Lecture 28

- Types of microalgae that:
 - Multiply rapidly to form dense aggregations in sea water
 - Are toxic or cause other nuisance or lethal effects
- Includes a wide variety of types of singlecelled algae
 - Diatoms (uncommon)
 - Dinoflagellates (many species)
 - Microflagellates (a few species)
- Also some cyanobacteria (in fresh water)

Lecture 28

© 2006 University of Washington

© 2006 University of Washington

Local HAB Species

Dinoflagellates Alexandrium catenellum Ceratium fusus Dinophysis spp. Noctiluca scintillans

Diatoms Chaetoceros spp. Pseudo-nitzschia spp.

Microflagellates Heterosigma akashiwo

2

Can Potentially Cause:

Paralytic shellfish poisoning (PSP) Anoxic events, oyster larvae mortality Diarrhetic shellfish poisoning Anoxic events, non-toxic red tides

Can Potentially Cause:

Net-pen salmon mortality Amnesic shellfish poisoning (ASP)

Can Potentially Cause: Net-pen salmon mortality

Source: Jan Rines http://thalassa.gso.uri.edu/Esphyto/habtaxa.htm

Lecture 28

HAB Effects on Humans

- No harmful effects from drinking, swimming, or other contact
 - Organisms are too dilute
- Organisms must be consumed by filterfeeding shellfish
 - Mussels, clams, oysters
 - Toxins concentrate in shellfish tissue
 - Humans eat shellfish & get large dose of toxin
 - Hence name (paralytic, diarrhetic, amnesic) shellfish poisoning

Oceanography 101, Richard Strickland Lecture 28

© 2006 University of Washington

Puget Sound HAB Species

- Alexandrium catenellum. a chain-forming toxic dinoflagellate
 - Secretes a potent mix of neurotoxins (saxitoxins)
 - 1 clam can be fatal
 - PSP paralyzes vertebrate central nervous system
 - Including breathing
 - Death by suffocation can occur within 12 hours
- Unless aided by a respirator 4

http://thalassa.gso.uri.edu/Esphyto/list/pplist.htm

3

Lecture 28

Paralytic Shellfish Poisoning

- PSP toxins apparently do not affect invertebrate shellfish
- No practical method to detoxify shellfish
 - No antidote in vertebrates
- Only 1 method to detect toxicity
 - Inject tissue extract into sacrificial white mouse
 - Length of time it takes mouse to die is a measure of toxicity
 - At 80 parts/million Health Dept. closes beaches

Lecture 28

Source: Northwest Fisheries Science Center, National Marine Fisheries Service "Red Tides" Newsletter http://www.nwfsc.noaa.gov/hab/Newsletter/RedTides99.pdf

Woods Hole Red Tide Page (http://www.nwisc.noaa.gov/nab/Newsieter/Red Tides99 Woods Hole Red Tide Page (http://www.whoi.edu/redtide/species/species.html)

Lecture 28

- Wa Dept. Health monitors beaches for PSP & other problems
 - Reports closures to public
 - Red tide hotline 1-800-562 -5632
 - ww4.doh.wa.gov/gis/ mogifs/biotoxin.htm
- Some permanent
 closures due to pollution
- Outer coast: seasonal
- closure April-October

Oceanography 101, Richard Strickland

© 2006 University of Washington

Paralytic Shellfish Poisoning

- A. catenellum prefers stratified waters
 - Temperatures above ~15°C
 - Often when rain follows a warm, dry spell
- Blooms often begin in poorly flushed "breeding bays"
 - Quartermaster Harbor (Vashon Island) & Sequim Bay (Olympic Peninsula)
 - Exported to surrounding waters
- After blooming, it forms resting cysts
 - Reside in the sediments
- $_{7}$ Becomes permanent wherever it blooms

Oceanography 101, Richard Strickland

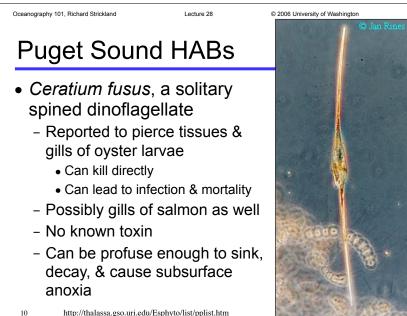
© 2006 University of Washington

Paralytic Shellfish Poisoning

Lecture 28

- PSP first detected on the coast and Strait of Juan de Fuca in the 1940s
 - Identified phytoplankton cause 1960's
 - Invaded north Puget Sound in 1978
 - Invaded the south Puget Sound 1997
- No proven relationship between PSP & any known pollutants
 - 1st reported by Capt.Vancouver in northern Canada 1793
 - Most severe in pristine waters of BC & Alaska
 - Exact conditions that cause blooms uncertain

