

$$
\begin{aligned}
& \Delta t=2 D / c \\
& \qquad \Delta \theta=\omega \Delta t=\omega 2 D / c=2 D \omega / c
\end{aligned}
$$

$$
\begin{gathered}
\text { Angle }=\frac{2 \Delta \theta D}{D+B}=\frac{y_{s}}{A}=4 D^{2} \omega / c(D+B) \\
\Delta \theta=\omega \Delta t=\omega 2 D / c=2 D \omega / c \quad 2 \Delta \theta D=4 D^{2} \omega / c
\end{gathered}
$$

$$
c=4 A D^{2} /(D+B)\left(\omega / y_{s}\right)
$$

$$
\begin{aligned}
& \text { Define } P=4 A D^{2} /(D+B) \\
& c=P \omega / y_{s}
\end{aligned}
$$

Measure s' for a set of values of ω

$$
\begin{array}{lr}
y_{s}=s^{\prime}+y_{0} & \text { the offset } y_{0} \text { is not known } \\
c y_{s}=\omega P & \text { where } P=4 A D^{2} /(D+B) \\
c y_{0}+c s^{\prime}=\omega P &
\end{array}
$$

Plot s' against ω
the slope $\quad d s^{\prime} / d \omega \quad$ is P / c

