

What Builds Coral Reefs?

Lecture 23

• Secrete external calcium carbonate skeleton

Oceanography 101, Richard Strickland

- Common skeleton of colony builds structure
- Particular species build solid reefs
- Grow in large colonies
 - Colony shape is shape of skeleton
 - Individual organisms are tiny
 - Slow about 1/2 inch/year
 - 4 m 20 m per 1000 years

© 2006 University of Washington

Lecture 23 © 2006 University of Washington

What Builds Coral Reefs?

- Other species of stony corals
 - Brain, fan, elkhorn, etc. live on built reef
- Some reef-building by other organisms
 - Calcareous algae also deposit limestone
 - Help reinforce the reef
- Some reefs mostly built by algae 5

Other Kinds of Coral

Lecture 23

- Other corals live outside tropical reefs
 - Including in cold water • Cup corals in Puget Sound
- Deep-sea corals

Oceanography 101, Richard Strickland

- Newly discovered off Washington coast
 - Soft & stony reef-building
- Impacted by fishing nets
 - Essential fish habitat
 - New regulations to protect
- www.noaanews.noaa.gov/stories2006/s2652.htm

© 2006 University of Washington

Lecture 23

© 2006 University of Washington

Oceanography 101, Richard Strickland

Environmental Needs of Coral

Lecture 23

© 2006 University of Washington

- Reef-building corals depend on clear water
 - Water is low in nutrients & phytoplankton
 - Light available for photosynthesis by zooxanthellae • Consume CO₂, make it easier to deposit carbonate
- Tropical surface waters warm & highly stratified
 - Organic matter sinks out of the surface
 - Nutrients trapped in deep water
 - Production very dependent on recycling of animal wastes
 - And on symbioses

Oceanography 101, Richard Strickland

Environmental Needs of Coral

Lecture 23

© 2006 University of Washington

- Reefs grow best in areas of high wave energy
 - Other species not as resistant to force of waves
 - Reefs broken down by waves almost as fast as they grow
 - Solid, rounded corals grow in shallows of outer reef crest
 - More delicate fan & tube corals grow in lagoon and at greater depths -
 - Advantage in competition for plankton prey
 - Protect shore

Oceanography 101, Richard Strickland

from large waves 15

Lecture 23 © 2006 University of Washington

- Fish species supported directly or (usually) indirectly by the reef
 - Reef physically shelters juvenile & adult fish
 - Coral is base of food chain for harvestable species
- Absorb wave energy for islands

Benefits of Coral Reefs

- Reduce storm damage & coastal erosion
- Source of building materials
 - Coral rock for construction on small sandy islands
- Source of medications
- Tourism
- 17

Lecture 23

18

Oceanography 101, Richard Strickland

© 2006 University of Washington

© 2006 University of Washington

Threats to Corals (Overview)

- Shipping & diving
 - Physical damage from collisions & anchors
 - Walking on reef
- Harvesting
 - Use of coral rock & sand as a building material

Staghorn coral

- Climate change
 - "Bleaching" = loss of symbiotic algae
 - Acidification

- Long, sharp, toxic spines
- High fecundity (12-60 million eggs per female)

Lecture 23

- 1st documented population explosion 1950
 - Began south of Japan

Oceanography 101, Richard Strickland

- Spread to GBR by 1963
- Serious throughout W. Pacific by 1970's
- ²² Blamed on overharvesting of triton by collectors gldscienceteachers.tripod.com/photos/animals/echinoderms/crown_of_thorns_starfish.jpg

Oceanography 101, Richard Strickland Lecture 23 © 2006 University of Washington Crown-of-Thorns Starfish

- Attempts at population control
 - Injection with poison
 - Physical destruction
 - Can regenerate from a small piece of arm
 - Regrown arms make problem worse
- May be stimulated by rainfall
 - Nutrients run off land
 - Feed phytoplankton
 - Increase survival of starfish larvae
 - Adult population boom 3 years later

- Evidence of long-term population cycles emerged 1970's
 - Decline in population since 1970's
 - Possible unidentified pathogen
- But no evidence of crown-of-thorns in fossil deposits
 - No reports by aborigines or early European explorers
- Still may be a modern human-caused phenomenon
- ₂₄ Overfishing of prawns that prey on larval starfish?