Jak∕Harbo



© 2006 University of Washington


Lecture 28

Puget Sound HAB Species

Lecture 28

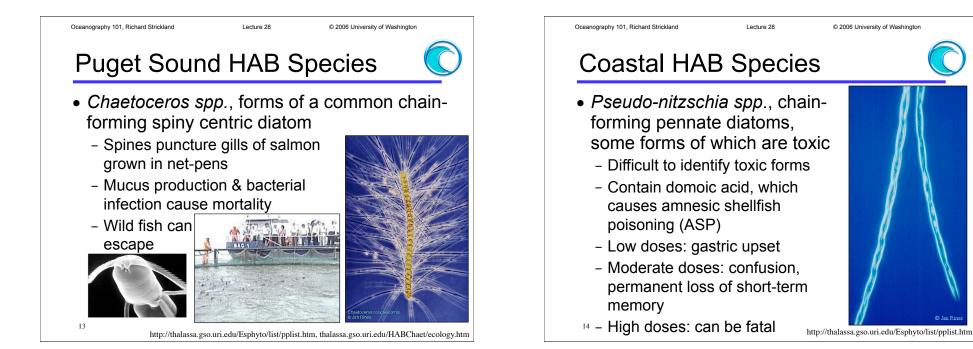
http://thalassa.gso.uri.edu/Esphyto/list/pplist.htm

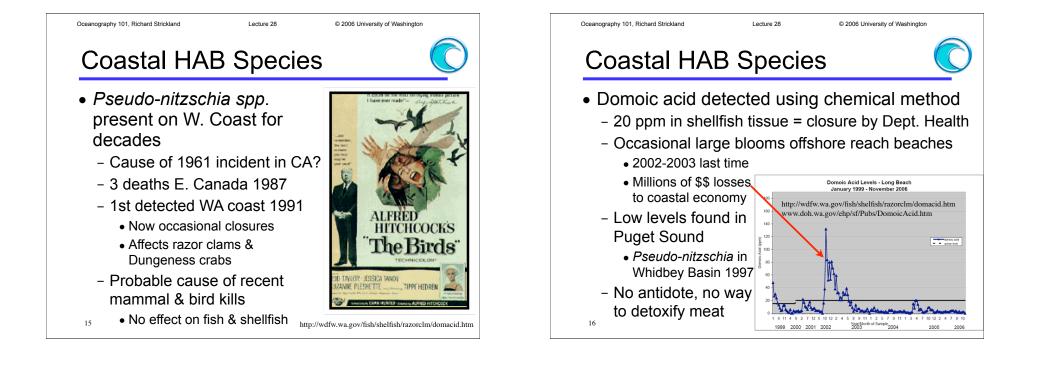
© 2006 University of Washington

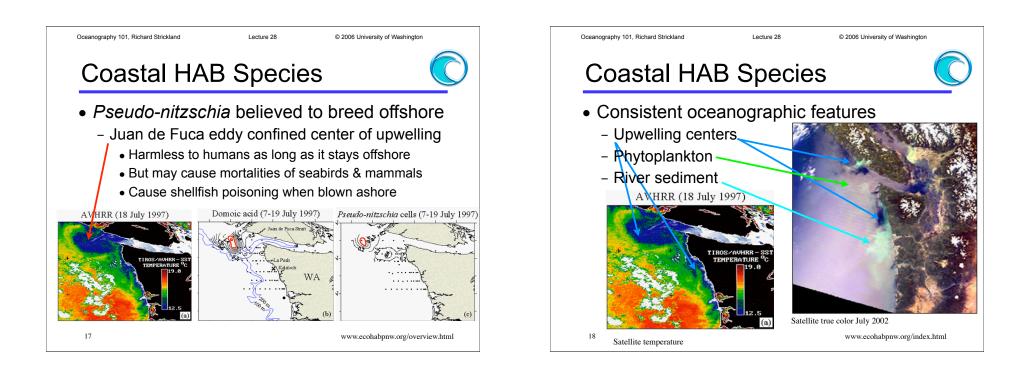
• Noctiluca scintillans, an anomalous non-toxic heterotrophic "red-tide"forming dinoflagellate

