
Appendix B

Quantum mechanics

Quantum kinematics

Physical states of a quantum system may be represented by elements of a complex linear vector space,
(or more formally, a Hilbert space), and are symbolized by a ket vector |ψ〉. The corresponding bra
vector 〈ψ| denotes the Hermitian conjugate of |ψ〉. A bra vector 〈φ| may be applied to a ket vector
|ψ〉 and defines the complex inner product of the two state vectors, 〈φ|ψ〉. Properly normalized
states satisfy 〈ψ|ψ〉 = 1. If |φ〉 and |ψ〉 are normalized states, then their inner product 〈φ|ψ〉 may be
interpreted as giving the projection of the state vector |ψ〉 onto the state |φ〉. The funny “bra-ket”
names and notation were introduced by Dirac, and give a distinctive and convenient notation for
this physically important inner product. The representation of physical states by vectors in a linear
space encodes the superposition principle: if |ψ〉 and |φ〉 are two possible states of some physical
system, then any complex linear combination α|ψ〉+ β|φ〉 is also a possible physical state.

Physical observables — i.e., physical quantities which can, in principle, be measured — are rep-
resented by Hermitian linear operators. Suppose Â is such an operator.1 Being Hermitian, the
eigenvalues {αa} of Â are real, and the corresponding eigenvectors (or “eigenstates”) |va〉 are mutu-
ally orthogonal (and may be chosen to be normalized). If a physical system is prepared in some state
|ψ〉 and a measurement of the quantity A is performed, the result (of an ideal measurement with
negligible experimental error) will yield one of the eigenvalues αa. If one repeatedly prepares the
state |ψ〉 and measures Â, individual measurements in identically prepared states may yield differing
eigenvalues of Â. If this process is repeated many, many times, the fraction pa of measurements
which yield a particular eigenvalue αa will be given by the absolute square of the projection of the
initial state |ψ〉 onto the corresponding eigenstate |va〉 of the observable,

pa = |〈va|ψ〉|2 . (B.1)

This is the probability that any single measurement of Â in the state |ψ〉 will yield the result αa.
The projection 〈va|ψ〉 is called a probability amplitude; physical probabilities are always given by the
(absolute) square of the probability amplitude. If repeated measurements of identically prepared

1Here and below, carets (∧) are placed over quantum operators to distinguish them from ordinary numbers — not
to indicate unit vectors.
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states are averaged together, the mean value of these measurements is

〈Â〉 ≡
∑
a

pa αa =
∑
a

〈ψ|va〉αa 〈va|ψ〉 = 〈ψ|Â|ψ〉 . (B.2)

This is referred to as the expectation value of the operator Â in the state |ψ〉. Relations (B.1) and
(B.2) are the fundamental predictions of quantum mechanics, and serve to connect the mathematical
formalism to experimental observations. Quantum mechanics makes no prediction regarding the
precise sequence of results obtained from repeated measurements of identically prepared systems, it
only predicts the probabilities of different outcomes.

Depending on the system under consideration, the space of states may be finite dimensional or
infinite dimensional. The simplest non-trivial quantum system is one with a two dimensional space
of states. This can, for example, describe the spin state of a single spin-1/2 particle. Any such spin
state can be written as a linear combination of two basis states which may be chosen to represent
the spin pointing either up or down along some chosen axis. Denoting these basis states as |↑〉 and
|↓〉, an arbitrary (normalized) spin state |ψ〉 = α|↑〉 + β|↓〉 for some coefficients α and β satisfying
|α|2 + |β|2 = 1. Equivalently, the state |ψ〉 may be represented by the complex two-component vector(
α
β

)
, so that |↑〉 corresponds to

(
1
0

)
and |↓〉 corresponds to

(
0
1

)
.

