasticity Values forSeveral Metals at Various CrystallographicOrientations

	Modulus of Elasticity (GPa)			
Metal	[100]	[<i>110</i>]	[111]	
Aluminum	63.7	72.6	76.1	
Copper	66.7	130.3	191.1	
Iron	125.0	210.5	272.7	
Tungsten	384.6	384.6	384.6	

Source: R. W. Hertzberg, *Deformation and Fracture Mechanics of Engineering Materials*, 3rd edition. Copyright © 1989 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.

Demo: Heating and cooling of iron wire

 The same atoms can have more than one crystal structure.

CHAPTER 12: Structure of ceramics

ISSUES TO ADDRESS...

• Structures of ceramic materials: How do they differ from that of metals?

CERAMIC BONDING

- Bonding:
 - --Mostly ionic, some covalent.
 - --% ionic character increases with difference in electronegativity.
- Large vs small ionic bond character:

Adapted from Fig. 2.7, *Callister 6e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Ionic bonding & structure

 Charge Neutrality:
 --Net charge in the structure should be zero.

--General form: Am

m, p determined by charge neutrality

Stable structures:
 -maximize the # of nearest oppositely charged neighbors.

Coordination # and ionic radii

 Coordination # increases with Issue: How many anions can you arrange around a cation?

ZnS rcation Coord # (zincblende) ranion Adapted from Fig. 12.4, 2 < .155 Callister 6e. .155-.225 3 NaCl (sodium .225-.414 4 chloride) Adapted from Fig. 12.2, *Callister* 6e. .414-.732 6 **CsCl** (cesium chloride) 8 .732 - 1.0Adapted from Fig. 12.3, Callister Adapted from Table 12.2, 6e. Callister 6e.

ranion

Sample calculations of radii ratios

$$r_{C} + r_{A} \ge r_{A}\sqrt{2}$$

$$\frac{r_{C}}{r_{A}} + 1 \ge \sqrt{2}$$

$$\frac{r_{C}}{r_{A}} \ge \sqrt{2} - 1 = 0.414$$

CN = 4 - tetrahedral site

Structure of compounds: NaCl

- Compounds: Often have similar close-packed structures.
- Structure of NaCl

• Close-packed directions --along cube edges.

Example: Predicting structure of FeO

• On the basis of ionic radii, what crystal structure would you predict for FeO?

Cation	lonic radius (nm)	 Answer:
AI ³⁺	0.053	$r_{\text{outlow}} = 0.077$
Fe ²⁺	0.077	$\frac{r_{cation}}{r_{opion}} = \frac{0.077}{0.140}$
Fe ³⁺	0.069	= 0.550
Ca ²⁺	0.100	-0.000

F-

O²⁻ 0.140 CI⁻ 0.181

0.133

Data from Table 12.3, *Callister 6e.*

Example: Predicting structure of FeO

• On the basis of ionic radii, what crystal structure would you predict for FeO?

Cation	Ionic radius (nr	n) • Answer:
AI ³⁺	0.053	$r_{\text{option}} = 0.077$
Fe ²⁺	0.077	$r_{callon} = \frac{0.017}{0.140}$
Fe ³⁺	0.069	= 0.550
Ca ²⁺	0.100	
		based on this ratio,
Anion		coord # = 6 structure = NaCl
02-	0.140	
CI-	0.181	
F ⁻	0.133	Data from Table 12.3, <i>Callister 6e.</i>

- Based on this ratio, coord # = 8 and structure = CsCI.
- Result: CsCl structure w/only half the cation sites occupied.

 Only half the cation sites are occupied since #Ca²⁺ ions = 1/2 # F⁻ ions.

Adapted from Fig. 12.5, *Callister* 6e.

$A_m B_n X_p$ structures

Spinels Mg²⁺ Al³⁺ O²⁻ • • • CN=4 CN=6

Summary

- Atoms may assemble into crystalline or amorphous structures
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP)
- Different structures of the same material are called polymorphs; the material is said to display polymorphism
- Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but properties are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains

X-RAYS TO CONFIRM CRYSTAL STRUCTURE

• Incoming X-rays diffract from crystal planes.

