
Chapter 7

Weak interactions

As already discussed, weak interactions are responsible for many processes which involve the trans-
formation of particles from one type to another. Weak interactions cause nuclear beta decay, as well
as the decays of muons, charged pions, kaons, and many other hadrons. All processes which involve
production or scattering of neutrinos, the conversion of quarks from one flavor to another, or the
conversion of leptons from one type to another, involve weak interactions.
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Figure 7.1: Depictions, at the level of quarks and leptons, of the weak decays µ+ → e+ + ν̄µ + νe, π
+ → µ+ + νµ, and

Λ → p+ π−.

Figures 7.1 and 7.2 depict, at the level of quarks and leptons, some of these weak interaction processes.
As these figures illustrate, every weak interaction involves four fermions, either one fermion turning
into three (as in muon decay) or two incoming fermions scattering and producing two outgoing
fermions (as in neutrino scattering). As the above Λ baryon decay illustrates, there can also be
spectator quarks which are constituents of the hadrons involved but not direct participants in the
weak interaction process.

The complete Hamiltonian which describes particle interactions can be written as a sum of contri-
butions from strong, electromagnetic, and weak interactions,

H = Hstrong +HEM +Hweak . (7.0.1)
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Figure 7.2: Left: inelastic neutrino scattering, νµ+e− → νe+µ−. Right: elastic neutrino scattering, νe+e− → νe+e−.

Because weak interactions are truly weaker than strong or electromagnetic interactions, it is useful
to think of Hweak as a small perturbation to the dynamics generated by strong and electromagnetic
interactions.

7.1 Muon decay

Consider (anti)muon decay, µ+ → e++ν̄µ+νe. Let the ket |µ(~p=0)〉 denote an initial state containing
a single µ+ at rest. Let the bra 〈e(~pe) ν̄µ(~pν̄) νe(~pν)| denote a final state describing a positron with
spatial momentum ~pe, a muon antineutrino with momentum ~pν̄ , and an electron neutrino with
momentum ~pν . The existence of muon decay means that the time evolution of the initial state
|µ(~p=0)〉 will have a non-zero projection onto the final state 〈e(~pe) ν̄µ(~pν̄) νe(~pν)|. This can only
happen if the Hamiltonian, which generates time evolution, has a non-zero matrix element connecting
these states. And this can only be due to the weak interaction part of the Hamiltonian. In other
words, the existence of muon decay implies that the amplitude

M ≡ 〈e(~pe) ν̄µ(~pν̄) νe(~pν)|Hweak|µ(~p=0)〉 , (7.1.1)

is non-zero. The rate of decay must be proportional to the square of this amplitude. Because there
are many different final states corresponding to different values of the final momenta pe, pν̄ and pν ,
the complete decay rate Γ will involve a sum over all possible final states. Schematically,

Γ ∼
∑

final states

|M |2 . (7.1.2)

The amplitude M must vanish, due to momentum conservation, if ~pe+~pν̄+~pν 6= 0. When momentum
is conserved, pν̄ will equal −(pν+pe), so M may be regarded as function of two independent momenta,
pe and pν . This amplitude can, in principle, depend in some complicated fashion on these two final
momenta. But the simplest possibility is for the amplitude to have negligible dependence on the
outgoing momenta. Physically, this corresponds to a point-like interaction, for which the spatial
variation of wavefunctions (due to their momentum) plays no role.
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This guess turns out to work remarkably well. If the amplitude M is momentum independent then,
with just a little calculation, one can perform the sum over final states in Eq. (7.1.2) and predict the
muon decay spectrum as a function of positron energy. (That is, the fraction of decays in which the
positron has energy between E and E+dE.) Figure 7.3 shows the comparison between experimental
data for the decay spectrum and the result of this calculation. The agreement is excellent.

Figure 7.3: Energy spectrum of positrons emitted from decays of positively charged muons. The solid curve is the
theoretical prediction; data points are shown with error bars. [From M. Bardon et al., Phys. Rev. Lett. 14, 449
(1965) ].