If one chooses the z-axis as the spin quantization axis, then the operators representing the components
of angular momentum (or “spin”) in the x, y, and z directions are given by Ĵ1 = ~

2 σ1, Ĵ2 = ~
2 σ2,

and Ĵ3 = ~
2 σ3, respectively, where the {σi} denote the 2× 2 Pauli matrices,

σ1 ≡
(

0 1
1 0

)
, σ2 ≡

(
0 −i
i 0

)
, σ3 ≡

(
1 0
0−1

)
. (B.3)

In this representation, Ĵ3 is diagonal and has eigenvalues ±~/2 with corresponding eigenvectors
(

1
0

)
and

(
0
1

)
representing the states |↑〉 and |↓〉 with definite projection of spin along the z-axis. Squaring

any Pauli matrix gives the 2×2 identity matrix, σ2
i = I, so for any system with spin-1/2, the operator

Ĵ2 ≡
∑

i Ĵ
2
i = 3

4 ~
2 1̂ (where 1̂ is the identity operator). In other words, every spin state of an object

with spin 1/2 is an eigenstate of Ĵ2 with eigenvalue 3
4 ~

2.

The angular momentum of any quantum mechanical system is quantized in either integer or half-
integer multiples of ~. A system with angular momentum j has a 2j + 1 dimensional space of spin
states. The projection of angular momentum along some chosen spin quantization axis, say the z-
axis, can take on 2j+1 possible values: j, j−1, · · · , −(j−1), −j (times ~). These are the eigenvalues
of the angular momentum operator Ĵ3. Different components of angular momentum do not commute,
and hence are not simultaneously diagonalizable. Rather, they satisfy the commutation relation

[Ĵi, Ĵj ] = i~ εijk Ĵk , (B.4)

where the antisymmetric symbol εijk is +1 if (ijk) is an even permutation of (123), −1 if (ijk) is an

odd permutation of (123), and 0 otherwise. The square of the angular momentum Ĵ2 ≡
∑

i Ĵ
2
i does

commute with the individual angular momentum components. For a system with angular momentum
j, Ĵ2 is proportional to the identity operator,

Ĵ2 = j(j + 1) ~2 1̂ . (B.5)

Hence, specifying the spin j of a system is equivalent to specifying the eigenvalue of Ĵ2.
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In many circumstances (including multi-particle systems like atoms or molecules) one is interested
in a quantum system containing two or more subsystems. Suppose a system has two subsystems,
A and B. The angular momentum of the total system is the sum of the angular momenta of the
subsystems, ~J tot = ~JA + ~JB. Suppose subsystem A is known to have spin jA, and subsystem B has
spin jB. Hence ( ~JA)2 = jA(jA + 1) and ( ~JB)2 = jB(jB + 1). One can show that the total spin jtot

of the combined system must be one of the values {jmin, jmin+1, · · · , jmax−1, jmax} where

jmin = |jA − jB| , jmax = jA + jB . (B.6)

Any system which moves (in ordinary 3-dimensional space) will have an infinite dimensional space
of states. In such systems, the position ~X and momentum ~P are basic quantum operators. Position
operators mutually commute, [X̂i, X̂j ] = 0, and hence may be simultaneously diagonalized. One may
introduce a basis of position eigenstates {|~x〉} satisfying the delta-function orthonormality relation,

〈~x|~y〉 = δ3(~x− ~y) , (B.7)

and corresponding completeness relation

1̂ =

∫
d3x |~x〉〈~x| . (B.8)

An arbitrary quantum state |ψ〉 (with no additional degrees of freedom) may be represented as a
superposition of position eigenstates,

|ψ〉 =

∫
d3x |~x〉Ψ(~x) . (B.9)

The amplitude Ψ(~x) is the position space wavefunction, equal to the projection of the given state |ψ〉
onto position eigenstates, Ψ(~x) ≡ 〈~x |ψ〉. Momentum operators also mutually commute, [P̂i, P̂j ] = 0,
and may be simultaneously diagonalized. It is convenient to define a basis of momentum eigenstates
{|~p〉} to satisfy the orthonormality relation

