
Appendix A

Basic mathematics

Elementary functions

The exponential function ex (also denoted expx) is the unique solution to the differential equation
df
dx = f with initial condition f(0) = 1. Exponential identities include:

d
dxe

x = ex , e−x = 1/ex , ex ey = ex+y , (ex)y = exy . (A.1)

If z = x+ iy is a complex number, then ez = ex eiy.

The natural logarithm lnx is the inverse function of the exponential, and satisfies ln(ex) = x. Loga-
rithm identities include:

d
dx lnx = 1/x , ln(xy) = lnx+ln y , ln(x/y) = lnx− ln y , ln(xy) = y lnx , xy = ey lnx . (A.2)

For complex arguments the logarithm is multi-valued, if z = reiθ then ln z = ln r+ i(θ+2πn) for any
integer n. When not specified, ln z generally refers to the principal value for which−π < Im(ln z) ≤ π.

The trigonometric functions sinx and cosx are linearly independent solutions of the differential

equation d2f
dx2

= −f . The sine function, sinx, is the solution with initial conditions f(0) = 0 and
f ′(0) = 1, while the cosine function, cosx, is the solution with initial conditions f(0) = 1 and
f ′(0) = 0. The function sinx is an odd function of x, while cosx is an even function. Both sinx
and cosx are periodic functions of their argument with period 2π. Basic identities satisfied by
trigonometric functions include

eix = cosx+ i sinx , 1 = cos2 x+ sin2 x , (A.3)

along with:

d
dx sinx = cosx , cosx = 1

2(eix + e−ix) , (A.4)
d
dx cosx = − sinx , sinx = 1

2i(e
ix − e−ix) , (A.5)

sin(x+ y) = sinx cos y + cosx sin y , sin 2x = 2 sinx cosx , (A.6)

cos(x+ y) = cosx cos y − sinx sin y , cos 2x = cos2 x− sin2 x = 1− 2 sin2 x , (A.7)

sin(x+ nπ) = (−1)n sinx , sin(x+ π
2 ) = cosx , (A.8)

cos(x+ nπ) = (−1)n cosx , cos(x+ π
2 ) = − sinx . (A.9)
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(In the periodicity relations (A.8) and (A.9), n must be an integer.) The auxiliary trigonometric
functions tangent, secant, and cosecant are defined by

tanx ≡ sinx/ cosx , secx ≡ 1/ cosx , cscx ≡ 1/ sinx , (A.10)

respectively.

The hyperbolic functions sinhx and coshx are linearly independent solutions to the differential equa-

tion d2f
dx2

= f . The hyperbolic sine function, sinhx, is the solution with initial conditions f(0) = 0
and f ′(0) = 1, while the hyperbolic cosine function, coshx, is the solution with initial conditions
f(0) = 1 and f ′(0) = 0. The function sinhx is an odd function of x, while coshx is an even function.
Basic identities satisfied by hyperbolic functions include

ex = coshx+ sinhx , cosh2 x− sinh2 x = 1 , (A.11)

along with:

d
dx sinhx = coshx , coshx = 1

2(ex + e−x) = cos(ix) , (A.12)
d
dx coshx = sinhx , sinhx = 1

2(ex − e−x) = −i sin(ix) . (A.13)

sinh(x+ y) = sinhx cosh y + coshx sinh y , sinh 2x = 2 sinhx coshx , (A.14)

cosh(x+ y) = coshx cosh y + sinhx sinh y , cosh 2x = cosh2 x+ sinh2 x = 1 + 2 sinh2 x . (A.15)

The hyperbolic tangent tanhx ≡ sinhx/ coshx. For real values of x, tanhx runs from −1 to +1 as
x runs from −∞ to ∞.