To characterize the value of the amplitude M , it will be useful to begin with some dimensional
analysis. To make this as easy as possible, it will be convenient to use “natural units” in which
~ = c = 1. Since c has ordinary dimensions of [length/time], setting c = 1 means that we are
regarding length and time as having the same dimensions. Since ~ has dimensions of [energy ×
time], setting ~ = 1 means that we are regarding energy and frequency (or inverse time) as having
the same dimensions. Setting both ~ and c to unity means that we are treating length and inverse
energy as dimensionally equivalent. After using natural units in any calculation, one can always
reinsert factors of ~ and c as needed to restore conventional dimensions. In particular, the value
~c ' 197 MeV fm may be regarded as a conversion factor which allows one to convert lengths
measured in femtometers into lengths measured in MeV−1, 1 fm = 1

197 MeV−1.

The Hamiltonian is the operator which measures energy. Its eigenvalues are the energies of stationary
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states. Therefore, the Hamiltonian must have dimensions of energy. If |Ψ〉 is any physical, normalized
state, then the matrix element 〈Ψ|H|Ψ〉 is the expectation value of the energy in state |Ψ〉. Hence,
matrix elements of the Hamiltonian, such as the muon decay amplitude M , also have dimensions of
energy, provided the states appearing in the matrix element are normalized.

The wavefunction describing a particle with definite momentum ~p is proportional to the plane wave
ei~p·~x/~. To normalize such a state, it is convenient to imagine that space is not infinite, but rather
is limited to some finite, but arbitrarily large region V. The condition that a state is normalized
then becomes 1 =

∫
V d

3x |Ψ(~x)|2, where the integral only includes the interior of the region V.
For simplicity, suppose that this region is a cube of size L (and hence volume L3). A normalized
state describing a particle with momentum ~p will thus have a wavefunction Ψ(~x) = ei~p·~x/~/L3/2.
The absolute square of this wavefunction gives a constant probability density of 1/L3 whose volume
integral over the region V equals one, as desired.

Now consider the muon decay amplitude M . The initial muon, with zero spatial momentum, will
have a constant wavefunction, ψµ(~x) = 1/L3/2. The final positron, with momentum ~pe, will have
a plane-wave wavefunction ψe(~x) = ei~pe·~x/~/L3/2, and similarly the final neutrino and antineutrino
will have wavefunctions ψνe(~x) = ei~pν ·~x/~/L3/2 and ψν̄µ(~x) = ei~pν̄ ·~x/~/L3/2, respectively.

Since the point-like weak interaction event can occur at any point in space, the complete amplitude
will involve an integral over space, with an integrand which is the product of the amplitude ψµ(~x) to
find the muon at some point ~x, times the product of conjugate wavefunctions ψe(~x)∗ ψνµ(~x)∗ ψν̄e(~x)∗,
giving the amplitudes for the created positron, neutrino, and antineutrino all to be at point ~x, all
times some overall constant which will control the rate of this process,

M =
[∫
V
d3x ψe(~x)∗ ψνµ(~x)∗ ψν̄e(~x)∗ ψµ(~x)

]
× (const.). (7.1.3)

The overall constant is known as the Fermi constant, GF , divided by
√

2. (Including this factor of
√

2
is merely a convention, but is required so that GF matches its historical definition.) The integrand
appearing in this matrix element is just a constant,

ψe(~x)∗ ψνµ(~x)∗ ψν̄e(~x)∗ ψµ(~x) =
e−i(~pe+~pν+~pν̄)·~x/~

(L3/2)4
= L−6 , (7.1.4)

provided the momenta satisfy conservation of momentum, ~pe + ~pν + ~pν̄ = 0. Integrating over the
region V thus simply yields a factor of the volume, L3, of this region. Hence, we find

M =
GF /
√

2
L3

. (7.1.5)

We noted above that the decay amplitude M must have dimensions of energy. Since 1/L3 has
dimensions of energy cubed (having set ~ = c = 1), we learn that the Fermi constant GF must have
dimensions of 1/(energy)2.

The value of the Fermi constant GF may be fixed by demanding that the muon decay rate Γ calcu-
lated from Eq. (7.1.2) agree with the experimentally determined value. The decay rate is just the
inverse of the lifetime, so Γ = 1/τµ = 1/(2 µs). Performing the sum over final states in Eq. (7.1.2)
involves integrating over the final momenta subject to the constraints of energy and momentum
conservation. Details of this calculation, which is straightforward, will be omitted. One finds that
Γ = G2

F m
5
µ/(192π3). Equating this with the inverse of the observed decay rate and solving for GF

yields
GF = 1.2× 10−5 GeV−2 = 12 TeV−2 . (7.1.6)
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7.2 Neutrino scattering

The significance of this determination of the Fermi constant comes from the fact that a factor of
GF will appear in every weak interaction amplitude. Consider, for example, the inelastic neutrino
scattering process

νµ + e− → νe + µ− , (7.2.1)

depicted in Fig. 7.2 . With sufficient experimental skill and resources, this is a measurable process.
The cross section for this scattering process equals the rate of scattering events divided by the incident
flux of neutrinos and the density of target electrons. For a neutrino beam with constant flux, the
scattering rate is just the probability of scattering in time ∆t, divided by ∆t. And the probability,
as always in quantum mechanics, is the absolute square of a probability amplitude which involves
a matrix element of the weak interaction Hamiltonian between the relevant incoming and outgoing
states, M = 〈out|Hweak|in〉. This weak interaction amplitude must also be proportional to GF , so
that1

