Oceanography 101, Richard Strickland

Lecture 19+

© 2006 University of Washington

## T-S and Stability Example



- Need to account for both T & S to determine density
  - Need to determine density to assess stability

| Depth, m | T °C | S ‰  | $\sigma_{t}$ | ρg/cm <sup>3</sup> |
|----------|------|------|--------------|--------------------|
| 0        | -1.5 | 34.8 |              |                    |
| 500      | -0.5 | 34.6 |              |                    |
| 1000     | -0.5 | 34.7 |              |                    |
| 2000     | -0.5 | 34.8 |              |                    |
| 3000     | -0.5 | 34.9 |              |                    |
| 4000     | -0.5 | 35.0 |              |                    |

Oceanography 101, Richard Strickland

Lecture 19

© 2006 University of Washington

### T-S and Stability Example



- Looking at salinity alone, is this water column stable?
  - Yes, fresher, less dense water is at the surface

| Depth, m | T °C | S ‰  | $\sigma_{t}$ | ρ g/cm <sup>3</sup> |
|----------|------|------|--------------|---------------------|
| 0        |      | 34.8 |              |                     |
| 500      |      | 34.6 |              |                     |
| 1000     |      | 34.7 |              |                     |
| 2000     |      | 34.8 |              |                     |
| 3000     |      | 34.9 |              |                     |
| 4000     |      | 35.0 |              |                     |

Oceanography 101, Richard Strickland

Lacture 10

© 2006 University of Washington

### T-S and Stability Example



- Looking at temperature alone, is this water column stable?
  - No, colder more dense water is at the surface

| Depth, m | T °C | S ‰ | $\sigma_{t}$ | ρ g/cm <sup>3</sup> |
|----------|------|-----|--------------|---------------------|
| 0        | -1.5 |     |              |                     |
| 500      | -0.5 |     |              |                     |
| 1000     | -0.5 |     |              |                     |
| 2000     | -0.5 |     |              |                     |
| 3000     | -0.5 |     |              |                     |
| 4000     | -0.5 |     |              |                     |

Oceanography 101, Richard Strickland

Lecture 19

© 2006 University of Washington

# T-S and Stability Example



- Which wins, T or S?
  - Vertically stable or unstable?
  - Need to determine density to assess stability

|   | Depth, m | T °C | S ‰  | $\sigma_{t}$ | ρg/cm³ |
|---|----------|------|------|--------------|--------|
|   | 0        | -1.5 | 34.8 |              |        |
|   | 500      | -0.5 | 34.6 |              |        |
|   | 1000     | -0.5 | 34.7 |              |        |
|   | 2000     | -0.5 | 34.8 |              |        |
|   | 3000     | -0.5 | 34.9 |              |        |
| 4 | 4000     | -0.5 | 35.0 |              |        |

Oceanography 101, Richard Strickland

Lecture 19+

© 2006 University of Washington

• Which wins, T or S?

- Vertically stable or unstable?

| Depth, | T °C | S    |
|--------|------|------|
| 0      | -1.5 | 34.8 |
| 500    | -0.5 | 34.6 |
| 1000   | -0.5 | 34.7 |
| 2000   | -0.5 | 34.8 |
| 3000   | -0.5 | 34.9 |
| 4000   | -0.5 | 35.0 |
|        | -0.5 | 35.0 |



T-S and Stability Example

© 2006 University of Washington

• It's a draw

Oceanography 101, Richard Strickland

- T wins @ surface, vertically unstable 0-500 m
- S wins below surface, vertically stable 500-4000 m

| Depth, m | T °C | S ‰  | $\sigma_{t}$ | ρg/cm <sup>3</sup> |
|----------|------|------|--------------|--------------------|
| 0        | -1.5 | 34.8 | 28.10        | 1.02810            |
| 500      | -0.5 | 34.6 | 27.70        | 1.02770            |
| 1000     | -0.5 | 34.7 | 27.75        | 1.02775            |
| 2000     | -0.5 | 34.8 | 27.80        | 1.02780            |
| 3000     | -0.5 | 34.9 | 27.90        | 1.02790            |
| 4000     | -0.5 | 35.0 | 28.00        | 10.2800            |

Oceanography 101, Richard Strickland

Lecture 19

© 2006 University of Washington

## T-S and Stability Example



- Overall, vertically unstable because of surface
  - Polar winter: Low T & High S at surface
  - 1 of 2 persistent locations of instability globally

|   | Depth, m | T °C | S ‰  | $\sigma_{t}$ | ρg/cm <sup>3</sup> |
|---|----------|------|------|--------------|--------------------|
|   | 0        | -1.5 | 34.8 | 28.10        | 1.02810            |
|   | 500      | -0.5 | 34.6 | 27.70        | 1.02770            |
|   | 1000     | -0.5 | 34.7 | 27.75        | 1.02775            |
|   | 2000     | -0.5 | 34.8 | 27.80        | 1.02780            |
|   | 3000     | -0.5 | 34.9 | 27.90        | 1.02790            |
| 7 | 4000     | -0.5 | 35.0 | 28.00        | 10.2800            |