 Measurement of: Critical angles, θ_c, for X-rays provide atomic spacing, d.

x-ray intensity (from detector)

Crystallographic directions and planes

Objectives

• To be able to sketch directions corresponding to indices or vice versa in a cubic crystal system

• Specify Miller indices for planes drawn into a unit cell

• Compute planar and linear densities

Cubic system.3 mutually \perp axes; $\alpha = \beta = \gamma = 90$.3 equal edges; a = b = c (lattice constants)Cubic system is only one of
seven crystal systems!a = b = cAll angles = 90

	a - b - c	All aligies – 90
(2) Tetragonal	a = b ≠ c	All angles = 90
(4) Orthorhombic $a \neq b \neq c$	All angle	es = 90
(2) Monoclinic	a≠b≠c	2 angles = 90; one ≠ 90
(1) Triclinic	a≠b≠c	All angles ≠; none = 90
(1) Hexagonal	a = b ≠ c	2 Angles = 90; one = 120
(1) Rhombohedral	a = b = c	All angles equal ≠ 90

Seven crystal systems are results from the arrangement of 14 different ways of arranging equivalent points in space – Bravais lattices

Crystal directions

- Crystal Directions a vector can be identified in a xyz coordinate system
 - 1. Choose an origin so that vector passes through it
 - 2. Write the coordinate of the end of the direction vector
 - 3. Write the coordinate of the origin of the direction vector
 - 4. Subtract the coordinate of the end from the coordinate from the origin
 - 5. Multiply all numbers by a common integer, as necessary, to reduce fractions
 - 6. Write the crystal direction enclosed by brackets without commas
- Generally designated by [uvw]
- Negatives are represented with a bar above the number

Miller Indices (crystal planes)

- Crystal Planes can also be defined within a cell.
 - 1. Select a convenient origin for the coordinate system so that the plane does not pass through it
 - 2. Find the coordinate of the points where the plane intersects the 3 major axes. (If the plane does not intersect a particular axis, the intercept is infinity!)
 - 3. Take the reciprocal (inverse) of the intercepts
 - 4. The plane indices are the final numbers obtained
- Generally designated as (h k l) also called Miller indices

Family of directions

Directions in <u>cubic system</u> [100], [010], [001], [100], etc. are equivalent

The family is represented by <100> All combinations of [123] directions regardless of signs are also equivalent – they are part of the <123> family

All combinations of (111) planes, regardless of signs are equivalents The family is represented by {111} Not true in non-cubic systems!!! Planes and direction relationships

Make a note, we will be using this later

Planes and directions that share the indices are perpendicular

[hkl] is perpendicular to (hkl)

Cosine
$$\theta = \frac{(h.u+kv+l.w)}{(h^2+k^2+l^2)^{1/2}.(u^2+v^2+w^2)^{1/2}}$$

Not true in non-cubic systems!!!

Linear density

 We saw that many properties depended on crystal directions

Planar density

Properties of crystals can be dependent on the specific plane (chemical, mechanical, magnetic etc.)

Planar density =

4R

4R/2√3

R

B

B

B

B

B

B

B

Number of atoms centered on a plane

Area of plane

Example: Find FCC (lead) with Pb radius of 1.750 Å

 $-PD_{110} = 2atoms/8R^2\sqrt{2}; (m)^{-2}$

 $-PD_{111} = 2atoms/4R^2\sqrt{2}; (m)^{-2}$

Both directions and planes (their densities) are important to the mechanism of slip. It is the mechanism of metal deformation!!!

Use of interplanar spacing

Parallel planes of atoms

Bragg's Law: $n\lambda = 2d \sin \theta$

Allows the determination of

- Crystal structure
- Crystal orientation
- Lattice parameter
- Compound identification

ANNOUNCEMENTS

Reading: All of Chapter 3

Core Problems: due today 2:17, 20, 22; 3:1, 13; 12: 1, 5, 25

Self-help Problems: Examples problems in text