σ ∝ |M |2 ∝ G2
F . (7.2.2)

Now do some more dimensional analysis. A cross section is an area, with dimensions of length squared
or (in natural units) [energy]−2. The Fermi constant GF also has dimensions of [energy]−2, but GF
appears squared in the cross section. Therefore the cross section must equal G2

F times something
else with dimensions of [energy]2. What can this something else depend on? One possibility, which
is surely relevant, is the neutrino energy. But the energy of a particle is frame-dependent. One must
be able to express the cross section in terms of Lorentz invariant quantities. A Lorentz invariant
measure of the scattering energy is s ≡ −(pνµ + pe)2 = E2

c.m.. At low energies, the value of the
cross section will also depend on the electron and muon masses. After all, if Ec.m. < mµc

2, then the
reaction νµ + e− → νe + µ− cannot possibly occur. It must be possible to express the cross section
in the (dimensionally consistent!) form

σ = G2
F s× f

(me√
s
,
mµ√
s

)
, (7.2.3)

where f is some function of the dimensionless ratios me/Ec.m. and mµ/Ec.m.. (This function will be
non-vanishing only when both arguments are less than one.)

The simplest regime to consider is high energy relative to the muon mass, Ec.m. � mµc
2. In this

domain, the ratios me/Ec.m. and mµ/Ec.m. are both tiny. Since the cross section can be expressed
in the form (7.2.3), understanding the behavior of the cross section when the energy is large is the
same problem as understanding the behavior of the cross section in a hypothetical world where the
value of the electron and muon masses are arbitrarily small.

A crucial observation is that there is no reason to expect anything dramatic, or singular, to happen
in the limit of vanishingly small electron and muon mass (at fixed energy Ec.m.). In the relativistic
relation between energy and momentum, the zero mass limit is perfectly smooth, and just leads to
the energy-momentum relation of a massless particle,2

E(~p) =
√
~p 2 +m2 = |~p|+ 1

2

m2

|~p|
+ · · · −→

m→0
|~p| . (7.2.4)

1In fact, analytic continuation in the four-momenta relates the amplitude for inelastic neutrino scattering, νµ+e− →
νe + µ−, to the amplitude for µ+ decay. This relation, which involves replacing particles in the initial state by their
antiparticles in the final state (or vice-versa) is known as crossing symmetry.

2In contrast, the non-relativistic energy ENR(~p) = ~p 2/(2m) is not well-behaved if m→ 0 for fixed momentum ~p.
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Similarly, the massless limit of the function f(me√
s
,
mµ√
s
) appearing in the cross section (7.2.3) should

be expected to be finite and non-zero, so that A ≡ f(0, 0) is just some pure number like 2 or π. A
detailed calculation shows that, for the process (7.2.1), the number A is 1/π. Therefore, the inelastic
neutrino cross section is given by

σνµe−→νeµ− =
G2
F E

2
c.m.

π
, (7.2.5)

when Ec.m. � mµc
2. This quadratic rise of the cross section with center-of-mass energy (for ener-

gies above the relevant particle masses) also applies to other weak interaction scattering processes,
including neutrino scattering with nucleons and elastic neutrino-electron scattering. In the latter
example, the cross section is

σνee−→νee− = 0.175 G2
F E

2
c.m.. (7.2.6)

These predictions of rising neutrino cross sections with increasing energy have been confirmed ex-
perimentally for energies in the multi-MeV to multi-GeV range.3 But the prediction of quadratically
rising cross sections raises an immediate puzzle: can cross sections really grow with increasing energy
forever? Or is there some point at which the behavior must change?

In fact, cross sections cannot become arbitrarily large. The number of scattering events in any
scattering experiment is proportional to the cross section. But ultimately, the number of scatterings
cannot be larger than the total number of projectiles! A quantum mechanical analysis shows that
for point-like (or so-called s-wave) scattering, the cross-section must satisfy the bound

σ <
λ2

4π
=

π

~p 2
, (7.2.7)

where λ = 2π~/|~p| is the de Broglie wavelength of the projectile in the center-of-mass frame. This is
referred to as a unitarity bound.