Series expansions

Binomial (1 + x)a =
∑∞

k=0

(
a
k

)
xk = 1 + a x+ 1

2a(a−1)x2 + · · · , (A.16)

Logarithmic ln(1 + x) =
∑∞

k=1(−1)k x
k

k = x− 1
2x

2 + 1
3x

3 − · · · , (A.17)

Exponential ex =
∑∞

k=0
xk

k! = 1 + x+ 1
2x

2 + 1
3!x

3 + · · · , (A.18)

Trigonometric cosx =
∑∞

k=0(−1)k x2k

(2k)! = 1− 1
2x

2 + 1
4!x

4 − · · · , (A.19)

sinx =
∑∞

k=0(−1)k x2k+1

(2k+1)! = x− 1
3!x

3 + 1
5!x

5 − · · · , (A.20)

Hyperbolic coshx =
∑∞

k=0
x2k

(2k)! = 1 + 1
2x

2 + 1
4!x

4 + · · · , (A.21)

sinhx =
∑∞

k=0
x2k+1

(2k+1)! = x+ 1
3!x

3 + 1
5!x

5 + · · · . (A.22)

In these series expansions, x may be real or complex. The binomial and logarithmic series converge
for |x| < 1, while the exponential, trigonometric and hyperbolic series converge for all x. If |x| � 1,
then retaining only the first few terms in these series provides good approximations to the given
functions, as successive terms in the series rapidly decrease. (In the binomial series (A.16), if the
exponent a is a positive integer, then the expansion terminates after the term with k = a.)
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Linear algebra

An N ×N matrix M represents a linear transformation which may be applied to any N -component
vector v. If Mij denotes the row i, column j component of the matrix M , and vj is the j’th component
of the vector v, then the linear transformation u = Mv may be written explicitly in components as
ui = Mij vj with an implied sum on the index j (with indices i and j running from 1 to N). One
often writes M = ‖Mij‖ to indicate that M is the matrix constructed from the components Mij ,
and similarly v = {vj}. If A and B are both N ×N matrices, then the matrix product C = AB is
equivalent to the component form Cik = Aij Bjk.

The identity matrix I ≡ ‖δij‖ has components equal to the Kronecker delta symbol defined by

δij ≡
{

1 i = j;

0 i 6= j,
and represents the linear transformation which leaves every vector unchanged. The

inverse of an N × N matrix M is denoted M−1 and, if it exists, satisfies both M−1M = I and
MM−1 = I. The inverse M−1 exists provided the determinant of the matrix, denoted by detM or
|M |, is non-zero. The linear equation Mx = y has a unique solution given by x = M−1y provided
detM 6= 0. If detM = 0 one says that the matrix M is singular. (A linear equation with a singular
matrix may have zero solutions, or infinitely many solutions, depending on whether the vector y lies
in the range of the matrix.)

Given some square matrix M , an eigenvalue λ and corresponding eigenvector v solve the eigenvalue
equation Mv = λv. The set of all eigenvalues equal the roots of the characteristic equation det(M −
λ I) = 0, which is an N ’th order polynomial in λ.

The transpose, complex conjugate, and Hermitian conjugate of a matrix M are denoted by MT , M∗,
and M †, respectively, with

(MT )ij ≡Mji , (M∗)ij ≡ (Mij)
∗ , (M †)ij ≡ (Mji)

∗ . (A.23)

A symmetric matrix is equal to its transpose, M = MT . An antisymmetric matrix equals minus its
transpose, M = −MT . An Hermitian matrix is equal to its Hermitian conjugate, M = M †.

An orthogonal matrix O is a matrix whose inverse equals its transpose, so that OOT = 1. A
unitary matrix U is a matrix whose inverse equals its Hermitian conjugate, so that UU † = 1. A real
symmetric matrix M = MT can be diagonalized by a real orthogonal transformation. In other words,
there exists a real orthogonal matrix O such that M = OλOT with λ a real diagonal matrix. The
diagonal elements {λi} are the eigenvalues ofM , and the columns ofO are the corresponding mutually
orthogonal eigenvectors. Similarly, a complex Hermitian matrix M = M † can be diagonalized by a
unitary transformation. In other words, there exists a unitary matrix U such that M = UλUT with
λ a diagonal matrix of real eigenvalues.

