Practice Exercises

I. Match the tidal phenomenon in the left column to the physical mechanism in the right column. These simple matches are no substitute for understanding the phenomena & mechanisms.

Tidal day D	A. Lunar gravity
Semidiurnal tidal period A+F	B. Blocking effect of continents
Mixed semidiurnal tidal ranges G	C. Earth's rotation
Diurnal tidal period B+E	D. Duration of the moon's orbit around the Earth
Spring/neap tides H	E. Shape & depth of ocean basins
Rotary tidal motion C	F. Earth-moon center of mass & centrifugal effect
Tidal crests not directly under sun & moon B+C+E	G. Lunar declination (angle of moon's orbit to Equator)
Seasonal change in tidal range I	H. Lunar phases
	I. Solar declination (angle of Earth's axis to its solar orbit)

II. The following data were gathered from a hypothetical station in the open ocean. Use the T-S diagram to determine the density values and stratification & stability of the water column.

Depth	Temperature (°C.)	Salinity, g/kg	Density (σ_t)	Density (p)
0	21	36	25.25	1.02525
250	20	35.9	25.5	1.0255
500	19	35.8	25.5	1.0255
750	12	35.5	27	1.027
1000	6	35.0	27.5	1.0275
1500	5	34.95	27.75	1.02775
2000	3.6	34.9	27.75	1.02775
2500	3.2	34.85	27.75	1.02775
3000	3.0	34.85	27.75	1.02775

a/Using the T-S diagram, fill in the values for σ_t and ρ in the table above. Round to the nearest 0.25 σ_t units.

b/ Over what depth	500-1000 m			
The halocline?	500-1000 m	The pycnocline?	500-1000 m	
The mixed layer?	0-500 m			

c/ Is this water column <u>stratified</u> or **unstratified**? (Circle one) Why? Layers of different T, S, ρ at different depths

d/ If you looked at temperature alone, would this water column be <u>stable</u>, **unstable**, or **neutrally stable**? (Circle one) Why? **Higher temperature = lesser density at the surface & lower temperature = greater density below**

e/ If you looked at salinity alone, would this water column be **stable**, **<u>unstable</u>**, or **neutrally stable**? (Circle one) Why? **Higher salinity = greater density at the surface & lower salinity = lesser density below**

f/ Is this water column in fact <u>stable</u>, unstable, or neutrally stable? (Circle one) Why? Lesser density at the surface & greater density below

III. Summarize the properties of the 4 principal types of estuaries in the table below. You do not need to memorize numerical values of properties such as ΔS (salinity difference between layers in an estuary) & R/P (relative importance of river inflow compared to tidal mixing). Instead, use them as a guideline for the qualitative differences among the estuary types.

	Salt Wedge	Fjord	Partially Mixed	Well Mixed
ΔS	Large	Large	Moderate	Small
R/P	Large	Large	Moderate	Small
Stratification (strong/moderate/weak)	Strong	Strong	Moderate	Weak
Tidal Mixing (strong/moderate/weak)	Weak	Weak	Moderate	Strong
Halocline (strong/moderate/weak)	Strong	Strong	Moderate	Weak
Entrainment (strong/moderate/weak)	Weak	Weak	Strong	Strong
Net estuarine circulation (strong/moderate/weak)	Weak	Weak	Strong	Strong
Flushing (strong/moderate/weak)	Weak	Weak	Strong	Strong