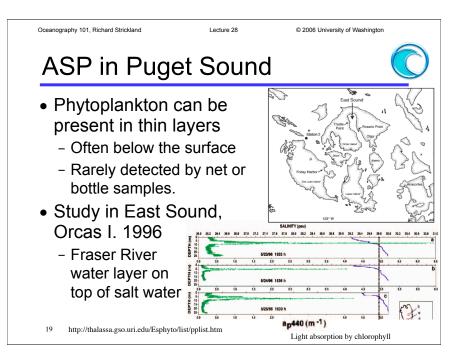
Oceanography 101, Richard Strickland

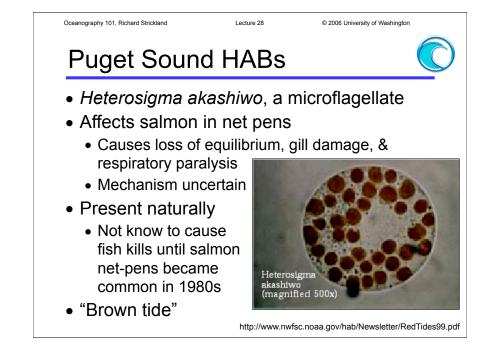
- Tomato-soup-colored luminescent patches
- One of the only "red tides" actually visible
- A consumer as well as a primary producer
 - Eats small phytoplankton
- May cause anoxia 12

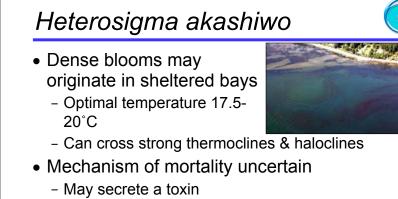



 Dinophysis sp., a solitary dinoflagellate


Oceanography 101, Richard Strickland


- Reported to cause severe diarrhea. presumably from an unidentified toxin
- Observed in Puget Sound but no poisoning incidents have been reported


© 2006 University of Washington

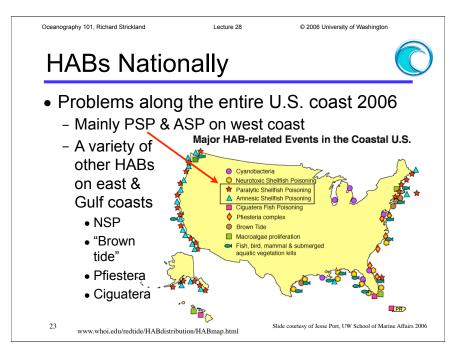


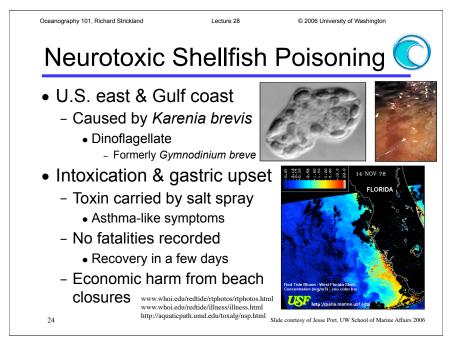
© 2006 University of Washington Lecture 28

SEM of Heterosigma akashiwo (magnified 2000x)

Heterosigma akashiwo

- May prefer warmer, stratified, nutrient-poor water column after heavy rainfall.
 - Now observed to kill wild as well as penned salmon
 - But most wild fish avoid
- \$8 million loss to Puget Sound salmon farms in 1989-1990
- Drifts with the current into net-pen sites
 - · VIsible blooms monitored by airplane
 - With warning, growers tow nets to safety




Lecture 28

- May secrete a dissolved organic carbon compound that fosters bacterial growth.
- Bacteria must be present for toxicity to occur
- Gill lesions present in dead fish

Oceanography 101, Richard Strickland

www.physorg.com/news71909788.html

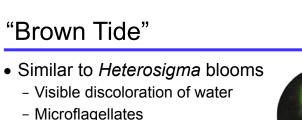
© 2006 University of Washington

Lecture 28

Ciguatera

- Occurs in meat of tropical reef fish predators
 - E.g. barracuda
 - Toxins by produced by several species of dinoflagellate
 - e.g. Gambierdiscus toxicus
 - Transmitted through food chain
- Intoxication & gastric upset
 - Can be fatal