Matrix multiplication is non-commutative, meaning that AB 6= BA for arbitrary matrices A and B.
In other words, the commutator [A,B] ≡ AB−BA is generally non-zero (but vanishes in special cases
where the product is independent of order). Two Hermitian matrices A and B are simultaneously
diagonalizable if and only if their commutator vanishes. If the condition [A,B] = 0 holds, then there
exists a single unitary matrix U such that A = UλA U † and B = UλB U † with λA and λB both real
and diagonal. Equivalently, each column of U is an eigenvector of both A and B, with eigenvalues
for each matrix given by the corresponding diagonal elements of λA and λB.
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Vector spaces

The above relations involving N × N matrices and N component vectors generalize in a natural
fashion to arbitrary vector spaces. This name refers to any collection of objects (such as N component
column vectors, geometric vectors, polynomials, or various classes of functions) in which it makes
sense to add or subtract any two elements (or “vectors”) of the space, or multiply any element by
an overall constant. Vector spaces can be real or complex, depending of whether it makes sense to
multiply elements only be real numbers, or by arbitrary complex numbers. And vector spaces can
be finite or infinite dimensional. Given some vector space, a basis for the space is a set of linearly
independent elements, {êa}, (with a = 1, 2, · · · ), such that any vector x in the space can be written
as a linear combination of the basis elements,

x =
∑
a

êa xa , (A.24)

for some set of coefficients {xa}. If the vector space is N dimensional, with N finite, then a basis for
the space will contain N basis vectors (so the index a labeling basis elements runs from 1 to N). If
the vector space is infinite dimensional, then so is any set of basis elements. In this case, the index
a labeling basis elements runs from 1 to ∞.1 (Or, in some circumstances, the natural label is a real
number, in which case the sum (A.24) is replaced by an integral over this label.)

An inner product (or dot product) is some function which takes two vectors as arguments and returns
a single number — a real number for real vector spaces, a complex number for complex vector spaces.
The inner product of vectors x and y is commonly denoted as 〈x, y〉, (x, y), or x · y. Regardless of
which notation is used, an inner product must satisfy:

Symmetry 〈x, y〉 = 〈y, x〉∗ , (A.25)

Linearity 〈x, αy〉 = α〈x, y〉 and 〈x, y+z〉 = 〈x, y〉+ 〈x, z〉 , (A.26)

Positivity 〈x, x〉 ≥ 0 , (A.27)

Non-degeneracy 〈x, x〉 = 0 implies x = 0 . (A.28)

Two vectors are orthogonal if their inner product vanishes. A basis is orthonormal if basis elements
are mutually orthogonal, and every basis element is normalized so that its inner product with itself
is unity. More succinctly, a basis is orthonormal if 〈êa, êb〉 = δab.

A function T which acts on elements of a vector space and returns some element in the same vector
space is called a linear operator if it satisfies the linearity conditions

T (αx) = αT (x) , T (x+y) = T (x) + T (y) . (A.29)

Here α is an arbitrary real number for real vector spaces, or arbitrary complex number for complex
spaces. A linear operator T is Hermitian if 〈x, Ty〉 = 〈Tx, y〉 for all vectors x and y.

Given an orthonormal basis, determining the expansion coefficients {xa} of an arbitrary vector x is
easy: they are simply given by the inner product of x with each basis element, xa = 〈êa, x〉. In other

1In an infinite dimensional vector space, one may rightly ask whether the infinite sum (A.24) will converge for all
vectors, or only for some vectors. A more formal mathematics class would carefully address this question, but for our
purposes the claim that the sum will always make sense in physically sensible situations will have to suffice.
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words, x =
∑

a êa 〈êa, x〉 for any vector x. This may be written without reference to any specific
vector x as the completeness relation

I =
∑
a

Pa , (A.30)

where Pa is a projection operator onto vectors proportional to êa, and I is the identity operator
which leaves all vectors invariant. (Explicitly, Pa x ≡ êa 〈êa, x〉 for any vector x.)

The above structure regarding abstract vector spaces, linear operators, and inner products is a natural
generalization of N -component vectors, N × N matrices, and the usual definition of dot product.
Definitions of eigenvectors and eigenvalues, and the above results on diagonalizability generalize
directly from N ×N matrices to arbitrary linear operators.
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