〈~p|~p ′〉 = (2π~)3δ3(~p− ~p ′) , (B.10)

so the corresponding completeness relation takes the form

1̂ =

∫
d3p

(2π~)2
|~p〉〈~p| . (B.11)

An arbitrary quantum state |ψ〉may also be represented as a superposition of momentum eigenstates,

|ψ〉 =

∫
d3p

(2π~)3
|~p〉 Ψ̃(~p) , (B.12)

where the momentum space wavefunction Ψ̃(~p) is the projection of the given state |ψ〉 onto momentum
eigenstates, Ψ̃(~p) ≡ 〈~p |ψ〉. Corresponding components of position and momentum do not commute,

[P̂i, X̂j ] =
~
i
δij , (B.13)

and hence cannot be simultaneously diagonalized. This non-vanishing commutator leads to the

uncertainty relation ∆xi ∆pj ≥ 1
2~ δij , where ∆xi ≡

[
〈X̂2

i 〉 − 〈X̂i〉2
]1/2

is the uncertainty (or stan-

dard deviation) of X̂i in some given quantum state, and ∆pj ≡
[
〈P̂ 2

j 〉 − 〈P̂j〉
2]1/2 is the analogous

uncertainty of P̂j in the same state.
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The overlap between position and momentum eigenstates is given by an exponential phase factor,

〈~x|~p〉 = ei~p·~x/~ . (B.14)

In other words, the position space wavefunction of the state |~p〉 with definite momentum is a plane
wave, ei~p·~x/~. More generally, position and momentum space wavefunctions of any state |ψ〉 are
related via Fourier transforms,

Ψ̃(~p) =

∫
d3x 〈~p|~x〉〈~x|ψ〉 =

∫
d3x e−i~p·~x/~ Ψ(~x) , (B.15)

Ψ(~x) =

∫
d3p

(2π~)3
〈~x|~p〉〈~p|ψ〉 =

∫
d3p

(2π~)3
ei~p·~x/~ Ψ̃(~p) . (B.16)

Quantum dynamics

The state of a quantum system will evolve with time. If |ψ(0)〉 denotes the state of some quantum
system at time t = 0, then the state |ψ(t)〉 of the system at some later time t is the solution of the
linear evolution equation

i~
d

dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 , (B.17)

known as the time dependent Schrodinger equation, with the specified initial condition |ψ(0)〉. The
linear operator Ĥ(t) is called the Hamiltonian; acting on any state at time t, Ĥ(t) yields the time
derivative of the state (times i~). The Hamiltonian must be Hermitian, Ĥ† = Ĥ, which implies
that its eigenvalues are real. If the Hamiltonian has no explicit time dependence, Ĥ(t) = Ĥ, then
the solution of the Schrodinger equation (B.17) involves an exponential of the Hamiltonian,2

|ψ(t)〉 = e−iĤt/~ |ψ(0)〉 . (B.18)

The exponential Û(t) ≡ e−iĤt/~ is the time evolution operator ; the Hermiticity of the Hamiltonian
implies that (for real values of t) the time evolution operator is unitary, Û(t)−1 = Û(t)† = Û(−t).
In addition to defining time evolution, the Hamiltonian is also the operator which represents the
energy of a quantum system. Eigenvalues {Ea} of the Hamiltonian are called energy levels. The
corresponding eigenstates {|va〉} satisfy the time independent Schrodinger equation

Ĥ |va〉 = Ea |va〉 . (B.19)

If an initial state equals some eigenstate of the Hamiltonian, |ψ(0)〉 = |va〉, then the state merely
acquires an overall phase factor under time evolution,

|ψ(t)〉 = e−iEat/~ |va〉 . (B.20)

Such states are called stationary states. The expectation value of any quantum operator in such a
state is independent of time.

2The exponential of an Hermitian operator (or matrix) is defined by the exponential of its eigenvalues in a basis
where the operator is diagonal. If an Hermitian operator Â has eigenvalues αa and corresponding eigenvectors |va〉,
then eÂ ≡

∑
a |va〉 e

αa 〈va|.
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