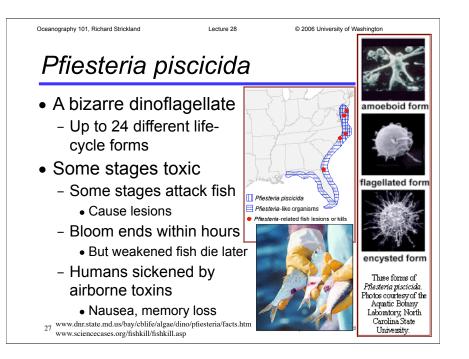
25

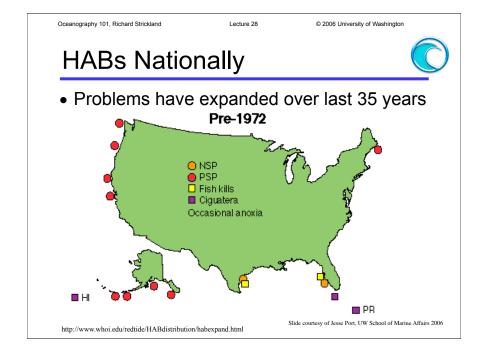

- Recovery takes weeks to years
- A risk at restaurants

www.whoi.edu/redtide/rtphotos/rtphotos.html www.whoi.edu/redtide/illness/illness.html

© 2006 University of Washington

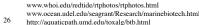
Slide courtesy of Jesse Port, UW School of Marine Affairs 2006

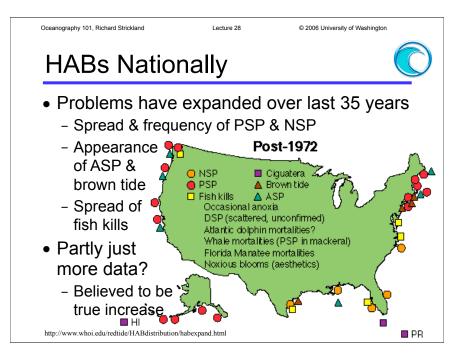

Lecture 28

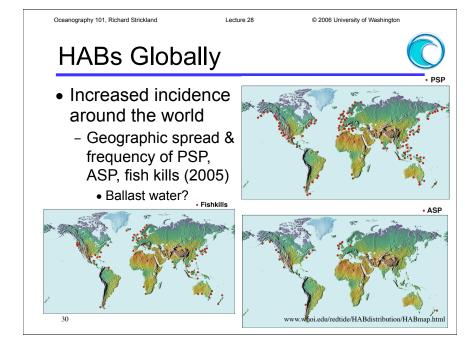

- Aureoumbra lagunesis
- No health effects on humans
 - Blocks light & kills seagrasses
 - Suffocates shellfish

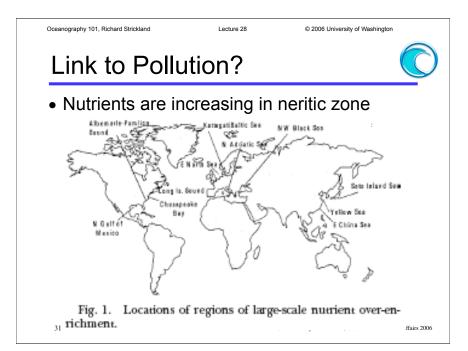
May be example of HAB stimulated by excess nutrients

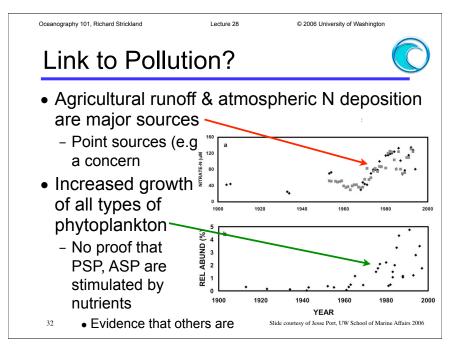
Slide courtesy of Jesse Port, UW School of Marine Affairs 2006






© 2006 University of Washington


Oceanography 101, Richard Strickland


- Aureococcus anophagefferens

