	Name		Student ID	Score				
	last	first						
	Part I. [29 points] The transverse displacement of a traveling harmonic wave on a stretched rope is $D(x,t) = 0.03\cos(3.4x - 6.8t)$, where x and $y=D(x,t)$ are in meters and t is in seconds.							
1.	1. [3 points] What is the amplitude of this wave?							
	A. 0.03 m							
	B. 0.06 m							
	C. 3.4 m							
	D. 6.8 m							
	E. 6.8 m							
2.	[3 points] What is the w	avelength of this w	rave?					
	A. 0.29 m							
	B. 0.92 m							
	C. 1.9 m							
	D. 105 m							
	E. 209 m							
3.	[3 points] What is the sp	peed with which thi	s wave travels?					
	A. 0.32 m/s							
	B. 1.0 m/s							
	C. 2.0 m/s							
	D. 113 m/s							
	E. 227 m/s							
4.	[3 points] In what direct	tion is this wave pro	opagating?					
	$\mathbf{A}. +x$							
	$\mathbf{B} \cdot -x$							
	C. + <i>y</i>							
	D. –y							
	E. None of the							
5.			angular frequency) of this wave?					
	A. 0.00475 Hz	Z						
	B. 0.0095 Hz							

C. 0.54 HzD. 1.1 HzE. 6.8 Hz

Name			Student ID	Score
	14	fi nat		

- 6. [3 points] Consider the piece of rope located at x = 2 m. What is the velocity v of this piece of rope at the time t = 3 s in the x direction?
 - **A.** -0.18 m/s
 - **B.** -0.03 m/s
 - **C.** 0.0 m/s
 - **D.** 0.015 m/s
 - **E.** 0.20 m/s
- 7. [4 points] And in the y direction?
 - **A.** -0.18 m/s
 - **B.** -0.03 m/s
 - **C.** 0.0 m/s
 - **D.** 0.015 m/s
 - **E.** 0.20 m/s
- 8. [4 points] Consider the piece of rope located at x = 2 m. What is the acceleration of this piece of rope at the time t = 3 s?
 - **A.** -0.71 m/s^2
 - **B.** -0.18 m/s^2
 - **C.** 0.0 m/s^2
 - **D.** 0.016 m/s^2
 - **E.** 0.71 m/s^2
- 9. [3 points] If the tension in the rope were increased by a factor of 3, how would the wave speed change?
 - **A.** The wave speed would increase by a factor of 3.
 - **B.** The wave speed would decrease by a factor of 3.
 - C. The wave speed would increase by a factor of $\sqrt{3}$
 - **D.** The wave speed would decrease by a factor of $\sqrt{3}$
 - **E.** The wave speed would not change.

last

first

Part II. [21 points] Consider a guitar string, 50 cm long. Its left most end is at x=0 m.

- 10. [3 points] What is the wavelength of the first excited mode (natural mode)?
 - **A.** 25 cm
 - **B.** 50 cm
 - **C.** 100 cm
 - **D.** 125 cm
 - **E.** 150 m
- 11. [3 points] What is the wavelength of the second excited mode?
 - **A.** 25 cm
 - **B.** 50 cm
 - **C.** 100 cm
 - **D.** 125 cm
 - **E.** 150 m

The string is under 75 N of tension, and has a mass per unit length of 20 g/m.

- 12. [4 points] What is the natural frequency, f_1 ?
 - **A.** 1.94 Hz
 - **B.** 3.87 Hz
 - **C.** 40.8 Hz
 - **D.** 61.2 Hz
 - **E.** 122 Hz
- 13. [3 points] What is the second natural frequency, f_2 ?
 - **A.** 1.94 Hz
 - **B.** 3.87 Hz
 - **C.** 40.8 Hz
 - **D.** 61.2 Hz
 - **E.** 122 Hz
- 14. [4 points] Which of the following is the most accurate mathematical description of the guitar string's oscillation in the second excited mode (assume D_M , k, and \mathbf{w} are set to the correct values)?
 - **A.** $D(x,t) = D_M \sin(kx + wt)$
 - **B.** $D(x,t) = D_M \sin(kx \mathbf{w}t)$
 - $\mathbf{C.} \quad D(x,t) = D_M \cos(kx \mathbf{w}t)$
 - **D.** $D(x,t) = D_M \sin(kx)\cos(\mathbf{w}t)$
 - **E.** $D(x,t) = D_M \cos(kx) \sin(wt)$

Name			Student ID	Score
	last	first		

Two guitar strings are placed next to each other. The first one resonates at 2010 Hz, and the second one at 2020 Hz.

- 15. [3 points] What is the beat frequency?
 - **A.** 5 Hz
 - **B.** 10 Hz
 - **C.** 2010Hz
 - **D.** 2015 Hz
 - **E.** 4030 Hz
- 16. [3 points] The frequency that best represents the tone you would hear?
 - **A.** 5 Hz
 - **B.** 10 Hz
 - **C.** 2010Hz
 - **D.** 2015 Hz
 - **E.** 4030 Hz
- 17. [4 points] Consider an open tube 100 cm long. Pick the picture that best represents the displacement of the air particles in a tube oscillating in its second harmonic mode.

last first

Part III. [25 points] The two speakers emit a sound with pitch f (units Hz). The two speakers are in phase. The speakers are placed at +d and -d. The speed of sound is \mathbf{v} .

18. [5 points] Closest point to x=0, on the x-axis, that you can stand and get constructive interference? Destructive interference? Express your answers in terms of the quantities given.

19. [10 points] The sound level at x=0 is measured to be 10 db due to the two speakers. At a nearby point, $x=x_m$, the sound level due to the two speakers is measured to be 0 db. Calculate the ratio of amplitudes of the interfering sound wave at x=0 and the point x_m , D_{M0}/D_{Mxm} .

20. [10 points] Determine an expression for $x_{\!m}$ in terms of the quantities given.