© 2006 University of Washington

23

Lecture 23

Harmful Fishing Methods

- Dynamite used to stun or kill fish for easy capture
 - Kills coral polyps
 - Mortality of other fish species
 - Damage to reef structure
- Cyanide used to stun fish for live capture
 - For aquariums & restaurants
 - Very inefficient & wasteful
 - Kills 50% of fish, 40% more die in transport
- ₂₅ Cyanide kills coral polyps

Oceanography 101, Richard Strickland

Harmful Fishing Methods

- Uncontrolled & unregulated harvest
 - Almost all Philippine & Indonesian reefs overfished

Lecture 23

- Divers pry apart reef to capture fish taking refuge Aquarium species
- Overfishing of herbivore fish
 - Allows overgrowth of algae
 - Out-compete corals for space
- Overfishing of predatory fish
 - E.g., sharks barracuda

- Allows overpopulation of herbivorous prey species
- Disease strikes & wipes out herbivores, algae overgrow
- 26 Balance among species is critical

Oceanography 101, Richard Strickland

© 2006 University of Washington

Land Runoff

- Sewage
 - Nutrients stimulate phytoplankton & attached algae

Lecture 23

- Overgrowth suffocates coral
- Cloudy water inhibits zooxanthellae
- Sediment

27

- From logging, land clearing, construction
- Cloudy water inhibits zooxanthellae
- Sediment clogs feeding apparatus

- Cyanobacteria invade & kills zooxanthellae
- Grow on organic compounds released after corals die
- Algae over grow once coral die
 - Kill 5% of Jamaica coral 1997
 - Spreading in direction of current
- " Humans appear to be source

mfs.noaa.gov/habitat/ecosystem/disease.htm

Lecture 23

Diseases

- White-band disease (WBD)
 - Emerged in Caribbean 1980's
 - Affected elkhorn & staghorn
 - A bacterial infection
 - "White plague" or "pox"
- Like BBD but spreads faster
 - Strikes corals weakened by other stresses
 - Humans apparently a source for many coral pathogens
- www.flmnh.ufl.edu/fish/southflorida/coral/profiles.html 29 coastal.er.usgs.gov/navassa/scuba/nw2.html

© 2006 University of Washington

Healthy Elkhorn

Diseased Elkhorr

Oceanography 101, Richard Strickland

© 2006 University of Washington

Bleaching

- Deprives coral of major nutrition source
 - Can survive & recover from bleaching episodes

Lecture 23

- But sustained or repeated bleaching kills reef
- First noticed 1980's
 - Severe 1982-83 El Niño raised temperatures
 - E. Pacific, W. Atlantic & Caribbean
- Bleaching warnings almost every year now http://news.mongabay.com/2005/1117-corals.html


```
Oceanography 101, Richard Strickland
```

32

Lecture 23

© 2006 University of Washington

Bleaching

- Stress causes zooxanthellae to be expelled
 - Surface temperature above optimal range of 25-29°C the major cause

- El Niño causes outbreaks
- Also cold, sediment, toxins, salinity
- Exact reason & mechanism under study
 - What is advantage of losing algae?
 - Possible viral or bacterial infection?

www.gbrmpa.gov.au/corp_site/info_services/science/bleaching/

Oceanography 101, Richard Strickland Lecture 23 © 2006 University of Washington Bleaching 1997-98 Niño caused further bleaching - Estimated 16% loss worldwide from that event - Expected to spread under global warming - Growth of reefs may be slower than sea level rise http://earthtrends.wri.org/text/coastal-marine/map-207.html

Lecture 23

© 2006 University of Washington

Bleaching

- Sites of major coral reef bleaching events during the past 15 years.
 - Yellow spots indicate major bleaching events

Predict 3.5 - 7° F
 temperature increase
 by 2100

34

36

- About 50% of atmospheric CO₂ dissolves in ocean surface water
 - ~ 2 billion tons/year

35

- Has lowered pH by 0.1 unit (30% less alkaline)

- Carbonate shells & skeletons are more difficult to construct
 - Also dissolve more easily
- Surface pH predicted to drop 0.2 more units by 2100
 - More at high latitudes
 - Earliest impacts on planktonic organisms with CaCO₃ shells
 Pteropods

www.noaanews.noaa.gov/stories2006/s2606.htm

Lecture 23

© 2006 University of Washington

- Coral growth rate limited by availability of CO₃
 - Adding carbonate makes corals grow faster
 - Lower pH makes carbonate less available Corals grow slower
- "Saturation level" of carbonate is decreasing
 - Ideally 4-5, now few places above 4
 - None above 3.5 by 2060, none above 3 by 2100
- In nature, reefs may shrink
 - Can't lay down CaCO₃ fast enough to offset consumption by fish & wave erosion
- ₃₈ May occur by 2075?

40

Damage Estimates (Ellis)

© 2006 University of Washington

- #1 35 million acres of reefs destroyed
 - 70% of reefs will be dead in "our lifetimes" if current trends continue

Lecture 23

- 75% of reefs thought to be deteriorating because of environmental stress
- Only 5–10% of Indonesian & Philippine reefs in pristine condition
- #2 2000 assertion that 27% of reefs already destroyed
 - 14% more to die by 2010, 18% more by 2030

- Higher for some species such as Elkhorn coral
- Some reefs off Key West suffer 98% mortality
- Blamed on "white pox" caused by sewage bacteria

39

Oceanography 101, Richard Strickland

Overall Risk to Coral Reefs

- Risk is greatest near human population centers
 - Source: Reefs at Risk: A map-based indicator of potential threats to the world's coral reefs. Dirk Bryant, Lauretta Burke, John McManus, and Mark Spalding. 1998. reefsatrisk.wri.org

