Chapter 3: Crystallographic directions and planes

OutlineCrystallographic directionsCrystallographic planesLinear and planar atomic densitiesClose-packed crystal structures

Crystallographic directions

Direction: a line between two points and a vectorGeneral rules for defining a crystallographic direction

- pass through the origin of a coordinate system
- determine length of the vector projection in the unit cell dimensions a, b, and c
- remove the units [$u_{a} \mathrm{v}_{\mathrm{b}} \mathrm{w}_{\mathrm{c}}$]---[uvw] e.g[2a 3b 5c]--[2 3 5]
- uvw are multiplied and divided by a
 common factor to reduce them to smallest integer values

Crystallographic directions (continue)

- denote the direction by [uvw]
- family direction $<\mathbf{u} v \mathbf{w}>$, defined by transformation
- material properties along any direction in a family are the same, e.g. [100] [100] [010] in simple cubic are same.
- for uniform crystal materials, all parallel directions have the same properties
- negative index: a bar over the index

Determine a direction

Examples

Determining the indices of line directions

Examples

Sketch the following directions: [110], [-1-21], [-1 0 2]

Hexagonal crystal
4-index, or Miller-Bravais, coordinate system

Conversion from 3-index to 4-index system

Hexagonal crystal (continue)

Convert [100] direction into the four- index Miller-Bravais scheme for hexagonal unit cells.
Crystallographic planes

Orientation representation (hkl)--Miller indicesParallel planes have same miller indicesDetermine (hkl)- A plane can not pass the chosen origin
- A plane must intersect or parallel any axis
- If the above is not met, translation of the plane or origin is needed
- Get the intercepts a, b, c. (infinite if the plane is parallel to an axis)
- take the reciprocal
- smallest integer rule(hkl) / / (hkl) in opposite side of the originFor cubic only, plane orientations and directions with same indices are perpendicular to one another

Crystallographic planes (continue)

Figure 3.8

(c)
Determine Miller indices of planes

Crystallographic planes (continue)Determine Miller indices of planes

Crystallographic planes (continue)
\square Construct planes by Miller indices of planes (0-1-1) and (1 1-2)

Atomic arrangements

The atomic arrangement for a crystallographic plane
depends on the crystal structure

FCC: (a) reduced sphere (b) atomic packing of an FCC (110) plane

(a)

(b)

BCC: (a) reduced sphere (b) atomic packing of an BCC (110) plane

(a)

(b)

Atomic arrangements

A family of planes contains all the planes that are crystallographically equivalent.In cubic system, planes with same indices, irrespective of order and sign, are equivalent

- (111), ((1i11), (111) ... belong to \{111\} family
- (100), (100), (010), and (001) belong to \{100\} family
- (123), ($\overline{1} 23$), ($(\overline{3} 12)$ in cubic crystals belong to \{123\} familyIn tetragonal, (001) (001) are not as same family as (100), (100)

Linear and planar atomic density

Linear atomic density: number of atoms centered on a direction vector/ length of direction vector
(b)Atomic planar density: number of atoms centered on a plan/ area of plane

