

 $\Delta t = 2D/c$

 $\Delta \theta = \omega \Delta t = \omega 2D/c = 2D\omega/c$

Angle =
$$\frac{2\Delta\theta D}{D+B} = \frac{Y_s}{A} = 4D^2 \omega/c(D+B)$$

 $\Delta \theta = \omega \Delta t = \omega 2D/c = 2D\omega/c$ $2 \Delta \theta D = 4D^2 \omega/c$

c= 4AD²/(D+B) (ω /y_s)

Define $P = 4AD^2/(D+B)$ $c = P \omega/y_s$ Measure s' for a set of values of $\boldsymbol{\omega}$

 $y_{s} = s' + y_{0} \qquad \text{the offset } y_{0} \text{ is not known}$ $c y_{s} = \omega P \qquad \text{where} \quad P = 4AD^{2}/(D+B)$ $c y_{0} + c s' = \omega P$ Plot s' against ω

the slope $ds'/d\omega$ is P/c