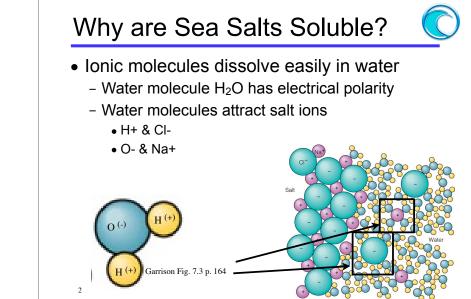
Lecture 22


• What are salts?

What is Salinity?

- Molecules that break apart easily in water solution
- Atoms separate from each other to form ions
- What are ions?
 - Electrically charged atoms
 - Gain or lose one or more electrons in solution
- What is salinity?

Oceanography 101, Richard Strickland

- Salinity = grams salts per kilogram sea water
- What is an approximate global average salinity?
- Average = 35 g/kg = 3.5%

Lecture 22

© 2006 University of Washington

What are the Big 6 Salt lons? Chloride (Cl⁻) ~ 55% of salts Sodium (Na⁺) ~ 31% of salts Sulfate (SO4²⁺) ~ 3% of salts

Lecture 22

© 2006 University of Washington

- Magnesium (Mg²⁺) ~ 1% of salts
- Calcium (Ca2+) ~0.4% of salts
- Potassium (K⁺) ~0.4% of salts
- Bicarbonate (HCO3-) ~0.15% of salts

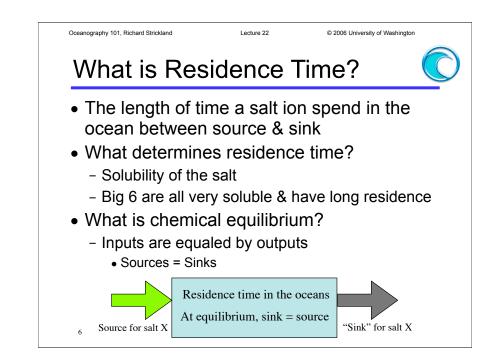
- Salts enter the ocean from various sources:
 - Erosion of land, transport by rivers
 - "Excess volatiles"

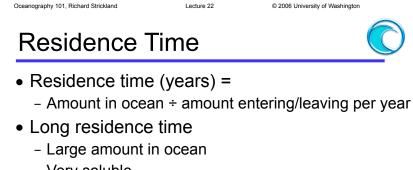
4

Oceanography 101, Richard Strickland

- lons delivered as gases rather than dissolved solids
- Terrestrial volcanoes
- Hydrothermal vents at rift valleys

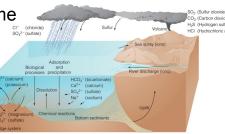
3

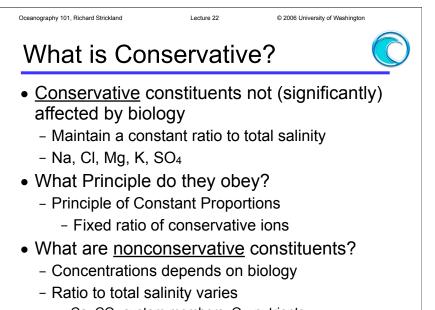

Lecture 22



- Salts leave the ocean via various "sinks:"
 - Inorganic (non-biogenous) sediments
 - Organic (biogenous) sediments
 - Evaporation

5


- Salt does not evaporate
- But when seas evaporate they leave salt deposits
- Mediterranean 5.5 million years ago
- Hydrothermal vents

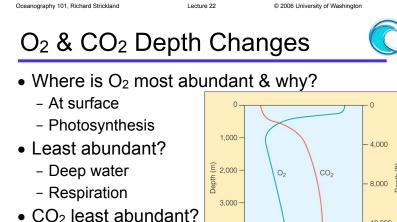


- Very soluble
- Short residence time
 - Small amount in ocean
 - Poorly soluble

7

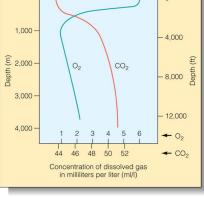
• Ca, CO₂ system members, O₂, nutrients

Lecture 22

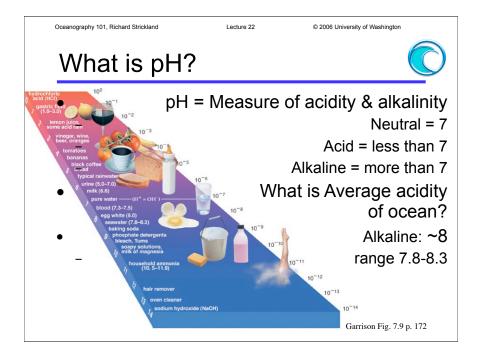

What are Gases in Sea Water?

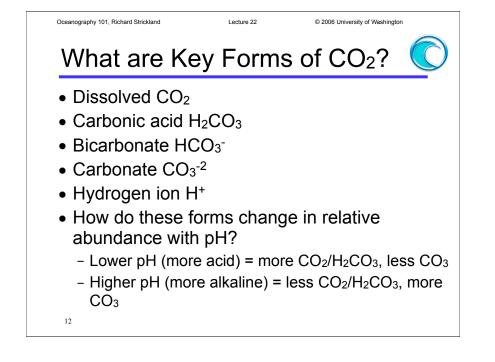
© 2006 University of Washington

- Nitrogen (N₂)
- Oxygen (O₂)
- Carbon dioxide (CO₂)
- What are sources & sinks for these gases?
 - Atmosphere


9

- Biological activity
 - Photosynthesis
 - Respiration & decomposition
 - Nitrogen fixation, denitrification
 - Nutrient uptake




Lecture 22

- Surface
- Photosynthesis
- Most abundant?
- ¹⁰ Deep (respiration)

Garrison Fig. 7.8 p. 172

Lecture 22 © 2006 University of Washington

- What are Key Roles of CO₂?
- Controls acidity & alkalinity of sea water
 "Buffering"
- Source of carbon for photosynthesis
- Source of skeletal material for numerous organisms
 - Calcium carbonate CaCO3
 - Calcareous plankton
 - Bottom-living shellfish: clams, crabs, etc.
 - Coral reefs
- What happens with ocean acidification?
- ${}^{\scriptscriptstyle 13}$ Lower pH: less CO_3 for calcareous skeletons

Oceanography 101, Richard Strickland

© 2006 University of Washington

Carbon Dioxide Buffering

- Why does buffering of pH matter?
 - Formation of calcium carbonate CaCO_3 skeletons sensitive to pH

Lecture 22

- Proportions of CO₂, H₂CO₃, HCO₃⁻, CO₃⁻², H⁺ shift to maintain constant pH
 - Reactions proceed in either direction
- Ocean pH currently decreasing
 - Increasing atmospheric CO2
 - Mostly decreasing at surface where it enters ocean
 - Pteropods, foraminifera, coccoliths at high
- latitudes in trouble?

Nutrients

Oceanography 101, Richard Strickland

• What are the "macro"-nutrients most likely to be limiting in the ocean?

Lecture 22

- Nitrogen N, phosphorus P, silica Si (diatoms)
- Could CO3-2 join that group?
- Supply of these nutrients limits primary production under some conditions
 - Often depleted for photosynthesis at the surface

© 2006 University of Washington