For an ultra-relativistic scattering, viewed in the center-of-mass frame, the energy of each particle
is almost the same as the magnitude of its momentum (times c), and hence Ec.m. ' 2|~p |. Equating
expression (7.2.5) for the neutrino cross section with the unitarity bound (7.2.7), one finds that the
cross section (7.2.5) violates the unitarity bound when the center-of-mass energy exceeds

E∗ ≡
√

2π
GF
≈ 700 GeV . (7.2.8)

Therefore, at some energy below 700 GeV, something must dramatically change the behavior of weak
interaction cross sections to stop their quadratic rise with increasing energy.

7.3 Weak gauge bosons

In fact, at energies somewhat below E∗, weak interaction cross sections become comparable to
electromagnetic cross sections. At this point, one might anticipate significant changes in the behavior

3See, for example, the plots of the (anti)neutrino-nucleon total cross section at the particle data group website .
Note that for neutrino scattering on a nucleus, the lab frame energy is proportional to the square of the center-of-mass
energy, Elab ∝ E2

c.m., when Elab is large compared to the target mass. So the quadratic rise of the cross section with
Ec.m. is equivalent to linear growth as a function of Elab.
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6 40. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 40.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section
of this Review, Eq. (9.12) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)).
Breit-Wigner parameterizations of J/ψ, ψ(2S), and Υ (nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the
details of the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available
at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2007. Corrections
by P. Janot (CERN) and M. Schmitt (Northwestern U.)) See full-color version on color pages at end of book.

Figure 7.4: Top: Cross section for e+e− annihilation to hadrons as a function of
√
s = Ec.m.. Bottom: Ratio of cross

sections for e+e− annihilation to hadrons versus annihilation to muon pairs, R = σe+e−→hadrons/σe+e−→µ+µ− . [From
http://pdg.lbl.gov/2007/reviews/hadronicrpp.pdf .]

of both electromagnetic and weak interactions. This turns out to be true. Figure 7.4 shows the cross
section for electron-positron annihilation into hadrons as a function of

√
s = Ec.m.. At energies below

about 50 GeV, one sees that the cross section generally decreases with increasing energy (note the
logarithmic scale), but is punctuated by various spin one, parity odd hadronic resonances — the
broad ρ and ρ′, the narrower ω and φ, and the very narrow “spikes” associated with cc̄ and bb̄ heavy
quark states. The J/ψ and ψ(2s) are cc̄ bound states with energies close to twice the charm quark
mass, while the upsilon (Υ) states near 2mb are bb̄ states. But then, at a much higher energy near
90 GeV, there is a very big resonance which is something new. This is not a quark-antiquark bound
state, but rather a new type of particle which is called the Z boson. The same resonance appears
in neutrino scattering. There is also a closely related pair of charged particles known as the W+

and W−. These are not seen in Figure 7.4 because a single W+ or W− cannot result from e+e−

annihilation — this would violate charge conservation!
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Figure 7.5: Feynman diagrams for Coulomb scattering: e−e− → e−e− (left), and electron-positron annihilation to
muons: e+e− → µ+µ− (right).
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Figure 7.6: Feynman diagrams for inelastic neutrino scattering: νµ + e− → νe + µ− (left), elastic neutrino scattering:
νe + e− → νe + e− (middle), and the weak interaction contribution to e+e− → µ+µ− (right).
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Figure 7.7: Depictions of the weak decays µ+ → e+ + ν̄µ + νe (left), π+ → µ+ + νµ (middle), and Λ → p+ π− (right),
showing the exchange of weak gauge bosons.
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Together, the W± and Z are known weak gauge bosons. They are spin one particles with masses

mW = 80.4 GeV , mZ = 91.2 GeV . (7.3.1)

These particles mediate the weak interactions, in the same sense that the photon is responsible for
mediating electromagnetic interactions. Coulomb interactions may be viewed as resulting from the
exchange of photons between charged particles, and a process like e+e− → µ+µ− may be regarded
as occurring via the annihilation of the electron and positron into a photon, which lives only a very
short time before converting into the final µ+ and µ−. The diagrams of Figure 7.5 depict these
electromagnetic processes.

In the same fashion, weak interactions may be regarded as arising from the exchange of W and Z
bosons. Figure 7.6 depicts the same weak interaction scattering processes illustrated in Figure 7.2,
plus the weak interaction contribution to e+e− → µ+µ−, showing the exchange of weak gauge bosons.
Figure 7.7 does the same for the weak decays of Figure 7.1 . The diagrams of Figures 7.5–7.6 are
examples of Feynman diagrams. They actually do more than merely depict some process — these
diagrams encode precise rules for how to calculate the quantum mechanical amplitude associated
with each process. But developing this in detail will have to be left for a later class.

With this brief sketch of the current understanding of weak interactions, we must conclude our
introduction to particles and symmetries. I hope it has whetted your appetite to learn more about
this subject.
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