I. Tidal Dynamics (About 20 points, 10 questions)

Terminology of tidal waves, heights, periods

Cause of length of tidal day

Cause of semidiurnal, tidal pattern

Cause of mixed semidiurnal tidal pattern

Cause of diurnal tidal pattern

Causes of spring & neap tides

Causes of seasonal changes in tidal range

General effects of continents on direction of tidal wave propagation

General effects of continents and sea floor on timing of wave propagation

General effects of share & depth of ocean basins on tidal range

Definition of flood, ebb, & slack, and relationship to tidal height stages

II. Planning a SCUBA dive (About 20 points, 10 questions)

Definitions of tidal height & currents reference stations & differences

Locations of tidal height & currents reference & difference stations for diving at Turn Rock Light

Ability to use tidal height & current tables to identify safe & dangerous diving times and reasons for them

Effects of narrow, shallow channels on tides

How tidal data are gathered

General way that tidal predictions are derived

Unpredictable natural processes that are not included in tidal predictions and their effects Ability to identify spring & neap tides in tide tables

III. Density (About 10 points, 5 questions)

Definition of salinity, density & sigma-t

Ability to read sigma-t & density from T-S diagram

Effects of temperature & salinity on density

Ability to recognize thermocline, halocline, pycncoline, mixed layer on diagrams

Definitions of vertical stratification, stability & instability, and neutral stability

Stratification, stability, instability and neutral stability in an example using T-S diagram Processes that create & break down stratification, stability, instability and neutral stability Examples of unstable stratification in the oceans

IV. Estuaries & Puget Sound (About 20 points, 10 questions)

Definition of estuary

5 types of estuary based on their geologic origin

Stratification and stability in estuaries and processes that reinforce and break them down Generic pattern of instantaneous vs. net estuarine circulation & causes

Definitions of 4+1 types of estuaries as defined by salinity profile

Ability to recognize of 4+1 types of estuaries from diagrams of salinity profile General topographic characteristics of 4+1 types of estuaries Vertical salinity difference criteria for classifying estuaries River input vs. tidal exchange criteria for classifying estuaries Differences in generic estuarine circulation pattern observed in each of 4+1 types of estuaries and reasons for differences Definition & cause of flushing in estuaries How flushing time is calculated in estuaries Extent of flushing in each of 4+1 types of estuaries and reasons for differences Examples of types of estuaries in Puget Sound and reasons for differences Flushing in Puget Sound

	•	
Amphidromic point	Bar-built estuary Center of mass	
Centrifugal effect	Cotidal lines	Crest
Diurnal tide	Drowned rive valley estuary Dynamic theory	
Entrainment	Equilibrium theory Equinox	
Fjord estuary	Isohalines Isopycnals	
Isotherms	Lunar declination Mean tide level	
Minus tide	Mixed semidiurnal tide	Partially mixed estuary
Resonance	Reverse estuary	River-mouth estuary
Salt wedge estuary	Semidiurnal tide	Sill
Solar declination	Solstice	Spring & neap tide
Tectonic estuary	Tidal datum Tidal day	
Tidal period	Tidal pumping Tidal range	
Trough	Water column	Well mixed estuary

Additional Vocabulary

Practice Exercises

I. Match the tidal phenomenon in the left column to the physical mechanism in the right column. These simple matches are no substitute for understanding the phenomena & mechanisms.

Tidal day	A. Lunar gravity		
Semidiurnal tidal period	B. Blocking effect of continents		
Mixed semidiurnal tidal ranges	C. Earth's rotation		
Diurnal tidal period	D. Duration of the moon's orbit around the Earth		
Spring/neap tides	E. Shape & depth of ocean basins		
Rotary tidal motion	F. Earth-moon center of mass & centrifugal effect		
Tidal crests not directly under sun & moon	G. Lunar declination (angle of moon's orbit to Equator)		
Seasonal change in tidal range	H. Lunar phases		
	I. Solar declination (angle of Earth's axis to its solar orbit)		

II. The following data were gathered from a hypothetical station in the open ocean. Use the T-S diagram to determine the density values and stratification & stability of the water column.

a/Using the T-S diagram, fill in the values for σ_t and ρ in the table above. Round to the nearest 0.25 σ_t units. Draw a vertical profile of σ_t on the graph provided to help you answer the questions below.

b/ Over what depth interval do you observe the thermocline?

The halocline? _____ The pycnocline? _____

The mixed layer?

c/ Is this water column stratified or unstratified? (Circle one) Why?

d/ If you looked at temperature alone, would this water column be **stable**, **unstable**, or **neutrally stable**? (Circle one) Why?

e/ If you looked at salinity alone, would this water column be **stable**, **unstable**, or **neutrally stable**? (Circle one) Why?

f/ Is this water column in fact stable, unstable, or neutrally stable? (Circle one) Why?

III. Summarize the properties of the 4 principal types of estuaries in the table below. You do not need to memorize numerical values of properties such as ΔS (salinity difference between layers in an estuary) & R/P (relative importance of river inflow compared to tidal mixing). Instead, use them as a guideline for the qualitative differences among the estuary types.

	Salt Wedge	Fjord	Partially Mixed	Well Mixed
ΔS				
R/P				
Stratification (strong/moderate/weak)				
Tidal Mixing (strong/moderate/weak)				
Halocline (strong/moderate/weak)				
Entrainment (strong/moderate/weak)				
Net estuarine circulation (strong/moderate/weak)				
Flushing (strong/moderate/weak)				